!> @file init_3d_model.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2020 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ------------------ ! ! ! Former revisions: ! ----------------- ! $Id: init_3d_model.f90 4493 2020-04-10 09:49:43Z gronemeier $ ! Overwrite u_init, v_init, pt_init, q_init and s_init with hom for all ! cyclic_fill-cases, not only for turbulent_inflow = .TRUE. ! ! 4360 2020-01-07 11:25:50Z suehring ! Introduction of wall_flags_total_0, which currently sets bits based on static ! topography information used in wall_flags_static_0 ! ! 4329 2019-12-10 15:46:36Z motisi ! Renamed wall_flags_0 to wall_flags_static_0 ! ! 4286 2019-10-30 16:01:14Z resler ! implement new palm_date_time_mod ! ! 4223 2019-09-10 09:20:47Z gronemeier ! Deallocate temporary string array since it may be re-used to read different ! input data in other modules ! ! 4186 2019-08-23 16:06:14Z suehring ! Design change, use variables defined in netcdf_data_input_mod to read netcd ! variables rather than define local ones. ! ! 4185 2019-08-23 13:49:38Z oliver.maas ! For initializing_actions = ' cyclic_fill': ! Overwrite u_init, v_init, pt_init, q_init and s_init with the ! (temporally) and horizontally averaged vertical profiles from the end ! of the prerun, because these profiles shall be used as the basic state ! for the rayleigh damping and the pt_damping. ! ! 4182 2019-08-22 15:20:23Z scharf ! Corrected "Former revisions" section ! ! 4168 2019-08-16 13:50:17Z suehring ! Replace function get_topography_top_index by topo_top_ind ! ! 4151 2019-08-09 08:24:30Z suehring ! Add netcdf directive around input calls (fix for last commit) ! ! 4150 2019-08-08 20:00:47Z suehring ! Input of additional surface variables independent on land- or urban-surface ! model ! ! 4131 2019-08-02 11:06:18Z monakurppa ! Allocate sums and sums_l to allow profile output for salsa variables. ! ! 4130 2019-08-01 13:04:13Z suehring ! Effectively reduce 3D initialization to 1D initial profiles. This is because ! 3D initialization produces structures in the w-component that are correlated ! with the processor grid for some unknown reason ! ! 4090 2019-07-11 15:06:47Z Giersch ! Unused variables removed ! ! 4088 2019-07-11 13:57:56Z Giersch ! Pressure and density profile calculations revised using basic functions ! ! 4048 2019-06-21 21:00:21Z knoop ! Further modularization of particle code components ! ! 4017 2019-06-06 12:16:46Z schwenkel ! Convert most location messages to debug messages to reduce output in ! job logfile to a minimum ! ! ! unused variable removed ! ! 3937 2019-04-29 15:09:07Z suehring ! Move initialization of synthetic turbulence generator behind initialization ! of offline nesting. Remove call for stg_adjust, as this is now already done ! in stg_init. ! ! 3900 2019-04-16 15:17:43Z suehring ! Fix problem with LOD = 2 initialization ! ! 3885 2019-04-11 11:29:34Z kanani ! Changes related to global restructuring of location messages and introduction ! of additional debug messages ! ! 3849 2019-04-01 16:35:16Z knoop ! Move initialization of rmask before initializing user_init_arrays ! ! 3711 2019-01-31 13:44:26Z knoop ! Introduced module_interface_init_checks for post-init checks in modules ! ! 3700 2019-01-26 17:03:42Z knoop ! Some interface calls moved to module_interface + cleanup ! ! 3648 2019-01-02 16:35:46Z suehring ! Rename subroutines for surface-data output ! ! Revision 1.1 1998/03/09 16:22:22 raasch ! Initial revision ! ! ! Description: ! ------------ !> Allocation of arrays and initialization of the 3D model via !> a) pre-run the 1D model !> or !> b) pre-set constant linear profiles !> or !> c) read values of a previous run !------------------------------------------------------------------------------! SUBROUTINE init_3d_model USE advec_ws USE arrays_3d USE basic_constants_and_equations_mod, & ONLY: c_p, g, l_v, pi, exner_function, exner_function_invers, & ideal_gas_law_rho, ideal_gas_law_rho_pt, barometric_formula USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model USE chem_modules, & ONLY: max_pr_cs ! ToDo: this dependency needs to be removed cause it is ugly #new_dom USE control_parameters USE grid_variables, & ONLY: dx, dy, ddx2_mg, ddy2_mg USE indices USE kinds USE lsf_nudging_mod, & ONLY: ls_forcing_surf USE model_1d_mod, & ONLY: init_1d_model, l1d, u1d, v1d USE module_interface, & ONLY: module_interface_init_arrays, & module_interface_init, & module_interface_init_checks USE multi_agent_system_mod, & ONLY: agents_active, mas_init USE netcdf_interface, & ONLY: dots_max USE netcdf_data_input_mod, & ONLY: char_fill, & check_existence, & close_input_file, & get_attribute, & get_variable, & init_3d, & input_pids_static, & inquire_num_variables, & inquire_variable_names, & input_file_static, & netcdf_data_input_init_3d, & num_var_pids, & open_read_file, & pids_id, & real_2d, & vars_pids USE nesting_offl_mod, & ONLY: nesting_offl_init USE palm_date_time_mod, & ONLY: set_reference_date_time USE pegrid #if defined( __parallel ) USE pmc_interface, & ONLY: nested_run #endif USE random_function_mod USE random_generator_parallel, & ONLY: init_parallel_random_generator USE read_restart_data_mod, & ONLY: rrd_read_parts_of_global, rrd_local USE statistics, & ONLY: hom, hom_sum, mean_surface_level_height, pr_palm, rmask, & statistic_regions, sums, sums_divnew_l, sums_divold_l, sums_l, & sums_l_l, sums_wsts_bc_l, ts_value, & weight_pres, weight_substep USE synthetic_turbulence_generator_mod, & ONLY: stg_init, use_syn_turb_gen USE surface_layer_fluxes_mod, & ONLY: init_surface_layer_fluxes USE surface_mod, & ONLY : init_single_surface_properties, & init_surface_arrays, & init_surfaces, & surf_def_h, & surf_def_v, & surf_lsm_h, & surf_usm_h #if defined( _OPENACC ) USE surface_mod, & ONLY : bc_h #endif USE surface_data_output_mod, & ONLY: surface_data_output_init USE transpose_indices IMPLICIT NONE INTEGER(iwp) :: i !< grid index in x direction INTEGER(iwp) :: ind_array(1) !< dummy used to determine start index for external pressure forcing INTEGER(iwp) :: j !< grid index in y direction INTEGER(iwp) :: k !< grid index in z direction INTEGER(iwp) :: k_surf !< surface level index INTEGER(iwp) :: l !< running index over surface orientation INTEGER(iwp) :: m !< index of surface element in surface data type INTEGER(iwp) :: nz_u_shift !< topography-top index on u-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_v_shift !< topography-top index on v-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_w_shift !< topography-top index on w-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_s_shift !< topography-top index on scalar-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_u_shift_l !< topography-top index on u-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_v_shift_l !< topography-top index on v-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_w_shift_l !< topography-top index on w-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_s_shift_l !< topography-top index on scalar-grid, used to vertically shift initial profiles INTEGER(iwp) :: nzt_l !< index of top PE boundary for multigrid level INTEGER(iwp) :: sr !< index of statistic region INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: ngp_2dh_l !< toal number of horizontal grid points in statistical region on subdomain INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_outer_l !