source: palm/trunk/SOURCE/init_pegrid.f90 @ 1212

Last change on this file since 1212 was 1212, checked in by raasch, 8 years ago

tridia-solver moved to seperate module; the tridiagonal matrix coefficients of array tri are calculated only once at the beginning

  • Property svn:keywords set to Id
File size: 41.1 KB
Line 
1 SUBROUTINE init_pegrid
2
3!--------------------------------------------------------------------------------!
4! This file is part of PALM.
5!
6! PALM is free software: you can redistribute it and/or modify it under the terms
7! of the GNU General Public License as published by the Free Software Foundation,
8! either version 3 of the License, or (at your option) any later version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2012  Leibniz University Hannover
18!--------------------------------------------------------------------------------!
19!
20! Current revisions:
21! -----------------
22! error message for poisfft_hybrid removed
23!
24! Former revisions:
25! -----------------
26! $Id: init_pegrid.f90 1212 2013-08-15 08:46:27Z raasch $
27!
28! 1159 2013-05-21 11:58:22Z fricke
29! dirichlet/neumann and neumann/dirichlet removed
30!
31! 1139 2013-04-18 07:25:03Z raasch
32! bugfix for calculating the id of the PE carrying the recycling plane
33!
34! 1111 2013-03-08 23:54:10Z raasch
35! initialization of poisfft moved to module poisfft
36!
37! 1092 2013-02-02 11:24:22Z raasch
38! unused variables removed
39!
40! 1056 2012-11-16 15:28:04Z raasch
41! Indices for arrays n.._mg start from zero due to definition of arrays f2 and
42! p2 as automatic arrays in recursive subroutine next_mg_level
43!
44! 1041 2012-11-06 02:36:29Z raasch
45! a 2d virtual processor topology is used by default for all machines
46!
47! 1036 2012-10-22 13:43:42Z raasch
48! code put under GPL (PALM 3.9)
49!
50! 1003 2012-09-14 14:35:53Z raasch
51! subdomains must have identical size (grid matching = "match" removed)
52!
53! 1001 2012-09-13 14:08:46Z raasch
54! all actions concerning upstream-spline-method removed
55!
56! 978 2012-08-09 08:28:32Z fricke
57! dirichlet/neumann and neumann/dirichlet added
58! nxlu and nysv are also calculated for inflow boundary
59!
60! 809 2012-01-30 13:32:58Z maronga
61! Bugfix: replaced .AND. and .NOT. with && and ! in the preprocessor directives
62!
63! 807 2012-01-25 11:53:51Z maronga
64! New cpp directive "__check" implemented which is used by check_namelist_files
65!
66! 780 2011-11-10 07:16:47Z raasch
67! Bugfix for rev 778: Misplaced error message moved to the rigth place
68!
69! 778 2011-11-07 14:18:25Z fricke
70! Calculation of subdomain_size now considers the number of ghost points.
71! Further coarsening on PE0 is now possible for multigrid solver if the
72! collected field has more grid points than the subdomain of an PE.
73!
74! 759 2011-09-15 13:58:31Z raasch
75! calculation of number of io_blocks and the io_group to which the respective
76! PE belongs
77!
78! 755 2011-08-29 09:55:16Z witha
79! 2d-decomposition is default for lcflow (ForWind cluster in Oldenburg)
80!
81! 722 2011-04-11 06:21:09Z raasch
82! Bugfix: bc_lr/ns_cyc/dirrad/raddir replaced by bc_lr/ns, because variables
83!         are not yet set here; grid_level set to 0
84!
85! 709 2011-03-30 09:31:40Z raasch
86! formatting adjustments
87!
88! 707 2011-03-29 11:39:40Z raasch
89! bc_lr/ns replaced by bc_lr/ns_cyc/dirrad/raddir
90!
91! 667 2010-12-23 12:06:00Z suehring/gryschka
92! Moved determination of target_id's from init_coupling
93! Determination of parameters needed for coupling (coupling_topology, ngp_a,
94! ngp_o) with different grid/processor-topology in ocean and atmosphere
95! Adaption of ngp_xy, ngp_y to a dynamic number of ghost points.
96! The maximum_grid_level changed from 1 to 0. 0 is the normal grid, 1 to
97! maximum_grid_level the grids for multigrid, in which 0 and 1 are normal grids.
98! This distinction is due to reasons of data exchange and performance for the
99! normal grid and grids in poismg.
100! The definition of MPI-Vectors adapted to a dynamic numer of ghost points.
101! New MPI-Vectors for data exchange between left and right boundaries added.
102! This is due to reasons of performance (10% faster).
103!
104! 646 2010-12-15 13:03:52Z raasch
105! lctit is now using a 2d decomposition by default
106!
107! 622 2010-12-10 08:08:13Z raasch
108! optional barriers included in order to speed up collective operations
109!
110! 438 2010-02-01 04:32:43Z raasch
111! 2d-decomposition is default for Cray-XT machines
112!
113! 274 2009-03-26 15:11:21Z heinze
114! Output of messages replaced by message handling routine.
115!
116! 206 2008-10-13 14:59:11Z raasch
117! Implementation of a MPI-1 coupling: added __parallel within the __mpi2 part
118! 2d-decomposition is default on SGI-ICE systems
119!
120! 197 2008-09-16 15:29:03Z raasch
121! multigrid levels are limited by subdomains if mg_switch_to_pe0_level = -1,
122! nz is used instead nnz for calculating mg-levels
123! Collect on PE0 horizontal index bounds from all other PEs,
124! broadcast the id of the inflow PE (using the respective communicator)
125!
126! 114 2007-10-10 00:03:15Z raasch
127! Allocation of wall flag arrays for multigrid solver
128!
129! 108 2007-08-24 15:10:38Z letzel
130! Intercommunicator (comm_inter) and derived data type (type_xy) for
131! coupled model runs created, assign coupling_mode_remote,
132! indices nxlu and nysv are calculated (needed for non-cyclic boundary
133! conditions)
134!
135! 82 2007-04-16 15:40:52Z raasch
136! Cpp-directive lcmuk changed to intel_openmp_bug, setting of host on lcmuk by
137! cpp-directive removed
138!
139! 75 2007-03-22 09:54:05Z raasch
140! uxrp, vynp eliminated,
141! dirichlet/neumann changed to dirichlet/radiation, etc.,
142! poisfft_init is only called if fft-solver is switched on
143!
144! RCS Log replace by Id keyword, revision history cleaned up
145!
146! Revision 1.28  2006/04/26 13:23:32  raasch
147! lcmuk does not understand the !$ comment so a cpp-directive is required
148!
149! Revision 1.1  1997/07/24 11:15:09  raasch
150! Initial revision
151!
152!
153! Description:
154! ------------
155! Determination of the virtual processor topology (if not prescribed by the
156! user)and computation of the grid point number and array bounds of the local
157! domains.
