!> @file init_3d_model.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2019 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ------------------ ! ! ! Former revisions: ! ----------------- ! $Id: init_3d_model.f90 3900 2019-04-16 15:17:43Z kanani $ ! Fix problem with LOD = 2 initialization ! ! 3885 2019-04-11 11:29:34Z kanani ! Changes related to global restructuring of location messages and introduction ! of additional debug messages ! ! 3849 2019-04-01 16:35:16Z knoop ! Move initialization of rmask before initializing user_init_arrays ! ! 3711 2019-01-31 13:44:26Z knoop ! Introduced module_interface_init_checks for post-init checks in modules ! ! 3700 2019-01-26 17:03:42Z knoop ! Some interface calls moved to module_interface + cleanup ! ! 3648 2019-01-02 16:35:46Z suehring ! Rename subroutines for surface-data output ! ! 3636 2018-12-19 13:48:34Z raasch ! nopointer option removed ! ! 3609 2018-12-07 13:37:59Z suehring ! Furhter correction in initialization of surfaces in cyclic-fill case ! ! 3608 2018-12-07 12:59:57Z suehring ! Bugfix in initialization of surfaces in cyclic-fill case ! ! 3589 2018-11-30 15:09:51Z suehring ! Move the control parameter "salsa" from salsa_mod to control_parameters ! (M. Kurppa) ! ! 3582 2018-11-29 19:16:36Z suehring ! Bugfix in initialization of turbulence generator ! ! 3569 2018-11-27 17:03:40Z kanani ! dom_dwd_user, Schrempf: ! Remove uv exposure model code, this is now part of biometeorology_mod, ! remove bio_init_arrays. ! ! 3547 2018-11-21 13:21:24Z suehring ! variables documented ! ! 3525 2018-11-14 16:06:14Z kanani ! Changes related to clean-up of biometeorology (dom_dwd_user) ! ! 3524 2018-11-14 13:36:44Z raasch ! preprocessor directive added to avoid the compiler to complain about unused ! variable ! ! 3473 2018-10-30 20:50:15Z suehring ! Add virtual measurement module ! ! 3472 2018-10-30 20:43:50Z suehring ! Add indoor model (kanani, srissman, tlang) ! ! 3467 2018-10-30 19:05:21Z suehring ! Implementation of a new aerosol module salsa. ! ! 3458 2018-10-30 14:51:23Z kanani ! from chemistry branch r3443, basit: ! bug fixed in sums and sums_l for chemistry profile output ! ! 3448 2018-10-29 18:14:31Z kanani ! Add biometeorology ! ! 3421 2018-10-24 18:39:32Z gronemeier ! Initialize surface data output ! ! 3415 2018-10-24 11:57:50Z suehring ! Set bottom boundary condition for geostrophic wind components in inifor ! initialization ! ! 3347 2018-10-15 14:21:08Z suehring ! - Separate offline nesting from large_scale_nudging_mod ! - Improve the synthetic turbulence generator ! ! 3298 2018-10-02 12:21:11Z kanani ! Minor formatting (kanani) ! Added CALL to the chem_emissions module (Russo) ! ! 3294 2018-10-01 02:37:10Z raasch ! allocate and set stokes drift velocity profiles ! ! 3298 2018-10-02 12:21:11Z kanani ! Minor formatting (kanani) ! Added CALL to the chem_emissions module (Russo) ! ! 3294 2018-10-01 02:37:10Z raasch ! changes concerning modularization of ocean option ! ! 3289 2018-09-28 10:23:58Z suehring ! Introduce module parameter for number of inflow profiles ! ! 3288 2018-09-28 10:23:08Z suehring ! Modularization of all bulk cloud physics code components ! ! 3241 2018-09-12 15:02:00Z raasch ! unused variables removed ! ! 3234 2018-09-07 13:46:58Z schwenkel ! The increase of dots_num in case of radiation or land surface model must ! be done before user_init is called ! ! 3183 2018-07-27 14:25:55Z suehring ! Revise Inifor initialization ! ! 3182 2018-07-27 13:36:03Z suehring ! Added multi agent system ! ! 3129 2018-07-16 07:45:13Z gronemeier ! Move initialization call for nudging and 1D/3D offline nesting. ! Revise initialization with inifor data. ! ! 3045 2018-05-28 07:55:41Z Giersch ! Error messages revised ! ! 3045 2018-05-28 07:55:41Z Giersch ! Error messages revised ! ! 3042 2018-05-25 10:44:37Z schwenkel ! Changed the name specific humidity to mixing ratio ! ! 3040 2018-05-25 10:22:08Z schwenkel ! Add option to initialize warm air bubble close to surface ! ! 3014 2018-05-09 08:42:38Z maronga ! Bugfix: initialization of ts_value missing ! ! 3011 2018-05-07 14:38:42Z schwenkel ! removed redundant if statement ! ! 3004 2018-04-27 12:33:25Z Giersch ! precipitation_rate removed ! ! 2995 2018-04-19 12:13:16Z Giersch ! CALL radiation_control is not necessary during initialization because ! calculation of radiative fluxes at model start is done in radiation_init ! in any case ! ! 2977 2018-04-17 10:27:57Z kanani ! Implement changes from branch radiation (r2948-2971) with minor modifications ! (moh.hefny): ! - set radiation_interactions according to the existence of urban/land vertical ! surfaces and trees to activiate RTM ! - set average_radiation to TRUE if RTM is activiated ! ! 2938 2018-03-27 15:52:42Z suehring ! - Revise Inifor initialization for geostrophic wind components ! - Initialize synthetic turbulence generator in case of Inifor initialization ! ! 2936 2018-03-27 14:49:27Z suehring ! Synchronize parent and child models after initialization. ! Remove obsolete masking of topography grid points for Runge-Kutta weighted ! tendency arrays. ! ! 2920 2018-03-22 11:22:01Z kanani ! Add call for precalculating apparent solar positions (moh.hefny) ! ! 2906 2018-03-19 08:56:40Z Giersch ! The variables read/write_svf_on_init have been removed. Instead ENVIRONMENT ! variables read/write_svf have been introduced. Location_message has been ! added. ! ! 