< number of horizontal non-wall bounded grid points on subdomain INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_s_inner_l !< number of horizontal non-topography grid points on subdomain REAL(wp), DIMENSION(:), ALLOCATABLE :: init_l !< dummy array used for averaging 3D data to obtain inital profiles REAL(wp), DIMENSION(:), ALLOCATABLE :: p_hydrostatic !< hydrostatic pressure REAL(wp) :: dx_l !< grid spacing along x on different multigrid level REAL(wp) :: dy_l !< grid spacing along y on different multigrid level REAL(wp), DIMENSION(1:3) :: volume_flow_area_l !< area of lateral and top model domain surface on local subdomain REAL(wp), DIMENSION(1:3) :: volume_flow_initial_l !< initial volume flow into model domain REAL(wp), DIMENSION(:), ALLOCATABLE :: mean_surface_level_height_l !< mean surface level height on subdomain REAL(wp), DIMENSION(:), ALLOCATABLE :: ngp_3d_inner_l !< total number of non-topography grid points on subdomain REAL(wp), DIMENSION(:), ALLOCATABLE :: ngp_3d_inner_tmp !< total number of non-topography grid points TYPE(real_2d) :: tmp_2d !< temporary variable to input additional surface-data from static file CALL location_message( 'model initialization', 'start' ) ! !-- Set reference date-time CALL set_reference_date_time( date_time_str=origin_date_time ) IF ( debug_output ) CALL debug_message( 'allocating arrays', 'start' ) ! !-- Allocate arrays ALLOCATE( mean_surface_level_height(0:statistic_regions), & mean_surface_level_height_l(0:statistic_regions), & ngp_2dh(0:statistic_regions), ngp_2dh_l(0:statistic_regions), & ngp_3d(0:statistic_regions), & ngp_3d_inner(0:statistic_regions), & ngp_3d_inner_l(0:statistic_regions), & ngp_3d_inner_tmp(0:statistic_regions), & sums_divnew_l(0:statistic_regions), & sums_divold_l(0:statistic_regions) ) ALLOCATE( dp_smooth_factor(nzb:nzt), rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt) ) ALLOCATE( ngp_2dh_outer(nzb:nzt+1,0:statistic_regions), & ngp_2dh_outer_l(nzb:nzt+1,0:statistic_regions), & ngp_2dh_s_inner(nzb:nzt+1,0:statistic_regions), & ngp_2dh_s_inner_l(nzb:nzt+1,0:statistic_regions), & rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions), & sums(nzb:nzt+1,pr_palm+max_pr_user+max_pr_cs+max_pr_salsa), & sums_l(nzb:nzt+1,pr_palm+max_pr_user+max_pr_cs+max_pr_salsa,0:threads_per_task-1), & sums_l_l(nzb:nzt+1,0:statistic_regions,0:threads_per_task-1), & sums_wsts_bc_l(nzb:nzt+1,0:statistic_regions) ) ALLOCATE( ts_value(dots_max,0:statistic_regions) ) ALLOCATE( ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng) ) ALLOCATE( d(nzb+1:nzt,nys:nyn,nxl:nxr), & p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ALLOCATE( pt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & pt_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & u_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & u_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & u_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & v_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & v_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & v_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & w_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & w_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & w_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) IF ( .NOT. neutral ) THEN ALLOCATE( pt_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF ! !-- Pre-set masks for regional statistics. Default is the total model domain. !-- Ghost points are excluded because counting values at the ghost boundaries !-- would bias the statistics rmask = 1.0_wp rmask(:,nxlg:nxl-1,:) = 0.0_wp; rmask(:,nxr+1:nxrg,:) = 0.0_wp rmask(nysg:nys-1,:,:) = 0.0_wp; rmask(nyn+1:nyng,:,:) = 0.0_wp ! !-- Following array is required for perturbation pressure within the iterative !-- pressure solvers. For the multistep schemes (Runge-Kutta), array p holds !-- the weighted average of the substeps and cannot be used in the Poisson !-- solver. IF ( psolver == 'sor' ) THEN ALLOCATE( p_loc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ELSEIF ( psolver(1:9) == 'multigrid' ) THEN ! !-- For performance reasons, multigrid is using one ghost layer only ALLOCATE( p_loc(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) ENDIF ! !-- Array for storing constant coeffficients of the tridiagonal solver IF ( psolver == 'poisfft' ) THEN ALLOCATE( tri(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1,2) ) ALLOCATE( tric(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) ) ENDIF IF ( humidity ) THEN ! !-- 3D-humidity ALLOCATE( q_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & q_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & q_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & vpt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF IF ( passive_scalar ) THEN ! !-- 3D scalar arrays ALLOCATE( s_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & s_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & s_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF ! !-- Allocate and set 1d-profiles for Stokes drift velocity. It may be set to !-- non-zero values later in ocean_init ALLOCATE( u_stokes_zu(nzb:nzt+1), u_stokes_zw(nzb:nzt+1), & v_stokes_zu(nzb:nzt+1), v_stokes_zw(nzb:nzt+1) ) u_stokes_zu(:) = 0.0_wp u_stokes_zw(:) = 0.0_wp v_stokes_zu(:) = 0.0_wp v_stokes_zw(:) = 0.0_wp ! !-- Allocation of anelastic and Boussinesq approximation specific arrays ALLOCATE( p_hydrostatic(nzb:nzt+1) ) ALLOCATE( rho_air(nzb:nzt+1) ) ALLOCATE( rho_air_zw(nzb:nzt+1) ) ALLOCATE( drho_air(nzb:nzt+1) ) ALLOCATE( drho_air_zw(nzb:nzt+1) ) ! !-- Density profile calculation for anelastic and Boussinesq approximation !-- In case of a Boussinesq approximation, a constant density is calculated !-- mainly for output purposes. This density do not need to be considered !-- in the model's system of equations. IF ( TRIM( approximation ) == 'anelastic' ) THEN DO k = nzb, nzt+1 p_hydrostatic(k) = barometric_formula(zu(k), pt_surface * & exner_function(surface_pressure * 100.0_wp), & surface_pressure * 100.0_wp) rho_air(k) = ideal_gas_law_rho_pt(p_hydrostatic(k), pt_init(k)) ENDDO DO k = nzb, nzt rho_air_zw(k) = 0.5_wp * ( rho_air(k) + rho_air(k+1) ) ENDDO rho_air_zw(nzt+1) = rho_air_zw(nzt) & + 2.0_wp * ( rho_air(nzt+1) - rho_air_zw(nzt) ) ELSE DO k = nzb, nzt+1 p_hydrostatic(k) = barometric_formula(zu(nzb), pt_surface * & exner_function(surface_pressure * 100.0_wp), & surface_pressure * 100.0_wp) rho_air(k) = ideal_gas_law_rho_pt(p_hydrostatic(k), pt_init(nzb)) ENDDO DO k = nzb, nzt rho_air_zw(k) = 0.5_wp * ( rho_air(k) + rho_air(k+1) ) ENDDO rho_air_zw(nzt+1) = rho_air_zw(nzt) & + 2.0_wp * ( rho_air(nzt+1) - rho_air_zw(nzt) ) ENDIF ! !-- compute the inverse density array in order to avoid expencive divisions drho_air = 1.0_wp / rho_air drho_air_zw = 1.0_wp / rho_air_zw ! !-- Allocation of flux conversion arrays ALLOCATE( heatflux_input_conversion(nzb:nzt+1) ) ALLOCATE( waterflux_input_conversion(nzb:nzt+1) ) ALLOCATE( momentumflux_input_conversion(nzb:nzt+1) ) ALLOCATE( heatflux_output_conversion(nzb:nzt+1) ) ALLOCATE( waterflux_output_conversion(nzb:nzt+1) ) ALLOCATE( momentumflux_output_conversion(nzb:nzt+1) ) ! !