158!------------------------------------------------------------------------------!
159
160    USE control_parameters
161    USE grid_variables
162    USE indices
163    USE pegrid
164    USE statistics
165    USE transpose_indices
166
167
168
169    IMPLICIT NONE
170
171    INTEGER ::  i, id_inflow_l, id_recycling_l, ind(5), j, k,                &
172                maximum_grid_level_l, mg_switch_to_pe0_level_l, mg_levels_x, &
173                mg_levels_y, mg_levels_z, nnx_y, nnx_z, nny_x, nny_z, nnz_x, &
174                nnz_y, numproc_sqr, nxl_l, nxr_l, nyn_l, nys_l,    &
175                nzb_l, nzt_l, omp_get_num_threads
176
177    INTEGER, DIMENSION(:), ALLOCATABLE ::  ind_all, nxlf, nxrf, nynf, nysf
178
179    INTEGER, DIMENSION(2) :: pdims_remote
180
181#if defined( __mpi2 )
182    LOGICAL ::  found
183#endif
184
185!
186!-- Get the number of OpenMP threads
187    !$OMP PARALLEL
188#if defined( __intel_openmp_bug )
189    threads_per_task = omp_get_num_threads()
190#else
191!$  threads_per_task = omp_get_num_threads()
192#endif
193    !$OMP END PARALLEL
194
195
196#if defined( __parallel )
197
198!
199!-- Determine the processor topology or check it, if prescribed by the user
200    IF ( npex == -1  .AND.  npey == -1 )  THEN
201
202!
203!--    Automatic determination of the topology
204       numproc_sqr = SQRT( REAL( numprocs ) )
205       pdims(1)    = MAX( numproc_sqr , 1 )
206       DO  WHILE ( MOD( numprocs , pdims(1) ) /= 0 )
207          pdims(1) = pdims(1) - 1
208       ENDDO
209       pdims(2) = numprocs / pdims(1)
210
211    ELSEIF ( npex /= -1  .AND.  npey /= -1 )  THEN
212
213!
214!--    Prescribed by user. Number of processors on the prescribed topology
215!--    must be equal to the number of PEs available to the job
216       IF ( ( npex * npey ) /= numprocs )  THEN
217          WRITE( message_string, * ) 'number of PEs of the prescribed ',      & 
218                 'topology (', npex*npey,') does not match & the number of ', & 
219                 'PEs available to the job (', numprocs, ')'
220          CALL message( 'init_pegrid', 'PA0221', 1, 2, 0, 6, 0 )
221       ENDIF
222       pdims(1) = npex
223       pdims(2) = npey
224
225    ELSE
226!
227!--    If the processor topology is prescribed by the user, the number of
228!--    PEs must be given in both directions
229       message_string = 'if the processor topology is prescribed by the, ' //  &
230                   ' user& both values of "npex" and "npey" must be given ' // &
231                   'in the &NAMELIST-parameter file'
232       CALL message( 'init_pegrid', 'PA0222', 1, 2, 0, 6, 0 )
233
234    ENDIF
235
236!
237!-- For communication speedup, set barriers in front of collective
238!-- communications by default on SGI-type systems
239    IF ( host(3:5) == 'sgi' )  collective_wait = .TRUE.
240
241!
242!-- If necessary, set horizontal boundary conditions to non-cyclic
243    IF ( bc_lr /= 'cyclic' )  cyclic(1) = .FALSE.
244    IF ( bc_ns /= 'cyclic' )  cyclic(2) = .FALSE.
245
246
247#if ! defined( __check)
248!
249!-- Create the virtual processor grid
250    CALL MPI_CART_CREATE( comm_palm, ndim, pdims, cyclic, reorder, &
251                          comm2d, ierr )
252    CALL MPI_COMM_RANK( comm2d, myid, ierr )
253    WRITE (myid_char,'(''_'',I4.4)')  myid
254
255    CALL MPI_CART_COORDS( comm2d, myid, ndim, pcoord, ierr )
256    CALL MPI_CART_SHIFT( comm2d, 0, 1, pleft, pright, ierr )
257    CALL MPI_CART_SHIFT( comm2d, 1, 1, psouth, pnorth, ierr )
258
259!
260!-- Determine sub-topologies for transpositions
261!-- Transposition from z to x:
262    remain_dims(1) = .TRUE.
263    remain_dims(2) = .FALSE.
264    CALL MPI_CART_SUB( comm2d, remain_dims, comm1dx, ierr )
265    CALL MPI_COMM_RANK( comm1dx, myidx, ierr )
266!
267!-- Transposition from x to y
268    remain_dims(1) = .FALSE.
269    remain_dims(2) = .TRUE.
270    CALL MPI_CART_SUB( comm2d, remain_dims, comm1dy, ierr )
271    CALL MPI_COMM_RANK( comm1dy, myidy, ierr )
272
273#endif
274
275!
276!-- Calculate array bounds along x-direction for every PE.
277    ALLOCATE( nxlf(0:pdims(1)-1), nxrf(0:pdims(1)-1), nynf(0:pdims(2)-1), &
278              nysf(0:pdims(2)-1) )
279
280    IF ( MOD( nx+1 , pdims(1) ) /= 0 )  THEN
281       WRITE( message_string, * ) 'x-direction: gridpoint number (',nx+1,') ',&
282                               'is not an& integral divisor of the number ',  &
283                               'processors (', pdims(1),')'
284       CALL message( 'init_pegrid', 'PA0225', 1, 2, 0, 6, 0 )
285    ELSE
286       nnx  = ( nx + 1 ) / pdims(1)
287       IF ( nnx*pdims(1) - ( nx + 1) > nnx )  THEN
288          WRITE( message_string, * ) 'x-direction: nx does not match the',    & 
289                       'requirements given by the number of PEs &used',       &
290                       '& please use nx = ', nx - ( pdims(1) - ( nnx*pdims(1) &
291                                   - ( nx + 1 ) ) ), ' instead of nx =', nx
292          CALL message( 'init_pegrid', 'PA0226', 1, 2, 0, 6, 0 )
293       ENDIF
294    ENDIF   
295
296!
297!-- Left and right array bounds, number of gridpoints
298    DO  i = 0, pdims(1)-1
299       nxlf(i)   = i * nnx
300       nxrf(i)   = ( i + 1 ) * nnx - 1
301    ENDDO
302
303!
304!-- Calculate array bounds in y-direction for every PE.