2894 2018-03-15 09:17:58Z Giersch ! Renamed routines with respect to reading restart data, file 13 is closed in ! rrd_read_parts_of_global now ! ! 2867 2018-03-09 09:40:23Z suehring ! Further bugfix concerning call of user_init. ! ! 2864 2018-03-08 11:57:45Z suehring ! Bugfix, move call of user_init in front of initialization of grid-point ! arrays ! ! 2817 2018-02-19 16:32:21Z knoop ! Preliminary gust module interface implemented ! ! 2776 2018-01-31 10:44:42Z Giersch ! Variable use_synthetic_turbulence_generator has been abbreviated ! ! 2766 2018-01-22 17:17:47Z kanani ! Removed preprocessor directive __chem ! ! 2758 2018-01-17 12:55:21Z suehring ! In case of spinup of land- and urban-surface model, do not mask wind velocity ! at first computational grid level ! ! 2746 2018-01-15 12:06:04Z suehring ! Move flag plant canopy to modules ! ! 2718 2018-01-02 08:49:38Z maronga ! Corrected "Former revisions" section ! ! 2705 2017-12-18 11:26:23Z maronga ! Bugfix for reading initial profiles from ls/nuding file ! ! 2701 2017-12-15 15:40:50Z suehring ! Changes from last commit documented ! ! 2700 2017-12-15 14:12:35Z suehring ! Bugfix, missing initialization of surface attributes in case of ! inifor-initialization branch ! ! 2698 2017-12-14 18:46:24Z suehring ! Bugfix in get_topography_top_index ! ! 2696 2017-12-14 17:12:51Z kanani ! Change in file header (GPL part) ! Implementation of uv exposure model (FK) ! Moved initialisation of diss, e, kh, km to turbulence_closure_mod (TG) ! Added chemical emissions (FK) ! Initialize masking arrays and number-of-grid-points arrays before initialize ! LSM, USM and radiation module ! Initialization with inifor (MS) ! ! 2618 2017-11-16 15:37:30Z suehring ! Reorder calls of init_surfaces. ! ! 2564 2017-10-19 15:56:56Z Giersch ! Variable wind_turbine was added to control_parameters. ! ! 2550 2017-10-16 17:12:01Z boeske ! Modifications to cyclic fill method and turbulence recycling method in case of ! complex terrain simulations ! ! 2513 2017-10-04 09:24:39Z kanani ! Bugfix in storing initial scalar profile (wrong index) ! ! 2350 2017-08-15 11:48:26Z kanani ! Bugfix in nopointer version ! ! 2339 2017-08-07 13:55:26Z gronemeier ! corrected timestamp in header ! ! 2338 2017-08-07 12:15:38Z gronemeier ! Modularize 1D model ! ! 2329 2017-08-03 14:24:56Z knoop ! Removed temporary bugfix (r2327) as bug is properly resolved by this revision ! ! 2327 2017-08-02 07:40:57Z maronga ! Temporary bugfix ! ! 2320 2017-07-21 12:47:43Z suehring ! Modularize large-scale forcing and nudging ! ! 2292 2017-06-20 09:51:42Z schwenkel ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' ! includes two more prognostic equations for cloud drop concentration (nc) ! and cloud water content (qc). ! ! 2277 2017-06-12 10:47:51Z kanani ! Removed unused variable sums_up_fraction_l ! ! 2270 2017-06-09 12:18:47Z maronga ! dots_num must be increased when LSM and/or radiation is used ! ! 2259 2017-06-08 09:09:11Z gronemeier ! Implemented synthetic turbulence generator ! ! 2252 2017-06-07 09:35:37Z knoop ! rho_air now depending on surface_pressure even in Boussinesq mode ! ! 2233 2017-05-30 18:08:54Z suehring ! ! 2232 2017-05-30 17:47:52Z suehring ! Adjustments to new topography and surface concept: ! - Modify passed parameters for disturb_field ! - Topography representation via flags ! - Remove unused arrays. ! - Move initialization of surface-related quantities to surface_mod ! ! 2172 2017-03-08 15:55:25Z knoop ! Bugfix: moved parallel random generator initialization into its module ! ! 2118 2017-01-17 16:38:49Z raasch ! OpenACC directives removed ! ! 2037 2016-10-26 11:15:40Z knoop ! Anelastic approximation implemented ! ! 2031 2016-10-21 15:11:58Z knoop ! renamed variable rho to rho_ocean ! ! 2011 2016-09-19 17:29:57Z kanani ! Flag urban_surface is now defined in module control_parameters. ! ! 2007 2016-08-24 15:47:17Z kanani ! Added support for urban surface model, ! adjusted location_message in case of plant_canopy ! ! 2000 2016-08-20 18:09:15Z knoop ! Forced header and separation lines into 80 columns ! ! 1992 2016-08-12 15:14:59Z suehring ! Initializaton of scalarflux at model top ! Bugfixes in initialization of surface and top salinity flux, top scalar and ! humidity fluxes ! ! 1960 2016-07-12 16:34:24Z suehring ! Separate humidity and passive scalar ! Increase dimension for mean_inflow_profiles ! Remove inadvertent write-statement ! Bugfix, large-scale forcing is still not implemented for passive scalars ! ! 1957 2016-07-07 10:43:48Z suehring ! flight module added ! ! 1920 2016-05-30 10:50:15Z suehring ! Initialize us with very small number to avoid segmentation fault during ! calculation of Obukhov length ! ! 1918 2016-05-27 14:35:57Z raasch ! intermediate_timestep_count is set 0 instead 1 for first call of pres, ! bugfix: initialization of local sum arrays are moved to the beginning of the ! routine because otherwise results from pres are overwritten ! ! 1914 2016-05-26 14:44:07Z witha ! Added initialization of the wind turbine model ! ! 1878 2016-04-19 12:30:36Z hellstea ! The zeroth element of weight_pres removed as unnecessary ! ! 1849 2016-04-08 11:33:18Z hoffmann ! Adapted for modularization of microphysics. ! precipitation_amount, precipitation_rate, prr moved to arrays_3d. ! Initialization of nc_1d, nr_1d, pt_1d, qc_1d, qr_1d, q_1d moved to ! bcm_init. ! ! 1845 2016-04-08 08:29:13Z raasch ! nzb_2d replaced by nzb_u|v_inner ! ! 