-- calculate flux conversion factors according to approximation and in-/output mode DO k = nzb, nzt+1 IF ( TRIM( flux_input_mode ) == 'kinematic' ) THEN heatflux_input_conversion(k) = rho_air_zw(k) waterflux_input_conversion(k) = rho_air_zw(k) momentumflux_input_conversion(k) = rho_air_zw(k) ELSEIF ( TRIM( flux_input_mode ) == 'dynamic' ) THEN heatflux_input_conversion(k) = 1.0_wp / c_p waterflux_input_conversion(k) = 1.0_wp / l_v momentumflux_input_conversion(k) = 1.0_wp ENDIF IF ( TRIM( flux_output_mode ) == 'kinematic' ) THEN heatflux_output_conversion(k) = drho_air_zw(k) waterflux_output_conversion(k) = drho_air_zw(k) momentumflux_output_conversion(k) = drho_air_zw(k) ELSEIF ( TRIM( flux_output_mode ) == 'dynamic' ) THEN heatflux_output_conversion(k) = c_p waterflux_output_conversion(k) = l_v momentumflux_output_conversion(k) = 1.0_wp ENDIF IF ( .NOT. humidity ) THEN waterflux_input_conversion(k) = 1.0_wp waterflux_output_conversion(k) = 1.0_wp ENDIF ENDDO ! !-- In case of multigrid method, compute grid lengths and grid factors for the !-- grid levels with respective density on each grid IF ( psolver(1:9) == 'multigrid' ) THEN ALLOCATE( ddx2_mg(maximum_grid_level) ) ALLOCATE( ddy2_mg(maximum_grid_level) ) ALLOCATE( dzu_mg(nzb+1:nzt+1,maximum_grid_level) ) ALLOCATE( dzw_mg(nzb+1:nzt+1,maximum_grid_level) ) ALLOCATE( f1_mg(nzb+1:nzt,maximum_grid_level) ) ALLOCATE( f2_mg(nzb+1:nzt,maximum_grid_level) ) ALLOCATE( f3_mg(nzb+1:nzt,maximum_grid_level) ) ALLOCATE( rho_air_mg(nzb:nzt+1,maximum_grid_level) ) ALLOCATE( rho_air_zw_mg(nzb:nzt+1,maximum_grid_level) ) dzu_mg(:,maximum_grid_level) = dzu rho_air_mg(:,maximum_grid_level) = rho_air ! !-- Next line to ensure an equally spaced grid. dzu_mg(1,maximum_grid_level) = dzu(2) rho_air_mg(nzb,maximum_grid_level) = rho_air(nzb) + & (rho_air(nzb) - rho_air(nzb+1)) dzw_mg(:,maximum_grid_level) = dzw rho_air_zw_mg(:,maximum_grid_level) = rho_air_zw nzt_l = nzt DO l = maximum_grid_level-1, 1, -1 dzu_mg(nzb+1,l) = 2.0_wp * dzu_mg(nzb+1,l+1) dzw_mg(nzb+1,l) = 2.0_wp * dzw_mg(nzb+1,l+1) rho_air_mg(nzb,l) = rho_air_mg(nzb,l+1) + (rho_air_mg(nzb,l+1) - rho_air_mg(nzb+1,l+1)) rho_air_zw_mg(nzb,l) = rho_air_zw_mg(nzb,l+1) + (rho_air_zw_mg(nzb,l+1) - rho_air_zw_mg(nzb+1,l+1)) rho_air_mg(nzb+1,l) = rho_air_mg(nzb+1,l+1) rho_air_zw_mg(nzb+1,l) = rho_air_zw_mg(nzb+1,l+1) nzt_l = nzt_l / 2 DO k = 2, nzt_l+1 dzu_mg(k,l) = dzu_mg(2*k-2,l+1) + dzu_mg(2*k-1,l+1) dzw_mg(k,l) = dzw_mg(2*k-2,l+1) + dzw_mg(2*k-1,l+1) rho_air_mg(k,l) = rho_air_mg(2*k-1,l+1) rho_air_zw_mg(k,l) = rho_air_zw_mg(2*k-1,l+1) ENDDO ENDDO nzt_l = nzt dx_l = dx dy_l = dy DO l = maximum_grid_level, 1, -1 ddx2_mg(l) = 1.0_wp / dx_l**2 ddy2_mg(l) = 1.0_wp / dy_l**2 DO k = nzb+1, nzt_l f2_mg(k,l) = rho_air_zw_mg(k,l) / ( dzu_mg(k+1,l) * dzw_mg(k,l) ) f3_mg(k,l) = rho_air_zw_mg(k-1,l) / ( dzu_mg(k,l) * dzw_mg(k,l) ) f1_mg(k,l) = 2.0_wp * ( ddx2_mg(l) + ddy2_mg(l) ) & * rho_air_mg(k,l) + f2_mg(k,l) + f3_mg(k,l) ENDDO nzt_l = nzt_l / 2 dx_l = dx_l * 2.0_wp dy_l = dy_l * 2.0_wp ENDDO ENDIF ! !-- 1D-array for large scale subsidence velocity IF ( .NOT. ALLOCATED( w_subs ) ) THEN ALLOCATE ( w_subs(nzb:nzt+1) ) w_subs = 0.0_wp ENDIF ! !-- Arrays to store velocity data from t-dt and the phase speeds which !-- are needed for radiation boundary conditions IF ( bc_radiation_l ) THEN ALLOCATE( u_m_l(nzb:nzt+1,nysg:nyng,1:2), & v_m_l(nzb:nzt+1,nysg:nyng,0:1), & w_m_l(nzb:nzt+1,nysg:nyng,0:1) ) ENDIF IF ( bc_radiation_r ) THEN ALLOCATE( u_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx), & v_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx), & w_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx) ) ENDIF IF ( bc_radiation_l .OR. bc_radiation_r ) THEN ALLOCATE( c_u(nzb:nzt+1,nysg:nyng), c_v(nzb:nzt+1,nysg:nyng), & c_w(nzb:nzt+1,nysg:nyng) ) ENDIF IF ( bc_radiation_s ) THEN ALLOCATE( u_m_s(nzb:nzt+1,0:1,nxlg:nxrg), & v_m_s(nzb:nzt+1,1:2,nxlg:nxrg), & w_m_s(nzb:nzt+1,0:1,nxlg:nxrg) ) ENDIF IF ( bc_radiation_n ) THEN ALLOCATE( u_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg), & v_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg), & w_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg) ) ENDIF IF ( bc_radiation_s .OR. bc_radiation_n ) THEN ALLOCATE( c_u(nzb:nzt+1,nxlg:nxrg), c_v(nzb:nzt+1,nxlg:nxrg), & c_w(nzb:nzt+1,nxlg:nxrg) ) ENDIF IF ( bc_radiation_l .OR. bc_radiation_r .OR. bc_radiation_s .OR. & bc_radiation_n ) THEN ALLOCATE( c_u_m_l(nzb:nzt+1), c_v_m_l(nzb:nzt+1), c_w_m_l(nzb:nzt+1) ) ALLOCATE( c_u_m(nzb:nzt+1), c_v_m(nzb:nzt+1), c_w_m(nzb:nzt+1) ) ENDIF ! !-- Initial assignment of the pointers IF ( .NOT. neutral ) THEN pt => pt_1; pt_p => pt_2; tpt_m => pt_3 ELSE pt => pt_1; pt_p => pt_1; tpt_m => pt_3 ENDIF u => u_1; u_p => u_2; tu_m => u_3 v => v_1; v_p => v_2; tv_m => v_3 w => w_1; w_p => w_2; tw_m => w_3 IF ( humidity ) THEN q => q_1; q_p => q_2; tq_m => q_3 vpt => vpt_1 ENDIF IF ( passive_scalar ) THEN s => s_1; s_p => s_2; ts_m => s_3 ENDIF ! !-- Initialize surface arrays CALL init_surface_arrays ! !-- Allocate arrays for other modules CALL module_interface_init_arrays ! !-- Allocate arrays containing the RK coefficient for calculation of !-- perturbation pressure and turbulent fluxes. At this point values are !-- set for pressure calculation during initialization (where no timestep !-- is done). Further below the values needed within the timestep scheme !-- will be set. ALLOCATE( weight_substep(1:intermediate_timestep_count_max), & weight_pres(1:intermediate_timestep_count_max) ) weight_substep = 1.0_wp weight_pres = 1.0_wp intermediate_timestep_count = 0 ! needed when simulated_time = 0.0 IF ( debug_output ) CALL debug_message( 'allocating arrays', 'end' ) ! !-- Initialize time series ts_value = 0.0_wp ! !-- Initialize local summation arrays for routine flow_statistics. !-- This is necessary because they may not yet have been initialized when they !-- are called from flow_statistics (or - depending on the chosen model run - !-- are never initialized) sums_divnew_l = 0.0_wp sums_divold_l = 0.0_wp sums_l_l = 0.0_wp sums_wsts_bc_l = 0.0_wp ! !-- Initialize model variables IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN ! !-- Initialization with provided input data derived from larger-scale model IF ( INDEX( initializing_actions, 'inifor' ) /= 0 ) THEN IF ( debug_output ) CALL debug_message( 'initializing with INIFOR', 'start' ) ! !-- Read initial 1D profiles or 3D data from NetCDF file, depending !-- on the provided level-of-detail. !-- At the moment, only u, v, w, pt and q are provided. CALL netcdf_data_input_init_3d ! !-- Please note, Inifor provides data from nzb+1 to nzt. !-- Bottom and top boundary conditions for Inifor profiles are already !-- set (just after reading), so that this is not necessary here. !-- Depending on the provided level-of-detail, initial Inifor data is !-- either stored on data type (lod=1), or directly on 3D arrays (lod=2). !-- In order to obtain also initial profiles in case of lod=2 (which !