305    IF ( MOD( ny+1 , pdims(2) ) /= 0 )  THEN
306       WRITE( message_string, * ) 'y-direction: gridpoint number (',ny+1,') ', &
307                           'is not an& integral divisor of the number of',     &
308                           'processors (', pdims(2),')'
309       CALL message( 'init_pegrid', 'PA0227', 1, 2, 0, 6, 0 )
310    ELSE
311       nny  = ( ny + 1 ) / pdims(2)
312       IF ( nny*pdims(2) - ( ny + 1) > nny )  THEN
313          WRITE( message_string, * ) 'y-direction: ny does not match the',    &
314                       'requirements given by the number of PEs &used ',      &
315                       '& please use ny = ', ny - ( pdims(2) - ( nnx*pdims(2) &
316                                     - ( ny + 1 ) ) ), ' instead of ny =', ny
317          CALL message( 'init_pegrid', 'PA0228', 1, 2, 0, 6, 0 )
318       ENDIF
319    ENDIF   
320
321!
322!-- South and north array bounds
323    DO  j = 0, pdims(2)-1
324       nysf(j)   = j * nny
325       nynf(j)   = ( j + 1 ) * nny - 1
326    ENDDO
327
328!
329!-- Local array bounds of the respective PEs
330    nxl = nxlf(pcoord(1))
331    nxr = nxrf(pcoord(1))
332    nys = nysf(pcoord(2))
333    nyn = nynf(pcoord(2))
334    nzb = 0
335    nzt = nz
336    nnz = nz
337
338!
339!-- Set switches to define if the PE is situated at the border of the virtual
340!-- processor grid
341    IF ( nxl == 0 )   left_border_pe  = .TRUE.
342    IF ( nxr == nx )  right_border_pe = .TRUE.
343    IF ( nys == 0 )   south_border_pe = .TRUE.
344    IF ( nyn == ny )  north_border_pe = .TRUE.
345
346!
347!-- Calculate array bounds and gridpoint numbers for the transposed arrays
348!-- (needed in the pressure solver)
349!-- For the transposed arrays, cyclic boundaries as well as top and bottom
350!-- boundaries are omitted, because they are obstructive to the transposition
351
352!
353!-- 1. transposition  z --> x
354!-- This transposition is not neccessary in case of a 1d-decomposition along x
355    IF ( pdims(2) /= 1 )  THEN
356
357       nys_x = nys
358       nyn_x = nyn
359       nny_x = nny
360       IF ( MOD( nz , pdims(1) ) /= 0 )  THEN
361          WRITE( message_string, * ) 'transposition z --> x:',                &
362                       '&nz=',nz,' is not an integral divisior of pdims(1)=', &
363                                                                   pdims(1)
364          CALL message( 'init_pegrid', 'PA0230', 1, 2, 0, 6, 0 )
365       ENDIF
366       nnz_x = nz / pdims(1)
367       nzb_x = 1 + myidx * nnz_x
368       nzt_x = ( myidx + 1 ) * nnz_x
369       sendrecvcount_zx = nnx * nny * nnz_x
370
371    ELSE
372!
373!---   Setting of dummy values because otherwise variables are undefined in
374!---   the next step  x --> y
375!---   WARNING: This case has still to be clarified!!!!!!!!!!!!
376       nnz_x = 1
377       nzb_x = 1
378       nzt_x = 1
379       nny_x = nny
380
381    ENDIF
382
383!
384!-- 2. transposition  x --> y
385    nnz_y = nnz_x
386    nzb_y = nzb_x
387    nzt_y = nzt_x
388    IF ( MOD( nx+1 , pdims(2) ) /= 0 )  THEN
389       WRITE( message_string, * ) 'transposition x --> y:',                &
390                         '&nx+1=',nx+1,' is not an integral divisor of ',&
391                         'pdims(2)=',pdims(2)
392       CALL message( 'init_pegrid', 'PA0231', 1, 2, 0, 6, 0 )
393    ENDIF
394    nnx_y = (nx+1) / pdims(2)
395    nxl_y = myidy * nnx_y
396    nxr_y = ( myidy + 1 ) * nnx_y - 1
397    sendrecvcount_xy = nnx_y * nny_x * nnz_y
398
399!
400!-- 3. transposition  y --> z  (ELSE:  x --> y  in case of 1D-decomposition
401!-- along x)
402    IF ( pdims(2) /= 1 )  THEN
403!
404!--    y --> z
405!--    This transposition is not neccessary in case of a 1d-decomposition
406!--    along x, except that the uptream-spline method is switched on
407       nnx_z = nnx_y
408       nxl_z = nxl_y
409       nxr_z = nxr_y
410       IF ( MOD( ny+1 , pdims(1) ) /= 0 )  THEN
411          WRITE( message_string, * ) 'transposition y --> z:',            &
412                            '& ny+1=',ny+1,' is not an integral divisor of ',&
413                            'pdims(1)=',pdims(1)
414          CALL message( 'init_pegrid', 'PA0232', 1, 2, 0, 6, 0 )
415       ENDIF
416       nny_z = (ny+1) / pdims(1)
417       nys_z = myidx * nny_z
418       nyn_z = ( myidx + 1 ) * nny_z - 1
419       sendrecvcount_yz = nnx_y * nny_z * nnz_y
420
421    ELSE
422!
423!--    x --> y. This condition must be fulfilled for a 1D-decomposition along x
424       IF ( MOD( ny+1 , pdims(1) ) /= 0 )  THEN
425          WRITE( message_string, * ) 'transposition x --> y:',               &
426                            '& ny+1=',ny+1,' is not an integral divisor of ',&
427                            'pdims(1)=',pdims(1)
428          CALL message( 'init_pegrid', 'PA0233', 1, 2, 0, 6, 0 )
429       ENDIF
430
431    ENDIF
432
433!
434!-- Indices for direct transpositions z --> y (used for calculating spectra)
435    IF ( dt_dosp /= 9999999.9 )  THEN
436       IF ( MOD( nz, pdims(2) ) /= 0 )  THEN
437          WRITE( message_string, * ) 'direct transposition z --> y (needed ', &
438                    'for spectra):& nz=',nz,' is not an integral divisor of ',&
439                    'pdims(2)=',pdims(2)
440          CALL message( 'init_pegrid', 'PA0234', 1, 2, 0, 6, 0 )
441       ELSE
442          nxl_yd = nxl
443          nxr_yd = nxr
444          nzb_yd = 1 + myidy * ( nz / pdims(2) )
445          nzt_yd = ( myidy + 1 ) * ( nz / pdims(2) )
446          sendrecvcount_zyd = nnx * nny * ( nz / pdims(2) )
447       ENDIF
448    ENDIF
449
450!
451!-- Indices for direct transpositions y --> x (they are only possible in case
452!-- of a 1d-decomposition along x)
453    IF ( pdims(2) == 1 )  THEN
454       nny_x = nny / pdims(1)
455       nys_x = myid * nny_x
456       nyn_x = ( myid + 1 ) * nny_x - 1
457       nzb_x = 1
458       nzt_x = nz
459       sendrecvcount_xy = nnx * nny_x * nz
460    ENDIF
461
462!