1833 2016-04-07 14:23:03Z raasch ! initialization of spectra quantities moved to spectra_mod ! ! 1831 2016-04-07 13:15:51Z hoffmann ! turbulence renamed collision_turbulence ! ! 1826 2016-04-07 12:01:39Z maronga ! Renamed radiation calls. ! Renamed canopy model calls. ! ! 1822 2016-04-07 07:49:42Z hoffmann ! icloud_scheme replaced by microphysics_* ! ! 1817 2016-04-06 15:44:20Z maronga ! Renamed lsm calls. ! ! 1815 2016-04-06 13:49:59Z raasch ! zero-settings for velocities inside topography re-activated (was deactivated ! in r1762) ! ! 1788 2016-03-10 11:01:04Z maronga ! Added z0q. ! Syntax layout improved. ! ! 1783 2016-03-06 18:36:17Z raasch ! netcdf module name changed + related changes ! ! 1764 2016-02-28 12:45:19Z raasch ! bugfix: increase size of volume_flow_area_l and volume_flow_initial_l by 1 ! ! 1762 2016-02-25 12:31:13Z hellstea ! Introduction of nested domain feature ! ! 1738 2015-12-18 13:56:05Z raasch ! calculate mean surface level height for each statistic region ! ! 1734 2015-12-02 12:17:12Z raasch ! no initial disturbances in case that the disturbance energy limit has been ! set zero ! ! 1707 2015-11-02 15:24:52Z maronga ! Bugfix: transfer of Richardson number from 1D model to Obukhov length caused ! devision by zero in neutral stratification ! ! 1691 2015-10-26 16:17:44Z maronga ! Call to init_surface_layer added. rif is replaced by ol and zeta. ! ! 1682 2015-10-07 23:56:08Z knoop ! Code annotations made doxygen readable ! ! 1615 2015-07-08 18:49:19Z suehring ! Enable turbulent inflow for passive_scalar and humidity ! ! 1585 2015-04-30 07:05:52Z maronga ! Initialization of radiation code is now done after LSM initializtion ! ! 1575 2015-03-27 09:56:27Z raasch ! adjustments for psolver-queries ! ! 1551 2015-03-03 14:18:16Z maronga ! Allocation of land surface arrays is now done in the subroutine lsm_init_arrays, ! which is part of land_surface_model. ! ! 1507 2014-12-10 12:14:18Z suehring ! Bugfix: set horizontal velocity components to zero inside topography ! ! 1496 2014-12-02 17:25:50Z maronga ! Added initialization of the land surface and radiation schemes ! ! 1484 2014-10-21 10:53:05Z kanani ! Changes due to new module structure of the plant canopy model: ! canopy-related initialization (e.g. lad and canopy_heat_flux) moved to new ! subroutine init_plant_canopy within the module plant_canopy_model_mod, ! call of subroutine init_plant_canopy added. ! ! 1431 2014-07-15 14:47:17Z suehring ! var_d added, in order to normalize spectra. ! ! 1429 2014-07-15 12:53:45Z knoop ! Ensemble run capability added to parallel random number generator ! ! 1411 2014-05-16 18:01:51Z suehring ! Initial horizontal velocity profiles were not set to zero at the first vertical ! grid level in case of non-cyclic lateral boundary conditions. ! ! 1406 2014-05-16 13:47:01Z raasch ! bugfix: setting of initial velocities at k=1 to zero not in case of a ! no-slip boundary condition for uv ! ! 1402 2014-05-09 14:25:13Z raasch ! location messages modified ! ! 1400 2014-05-09 14:03:54Z knoop ! Parallel random number generator added ! ! 1384 2014-05-02 14:31:06Z raasch ! location messages added ! ! 1361 2014-04-16 15:17:48Z hoffmann ! tend_* removed ! Bugfix: w_subs is not allocated anymore if it is already allocated ! ! 1359 2014-04-11 17:15:14Z hoffmann ! module lpm_init_mod added to use statements, because lpm_init has become a ! module ! ! 1353 2014-04-08 15:21:23Z heinze ! REAL constants provided with KIND-attribute ! ! 1340 2014-03-25 19:45:13Z kanani ! REAL constants defined as wp-kind ! ! 1322 2014-03-20 16:38:49Z raasch ! REAL constants defined as wp-kind ! module interfaces removed ! ! 1320 2014-03-20 08:40:49Z raasch ! ONLY-attribute added to USE-statements, ! kind-parameters added to all INTEGER and REAL declaration statements, ! kinds are defined in new module kinds, ! revision history before 2012 removed, ! comment fields (!:) to be used for variable explanations added to ! all variable declaration statements ! ! 1316 2014-03-17 07:44:59Z heinze ! Bugfix: allocation of w_subs ! ! 1299 2014-03-06 13:15:21Z heinze ! Allocate w_subs due to extension of large scale subsidence in combination ! with large scale forcing data (LSF_DATA) ! ! 1241 2013-10-30 11:36:58Z heinze ! Overwrite initial profiles in case of nudging ! Inititialize shf and qsws in case of large_scale_forcing ! ! 1221 2013-09-10 08:59:13Z raasch ! +rflags_s_inner in copyin statement, use copyin for most arrays instead of ! copy ! ! 1212 2013-08-15 08:46:27Z raasch ! array tri is allocated and included in data copy statement ! ! 1195 2013-07-01 12:27:57Z heinze ! Bugfix: move allocation of ref_state to parin.f90 and read_var_list.f90 ! ! 1179 2013-06-14 05:57:58Z raasch ! allocate and set ref_state to be used in buoyancy terms ! ! 1171 2013-05-30 11:27:45Z raasch ! diss array is allocated with full size if accelerator boards are used ! ! 1159 2013-05-21 11:58:22Z fricke ! -bc_lr_dirneu, bc_lr_neudir, bc_ns_dirneu, bc_ns_neudir ! ! 1153 2013-05-10 14:33:08Z raasch ! diss array is allocated with dummy elements even if it is not needed ! (required by PGI 13.4 / CUDA 5.0) ! ! 1115 2013-03-26 18:16:16Z hoffmann ! unused variables removed ! ! 1113 2013-03-10 02:48:14Z raasch ! openACC directive modified ! ! 1111 2013-03-08 23:54:10Z raasch ! openACC directives added for pres ! array diss allocated only if required ! ! 1092 2013-02-02 11:24:22Z raasch ! unused variables removed ! ! 