-- is required for e.g. damping), average over 3D data. IF( init_3d%lod_u == 1 ) THEN u_init = init_3d%u_init ELSEIF( init_3d%lod_u == 2 ) THEN ALLOCATE( init_l(nzb:nzt+1) ) DO k = nzb, nzt+1 init_l(k) = SUM( u(k,nys:nyn,nxl:nxr) ) ENDDO init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) #if defined( __parallel ) CALL MPI_ALLREDUCE( init_l, u_init, nzt+1-nzb+1, & MPI_REAL, MPI_SUM, comm2d, ierr ) #else u_init = init_l #endif DEALLOCATE( init_l ) ENDIF IF( init_3d%lod_v == 1 ) THEN v_init = init_3d%v_init ELSEIF( init_3d%lod_v == 2 ) THEN ALLOCATE( init_l(nzb:nzt+1) ) DO k = nzb, nzt+1 init_l(k) = SUM( v(k,nys:nyn,nxl:nxr) ) ENDDO init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) #if defined( __parallel ) CALL MPI_ALLREDUCE( init_l, v_init, nzt+1-nzb+1, & MPI_REAL, MPI_SUM, comm2d, ierr ) #else v_init = init_l #endif DEALLOCATE( init_l ) ENDIF IF( .NOT. neutral ) THEN IF( init_3d%lod_pt == 1 ) THEN pt_init = init_3d%pt_init ELSEIF( init_3d%lod_pt == 2 ) THEN ALLOCATE( init_l(nzb:nzt+1) ) DO k = nzb, nzt+1 init_l(k) = SUM( pt(k,nys:nyn,nxl:nxr) ) ENDDO init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) #if defined( __parallel ) CALL MPI_ALLREDUCE( init_l, pt_init, nzt+1-nzb+1, & MPI_REAL, MPI_SUM, comm2d, ierr ) #else pt_init = init_l #endif DEALLOCATE( init_l ) ENDIF ENDIF IF( humidity ) THEN IF( init_3d%lod_q == 1 ) THEN q_init = init_3d%q_init ELSEIF( init_3d%lod_q == 2 ) THEN ALLOCATE( init_l(nzb:nzt+1) ) DO k = nzb, nzt+1 init_l(k) = SUM( q(k,nys:nyn,nxl:nxr) ) ENDDO init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) #if defined( __parallel ) CALL MPI_ALLREDUCE( init_l, q_init, nzt+1-nzb+1, & MPI_REAL, MPI_SUM, comm2d, ierr ) #else q_init = init_l #endif DEALLOCATE( init_l ) ENDIF ENDIF ! !-- Write initial profiles onto 3D arrays. !-- Work-around, 3D initialization of u,v,w creates artificial !-- structures wich correlate with the processor grid. The reason !-- for this is still unknown. To work-around this, 3D initialization !-- will be effectively reduce to a 1D initialization where no such !-- artificial structures appear. DO i = nxlg, nxrg DO j = nysg, nyng IF( init_3d%lod_u == 1 .OR. init_3d%lod_u == 2 ) & u(:,j,i) = u_init(:) IF( init_3d%lod_v == 1 .OR. init_3d%lod_u == 2 ) & v(:,j,i) = v_init(:) IF( .NOT. neutral .AND. & ( init_3d%lod_pt == 1 .OR. init_3d%lod_pt == 2 ) ) & pt(:,j,i) = pt_init(:) IF( humidity .AND. & ( init_3d%lod_q == 1 .OR. init_3d%lod_q == 2 ) ) & q(:,j,i) = q_init(:) ENDDO ENDDO ! !-- Set geostrophic wind components. IF ( init_3d%from_file_ug ) THEN ug(:) = init_3d%ug_init(:) ENDIF IF ( init_3d%from_file_vg ) THEN vg(:) = init_3d%vg_init(:) ENDIF ! !-- Set bottom and top boundary condition for geostrophic wind ug(nzt+1) = ug(nzt) vg(nzt+1) = vg(nzt) ug(nzb) = ug(nzb+1) vg(nzb) = vg(nzb+1) ! !-- Set inital w to 0 w = 0.0_wp IF ( passive_scalar ) THEN DO i = nxlg, nxrg DO j = nysg, nyng s(:,j,i) = s_init ENDDO ENDDO ENDIF ! !-- Set velocity components at non-atmospheric / oceanic grid points to !-- zero. u = MERGE( u, 0.0_wp, BTEST( wall_flags_total_0, 1 ) ) v = MERGE( v, 0.0_wp, BTEST( wall_flags_total_0, 2 ) ) w = MERGE( w, 0.0_wp, BTEST( wall_flags_total_0, 3 ) ) ! !-- Initialize surface variables, e.g. friction velocity, momentum !-- fluxes, etc. CALL init_surfaces IF ( debug_output ) CALL debug_message( 'initializing with INIFOR', 'end' ) ! !-- Initialization via computed 1D-model profiles ELSEIF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN IF ( debug_output ) CALL debug_message( 'initializing with 1D model profiles', 'start' ) ! !-- Use solutions of the 1D model as initial profiles, !-- start 1D model CALL init_1d_model ! !-- Transfer initial profiles to the arrays of the 3D model DO i = nxlg, nxrg DO j = nysg, nyng pt(:,j,i) = pt_init u(:,j,i) = u1d v(:,j,i) = v1d ENDDO ENDDO IF ( humidity ) THEN DO i = nxlg, nxrg DO j = nysg, nyng q(:,j,i) = q_init ENDDO ENDDO ENDIF IF ( passive_scalar ) THEN DO i = nxlg, nxrg DO j = nysg, nyng s(:,j,i) = s_init ENDDO ENDDO ENDIF ! !-- Store initial profiles for output purposes etc. IF ( .NOT. constant_diffusion ) THEN hom(:,1,25,:) = SPREAD( l1d, 2, statistic_regions+1 ) ENDIF ! !-- Set velocities back to zero u = MERGE( u, 0.0_wp, BTEST( wall_flags_total_0, 1 ) ) v = MERGE( v, 0.0_wp, BTEST( wall_flags_total_0, 2 ) ) ! !-- WARNING: The extra boundary conditions set after running the !-- ------- 1D model impose an error on the divergence one layer !-- below the topography; need to correct later !-- ATTENTION: Provisional correction for Piacsek & Williams !-- --------- advection scheme: keep u and v zero one layer below !-- the topography. IF ( ibc_uv_b == 1 ) THEN ! !-- Neumann condition DO i = nxl-1, nxr+1 DO j = nys-1, nyn+1 u(nzb,j,i) = u(nzb+1,j,i) v(nzb,j,i) = v(nzb+1,j,i) ENDDO ENDDO ENDIF ! !-- Initialize surface variables, e.g. friction velocity, momentum !-- fluxes, etc. CALL init_surfaces IF ( debug_output ) CALL debug_message( 'initializing with 1D model profiles', 'end' ) ELSEIF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) & THEN IF ( debug_output ) CALL debug_message( 'initializing with constant profiles', 'start' ) ! !-- Use constructed initial profiles (velocity constant with height, !-- temperature profile with constant gradient) DO i = nxlg, nxrg DO j = nysg, nyng pt(:,j,i) = pt_init u(:,j,i) = u_init v(:,j,i) = v_init ENDDO ENDDO ! !-- Mask topography u = MERGE( u, 0.0_wp, BTEST( wall_flags_total_0, 1 ) ) v = MERGE( v, 0.0_wp, BTEST( wall_flags_total_0, 2 ) ) ! !-- Set initial horizontal velocities at the lowest computational grid !-- levels to zero in order to avoid too small time steps caused by the !-- diffusion limit in the initial phase of a run (at k=1, dz/2 occurs !-- in the limiting formula!). !-- Please note, in case land- or urban-surface model is used and a !-- spinup is applied, masking the lowest computational level is not !-- possible as MOST as well as energy-balance parametrizations will not !-- work with zero wind velocity. IF ( ibc_uv_b /= 1 .AND. .NOT. spinup ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt u(k,j,i) = MERGE( u(k,j,i), 0.0_wp, & BTEST( wall_flags_total_0(k,j,i), 20 ) ) v(k,j,i) = MERGE( v(k,j,i), 0.0_wp, & BTEST( wall_flags_total_0(k,j,i), 21 ) ) ENDDO ENDDO ENDDO ENDIF IF ( humidity ) THEN DO i = nxlg, nxrg DO j = nysg, nyng q(:,j,i) = q_init ENDDO ENDDO ENDIF IF ( passive_scalar ) THEN DO i = nxlg, nxrg DO j = nysg, nyng s(:,j,i) = s_init ENDDO ENDDO ENDIF ! !-- Compute initial temperature field and other constants used in case !-- of a sloping surface IF ( sloping_surface ) CALL init_slope ! !-- Initialize surface variables, e.g. friction velocity, momentum !-- fluxes, etc. CALL init_surfaces IF ( debug_output ) CALL debug_message( 'initializing with constant profiles', 'end' ) ELSEIF ( INDEX(initializing_actions, 'by_user') /= 0 ) & THEN IF ( debug_output ) CALL debug_message( 'initializing by user', 'start' ) ! !-- Pre-initialize surface variables, i.e. setting start- and end-indices !-- at each (j,i)-location. Please note, this does not supersede !-- user-defined initialization of surface quantities. CALL init_surfaces ! !-- Initialization will completely be done by the user CALL user_init_3d_model IF ( debug_output ) CALL debug_message( 'initializing by user', 'end' ) ENDIF IF ( debug_output ) CALL debug_message( 'initializing statistics, boundary conditions, etc.', 'start' ) ! !-- Bottom boundary IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2 ) THEN u(nzb,:,:) = 0.0_wp v(nzb,:,:) = 0.0_wp ENDIF ! !-- Apply channel flow boundary condition IF ( TRIM( bc_uv_t ) == 'dirichlet_0' ) THEN u(nzt+1,:,:) = 0.0_wp v(nzt+1,:,:) = 0.0_wp ENDIF ! !-- Calculate virtual potential temperature IF ( humidity ) vpt = pt * ( 1.0_wp + 0.61_wp * q ) ! !-- Store initial profiles for output purposes etc.. Please note, in case of !-- initialization of u, v, w, pt, and q via output data derived from larger !-- scale models, data will not be horizontally homogeneous. Actually, a mean !