463!-- Indices for direct transpositions x --> y (they are only possible in case
464!-- of a 1d-decomposition along y)
465    IF ( pdims(1) == 1 )  THEN
466       nnx_y = nnx / pdims(2)
467       nxl_y = myid * nnx_y
468       nxr_y = ( myid + 1 ) * nnx_y - 1
469       nzb_y = 1
470       nzt_y = nz
471       sendrecvcount_xy = nnx_y * nny * nz
472    ENDIF
473
474!
475!-- Arrays for storing the array bounds are needed any more
476    DEALLOCATE( nxlf , nxrf , nynf , nysf )
477
478
479#if ! defined( __check)
480!
481!-- Collect index bounds from other PEs (to be written to restart file later)
482    ALLOCATE( hor_index_bounds(4,0:numprocs-1) )
483
484    IF ( myid == 0 )  THEN
485
486       hor_index_bounds(1,0) = nxl
487       hor_index_bounds(2,0) = nxr
488       hor_index_bounds(3,0) = nys
489       hor_index_bounds(4,0) = nyn
490
491!
492!--    Receive data from all other PEs
493       DO  i = 1, numprocs-1
494          CALL MPI_RECV( ibuf, 4, MPI_INTEGER, i, MPI_ANY_TAG, comm2d, status, &
495                         ierr )
496          hor_index_bounds(:,i) = ibuf(1:4)
497       ENDDO
498
499    ELSE
500!
501!--    Send index bounds to PE0
502       ibuf(1) = nxl
503       ibuf(2) = nxr
504       ibuf(3) = nys
505       ibuf(4) = nyn
506       CALL MPI_SEND( ibuf, 4, MPI_INTEGER, 0, myid, comm2d, ierr )
507
508    ENDIF
509
510#endif
511
512#if defined( __print )
513!
514!-- Control output
515    IF ( myid == 0 )  THEN
516       PRINT*, '*** processor topology ***'
517       PRINT*, ' '
518       PRINT*, 'myid   pcoord    left right  south north  idx idy   nxl: nxr',&
519               &'   nys: nyn'
520       PRINT*, '------------------------------------------------------------',&
521               &'-----------'
522       WRITE (*,1000)  0, pcoord(1), pcoord(2), pleft, pright, psouth, pnorth, &
523                       myidx, myidy, nxl, nxr, nys, nyn
5241000   FORMAT (I4,2X,'(',I3,',',I3,')',3X,I4,2X,I4,3X,I4,2X,I4,2X,I3,1X,I3, &
525               2(2X,I4,':',I4))
526
527!
528!--    Receive data from the other PEs
529       DO  i = 1,numprocs-1
530          CALL MPI_RECV( ibuf, 12, MPI_INTEGER, i, MPI_ANY_TAG, comm2d, status, &
531                         ierr )
532          WRITE (*,1000)  i, ( ibuf(j) , j = 1,12 )
533       ENDDO
534    ELSE
535
536!
537!--    Send data to PE0
538       ibuf(1) = pcoord(1); ibuf(2) = pcoord(2); ibuf(3) = pleft
539       ibuf(4) = pright; ibuf(5) = psouth; ibuf(6) = pnorth; ibuf(7) = myidx
540       ibuf(8) = myidy; ibuf(9) = nxl; ibuf(10) = nxr; ibuf(11) = nys
541       ibuf(12) = nyn
542       CALL MPI_SEND( ibuf, 12, MPI_INTEGER, 0, myid, comm2d, ierr )       
543    ENDIF
544#endif
545
546#if defined( __parallel ) && ! defined( __check)
547#if defined( __mpi2 )
548!
549!-- In case of coupled runs, get the port name on PE0 of the atmosphere model
550!-- and pass it to PE0 of the ocean model
551    IF ( myid == 0 )  THEN
552
553       IF ( coupling_mode == 'atmosphere_to_ocean' )  THEN
554
555          CALL MPI_OPEN_PORT( MPI_INFO_NULL, port_name, ierr )
556
557          CALL MPI_PUBLISH_NAME( 'palm_coupler', MPI_INFO_NULL, port_name, &
558                                 ierr )
559
560!
561!--       Write a flag file for the ocean model and the other atmosphere
562!--       processes.
563!--       There seems to be a bug in MPICH2 which causes hanging processes
564!--       in case that execution of LOOKUP_NAME is continued too early
565!--       (i.e. before the port has been created)
566          OPEN( 90, FILE='COUPLING_PORT_OPENED', FORM='FORMATTED' )
567          WRITE ( 90, '(''TRUE'')' )
568          CLOSE ( 90 )
569
570       ELSEIF ( coupling_mode == 'ocean_to_atmosphere' )  THEN
571
572!
573!--       Continue only if the atmosphere model has created the port.
574!--       There seems to be a bug in MPICH2 which causes hanging processes
575!--       in case that execution of LOOKUP_NAME is continued too early
576!--       (i.e. before the port has been created)
577          INQUIRE( FILE='COUPLING_PORT_OPENED', EXIST=found )
578          DO WHILE ( .NOT. found )
579             INQUIRE( FILE='COUPLING_PORT_OPENED', EXIST=found )
580          ENDDO
581
582          CALL MPI_LOOKUP_NAME( 'palm_coupler', MPI_INFO_NULL, port_name, ierr )
583
584       ENDIF
585
586    ENDIF
587
588!
589!-- In case of coupled runs, establish the connection between the atmosphere
590!-- and the ocean model and define the intercommunicator (comm_inter)
591    CALL MPI_BARRIER( comm2d, ierr )
592    IF ( coupling_mode == 'atmosphere_to_ocean' )  THEN
593
594       CALL MPI_COMM_ACCEPT( port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD, &
595                             comm_inter, ierr )
596       coupling_mode_remote = 'ocean_to_atmosphere'
597
598    ELSEIF ( coupling_mode == 'ocean_to_atmosphere' )  THEN
599
600       CALL MPI_COMM_CONNECT( port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD, &
601                              comm_inter, ierr )
602       coupling_mode_remote = 'atmosphere_to_ocean'
603
604    ENDIF
605#endif
606
607!
608!-- Determine the number of ghost point layers
609    IF ( scalar_advec == 'ws-scheme' .OR. momentum_advec == 'ws-scheme' )  THEN
610       nbgp = 3
611    ELSE
612       nbgp = 1
613    ENDIF
614
615!
616!-- Create a new MPI derived datatype for the exchange of surface (xy) data,
617!-- which is needed for coupled atmosphere-ocean runs.
618!-- First, calculate number of grid points of an xy-plane.
619    ngp_xy  = ( nxr - nxl + 1 + 2 * nbgp ) * ( nyn - nys + 1 + 2 * nbgp )
620    CALL MPI_TYPE_VECTOR( ngp_xy, 1, nzt-nzb+2, MPI_REAL, type_xy, ierr )
621    CALL MPI_TYPE_COMMIT( type_xy, ierr )
622
623    IF ( TRIM( coupling_mode ) /= 'uncoupled' )  THEN
624   
625!