1065 2012-11-22 17:42:36Z hoffmann ! allocation of diss (dissipation rate) in case of turbulence = .TRUE. added ! ! 1053 2012-11-13 17:11:03Z hoffmann ! allocation and initialisation of necessary data arrays for the two-moment ! cloud physics scheme the two new prognostic equations (nr, qr): ! +dr, lambda_r, mu_r, sed_*, xr, *s, *sws, *swst, *, *_p, t*_m, *_1, *_2, *_3, ! +tend_*, prr ! ! 1036 2012-10-22 13:43:42Z raasch ! code put under GPL (PALM 3.9) ! ! 1032 2012-10-21 13:03:21Z letzel ! save memory by not allocating pt_2 in case of neutral = .T. ! ! 1025 2012-10-07 16:04:41Z letzel ! bugfix: swap indices of mask for ghost boundaries ! ! 1015 2012-09-27 09:23:24Z raasch ! mask is set to zero for ghost boundaries ! ! 1010 2012-09-20 07:59:54Z raasch ! cpp switch __nopointer added for pointer free version ! ! 1003 2012-09-14 14:35:53Z raasch ! nxra,nyna, nzta replaced ny nxr, nyn, nzt ! ! 1001 2012-09-13 14:08:46Z raasch ! all actions concerning leapfrog scheme removed ! ! 996 2012-09-07 10:41:47Z raasch ! little reformatting ! ! 978 2012-08-09 08:28:32Z fricke ! outflow damping layer removed ! roughness length for scalar quantites z0h added ! damping zone for the potential temperatur in case of non-cyclic lateral ! boundaries added ! initialization of ptdf_x, ptdf_y ! initialization of c_u_m, c_u_m_l, c_v_m, c_v_m_l, c_w_m, c_w_m_l ! ! 849 2012-03-15 10:35:09Z raasch ! init_particles renamed lpm_init ! ! 825 2012-02-19 03:03:44Z raasch ! wang_collision_kernel renamed wang_kernel ! ! Revision 1.1 1998/03/09 16:22:22 raasch ! Initial revision ! ! ! Description: ! ------------ !> Allocation of arrays and initialization of the 3D model via !> a) pre-run the 1D model !> or !> b) pre-set constant linear profiles !> or !> c) read values of a previous run !------------------------------------------------------------------------------! SUBROUTINE init_3d_model USE advec_ws USE arrays_3d USE basic_constants_and_equations_mod, & ONLY: c_p, g, l_v, pi, r_d, exner_function, exner_function_invers, & ideal_gas_law_rho, ideal_gas_law_rho_pt, barometric_formula USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model USE chem_modules, & ONLY: max_pr_cs ! ToDo: this dependency needs to be removed cause it is ugly #new_dom USE control_parameters USE grid_variables, & ONLY: dx, dy, ddx2_mg, ddy2_mg USE indices USE kinds USE lpm_init_mod, & ONLY: lpm_init USE lsf_nudging_mod, & ONLY: ls_forcing_surf USE model_1d_mod, & ONLY: init_1d_model, l1d, u1d, v1d USE module_interface, & ONLY: module_interface_init_arrays, & module_interface_init, & module_interface_init_checks USE multi_agent_system_mod, & ONLY: agents_active, mas_init USE netcdf_interface, & ONLY: dots_max USE netcdf_data_input_mod, & ONLY: init_3d, & netcdf_data_input_init_3d, netcdf_data_input_interpolate USE nesting_offl_mod, & ONLY: nesting_offl_init USE particle_attributes, & ONLY: particle_advection USE pegrid #if defined( __parallel ) USE pmc_interface, & ONLY: nested_run #endif USE random_function_mod USE random_generator_parallel, & ONLY: init_parallel_random_generator USE read_restart_data_mod, & ONLY: rrd_read_parts_of_global, rrd_local USE statistics, & ONLY: hom, hom_sum, mean_surface_level_height, pr_palm, rmask, & statistic_regions, sums, sums_divnew_l, sums_divold_l, sums_l, & sums_l_l, sums_wsts_bc_l, ts_value, & weight_pres, weight_substep USE synthetic_turbulence_generator_mod, & ONLY: parametrize_inflow_turbulence, stg_adjust, stg_init, & use_syn_turb_gen USE surface_layer_fluxes_mod, & ONLY: init_surface_layer_fluxes USE surface_mod, & ONLY : init_surface_arrays, init_surfaces, surf_def_h, surf_lsm_h, & surf_usm_h, get_topography_top_index_ji #if defined( _OPENACC ) USE surface_mod, & ONLY : bc_h #endif USE surface_data_output_mod, & ONLY: surface_data_output_init USE transpose_indices USE turbulence_closure_mod, & ONLY: tcm_init_arrays, tcm_init IMPLICIT NONE INTEGER(iwp) :: i !< grid index in x direction INTEGER(iwp) :: ind_array(1) !< dummy used to determine start index for external pressure forcing INTEGER(iwp) :: j !< grid index in y direction INTEGER(iwp) :: k !< grid index in z direction INTEGER(iwp) :: k_surf !< surface level index INTEGER(iwp) :: m !< index of surface element in surface data type INTEGER(iwp) :: sr !< index of statistic region INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: ngp_2dh_l !< toal number of horizontal grid points in statistical region on subdomain INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_outer_l !< number of horizontal non-wall bounded grid points on subdomain INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_s_inner_l !< number of horizontal non-topography grid points on subdomain REAL(wp) :: t_surface !< air temperature at the surface REAL(wp), DIMENSION(:), ALLOCATABLE :: init_l !< dummy array used for averaging 3D data to obtain inital profiles REAL(wp), DIMENSION(:), ALLOCATABLE :: p_hydrostatic !< hydrostatic pressure INTEGER(iwp) :: l !< loop variable INTEGER(iwp) :: nzt_l !< index of top PE boundary for multigrid level REAL(wp) :: dx_l !< grid spacing along x on different multigrid level REAL(wp) :: dy_l !< grid spacing along y on different multigrid level REAL(wp), DIMENSION(1:3) :: volume_flow_area_l !< area of lateral and top model domain surface on local subdomain REAL(wp), DIMENSION(1:3) :: volume_flow_initial_l !< initial volume flow into model domain REAL(wp), DIMENSION(:), ALLOCATABLE :: mean_surface_level_height_l !