-- profile should be calculated before. hom(:,1,5,:) = SPREAD( u(:,nys,nxl), 2, statistic_regions+1 ) hom(:,1,6,:) = SPREAD( v(:,nys,nxl), 2, statistic_regions+1 ) IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2) THEN hom(nzb,1,5,:) = 0.0_wp hom(nzb,1,6,:) = 0.0_wp ENDIF hom(:,1,7,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) IF ( humidity ) THEN ! !-- Store initial profile of total water content, virtual potential !-- temperature hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) hom(:,1,29,:) = SPREAD( vpt(:,nys,nxl), 2, statistic_regions+1 ) ! !-- Store initial profile of mixing ratio and potential !-- temperature IF ( bulk_cloud_model .OR. cloud_droplets ) THEN hom(:,1,27,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) hom(:,1,28,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) ENDIF ENDIF ! !-- Store initial scalar profile IF ( passive_scalar ) THEN hom(:,1,121,:) = SPREAD( s(:,nys,nxl), 2, statistic_regions+1 ) ENDIF ! !-- Initialize the random number generators (from numerical recipes) CALL random_function_ini IF ( random_generator == 'random-parallel' ) THEN CALL init_parallel_random_generator( nx, nys, nyn, nxl, nxr ) ENDIF ! !-- Set the reference state to be used in the buoyancy terms (for ocean runs !-- the reference state will be set (overwritten) in init_ocean) IF ( use_single_reference_value ) THEN IF ( .NOT. humidity ) THEN ref_state(:) = pt_reference ELSE ref_state(:) = vpt_reference ENDIF ELSE IF ( .NOT. humidity ) THEN ref_state(:) = pt_init(:) ELSE ref_state(:) = vpt(:,nys,nxl) ENDIF ENDIF ! !-- For the moment, vertical velocity is zero w = 0.0_wp ! !-- Initialize array sums (must be defined in first call of pres) sums = 0.0_wp ! !-- In case of iterative solvers, p must get an initial value IF ( psolver(1:9) == 'multigrid' .OR. psolver == 'sor' ) p = 0.0_wp ! !-- Impose vortex with vertical axis on the initial velocity profile IF ( INDEX( initializing_actions, 'initialize_vortex' ) /= 0 ) THEN CALL init_rankine ENDIF ! !-- Impose temperature anomaly (advection test only) or warm air bubble !-- close to surface IF ( INDEX( initializing_actions, 'initialize_ptanom' ) /= 0 .OR. & INDEX( initializing_actions, 'initialize_bubble' ) /= 0 ) THEN CALL init_pt_anomaly ENDIF ! !-- If required, change the surface temperature at the start of the 3D run IF ( pt_surface_initial_change /= 0.0_wp ) THEN pt(nzb,:,:) = pt(nzb,:,:) + pt_surface_initial_change ENDIF ! !-- If required, change the surface humidity/scalar at the start of the 3D !-- run IF ( humidity .AND. q_surface_initial_change /= 0.0_wp ) & q(nzb,:,:) = q(nzb,:,:) + q_surface_initial_change IF ( passive_scalar .AND. s_surface_initial_change /= 0.0_wp ) & s(nzb,:,:) = s(nzb,:,:) + s_surface_initial_change ! !-- Initialize old and new time levels. tpt_m = 0.0_wp; tu_m = 0.0_wp; tv_m = 0.0_wp; tw_m = 0.0_wp pt_p = pt; u_p = u; v_p = v; w_p = w IF ( humidity ) THEN tq_m = 0.0_wp q_p = q ENDIF IF ( passive_scalar ) THEN ts_m = 0.0_wp s_p = s ENDIF IF ( debug_output ) CALL debug_message( 'initializing statistics, boundary conditions, etc.', 'end' ) ELSEIF ( TRIM( initializing_actions ) == 'read_restart_data' .OR. & TRIM( initializing_actions ) == 'cyclic_fill' ) & THEN IF ( debug_output ) CALL debug_message( 'initializing in case of restart / cyclic_fill', 'start' ) ! !-- Initialize surface elements and its attributes, e.g. heat- and !-- momentumfluxes, roughness, scaling parameters. As number of surface !-- elements might be different between runs, e.g. in case of cyclic fill, !-- and not all surface elements are read, surface elements need to be !-- initialized before. !-- Please note, in case of cyclic fill, surfaces should be initialized !-- after restart data is read, else, individual settings of surface !-- parameters will be overwritten from data of precursor run, hence, !-- init_surfaces is called a second time after reading the restart data. CALL init_surfaces ! !-- When reading data for cyclic fill of 3D prerun data files, read !-- some of the global variables from the restart file which are required !-- for initializing the inflow IF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN DO i = 0, io_blocks-1 IF ( i == io_group ) THEN CALL rrd_read_parts_of_global ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ENDIF ! !-- Read processor specific binary data from restart file DO i = 0, io_blocks-1 IF ( i == io_group ) THEN CALL rrd_local ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO IF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN ! !-- In case of cyclic fill, call init_surfaces a second time, so that !-- surface properties such as heat fluxes are initialized as prescribed. CALL init_surfaces ! !-- Overwrite u_init, v_init, pt_init, q_init and s_init with the !-- horizontally mean (hom) vertical profiles from the end !-- of the prerun, because these profiles shall be used as the reference !-- state for the rayleigh damping and the pt_damping. This is especially !-- important for the use of large_scale_subsidence, because the !-- reference temperature in the free atmosphere changes in time. u_init(:) = hom_sum(:,1,0) v_init(:) = hom_sum(:,2,0) pt_init(:) = hom_sum(:,4,0) IF ( humidity ) & q_init(:) = hom_sum(:,41,0) IF ( passive_scalar ) & s_init(:) = hom_sum(:,115,0) ENDIF ! !-- In case of complex terrain and cyclic fill method as initialization, !-- shift initial data in the vertical direction for each point in the !-- x-y-plane depending on local surface height IF ( complex_terrain .AND. & TRIM( initializing_actions ) == 'cyclic_fill' ) THEN DO i = nxlg, nxrg DO j = nysg, nyng nz_u_shift = topo_top_ind(j,i,1) nz_v_shift = topo_top_ind(j,i,2) nz_w_shift = topo_top_ind(j,i,3) nz_s_shift = topo_top_ind(j,i,0) u(nz_u_shift:nzt+1,j,i) = u(0:nzt+1-nz_u_shift,j,i) v(nz_v_shift:nzt+1,j,i) = v(0:nzt+1-nz_v_shift,j,i) w(nz_w_shift:nzt+1,j,i) = w(0:nzt+1-nz_w_shift,j,i) p(nz_s_shift:nzt+1,j,i) = p(0:nzt+1-nz_s_shift,j,i) pt(nz_s_shift:nzt+1,j,i) = pt(0:nzt+1-nz_s_shift,j,i) ENDDO ENDDO ENDIF ! !-- Initialization of the turbulence recycling method IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. & turbulent_inflow ) THEN ! !-- First store the profiles to be used at the inflow. !-- These profiles are the (temporally) and horizontally averaged vertical !-- profiles from the prerun. Alternatively, prescribed profiles !-- for u,v-components can be used. ALLOCATE( mean_inflow_profiles(nzb:nzt+1,1:num_mean_inflow_profiles) ) IF ( use_prescribed_profile_data ) THEN mean_inflow_profiles(:,1) = u_init ! u mean_inflow_profiles(:,2) = v_init ! v ELSE mean_inflow_profiles(:,1) = hom_sum(:,1,0) ! u mean_inflow_profiles(:,2) = hom_sum(:,2,0) ! v ENDIF mean_inflow_profiles(:,4) = hom_sum(:,4,0) ! pt IF ( humidity ) & mean_inflow_profiles(:,6) = hom_sum(:,41,0) ! q IF ( passive_scalar ) & mean_inflow_profiles(:,7) = hom_sum(:,115,0) ! s ! !-- In case of complex terrain, determine vertical displacement at inflow !