626!--    Pass the number of grid points of the atmosphere model to
627!--    the ocean model and vice versa
628       IF ( coupling_mode == 'atmosphere_to_ocean' )  THEN
629
630          nx_a = nx
631          ny_a = ny
632
633          IF ( myid == 0 )  THEN
634
635             CALL MPI_SEND( nx_a, 1, MPI_INTEGER, numprocs, 1, comm_inter,  &
636                            ierr )
637             CALL MPI_SEND( ny_a, 1, MPI_INTEGER, numprocs, 2, comm_inter,  &
638                            ierr )
639             CALL MPI_SEND( pdims, 2, MPI_INTEGER, numprocs, 3, comm_inter, &
640                            ierr )
641             CALL MPI_RECV( nx_o, 1, MPI_INTEGER, numprocs, 4, comm_inter,  &
642                            status, ierr )
643             CALL MPI_RECV( ny_o, 1, MPI_INTEGER, numprocs, 5, comm_inter,  &
644                            status, ierr )
645             CALL MPI_RECV( pdims_remote, 2, MPI_INTEGER, numprocs, 6,      &
646                            comm_inter, status, ierr )
647          ENDIF
648
649          CALL MPI_BCAST( nx_o, 1, MPI_INTEGER, 0, comm2d, ierr )
650          CALL MPI_BCAST( ny_o, 1, MPI_INTEGER, 0, comm2d, ierr ) 
651          CALL MPI_BCAST( pdims_remote, 2, MPI_INTEGER, 0, comm2d, ierr )
652       
653       ELSEIF ( coupling_mode == 'ocean_to_atmosphere' )  THEN
654
655          nx_o = nx
656          ny_o = ny
657
658          IF ( myid == 0 ) THEN
659
660             CALL MPI_RECV( nx_a, 1, MPI_INTEGER, 0, 1, comm_inter, status, &
661                            ierr )
662             CALL MPI_RECV( ny_a, 1, MPI_INTEGER, 0, 2, comm_inter, status, &
663                            ierr )
664             CALL MPI_RECV( pdims_remote, 2, MPI_INTEGER, 0, 3, comm_inter, &
665                            status, ierr )
666             CALL MPI_SEND( nx_o, 1, MPI_INTEGER, 0, 4, comm_inter, ierr )
667             CALL MPI_SEND( ny_o, 1, MPI_INTEGER, 0, 5, comm_inter, ierr )
668             CALL MPI_SEND( pdims, 2, MPI_INTEGER, 0, 6, comm_inter, ierr )
669          ENDIF
670
671          CALL MPI_BCAST( nx_a, 1, MPI_INTEGER, 0, comm2d, ierr)
672          CALL MPI_BCAST( ny_a, 1, MPI_INTEGER, 0, comm2d, ierr) 
673          CALL MPI_BCAST( pdims_remote, 2, MPI_INTEGER, 0, comm2d, ierr) 
674
675       ENDIF
676 
677       ngp_a = ( nx_a+1 + 2 * nbgp ) * ( ny_a+1 + 2 * nbgp )
678       ngp_o = ( nx_o+1 + 2 * nbgp ) * ( ny_o+1 + 2 * nbgp )
679
680!
681!--    Determine if the horizontal grid and the number of PEs in ocean and
682!--    atmosphere is same or not
683       IF ( nx_o == nx_a  .AND.  ny_o == ny_a  .AND.  &
684            pdims(1) == pdims_remote(1) .AND. pdims(2) == pdims_remote(2) ) &
685       THEN
686          coupling_topology = 0
687       ELSE
688          coupling_topology = 1
689       ENDIF
690
691!
692!--    Determine the target PEs for the exchange between ocean and
693!--    atmosphere (comm2d)
694       IF ( coupling_topology == 0 )  THEN
695!
696!--       In case of identical topologies, every atmosphere PE has exactly one
697!--       ocean PE counterpart and vice versa
698          IF ( TRIM( coupling_mode ) == 'atmosphere_to_ocean' ) THEN
699             target_id = myid + numprocs
700          ELSE
701             target_id = myid
702          ENDIF
703
704       ELSE
705!
706!--       In case of nonequivalent topology in ocean and atmosphere only for
707!--       PE0 in ocean and PE0 in atmosphere a target_id is needed, since
708!--       data echxchange between ocean and atmosphere will be done only
709!--       between these PEs.   
710          IF ( myid == 0 )  THEN
711
712             IF ( TRIM( coupling_mode ) == 'atmosphere_to_ocean' )  THEN
713                target_id = numprocs
714             ELSE
715                target_id = 0
716             ENDIF
717
718          ENDIF
719
720       ENDIF
721
722    ENDIF
723
724
725#endif
726
727#else
728
729!
730!-- Array bounds when running on a single PE (respectively a non-parallel
731!-- machine)
732    nxl = 0
733    nxr = nx
734    nnx = nxr - nxl + 1
735    nys = 0
736    nyn = ny
737    nny = nyn - nys + 1
738    nzb = 0
739    nzt = nz
740    nnz = nz
741
742    ALLOCATE( hor_index_bounds(4,0:0) )
743    hor_index_bounds(1,0) = nxl
744    hor_index_bounds(2,0) = nxr
745    hor_index_bounds(3,0) = nys
746    hor_index_bounds(4,0) = nyn
747
748!
749!-- Array bounds for the pressure solver (in the parallel code, these bounds
750!-- are the ones for the transposed arrays)
751    nys_x = nys
752    nyn_x = nyn
753    nzb_x = nzb + 1
754    nzt_x = nzt
755
756    nxl_y = nxl
757    nxr_y = nxr
758    nzb_y = nzb + 1
759    nzt_y = nzt
760
761    nxl_z = nxl
762    nxr_z = nxr
763    nys_z = nys
764    nyn_z = nyn
765
766#endif
767
768!
769!-- Calculate number of grid levels necessary for the multigrid poisson solver
770!-- as well as the gridpoint indices on each level
771    IF ( psolver == 'multigrid' )  THEN
772
773!
774!--    First calculate number of possible grid levels for the subdomains
775       mg_levels_x = 1
776       mg_levels_y = 1
777       mg_levels_z = 1
778
779       i = nnx
780       DO WHILE ( MOD( i, 2 ) == 0  .AND.  i /= 2 )
781          i = i / 2
782          mg_levels_x = mg_levels_x + 1
783       ENDDO
784
785       j = nny
786       DO WHILE ( MOD( j, 2 ) == 0  .AND.  j /= 2 )
787          j = j / 2
788          mg_levels_y = mg_levels_y + 1
789       ENDDO
790
791       k = nz    ! do not use nnz because it might be > nz due to transposition
792                 ! requirements
793       DO WHILE ( MOD( k, 2 ) == 0  .AND.  k /= 2 )
794          k = k / 2
795          mg_levels_z = mg_levels_z + 1
796       ENDDO
797
798       maximum_grid_level = MIN( mg_levels_x, mg_levels_y, mg_levels_z )
799
800!