< mean surface level height on subdomain REAL(wp), DIMENSION(:), ALLOCATABLE :: ngp_3d_inner_l !< total number of non-topography grid points on subdomain REAL(wp), DIMENSION(:), ALLOCATABLE :: ngp_3d_inner_tmp !< total number of non-topography grid points INTEGER(iwp) :: nz_u_shift !< topography-top index on u-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_v_shift !< topography-top index on v-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_w_shift !< topography-top index on w-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_s_shift !< topography-top index on scalar-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_u_shift_l !< topography-top index on u-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_v_shift_l !< topography-top index on v-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_w_shift_l !< topography-top index on w-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_s_shift_l !< topography-top index on scalar-grid, used to vertically shift initial profiles CALL location_message( 'init_3d_model', 'start' ) CALL location_message( 'allocating arrays', 'start' ) ! !-- Allocate arrays ALLOCATE( mean_surface_level_height(0:statistic_regions), & mean_surface_level_height_l(0:statistic_regions), & ngp_2dh(0:statistic_regions), ngp_2dh_l(0:statistic_regions), & ngp_3d(0:statistic_regions), & ngp_3d_inner(0:statistic_regions), & ngp_3d_inner_l(0:statistic_regions), & ngp_3d_inner_tmp(0:statistic_regions), & sums_divnew_l(0:statistic_regions), & sums_divold_l(0:statistic_regions) ) ALLOCATE( dp_smooth_factor(nzb:nzt), rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt) ) ALLOCATE( ngp_2dh_outer(nzb:nzt+1,0:statistic_regions), & ngp_2dh_outer_l(nzb:nzt+1,0:statistic_regions), & ngp_2dh_s_inner(nzb:nzt+1,0:statistic_regions), & ngp_2dh_s_inner_l(nzb:nzt+1,0:statistic_regions), & rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions), & sums(nzb:nzt+1,pr_palm+max_pr_user+max_pr_cs), & sums_l(nzb:nzt+1,pr_palm+max_pr_user+max_pr_cs,0:threads_per_task-1), & sums_l_l(nzb:nzt+1,0:statistic_regions,0:threads_per_task-1), & sums_wsts_bc_l(nzb:nzt+1,0:statistic_regions) ) ALLOCATE( ts_value(dots_max,0:statistic_regions) ) ALLOCATE( ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng) ) ALLOCATE( d(nzb+1:nzt,nys:nyn,nxl:nxr), & p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ALLOCATE( pt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & pt_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & u_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & u_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & u_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & v_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & v_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & v_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & w_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & w_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & w_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) IF ( .NOT. neutral ) THEN ALLOCATE( pt_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF ! !-- Pre-set masks for regional statistics. Default is the total model domain. !-- Ghost points are excluded because counting values at the ghost boundaries !-- would bias the statistics rmask = 1.0_wp rmask(:,nxlg:nxl-1,:) = 0.0_wp; rmask(:,nxr+1:nxrg,:) = 0.0_wp rmask(nysg:nys-1,:,:) = 0.0_wp; rmask(nyn+1:nyng,:,:) = 0.0_wp ! !-- Following array is required for perturbation pressure within the iterative !-- pressure solvers. For the multistep schemes (Runge-Kutta), array p holds !-- the weighted average of the substeps and cannot be used in the Poisson !-- solver. IF ( psolver == 'sor' ) THEN ALLOCATE( p_loc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ELSEIF ( psolver(1:9) == 'multigrid' ) THEN ! !-- For performance reasons, multigrid is using one ghost layer only ALLOCATE( p_loc(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) ENDIF ! !-- Array for storing constant coeffficients of the tridiagonal solver IF ( psolver == 'poisfft' ) THEN ALLOCATE( tri(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1,2) ) ALLOCATE( tric(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) ) ENDIF IF ( humidity ) THEN ! !-- 3D-humidity ALLOCATE( q_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & q_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & q_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & vpt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) IF ( cloud_droplets ) THEN ! !-- Liquid water content, change in liquid water content ALLOCATE ( ql_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & ql_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ! !-- Real volume of particles (with weighting), volume of particles ALLOCATE ( ql_v(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & ql_vp(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF ENDIF IF ( passive_scalar ) THEN ! !-- 3D scalar arrays ALLOCATE( s_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & s_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & s_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF ! !-- Allocate and set 1d-profiles for Stokes drift velocity. It may be set to !-- non-zero values later in ocean_init ALLOCATE( u_stokes_zu(nzb:nzt+1), u_stokes_zw(nzb:nzt+1), & v_stokes_zu(nzb:nzt+1), v_stokes_zw(nzb:nzt+1) ) u_stokes_zu(:) = 0.0_wp u_stokes_zw(:) = 0.0_wp v_stokes_zu(:) = 0.0_wp v_stokes_zw(:) = 0.0_wp ! !