-- boundary and adjust mean inflow profiles IF ( complex_terrain ) THEN IF ( nxlg <= 0 .AND. nxrg >= 0 .AND. nysg <= 0 .AND. nyng >= 0 ) THEN nz_u_shift_l = topo_top_ind(j,i,1) nz_v_shift_l = topo_top_ind(j,i,2) nz_w_shift_l = topo_top_ind(j,i,3) nz_s_shift_l = topo_top_ind(j,i,0) ELSE nz_u_shift_l = 0 nz_v_shift_l = 0 nz_w_shift_l = 0 nz_s_shift_l = 0 ENDIF #if defined( __parallel ) CALL MPI_ALLREDUCE(nz_u_shift_l, nz_u_shift, 1, MPI_INTEGER, & MPI_MAX, comm2d, ierr) CALL MPI_ALLREDUCE(nz_v_shift_l, nz_v_shift, 1, MPI_INTEGER, & MPI_MAX, comm2d, ierr) CALL MPI_ALLREDUCE(nz_w_shift_l, nz_w_shift, 1, MPI_INTEGER, & MPI_MAX, comm2d, ierr) CALL MPI_ALLREDUCE(nz_s_shift_l, nz_s_shift, 1, MPI_INTEGER, & MPI_MAX, comm2d, ierr) #else nz_u_shift = nz_u_shift_l nz_v_shift = nz_v_shift_l nz_w_shift = nz_w_shift_l nz_s_shift = nz_s_shift_l #endif mean_inflow_profiles(:,1) = 0.0_wp mean_inflow_profiles(nz_u_shift:nzt+1,1) = hom_sum(0:nzt+1-nz_u_shift,1,0) ! u mean_inflow_profiles(:,2) = 0.0_wp mean_inflow_profiles(nz_v_shift:nzt+1,2) = hom_sum(0:nzt+1-nz_v_shift,2,0) ! v mean_inflow_profiles(nz_s_shift:nzt+1,4) = hom_sum(0:nzt+1-nz_s_shift,4,0) ! pt ENDIF ! !-- If necessary, adjust the horizontal flow field to the prescribed !-- profiles IF ( use_prescribed_profile_data ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 u(k,j,i) = u(k,j,i) - hom_sum(k,1,0) + u_init(k) v(k,j,i) = v(k,j,i) - hom_sum(k,2,0) + v_init(k) ENDDO ENDDO ENDDO ENDIF ! !-- Use these mean profiles at the inflow (provided that Dirichlet !-- conditions are used) IF ( bc_dirichlet_l ) THEN DO j = nysg, nyng DO k = nzb, nzt+1 u(k,j,nxlg:-1) = mean_inflow_profiles(k,1) v(k,j,nxlg:-1) = mean_inflow_profiles(k,2) w(k,j,nxlg:-1) = 0.0_wp pt(k,j,nxlg:-1) = mean_inflow_profiles(k,4) IF ( humidity ) & q(k,j,nxlg:-1) = mean_inflow_profiles(k,6) IF ( passive_scalar ) & s(k,j,nxlg:-1) = mean_inflow_profiles(k,7) ENDDO ENDDO ENDIF ! !-- Calculate the damping factors to be used at the inflow. For a !-- turbulent inflow the turbulent fluctuations have to be limited !-- vertically because otherwise the turbulent inflow layer will grow !-- in time. IF ( inflow_damping_height == 9999999.9_wp ) THEN ! !-- Default: use the inversion height calculated by the prerun; if !-- this is zero, inflow_damping_height must be explicitly !-- specified. IF ( hom_sum(nzb+6,pr_palm,0) /= 0.0_wp ) THEN inflow_damping_height = hom_sum(nzb+6,pr_palm,0) ELSE WRITE( message_string, * ) 'inflow_damping_height must be ', & 'explicitly specified because&the inversion height ', & 'calculated by the prerun is zero.' CALL message( 'init_3d_model', 'PA0318', 1, 2, 0, 6, 0 ) ENDIF ENDIF IF ( inflow_damping_width == 9999999.9_wp ) THEN ! !-- Default for the transition range: one tenth of the undamped !-- layer inflow_damping_width = 0.1_wp * inflow_damping_height ENDIF ALLOCATE( inflow_damping_factor(nzb:nzt+1) ) DO k = nzb, nzt+1 IF ( zu(k) <= inflow_damping_height ) THEN inflow_damping_factor(k) = 1.0_wp ELSEIF ( zu(k) <= ( inflow_damping_height + inflow_damping_width ) ) THEN inflow_damping_factor(k) = 1.0_wp - & ( zu(k) - inflow_damping_height ) / & inflow_damping_width ELSE inflow_damping_factor(k) = 0.0_wp ENDIF ENDDO ENDIF ! !-- Inside buildings set velocities back to zero IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. & topography /= 'flat' ) THEN ! !-- Inside buildings set velocities back to zero. !-- Other scalars (pt, q, s, p, sa, ...) are ignored at present, !-- maybe revise later. DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt u(k,j,i) = MERGE( u(k,j,i), 0.0_wp, & BTEST( wall_flags_total_0(k,j,i), 1 ) ) v(k,j,i) = MERGE( v(k,j,i), 0.0_wp, & BTEST( wall_flags_total_0(k,j,i), 2 ) ) w(k,j,i) = MERGE( w(k,j,i), 0.0_wp, & BTEST( wall_flags_total_0(k,j,i), 3 ) ) ENDDO ENDDO ENDDO ENDIF ! !-- Calculate initial temperature field and other constants used in case !-- of a sloping surface IF ( sloping_surface ) CALL init_slope ! !-- Initialize new time levels (only done in order to set boundary values !-- including ghost points) pt_p = pt; u_p = u; v_p = v; w_p = w IF ( humidity ) THEN q_p = q ENDIF IF ( passive_scalar ) s_p = s ! !-- Allthough tendency arrays are set in prognostic_equations, they have !-- have to be predefined here because they are used (but multiplied with 0) !-- there before they are set. tpt_m = 0.0_wp; tu_m = 0.0_wp; tv_m = 0.0_wp; tw_m = 0.0_wp IF ( humidity ) THEN tq_m = 0.0_wp ENDIF IF ( passive_scalar ) ts_m = 0.0_wp IF ( debug_output ) CALL debug_message( 'initializing in case of restart / cyclic_fill', 'end' ) ELSE ! !-- Actually this part of the programm should not be reached message_string = 'unknown initializing problem' CALL message( 'init_3d_model', 'PA0193', 1, 2, 0, 6, 0 ) ENDIF IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN ! !-- Initialize old timelevels needed for radiation boundary conditions IF ( bc_radiation_l ) THEN u_m_l(:,:,:) = u(:,:,1:2) v_m_l(:,:,:) = v(:,:,0:1) w_m_l(:,:,:) = w(:,:,0:1) ENDIF IF ( bc_radiation_r ) THEN u_m_r(:,:,:) = u(:,:,nx-1:nx) v_m_r(:,:,:) = v(:,:,nx-1:nx) w_m_r(:,:,:) = w(:,:,nx-1:nx) ENDIF IF ( bc_radiation_s ) THEN u_m_s(:,:,:) = u(:,0:1,:) v_m_s(:,:,:) = v(:,1:2,:) w_m_s(:,:,:) = w(:,0:1,:) ENDIF IF ( bc_radiation_n ) THEN u_m_n(:,:,:) = u(:,ny-1:ny,:) v_m_n(:,:,:) = v(:,ny-1:ny,:) w_m_n(:,:,:) = w(:,ny-1:ny,:) ENDIF ENDIF ! !-- Calculate the initial volume flow at the right and north boundary IF ( conserve_volume_flow ) THEN IF ( use_prescribed_profile_data ) THEN volume_flow_initial_l = 0.0_wp volume_flow_area_l = 0.0_wp IF ( nxr == nx ) THEN DO j = nys, nyn DO k = nzb+1, nzt volume_flow_initial_l(1) = volume_flow_initial_l(1) + & u_init(k) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_total_0(k,j,nxr), 1 )& ) volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_total_0(k,j,nxr), 1 )& ) ENDDO ENDDO ENDIF IF ( nyn == ny ) THEN DO i = nxl, nxr DO k = nzb+1, nzt volume_flow_initial_l(2) = volume_flow_initial_l(2) + & v_init(k) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_total_0(k,nyn,i), 2 )& ) volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_total_0(k,nyn,i), 2 )& ) ENDDO ENDDO ENDIF #if defined( __parallel ) CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& 2, MPI_REAL, MPI_SUM, comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & 2, MPI_REAL, MPI_SUM, comm2d, ierr ) #else volume_flow_initial = volume_flow_initial_l volume_flow_area = volume_flow_area_l #endif ELSEIF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN volume_flow_initial_l = 0.0_wp volume_flow_area_l = 0.0_wp IF ( nxr == nx ) THEN DO j = nys, nyn DO k = nzb+1, nzt volume_flow_initial_l(1) = volume_flow_initial_l(1) + & hom_sum(k,1,0) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_total_0(k,j,nx), 1 ) & ) volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_total_0(k,j,nx), 1 ) & ) ENDDO ENDDO ENDIF IF ( nyn == ny ) THEN DO i = nxl, nxr DO k = nzb+1, nzt volume_flow_initial_l(2) = volume_flow_initial_l(2) + & hom_sum(k,2,0) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_total_0(k,ny,i), 2 ) & ) volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_total_0(k,ny,i), 2 ) & ) ENDDO ENDDO ENDIF #if defined( __parallel ) CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& 2, MPI_REAL, MPI_SUM, comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & 2, MPI_REAL, MPI_SUM, comm2d, ierr ) #else volume_flow_initial = volume_flow_initial_l volume_flow_area = volume_flow_area_l #endif ELSEIF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN volume_flow_initial_l = 0.0_wp volume_flow_area_l = 0.0_wp IF ( nxr == nx ) THEN DO j = nys, nyn DO k = nzb+1, nzt volume_flow_initial_l(1) = volume_flow_initial_l(1) + & u(k,j,nx) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_total_0(k,j,nx), 1 ) & ) volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_total_0(k,j,nx), 1 ) & ) ENDDO ENDDO ENDIF IF ( nyn == ny ) THEN DO i = nxl, nxr DO k = nzb+1, nzt volume_flow_initial_l(2) = volume_flow_initial_l(2) + & v(k,ny,i) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_total_0(k,ny,i), 2 ) & ) volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_total_0(k,ny,i), 2 ) & ) ENDDO ENDDO ENDIF #if defined( __parallel ) CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& 2, MPI_REAL, MPI_SUM, comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & 2, MPI_REAL, MPI_SUM, comm2d, ierr ) #else volume_flow_initial = volume_flow_initial_l volume_flow_area = volume_flow_area_l #endif ENDIF ! !