801!--    Find out, if the total domain allows more levels. These additional
802!--    levels are identically processed on all PEs.
803       IF ( numprocs > 1  .AND.  mg_switch_to_pe0_level /= -1 )  THEN
804
805          IF ( mg_levels_z > MIN( mg_levels_x, mg_levels_y ) )  THEN
806
807             mg_switch_to_pe0_level_l = maximum_grid_level
808
809             mg_levels_x = 1
810             mg_levels_y = 1
811
812             i = nx+1
813             DO WHILE ( MOD( i, 2 ) == 0  .AND.  i /= 2 )
814                i = i / 2
815                mg_levels_x = mg_levels_x + 1
816             ENDDO
817
818             j = ny+1
819             DO WHILE ( MOD( j, 2 ) == 0  .AND.  j /= 2 )
820                j = j / 2
821                mg_levels_y = mg_levels_y + 1
822             ENDDO
823
824             maximum_grid_level_l = MIN( mg_levels_x, mg_levels_y, mg_levels_z )
825
826             IF ( maximum_grid_level_l > mg_switch_to_pe0_level_l )  THEN
827                mg_switch_to_pe0_level_l = maximum_grid_level_l - &
828                                           mg_switch_to_pe0_level_l + 1
829             ELSE
830                mg_switch_to_pe0_level_l = 0
831             ENDIF
832
833          ELSE
834             mg_switch_to_pe0_level_l = 0
835             maximum_grid_level_l = maximum_grid_level
836
837          ENDIF
838
839!
840!--       Use switch level calculated above only if it is not pre-defined
841!--       by user
842          IF ( mg_switch_to_pe0_level == 0 )  THEN
843             IF ( mg_switch_to_pe0_level_l /= 0 )  THEN
844                mg_switch_to_pe0_level = mg_switch_to_pe0_level_l
845                maximum_grid_level     = maximum_grid_level_l
846             ENDIF
847
848          ELSE
849!
850!--          Check pre-defined value and reset to default, if neccessary
851             IF ( mg_switch_to_pe0_level < mg_switch_to_pe0_level_l  .OR.  &
852                  mg_switch_to_pe0_level >= maximum_grid_level_l )  THEN
853                message_string = 'mg_switch_to_pe0_level ' // &
854                                 'out of range and reset to default (=0)'
855                CALL message( 'init_pegrid', 'PA0235', 0, 1, 0, 6, 0 )
856                mg_switch_to_pe0_level = 0
857             ELSE
858!
859!--             Use the largest number of possible levels anyway and recalculate
860!--             the switch level to this largest number of possible values
861                maximum_grid_level = maximum_grid_level_l
862
863             ENDIF
864
865          ENDIF
866
867       ENDIF
868
869       ALLOCATE( grid_level_count(maximum_grid_level),                       &
870                 nxl_mg(0:maximum_grid_level), nxr_mg(0:maximum_grid_level), &
871                 nyn_mg(0:maximum_grid_level), nys_mg(0:maximum_grid_level), &
872                 nzt_mg(0:maximum_grid_level) )
873
874       grid_level_count = 0
875!
876!--    Index zero required as dummy due to definition of arrays f2 and p2 in
877!--    recursive subroutine next_mg_level
878       nxl_mg(0) = 0; nxr_mg(0) = 0; nyn_mg(0) = 0; nys_mg(0) = 0; nzt_mg(0) = 0
879
880       nxl_l = nxl; nxr_l = nxr; nys_l = nys; nyn_l = nyn; nzt_l = nzt
881
882       DO  i = maximum_grid_level, 1 , -1
883
884          IF ( i == mg_switch_to_pe0_level )  THEN
885#if defined( __parallel ) && ! defined( __check )
886!
887!--          Save the grid size of the subdomain at the switch level, because
888!--          it is needed in poismg.
889             ind(1) = nxl_l; ind(2) = nxr_l
890             ind(3) = nys_l; ind(4) = nyn_l
891             ind(5) = nzt_l
892             ALLOCATE( ind_all(5*numprocs), mg_loc_ind(5,0:numprocs-1) )
893             CALL MPI_ALLGATHER( ind, 5, MPI_INTEGER, ind_all, 5, &
894                                 MPI_INTEGER, comm2d, ierr )
895             DO  j = 0, numprocs-1
896                DO  k = 1, 5
897                   mg_loc_ind(k,j) = ind_all(k+j*5)
898                ENDDO
899             ENDDO
900             DEALLOCATE( ind_all )
901!
902!--          Calculate the grid size of the total domain
903             nxr_l = ( nxr_l-nxl_l+1 ) * pdims(1) - 1
904             nxl_l = 0
905             nyn_l = ( nyn_l-nys_l+1 ) * pdims(2) - 1
906             nys_l = 0
907!
908!--          The size of this gathered array must not be larger than the
909!--          array tend, which is used in the multigrid scheme as a temporary
910!--          array. Therefore the subdomain size of an PE is calculated and
911!--          the size of the gathered grid. These values are used in 
912!--          routines pres and poismg
913             subdomain_size = ( nxr - nxl + 2 * nbgp + 1 ) * &
914                              ( nyn - nys + 2 * nbgp + 1 ) * ( nzt - nzb + 2 )
915             gathered_size  = ( nxr_l - nxl_l + 3 ) * ( nyn_l - nys_l + 3 ) * &
916                              ( nzt_l - nzb + 2 )
917
918#elif ! defined ( __parallel )
919             message_string = 'multigrid gather/scatter impossible ' // &
920                          'in non parallel mode'
921             CALL message( 'init_pegrid', 'PA0237', 1, 2, 0, 6, 0 )
922#endif
923          ENDIF
924
925          nxl_mg(i) = nxl_l
926          nxr_mg(i) = nxr_l
927          nys_mg(i) = nys_l
928          nyn_mg(i) = nyn_l
929          nzt_mg(i) = nzt_l
930
931          nxl_l = nxl_l / 2 
932          nxr_l = nxr_l / 2
933          nys_l = nys_l / 2 
934          nyn_l = nyn_l / 2 
935          nzt_l = nzt_l / 2 
936
937       ENDDO
938
939!
940!--    Temporary problem: Currently calculation of maxerror iin routine poismg crashes
941!--    if grid data are collected on PE0 already on the finest grid level.
942!--    To be solved later.
943       IF ( maximum_grid_level == mg_switch_to_pe0_level )  THEN
944          message_string = 'grid coarsening on subdomain level cannot be performed'
945          CALL message( 'poismg', 'PA0236', 1, 2, 0, 6, 0 )
946       ENDIF
947
948    ELSE
949
950       maximum_grid_level = 0
951
952    ENDIF
953
954!