-- Allocation of anelastic and Boussinesq approximation specific arrays ALLOCATE( p_hydrostatic(nzb:nzt+1) ) ALLOCATE( rho_air(nzb:nzt+1) ) ALLOCATE( rho_air_zw(nzb:nzt+1) ) ALLOCATE( drho_air(nzb:nzt+1) ) ALLOCATE( drho_air_zw(nzb:nzt+1) ) ! !-- Density profile calculation for anelastic approximation t_surface = pt_surface * ( surface_pressure / 1000.0_wp )**( r_d / c_p ) IF ( TRIM( approximation ) == 'anelastic' ) THEN DO k = nzb, nzt+1 p_hydrostatic(k) = surface_pressure * 100.0_wp * & ( 1 - ( g * zu(k) ) / ( c_p * t_surface ) & )**( c_p / r_d ) rho_air(k) = ( p_hydrostatic(k) * & ( 100000.0_wp / p_hydrostatic(k) & )**( r_d / c_p ) & ) / ( r_d * pt_init(k) ) ENDDO DO k = nzb, nzt rho_air_zw(k) = 0.5_wp * ( rho_air(k) + rho_air(k+1) ) ENDDO rho_air_zw(nzt+1) = rho_air_zw(nzt) & + 2.0_wp * ( rho_air(nzt+1) - rho_air_zw(nzt) ) ELSE DO k = nzb, nzt+1 p_hydrostatic(k) = surface_pressure * 100.0_wp * & ( 1 - ( g * zu(nzb) ) / ( c_p * t_surface ) & )**( c_p / r_d ) rho_air(k) = ( p_hydrostatic(k) * & ( 100000.0_wp / p_hydrostatic(k) & )**( r_d / c_p ) & ) / ( r_d * pt_init(nzb) ) ENDDO DO k = nzb, nzt rho_air_zw(k) = 0.5_wp * ( rho_air(k) + rho_air(k+1) ) ENDDO rho_air_zw(nzt+1) = rho_air_zw(nzt) & + 2.0_wp * ( rho_air(nzt+1) - rho_air_zw(nzt) ) ENDIF ! !-- compute the inverse density array in order to avoid expencive divisions drho_air = 1.0_wp / rho_air drho_air_zw = 1.0_wp / rho_air_zw ! !-- Allocation of flux conversion arrays ALLOCATE( heatflux_input_conversion(nzb:nzt+1) ) ALLOCATE( waterflux_input_conversion(nzb:nzt+1) ) ALLOCATE( momentumflux_input_conversion(nzb:nzt+1) ) ALLOCATE( heatflux_output_conversion(nzb:nzt+1) ) ALLOCATE( waterflux_output_conversion(nzb:nzt+1) ) ALLOCATE( momentumflux_output_conversion(nzb:nzt+1) ) ! !-- calculate flux conversion factors according to approximation and in-/output mode DO k = nzb, nzt+1 IF ( TRIM( flux_input_mode ) == 'kinematic' ) THEN heatflux_input_conversion(k) = rho_air_zw(k) waterflux_input_conversion(k) = rho_air_zw(k) momentumflux_input_conversion(k) = rho_air_zw(k) ELSEIF ( TRIM( flux_input_mode ) == 'dynamic' ) THEN heatflux_input_conversion(k) = 1.0_wp / c_p waterflux_input_conversion(k) = 1.0_wp / l_v momentumflux_input_conversion(k) = 1.0_wp ENDIF IF ( TRIM( flux_output_mode ) == 'kinematic' ) THEN heatflux_output_conversion(k) = drho_air_zw(k) waterflux_output_conversion(k) = drho_air_zw(k) momentumflux_output_conversion(k) = drho_air_zw(k) ELSEIF ( TRIM( flux_output_mode ) == 'dynamic' ) THEN heatflux_output_conversion(k) = c_p waterflux_output_conversion(k) = l_v momentumflux_output_conversion(k) = 1.0_wp ENDIF IF ( .NOT. humidity ) THEN waterflux_input_conversion(k) = 1.0_wp waterflux_output_conversion(k) = 1.0_wp ENDIF ENDDO ! !-- In case of multigrid method, compute grid lengths and grid factors for the !-- grid levels with respective density on each grid IF ( psolver(1:9) == 'multigrid' ) THEN ALLOCATE( ddx2_mg(maximum_grid_level) ) ALLOCATE( ddy2_mg(maximum_grid_level) ) ALLOCATE( dzu_mg(nzb+1:nzt+1,maximum_grid_level) ) ALLOCATE( dzw_mg(nzb+1:nzt+1,maximum_grid_level) ) ALLOCATE( f1_mg(nzb+1:nzt,maximum_grid_level) ) ALLOCATE( f2_mg(nzb+1:nzt,maximum_grid_level) ) ALLOCATE( f3_mg(nzb+1:nzt,maximum_grid_level) ) ALLOCATE( rho_air_mg(nzb:nzt+1,maximum_grid_level) ) ALLOCATE( rho_air_zw_mg(nzb:nzt+1,maximum_grid_level) ) dzu_mg(:,maximum_grid_level) = dzu rho_air_mg(:,maximum_grid_level) = rho_air ! !-- Next line to ensure an equally spaced grid. dzu_mg(1,maximum_grid_level) = dzu(2) rho_air_mg(nzb,maximum_grid_level) = rho_air(nzb) + & (rho_air(nzb) - rho_air(nzb+1)) dzw_mg(:,maximum_grid_level) = dzw rho_air_zw_mg(:,maximum_grid_level) = rho_air_zw nzt_l = nzt DO l = maximum_grid_level-1, 1, -1 dzu_mg(nzb+1,l) = 2.0_wp * dzu_mg(nzb+1,l+1) dzw_mg(nzb+1,l) = 2.0_wp * dzw_mg(nzb+1,l+1) rho_air_mg(nzb,l) = rho_air_mg(nzb,l+1) + (rho_air_mg(nzb,l+1) - rho_air_mg(nzb+1,l+1)) rho_air_zw_mg(nzb,l) = rho_air_zw_mg(nzb,l+1) + (rho_air_zw_mg(nzb,l+1) - rho_air_zw_mg(nzb+1,l+1)) rho_air_mg(nzb+1,l) = rho_air_mg(nzb+1,l+1) rho_air_zw_mg(nzb+1,l) = rho_air_zw_mg(nzb+1,l+1) nzt_l = nzt_l / 2 DO k = 2, nzt_l+1 dzu_mg(k,l) = dzu_mg(2*k-2,l+1) + dzu_mg(2*k-1,l+1) dzw_mg(k,l) = dzw_mg(2*k-2,l+1) + dzw_mg(2*k-1,l+1) rho_air_mg(k,l) = rho_air_mg(2*k-1,l+1) rho_air_zw_mg(k,l) = rho_air_zw_mg(2*k-1,l+1) ENDDO ENDDO nzt_l = nzt dx_l = dx dy_l = dy DO l = maximum_grid_level, 1, -1 ddx2_mg(l) = 1.0_wp / dx_l**2 ddy2_mg(l) = 1.0_wp / dy_l**2 DO k = nzb+1, nzt_l f2_mg(k,l) = rho_air_zw_mg(k,l) / ( dzu_mg(k+1,l) * dzw_mg(k,l) ) f3_mg(k,l) = rho_air_zw_mg(k-1,l) / ( dzu_mg(k,l) * dzw_mg(k,l) ) f1_mg(k,l) = 2.0_wp * ( ddx2_mg(l) + ddy2_mg(l) ) & * rho_air_mg(k,l) + f2_mg(k,l) + f3_mg(k,l) ENDDO nzt_l = nzt_l / 2 dx_l = dx_l * 2.0_wp dy_l = dy_l * 2.0_wp ENDDO ENDIF ! !-- 1D-array for large scale subsidence velocity IF ( .NOT. ALLOCATED( w_subs ) ) THEN ALLOCATE ( w_subs(nzb:nzt+1) ) w_subs = 0.0_wp ENDIF ! !-- Arrays to store velocity data from t-dt and the phase speeds which !