-- In case of 'bulk_velocity' mode, volume_flow_initial is calculated !-- from u|v_bulk instead IF ( TRIM( conserve_volume_flow_mode ) == 'bulk_velocity' ) THEN volume_flow_initial(1) = u_bulk * volume_flow_area(1) volume_flow_initial(2) = v_bulk * volume_flow_area(2) ENDIF ENDIF ! !-- In the following, surface properties can be further initialized with !-- input from static driver file. !-- At the moment this affects only default surfaces. For example, !-- roughness length or sensible / latent heat fluxes can be initialized !-- heterogeneously for default surfaces. Therefore, a generic routine !-- from netcdf_data_input_mod is called to read a 2D array. IF ( input_pids_static ) THEN ! !-- Allocate memory for possible static input ALLOCATE( tmp_2d%var(nys:nyn,nxl:nxr) ) tmp_2d%var = 0.0_wp ! !-- Open the static input file #if defined( __netcdf ) CALL open_read_file( TRIM( input_file_static ) // & TRIM( coupling_char ), & pids_id ) CALL inquire_num_variables( pids_id, num_var_pids ) ! !-- Allocate memory to store variable names and read them ALLOCATE( vars_pids(1:num_var_pids) ) CALL inquire_variable_names( pids_id, vars_pids ) ! !-- Input roughness length. IF ( check_existence( vars_pids, 'z0' ) ) THEN ! !-- Read _FillValue attribute CALL get_attribute( pids_id, char_fill, tmp_2d%fill, & .FALSE., 'z0' ) ! !-- Read variable CALL get_variable( pids_id, 'z0', tmp_2d%var, & nxl, nxr, nys, nyn ) ! !-- Initialize roughness length. Note, z0 will be only initialized at !-- default-type surfaces. At natural or urban z0 is implicitly !-- initialized bythe respective parameter lists. !-- Initialize horizontal surface elements. CALL init_single_surface_properties( surf_def_h(0)%z0, & tmp_2d%var, & surf_def_h(0)%ns, & tmp_2d%fill, & surf_def_h(0)%i, & surf_def_h(0)%j ) ! !-- Initialize roughness also at vertical surface elements. !-- Note, the actual 2D input arrays are only defined on the !-- subdomain. Therefore, pass the index arrays with their respective !-- offset values. DO l = 0, 3 CALL init_single_surface_properties( & surf_def_v(l)%z0, & tmp_2d%var, & surf_def_v(l)%ns, & tmp_2d%fill, & surf_def_v(l)%i + surf_def_v(l)%ioff, & surf_def_v(l)%j + surf_def_v(l)%joff ) ENDDO ENDIF ! !-- Additional variables, e.g. shf, qsws, etc, can be initialized the !-- same way. ! !-- Finally, close the input file and deallocate temporary arrays DEALLOCATE( vars_pids ) CALL close_input_file( pids_id ) #endif DEALLOCATE( tmp_2d%var ) ENDIF ! !-- Finally, if random_heatflux is set, disturb shf at horizontal !-- surfaces. Actually, this should be done in surface_mod, where all other !-- initializations of surface quantities are done. However, this !-- would create a ring dependency, hence, it is done here. Maybe delete !-- disturb_heatflux and tranfer the respective code directly into the !-- initialization in surface_mod. IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN IF ( use_surface_fluxes .AND. constant_heatflux .AND. & random_heatflux ) THEN IF ( surf_def_h(0)%ns >= 1 ) CALL disturb_heatflux( surf_def_h(0) ) IF ( surf_lsm_h%ns >= 1 ) CALL disturb_heatflux( surf_lsm_h ) IF ( surf_usm_h%ns >= 1 ) CALL disturb_heatflux( surf_usm_h ) ENDIF ENDIF ! !-- Compute total sum of grid points and the mean surface level height for each !-- statistic region. These are mainly used for horizontal averaging of !-- turbulence statistics. !-- ngp_2dh: number of grid points of a horizontal cross section through the !-- respective statistic region !-- ngp_3d: number of grid points of the respective statistic region ngp_2dh_outer_l = 0 ngp_2dh_outer = 0 ngp_2dh_s_inner_l = 0 ngp_2dh_s_inner = 0 ngp_2dh_l = 0 ngp_2dh = 0 ngp_3d_inner_l = 0.0_wp ngp_3d_inner = 0 ngp_3d = 0 ngp_sums = ( nz + 2 ) * ( pr_palm + max_pr_user ) mean_surface_level_height = 0.0_wp mean_surface_level_height_l = 0.0_wp ! !-- To do: New concept for these non-topography grid points! DO sr = 0, statistic_regions DO i = nxl, nxr DO j = nys, nyn IF ( rmask(j,i,sr) == 1.0_wp ) THEN ! !-- All xy-grid points ngp_2dh_l(sr) = ngp_2dh_l(sr) + 1 ! !-- Determine mean surface-level height. In case of downward- !-- facing walls are present, more than one surface level exist. !-- In this case, use the lowest surface-level height. IF ( surf_def_h(0)%start_index(j,i) <= & surf_def_h(0)%end_index(j,i) ) THEN m = surf_def_h(0)%start_index(j,i) k = surf_def_h(0)%k(m) mean_surface_level_height_l(sr) = & mean_surface_level_height_l(sr) + zw(k-1) ENDIF IF ( surf_lsm_h%start_index(j,i) <= & surf_lsm_h%end_index(j,i) ) THEN m = surf_lsm_h%start_index(j,i) k = surf_lsm_h%k(m) mean_surface_level_height_l(sr) = & mean_surface_level_height_l(sr) + zw(k-1) ENDIF IF ( surf_usm_h%start_index(j,i) <= & surf_usm_h%end_index(j,i) ) THEN m = surf_usm_h%start_index(j,i) k = surf_usm_h%k(m) mean_surface_level_height_l(sr) = & mean_surface_level_height_l(sr) + zw(k-1) ENDIF k_surf = k - 1 DO k = nzb, nzt+1 ! !-- xy-grid points above topography ngp_2dh_outer_l(k,sr) = ngp_2dh_outer_l(k,sr) + & MERGE( 1, 0, BTEST( wall_flags_total_0(k,j,i), 24 ) ) ngp_2dh_s_inner_l(k,sr) = ngp_2dh_s_inner_l(k,sr) + & MERGE( 1, 0, BTEST( wall_flags_total_0(k,j,i), 22 ) ) ENDDO ! !-- All grid points of the total domain above topography ngp_3d_inner_l(sr) = ngp_3d_inner_l(sr) + ( nz - k_surf + 2 ) ENDIF ENDDO ENDDO ENDDO sr = statistic_regions + 1 #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( ngp_2dh_l(0), ngp_2dh(0), sr, MPI_INTEGER, MPI_SUM, & comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( ngp_2dh_outer_l(0,0), ngp_2dh_outer(0,0), (nz+2)*sr, & MPI_INTEGER, MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( ngp_2dh_s_inner_l(0,0), ngp_2dh_s_inner(0,0), & (nz+2)*sr, MPI_INTEGER, MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( ngp_3d_inner_l(0), ngp_3d_inner_tmp(0), sr, MPI_REAL, & MPI_SUM, comm2d, ierr ) ngp_3d_inner = INT( ngp_3d_inner_tmp, KIND = SELECTED_INT_KIND( 18 ) ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( mean_surface_level_height_l(0), & mean_surface_level_height(0), sr, MPI_REAL, & MPI_SUM, comm2d, ierr ) mean_surface_level_height = mean_surface_level_height / REAL( ngp_2dh ) #else ngp_2dh = ngp_2dh_l ngp_2dh_outer = ngp_2dh_outer_l ngp_2dh_s_inner = ngp_2dh_s_inner_l ngp_3d_inner = INT( ngp_3d_inner_l, KIND = SELECTED_INT_KIND( 18 ) ) mean_surface_level_height = mean_surface_level_height_l / REAL( ngp_2dh_l ) #endif ngp_3d = INT ( ngp_2dh, KIND = SELECTED_INT_KIND( 18 ) ) * & INT ( (nz + 2 ), KIND = SELECTED_INT_KIND( 18 ) ) ! !-- Set a lower limit of 1 in order to avoid zero divisions in flow_statistics, !-- buoyancy, etc. A zero value will occur for cases where all grid points of !-- the respective subdomain lie below the surface topography ngp_2dh_outer = MAX( 1, ngp_2dh_outer(:,:) ) ngp_3d_inner = MAX( INT(1, KIND = SELECTED_INT_KIND( 18 )), & ngp_3d_inner(:) ) ngp_2dh_s_inner = MAX( 1, ngp_2dh_s_inner(:,:) ) DEALLOCATE( mean_surface_level_height_l, ngp_2dh_l, ngp_2dh_outer_l, & ngp_3d_inner_l, ngp_3d_inner_tmp ) ! !