955!-- Default level 0 tells exchange_horiz that all ghost planes have to be
956!-- exchanged. grid_level is adjusted in poismg, where only one ghost plane
957!-- is required.
958    grid_level = 0
959
960#if defined( __parallel ) && ! defined ( __check )
961!
962!-- Gridpoint number for the exchange of ghost points (y-line for 2D-arrays)
963    ngp_y  = nyn - nys + 1 + 2 * nbgp
964
965!
966!-- Define new MPI derived datatypes for the exchange of ghost points in
967!-- x- and y-direction for 2D-arrays (line)
968    CALL MPI_TYPE_VECTOR( nxr-nxl+1+2*nbgp, nbgp, ngp_y, MPI_REAL, type_x, &
969                          ierr )
970    CALL MPI_TYPE_COMMIT( type_x, ierr )
971    CALL MPI_TYPE_VECTOR( nxr-nxl+1+2*nbgp, nbgp, ngp_y, MPI_INTEGER, &
972                          type_x_int, ierr )
973    CALL MPI_TYPE_COMMIT( type_x_int, ierr )
974
975    CALL MPI_TYPE_VECTOR( nbgp, ngp_y, ngp_y, MPI_REAL, type_y, ierr )
976    CALL MPI_TYPE_COMMIT( type_y, ierr )
977    CALL MPI_TYPE_VECTOR( nbgp, ngp_y, ngp_y, MPI_INTEGER, type_y_int, ierr )
978    CALL MPI_TYPE_COMMIT( type_y_int, ierr )
979
980
981!
982!-- Calculate gridpoint numbers for the exchange of ghost points along x
983!-- (yz-plane for 3D-arrays) and define MPI derived data type(s) for the
984!-- exchange of ghost points in y-direction (xz-plane).
985!-- Do these calculations for the model grid and (if necessary) also
986!-- for the coarser grid levels used in the multigrid method
987    ALLOCATE ( ngp_yz(0:maximum_grid_level), type_xz(0:maximum_grid_level),&
988               type_yz(0:maximum_grid_level) )
989
990    nxl_l = nxl; nxr_l = nxr; nys_l = nys; nyn_l = nyn; nzb_l = nzb; nzt_l = nzt
991
992!
993!-- Discern between the model grid, which needs nbgp ghost points and
994!-- grid levels for the multigrid scheme. In the latter case only one
995!-- ghost point is necessary.
996!-- First definition of MPI-datatypes for exchange of ghost layers on normal
997!-- grid. The following loop is needed for data exchange in poismg.f90.
998!
999!-- Determine number of grid points of yz-layer for exchange
1000    ngp_yz(0) = (nzt - nzb + 2) * (nyn - nys + 1 + 2 * nbgp)
1001
1002!
1003!-- Define an MPI-datatype for the exchange of left/right boundaries.
1004!-- Although data are contiguous in physical memory (which does not
1005!-- necessarily require an MPI-derived datatype), the data exchange between
1006!-- left and right PE's using the MPI-derived type is 10% faster than without.
1007    CALL MPI_TYPE_VECTOR( nxr-nxl+1+2*nbgp, nbgp*(nzt-nzb+2), ngp_yz(0), &
1008                          MPI_REAL, type_xz(0), ierr )
1009    CALL MPI_TYPE_COMMIT( type_xz(0), ierr )
1010
1011    CALL MPI_TYPE_VECTOR( nbgp, ngp_yz(0), ngp_yz(0), MPI_REAL, type_yz(0), &
1012                          ierr ) 
1013    CALL MPI_TYPE_COMMIT( type_yz(0), ierr )
1014
1015!
1016!-- Definition of MPI-datatypes for multigrid method (coarser level grids)
1017    IF ( psolver == 'multigrid' )  THEN
1018!   
1019!--    Definition of MPI-datatyoe as above, but only 1 ghost level is used
1020       DO  i = maximum_grid_level, 1 , -1
1021
1022          ngp_yz(i) = (nzt_l - nzb_l + 2) * (nyn_l - nys_l + 3)
1023
1024          CALL MPI_TYPE_VECTOR( nxr_l-nxl_l+3, nzt_l-nzb_l+2, ngp_yz(i), &
1025                                MPI_REAL, type_xz(i), ierr )
1026          CALL MPI_TYPE_COMMIT( type_xz(i), ierr )
1027
1028          CALL MPI_TYPE_VECTOR( 1, ngp_yz(i), ngp_yz(i), MPI_REAL, type_yz(i), &
1029                                ierr )
1030          CALL MPI_TYPE_COMMIT( type_yz(i), ierr )
1031
1032          nxl_l = nxl_l / 2
1033          nxr_l = nxr_l / 2
1034          nys_l = nys_l / 2
1035          nyn_l = nyn_l / 2
1036          nzt_l = nzt_l / 2
1037
1038       ENDDO
1039
1040    ENDIF
1041#endif
1042
1043#if defined( __parallel ) && ! defined ( __check )
1044!
1045!-- Setting of flags for inflow/outflow conditions in case of non-cyclic
1046!-- horizontal boundary conditions.
1047    IF ( pleft == MPI_PROC_NULL )  THEN
1048       IF ( bc_lr == 'dirichlet/radiation' )  THEN
1049          inflow_l  = .TRUE.
1050       ELSEIF ( bc_lr == 'radiation/dirichlet' )  THEN
1051          outflow_l = .TRUE.
1052       ENDIF
1053    ENDIF
1054
1055    IF ( pright == MPI_PROC_NULL )  THEN
1056       IF ( bc_lr == 'dirichlet/radiation' )  THEN
1057          outflow_r = .TRUE.
1058       ELSEIF ( bc_lr == 'radiation/dirichlet' )  THEN
1059          inflow_r  = .TRUE.
1060       ENDIF
1061    ENDIF
1062
1063    IF ( psouth == MPI_PROC_NULL )  THEN
1064       IF ( bc_ns == 'dirichlet/radiation' )  THEN
1065          outflow_s = .TRUE.
1066       ELSEIF ( bc_ns == 'radiation/dirichlet' )  THEN
1067          inflow_s  = .TRUE.
1068       ENDIF
1069    ENDIF
1070
1071    IF ( pnorth == MPI_PROC_NULL )  THEN
1072       IF ( bc_ns == 'dirichlet/radiation' )  THEN
1073          inflow_n  = .TRUE.
1074       ELSEIF ( bc_ns == 'radiation/dirichlet' )  THEN
1075          outflow_n = .TRUE.
1076       ENDIF
1077    ENDIF
1078
1079!