-- are needed for radiation boundary conditions IF ( bc_radiation_l ) THEN ALLOCATE( u_m_l(nzb:nzt+1,nysg:nyng,1:2), & v_m_l(nzb:nzt+1,nysg:nyng,0:1), & w_m_l(nzb:nzt+1,nysg:nyng,0:1) ) ENDIF IF ( bc_radiation_r ) THEN ALLOCATE( u_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx), & v_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx), & w_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx) ) ENDIF IF ( bc_radiation_l .OR. bc_radiation_r ) THEN ALLOCATE( c_u(nzb:nzt+1,nysg:nyng), c_v(nzb:nzt+1,nysg:nyng), & c_w(nzb:nzt+1,nysg:nyng) ) ENDIF IF ( bc_radiation_s ) THEN ALLOCATE( u_m_s(nzb:nzt+1,0:1,nxlg:nxrg), & v_m_s(nzb:nzt+1,1:2,nxlg:nxrg), & w_m_s(nzb:nzt+1,0:1,nxlg:nxrg) ) ENDIF IF ( bc_radiation_n ) THEN ALLOCATE( u_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg), & v_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg), & w_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg) ) ENDIF IF ( bc_radiation_s .OR. bc_radiation_n ) THEN ALLOCATE( c_u(nzb:nzt+1,nxlg:nxrg), c_v(nzb:nzt+1,nxlg:nxrg), & c_w(nzb:nzt+1,nxlg:nxrg) ) ENDIF IF ( bc_radiation_l .OR. bc_radiation_r .OR. bc_radiation_s .OR. & bc_radiation_n ) THEN ALLOCATE( c_u_m_l(nzb:nzt+1), c_v_m_l(nzb:nzt+1), c_w_m_l(nzb:nzt+1) ) ALLOCATE( c_u_m(nzb:nzt+1), c_v_m(nzb:nzt+1), c_w_m(nzb:nzt+1) ) ENDIF ! !-- Initial assignment of the pointers IF ( .NOT. neutral ) THEN pt => pt_1; pt_p => pt_2; tpt_m => pt_3 ELSE pt => pt_1; pt_p => pt_1; tpt_m => pt_3 ENDIF u => u_1; u_p => u_2; tu_m => u_3 v => v_1; v_p => v_2; tv_m => v_3 w => w_1; w_p => w_2; tw_m => w_3 IF ( humidity ) THEN q => q_1; q_p => q_2; tq_m => q_3 vpt => vpt_1 IF ( cloud_droplets ) THEN ql => ql_1 ql_c => ql_2 ENDIF ENDIF IF ( passive_scalar ) THEN s => s_1; s_p => s_2; ts_m => s_3 ENDIF ! !-- Initialize arrays for turbulence closure CALL tcm_init_arrays ! !-- Initialize surface arrays CALL init_surface_arrays ! !-- Allocate arrays for other modules CALL module_interface_init_arrays ! !-- Allocate arrays containing the RK coefficient for calculation of !-- perturbation pressure and turbulent fluxes. At this point values are !-- set for pressure calculation during initialization (where no timestep !-- is done). Further below the values needed within the timestep scheme !-- will be set. ALLOCATE( weight_substep(1:intermediate_timestep_count_max), & weight_pres(1:intermediate_timestep_count_max) ) weight_substep = 1.0_wp weight_pres = 1.0_wp intermediate_timestep_count = 0 ! needed when simulated_time = 0.0 CALL location_message( 'allocating arrays', 'finished' ) ! !-- Initialize time series ts_value = 0.0_wp ! !-- Initialize local summation arrays for routine flow_statistics. !-- This is necessary because they may not yet have been initialized when they !-- are called from flow_statistics (or - depending on the chosen model run - !-- are never initialized) sums_divnew_l = 0.0_wp sums_divold_l = 0.0_wp sums_l_l = 0.0_wp sums_wsts_bc_l = 0.0_wp ! !-- Initialize model variables IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN ! !-- Initialization with provided input data derived from larger-scale model IF ( INDEX( initializing_actions, 'inifor' ) /= 0 ) THEN CALL location_message( 'initializing with INIFOR', 'start' ) ! !-- Read initial 1D profiles or 3D data from NetCDF file, depending !-- on the provided level-of-detail. !-- At the moment, only u, v, w, pt and q are provided. CALL netcdf_data_input_init_3d ! !-- Please note, Inifor provides data from nzb+1 to nzt. !-- Bottom and top boundary conditions for Inifor profiles are already !-- set (just after reading), so that this is not necessary here. !-- Depending on the provided level-of-detail, initial Inifor data is !-- either stored on data type (lod=1), or directly on 3D arrays (lod=2). !-- In order to obtain also initial profiles in case of lod=2 (which !-- is required for e.g. damping), average over 3D data. IF( init_3d%lod_u == 1 ) THEN u_init = init_3d%u_init ELSEIF( init_3d%lod_u == 2 ) THEN ALLOCATE( init_l(nzb:nzt+1) ) DO k = nzb, nzt+1 init_l(k) = SUM( u(k,nys:nyn,nxl:nxr) ) ENDDO init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) #if defined( __parallel ) CALL MPI_ALLREDUCE( init_l, u_init, nzt+1-nzb+1, & MPI_REAL, MPI_SUM, comm2d, ierr ) #else u_init = init_l #endif DEALLOCATE( init_l ) ENDIF IF( init_3d%lod_v == 1 ) THEN v_init = init_3d%v_init ELSEIF( init_3d%lod_v == 2 ) THEN ALLOCATE( init_l(nzb:nzt+1) ) DO k = nzb, nzt+1 init_l(k) = SUM( v(k,nys:nyn,nxl:nxr) ) ENDDO init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) #if defined( __parallel ) CALL MPI_ALLREDUCE( init_l, v_init, nzt+1-nzb+1, & MPI_REAL, MPI_SUM, comm2d, ierr ) #else v_init = init_l #endif DEALLOCATE( init_l ) ENDIF IF( .NOT. neutral ) THEN IF( init_3d%lod_pt == 1 ) THEN pt_init = init_3d%pt_init ELSEIF( init_3d%lod_pt == 2 ) THEN ALLOCATE( init_l(nzb:nzt+1) ) DO k = nzb, nzt+1 init_l(k) = SUM( pt(k,nys:nyn,nxl:nxr) ) ENDDO init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) #if defined( __parallel ) CALL MPI_ALLREDUCE( init_l, pt_init, nzt+1-nzb+1, & MPI_REAL, MPI_SUM, comm2d, ierr ) #else pt_init = init_l #endif DEALLOCATE( init_l ) ENDIF ENDIF IF( humidity ) THEN IF( init_3d%lod_q == 1 ) THEN q_init = init_3d%q_init ELSEIF( init_3d%lod_q == 2 ) THEN ALLOCATE( init_l(nzb:nzt+1) ) DO k = nzb, nzt+1 init_l(k) = SUM( q(k,nys:nyn,nxl:nxr) ) ENDDO init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) #if defined( __parallel ) CALL MPI_ALLREDUCE( init_l, q_init, nzt+1-nzb+1, & MPI_REAL, MPI_SUM, comm2d, ierr ) #else q_init = init_l #endif DEALLOCATE( init_l ) ENDIF ENDIF ! !-- Write initial profiles onto 3D arrays. Note, only in case of lod = 1, !