-- Initialize surface forcing corresponding to large-scale forcing. Therein, !-- initialize heat-fluxes, etc. via datatype. Revise it later! IF ( large_scale_forcing .AND. lsf_surf ) THEN IF ( use_surface_fluxes .AND. constant_heatflux ) THEN CALL ls_forcing_surf ( simulated_time ) ENDIF ENDIF ! !-- Initializae 3D offline nesting in COSMO model and read data from !-- external NetCDF file. IF ( nesting_offline ) CALL nesting_offl_init ! !-- Initialize quantities for special advections schemes CALL init_advec ! !-- Impose random perturbation on the horizontal velocity field and then !-- remove the divergences from the velocity field at the initial stage IF ( create_disturbances .AND. disturbance_energy_limit /= 0.0_wp .AND. & TRIM( initializing_actions ) /= 'read_restart_data' .AND. & TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN IF ( debug_output ) CALL debug_message( 'creating disturbances + applying pressure solver', 'start' ) ! !-- Needed for both disturb_field and pres !$ACC DATA & !$ACC CREATE(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) CALL disturb_field( 'u', tend, u ) CALL disturb_field( 'v', tend, v ) !$ACC DATA & !$ACC CREATE(d(nzb+1:nzt,nys:nyn,nxl:nxr)) & !$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPYIN(rho_air(nzb:nzt+1), rho_air_zw(nzb:nzt+1)) & !$ACC COPYIN(ddzu(1:nzt+1), ddzw(1:nzt+1)) & !$ACC COPYIN(wall_flags_total_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPYIN(bc_h(0:1)) & !$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) & !$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) & !$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) & !$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) & !$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) & !$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns)) n_sor = nsor_ini CALL pres n_sor = nsor !$ACC END DATA !$ACC END DATA IF ( debug_output ) CALL debug_message( 'creating disturbances + applying pressure solver', 'end' ) ENDIF IF ( .NOT. ocean_mode ) THEN ALLOCATE( hyp(nzb:nzt+1) ) ALLOCATE( d_exner(nzb:nzt+1) ) ALLOCATE( exner(nzb:nzt+1) ) ALLOCATE( hyrho(nzb:nzt+1) ) ! !-- Check temperature in case of too large domain height DO k = nzb, nzt+1 IF ( ( pt_surface * exner_function(surface_pressure * 100.0_wp) - g/c_p * zu(k) ) < 0.0_wp ) THEN WRITE( message_string, * ) 'absolute temperature < 0.0 at zu(', k, & ') = ', zu(k) CALL message( 'init_3d_model', 'PA0142', 1, 2, 0, 6, 0 ) ENDIF ENDDO ! !-- Calculate vertical profile of the hydrostatic pressure (hyp) hyp = barometric_formula(zu, pt_surface * exner_function(surface_pressure * 100.0_wp), surface_pressure * 100.0_wp) d_exner = exner_function_invers(hyp) exner = 1.0_wp / exner_function_invers(hyp) hyrho = ideal_gas_law_rho_pt(hyp, pt_init) ! !-- Compute reference density rho_surface = ideal_gas_law_rho(surface_pressure * 100.0_wp, pt_surface * exner_function(surface_pressure * 100.0_wp)) ENDIF ! !-- If required, initialize particles IF ( agents_active ) CALL mas_init ! !-- Initialization of synthetic turbulence generator IF ( use_syn_turb_gen ) CALL stg_init ! !-- Initializing actions for all other modules CALL module_interface_init ! !-- Initialize surface layer (done after LSM as roughness length are required !-- for initialization IF ( constant_flux_layer ) CALL init_surface_layer_fluxes ! !-- Initialize surface data output IF ( surface_output ) CALL surface_data_output_init ! !-- Initialize the ws-scheme. IF ( ws_scheme_sca .OR. ws_scheme_mom ) CALL ws_init ! !-- Perform post-initializing checks for all other modules CALL module_interface_init_checks ! !-- Setting weighting factors for calculation of perturbation pressure !-- and turbulent quantities from the RK substeps IF ( TRIM(timestep_scheme) == 'runge-kutta-3' ) THEN ! for RK3-method weight_substep(1) = 1._wp/6._wp weight_substep(2) = 3._wp/10._wp weight_substep(3) = 8._wp/15._wp weight_pres(1) = 1._wp/3._wp weight_pres(2) = 5._wp/12._wp weight_pres(3) = 1._wp/4._wp ELSEIF ( TRIM(timestep_scheme) == 'runge-kutta-2' ) THEN ! for RK2-method weight_substep(1) = 1._wp/2._wp weight_substep(2) = 1._wp/2._wp weight_pres(1) = 1._wp/2._wp weight_pres(2) = 1._wp/2._wp ELSE ! for Euler-method weight_substep(1) = 1.0_wp weight_pres(1) = 1.0_wp ENDIF ! !-- Initialize Rayleigh damping factors rdf = 0.0_wp rdf_sc = 0.0_wp IF ( rayleigh_damping_factor /= 0.0_wp ) THEN IF ( .NOT. ocean_mode ) THEN DO k = nzb+1, nzt IF ( zu(k) >= rayleigh_damping_height ) THEN rdf(k) = rayleigh_damping_factor * & ( SIN( pi * 0.5_wp * ( zu(k) - rayleigh_damping_height ) & / ( zu(nzt) - rayleigh_damping_height ) ) & )**2 ENDIF ENDDO ELSE ! !-- In ocean mode, rayleigh damping is applied in the lower part of the !-- model domain DO k = nzt, nzb+1, -1 IF ( zu(k) <= rayleigh_damping_height ) THEN rdf(k) = rayleigh_damping_factor * & ( SIN( pi * 0.5_wp * ( rayleigh_damping_height - zu(k) ) & / ( rayleigh_damping_height - zu(nzb+1) ) ) & )**2 ENDIF ENDDO ENDIF ENDIF IF ( scalar_rayleigh_damping ) rdf_sc = rdf ! !-- Initialize the starting level and the vertical smoothing factor used for !-- the external pressure gradient dp_smooth_factor = 1.0_wp IF ( dp_external ) THEN ! !-- Set the starting level dp_level_ind_b only if it has not been set before !-- (e.g. in init_grid). IF ( dp_level_ind_b == 0 ) THEN ind_array = MINLOC( ABS( dp_level_b - zu ) ) dp_level_ind_b = ind_array(1) - 1 + nzb ! MINLOC uses lower array bound 1 ENDIF IF ( dp_smooth ) THEN dp_smooth_factor(:dp_level_ind_b) = 0.0_wp DO k = dp_level_ind_b+1, nzt dp_smooth_factor(k) = 0.5_wp * ( 1.0_wp + SIN( pi * & ( REAL( k - dp_level_ind_b, KIND=wp ) / & REAL( nzt - dp_level_ind_b, KIND=wp ) - 0.5_wp ) ) ) ENDDO ENDIF ENDIF ! !-- Initialize damping zone for the potential temperature in case of !-- non-cyclic lateral boundaries. The damping zone has the maximum value !-- at the inflow boundary and decreases to zero at pt_damping_width. ptdf_x = 0.0_wp ptdf_y = 0.0_wp IF ( bc_lr_dirrad ) THEN DO i = nxl, nxr IF ( ( i * dx ) < pt_damping_width ) THEN ptdf_x(i) = pt_damping_factor * ( SIN( pi * 0.5_wp * & REAL( pt_damping_width - i * dx, KIND=wp ) / ( & REAL( pt_damping_width, KIND=wp ) ) ) )**2 ENDIF ENDDO ELSEIF ( bc_lr_raddir ) THEN DO i = nxl, nxr IF ( ( i * dx ) > ( nx * dx - pt_damping_width ) ) THEN ptdf_x(i) = pt_damping_factor * & SIN( pi * 0.5_wp * & ( ( i - nx ) * dx + pt_damping_width ) / & REAL( pt_damping_width, KIND=wp ) )**2 ENDIF ENDDO ELSEIF ( bc_ns_dirrad ) THEN DO j = nys, nyn IF ( ( j * dy ) > ( ny * dy - pt_damping_width ) ) THEN ptdf_y(j) = pt_damping_factor * & SIN( pi * 0.5_wp * & ( ( j - ny ) * dy + pt_damping_width ) / & REAL( pt_damping_width, KIND=wp ) )**2 ENDIF ENDDO ELSEIF ( bc_ns_raddir ) THEN DO j = nys, nyn IF ( ( j * dy ) < pt_damping_width ) THEN ptdf_y(j) = pt_damping_factor * & SIN( pi * 0.5_wp * & ( pt_damping_width - j * dy ) / & REAL( pt_damping_width, KIND=wp ) )**2 ENDIF ENDDO ENDIF ! !-- Input binary data file is not needed anymore. This line must be placed !-- after call of user_init! CALL close_file( 13 ) ! !-- In case of nesting, put an barrier to assure that all parent and child !-- domains finished initialization. #if defined( __parallel ) IF ( nested_run ) CALL MPI_BARRIER( MPI_COMM_WORLD, ierr ) #endif CALL location_message( 'model initialization', 'finished' ) END SUBROUTINE init_3d_model