1080!-- Broadcast the id of the inflow PE
1081    IF ( inflow_l )  THEN
1082       id_inflow_l = myidx
1083    ELSE
1084       id_inflow_l = 0
1085    ENDIF
1086    IF ( collective_wait )  CALL MPI_BARRIER( comm2d, ierr )
1087    CALL MPI_ALLREDUCE( id_inflow_l, id_inflow, 1, MPI_INTEGER, MPI_SUM, &
1088                        comm1dx, ierr )
1089
1090!
1091!-- Broadcast the id of the recycling plane
1092!-- WARNING: needs to be adjusted in case of inflows other than from left side!
1093    IF ( NINT( recycling_width / dx ) >= nxl  .AND. &
1094         NINT( recycling_width / dx ) <= nxr )  THEN
1095       id_recycling_l = myidx
1096    ELSE
1097       id_recycling_l = 0
1098    ENDIF
1099    IF ( collective_wait )  CALL MPI_BARRIER( comm2d, ierr )
1100    CALL MPI_ALLREDUCE( id_recycling_l, id_recycling, 1, MPI_INTEGER, MPI_SUM, &
1101                        comm1dx, ierr )
1102
1103#elif ! defined ( __parallel )
1104    IF ( bc_lr == 'dirichlet/radiation' )  THEN
1105       inflow_l  = .TRUE.
1106       outflow_r = .TRUE.
1107    ELSEIF ( bc_lr == 'radiation/dirichlet' )  THEN
1108       outflow_l = .TRUE.
1109       inflow_r  = .TRUE.
1110    ENDIF
1111
1112    IF ( bc_ns == 'dirichlet/radiation' )  THEN
1113       inflow_n  = .TRUE.
1114       outflow_s = .TRUE.
1115    ELSEIF ( bc_ns == 'radiation/dirichlet' )  THEN
1116       outflow_n = .TRUE.
1117       inflow_s  = .TRUE.
1118    ENDIF
1119#endif
1120
1121!
1122!-- At the inflow or outflow, u or v, respectively, have to be calculated for
1123!-- one more grid point.
1124    IF ( inflow_l .OR. outflow_l )  THEN
1125       nxlu = nxl + 1
1126    ELSE
1127       nxlu = nxl
1128    ENDIF
1129    IF ( inflow_s .OR. outflow_s )  THEN
1130       nysv = nys + 1
1131    ELSE
1132       nysv = nys
1133    ENDIF
1134
1135!
1136!-- Allocate wall flag arrays used in the multigrid solver
1137    IF ( psolver == 'multigrid' )  THEN
1138
1139       DO  i = maximum_grid_level, 1, -1
1140
1141           SELECT CASE ( i )
1142
1143              CASE ( 1 )
1144                 ALLOCATE( wall_flags_1(nzb:nzt_mg(i)+1,         &
1145                                        nys_mg(i)-1:nyn_mg(i)+1, &
1146                                        nxl_mg(i)-1:nxr_mg(i)+1) )
1147
1148              CASE ( 2 )
1149                 ALLOCATE( wall_flags_2(nzb:nzt_mg(i)+1,         &
1150                                        nys_mg(i)-1:nyn_mg(i)+1, &
1151                                        nxl_mg(i)-1:nxr_mg(i)+1) )
1152
1153              CASE ( 3 )
1154                 ALLOCATE( wall_flags_3(nzb:nzt_mg(i)+1,         &
1155                                        nys_mg(i)-1:nyn_mg(i)+1, &
1156                                        nxl_mg(i)-1:nxr_mg(i)+1) )
1157
1158              CASE ( 4 )
1159                 ALLOCATE( wall_flags_4(nzb:nzt_mg(i)+1,         &
1160                                        nys_mg(i)-1:nyn_mg(i)+1, &
1161                                        nxl_mg(i)-1:nxr_mg(i)+1) )
1162
1163              CASE ( 5 )
1164                 ALLOCATE( wall_flags_5(nzb:nzt_mg(i)+1,         &
1165                                        nys_mg(i)-1:nyn_mg(i)+1, &
1166                                        nxl_mg(i)-1:nxr_mg(i)+1) )
1167
1168              CASE ( 6 )
1169                 ALLOCATE( wall_flags_6(nzb:nzt_mg(i)+1,         &
1170                                        nys_mg(i)-1:nyn_mg(i)+1, &
1171                                        nxl_mg(i)-1:nxr_mg(i)+1) )
1172
1173              CASE ( 7 )
1174                 ALLOCATE( wall_flags_7(nzb:nzt_mg(i)+1,         &
1175                                        nys_mg(i)-1:nyn_mg(i)+1, &
1176                                        nxl_mg(i)-1:nxr_mg(i)+1) )
1177
1178              CASE ( 8 )
1179                 ALLOCATE( wall_flags_8(nzb:nzt_mg(i)+1,         &
1180                                        nys_mg(i)-1:nyn_mg(i)+1, &
1181                                        nxl_mg(i)-1:nxr_mg(i)+1) )
1182
1183              CASE ( 9 )
1184                 ALLOCATE( wall_flags_9(nzb:nzt_mg(i)+1,         &
1185                                        nys_mg(i)-1:nyn_mg(i)+1, &
1186                                        nxl_mg(i)-1:nxr_mg(i)+1) )
1187
1188              CASE ( 10 )
1189                 ALLOCATE( wall_flags_10(nzb:nzt_mg(i)+1,        &
1190                                        nys_mg(i)-1:nyn_mg(i)+1, &
1191                                        nxl_mg(i)-1:nxr_mg(i)+1) )
1192
1193              CASE DEFAULT
1194                 message_string = 'more than 10 multigrid levels'
1195                 CALL message( 'init_pegrid', 'PA0238', 1, 2, 0, 6, 0 )
1196
1197          END SELECT
1198
1199       ENDDO
1200
1201    ENDIF
1202
1203!
1204!-- Calculate the number of groups into which parallel I/O is split.
1205!-- The default for files which are opened by all PEs (or where each
1206!-- PE opens his own independent file) is, that all PEs are doing input/output
1207!-- in parallel at the same time. This might cause performance or even more
1208!-- severe problems depending on the configuration of the underlying file
1209!-- system.
1210!-- First, set the default:
1211    IF ( maximum_parallel_io_streams == -1  .OR. &
1212         maximum_parallel_io_streams > numprocs )  THEN
1213       maximum_parallel_io_streams = numprocs
1214    ENDIF
1215
1216!
1217!-- Now calculate the number of io_blocks and the io_group to which the
1218!-- respective PE belongs. I/O of the groups is done in serial, but in parallel
1219!-- for all PEs belonging to the same group. A preliminary setting with myid
1220!-- based on MPI_COMM_WORLD has been done in parin.
1221    io_blocks = numprocs / maximum_parallel_io_streams
1222    io_group  = MOD( myid+1, io_blocks )
1223   
1224
1225 END SUBROUTINE init_pegrid
Note: See TracBrowser for help on using the repository browser.