-- for lod = 2 data is already on 3D arrays. DO i = nxlg, nxrg DO j = nysg, nyng IF( init_3d%lod_u == 1 ) u(:,j,i) = u_init(:) IF( init_3d%lod_v == 1 ) v(:,j,i) = v_init(:) IF( .NOT. neutral .AND. init_3d%lod_pt == 1 ) & pt(:,j,i) = pt_init(:) IF( humidity .AND. init_3d%lod_q == 1 ) q(:,j,i) = q_init(:) ENDDO ENDDO ! !-- Exchange ghost points and set boundary conditions in case of !-- level-of-detail = 2 IF( init_3d%lod_u == 2 ) CALL exchange_horiz( u, nbgp ) IF( init_3d%lod_v == 2 ) CALL exchange_horiz( v, nbgp ) IF( init_3d%lod_w == 2 ) CALL exchange_horiz( w, nbgp ) IF( .NOT. neutral .AND. init_3d%lod_pt == 2 ) & CALL exchange_horiz( pt, nbgp ) IF( humidity .AND. init_3d%lod_q == 2 ) & CALL exchange_horiz( q, nbgp ) IF ( bc_dirichlet_l ) THEN DO j = nysg, nyng DO k = nzb, nzt+1 IF( init_3d%lod_u == 2 ) u(k,j,nxlg:nxl) = u(k,j,nxlu) IF( init_3d%lod_v == 2 ) v(k,j,nxlg:nxl-1) = v(k,j,nxl) IF( init_3d%lod_w == 2 ) w(k,j,nxlg:nxl-1) = w(k,j,nxl) IF( .NOT. neutral .AND. init_3d%lod_pt == 2 ) & pt(k,j,nxlg:nxl-1) = pt(k,j,nxl) IF( humidity .AND. init_3d%lod_q == 2 ) & q(k,j,nxlg:nxl-1) = q(k,j,nxl) ENDDO ENDDO ENDIF IF ( bc_dirichlet_r ) THEN DO j = nysg, nyng DO k = nzb, nzt+1 IF( init_3d%lod_u == 2 ) u(k,j,nxr+1:nxrg) = u(k,j,nxr) IF( init_3d%lod_v == 2 ) v(k,j,nxr+1:nxrg) = v(k,j,nxr) IF( init_3d%lod_w == 2 ) w(k,j,nxr+1:nxrg) = w(k,j,nxr) IF( .NOT. neutral .AND. init_3d%lod_pt == 2 ) & pt(k,j,nxr+1:nxrg) = pt(k,j,nxr) IF( humidity .AND. init_3d%lod_q == 2 ) & q(k,j,nxr+1:nxrg) = q(k,j,nxr) ENDDO ENDDO ENDIF IF ( bc_dirichlet_s ) THEN DO i = nxlg, nxrg DO k = nzb, nzt+1 IF( init_3d%lod_u == 2 ) u(k,nysg:nys-1,i) = u(k,nys,i) IF( init_3d%lod_v == 2 ) v(k,nysg:nys,i) = v(k,nysv,i) IF( init_3d%lod_w == 2 ) w(k,nysg:nys-1,i) = w(k,nys,i) IF( .NOT. neutral .AND. init_3d%lod_pt == 2 ) & pt(k,nysg:nys-1,i) = pt(k,nys,i) IF( humidity .AND. init_3d%lod_q == 2 ) & q(k,nysg:nys-1,i) = q(k,nys,i) ENDDO ENDDO ENDIF IF ( bc_dirichlet_n ) THEN DO i = nxlg, nxrg DO k = nzb, nzt+1 IF( init_3d%lod_u == 2 ) u(k,nyn+1:nyng,i) = u(k,nyn,i) IF( init_3d%lod_v == 2 ) v(k,nyn+1:nyng,i) = v(k,nyn,i) IF( init_3d%lod_w == 2 ) w(k,nyn+1:nyng,i) = w(k,nyn,i) IF( .NOT. neutral .AND. init_3d%lod_pt == 2 ) & pt(k,nyn+1:nyng,i) = pt(k,nyn,i) IF( humidity .AND. init_3d%lod_q == 2 ) & q(k,nyn+1:nyng,i) = q(k,nyn,i) ENDDO ENDDO ENDIF ! !-- Set geostrophic wind components. IF ( init_3d%from_file_ug ) THEN ug(:) = init_3d%ug_init(:) ENDIF IF ( init_3d%from_file_vg ) THEN vg(:) = init_3d%vg_init(:) ENDIF ! !-- Set bottom and top boundary condition for geostrophic wind ug(nzt+1) = ug(nzt) vg(nzt+1) = vg(nzt) ug(nzb) = ug(nzb+1) vg(nzb) = vg(nzb+1) ! !-- Set inital w to 0 w = 0.0_wp IF ( passive_scalar ) THEN DO i = nxlg, nxrg DO j = nysg, nyng s(:,j,i) = s_init ENDDO ENDDO ENDIF ! !-- Set velocity components at non-atmospheric / oceanic grid points to !-- zero. u = MERGE( u, 0.0_wp, BTEST( wall_flags_0, 1 ) ) v = MERGE( v, 0.0_wp, BTEST( wall_flags_0, 2 ) ) w = MERGE( w, 0.0_wp, BTEST( wall_flags_0, 3 ) ) ! !-- Initialize surface variables, e.g. friction velocity, momentum !-- fluxes, etc. CALL init_surfaces ! !-- Initialize turbulence generator IF( use_syn_turb_gen ) CALL stg_init CALL location_message( 'initializing with INIFOR', 'finished' ) ! !-- Initialization via computed 1D-model profiles ELSEIF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN CALL location_message( 'initializing with 1D model profiles', 'start' ) ! !-- Use solutions of the 1D model as initial profiles, !-- start 1D model CALL init_1d_model ! !-- Transfer initial profiles to the arrays of the 3D model DO i = nxlg, nxrg DO j = nysg, nyng pt(:,j,i) = pt_init u(:,j,i) = u1d v(:,j,i) = v1d ENDDO ENDDO IF ( humidity ) THEN DO i = nxlg, nxrg DO j = nysg, nyng q(:,j,i) = q_init ENDDO ENDDO ENDIF IF ( passive_scalar ) THEN DO i = nxlg, nxrg DO j = nysg, nyng s(:,j,i) = s_init ENDDO ENDDO ENDIF ! !-- Store initial profiles for output purposes etc. IF ( .NOT. constant_diffusion ) THEN hom(:,1,25,:) = SPREAD( l1d, 2, statistic_regions+1 ) ENDIF ! !-- Set velocities back to zero u = MERGE( u, 0.0_wp, BTEST( wall_flags_0, 1 ) ) v = MERGE( v, 0.0_wp, BTEST( wall_flags_0, 2 ) ) ! !-- WARNING: The extra boundary conditions set after running the !-- ------- 1D model impose an error on the divergence one layer !-- below the topography; need to correct later !-- ATTENTION: Provisional correction for Piacsek & Williams !-- --------- advection scheme: keep u and v zero one layer below !-- the topography. IF ( ibc_uv_b == 1 ) THEN ! !-- Neumann condition DO i = nxl-1, nxr+1 DO j = nys-1, nyn+1 u(nzb,j,i) = u(nzb+1,j,i) v(nzb,j,i) = v(nzb+1,j,i) ENDDO ENDDO ENDIF ! !-- Initialize surface variables, e.g. friction velocity, momentum !-- fluxes, etc. CALL init_surfaces ! !-- Initialize synthetic turbulence generator if required IF( use_syn_turb_gen ) CALL stg_init CALL location_message( 'initializing with 1D model profiles', 'finished' ) ELSEIF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) & THEN CALL location_message( 'initializing with constant profiles', 'start' ) ! !-- Use constructed initial profiles (velocity constant with height, !-- temperature profile with constant gradient) DO i = nxlg, nxrg DO j = nysg, nyng pt(:,j,i) = pt_init u(:,j,i) = u_init v(:,j,i) = v_init ENDDO ENDDO ! !-- Mask topography u = MERGE( u, 0.0_wp, BTEST( wall_flags_0, 1 ) ) v = MERGE( v, 0.0_wp, BTEST( wall_flags_0, 2 ) ) ! !-- Set initial horizontal velocities at the lowest computational grid !-- levels to zero in order to avoid too small time steps caused by the !-- diffusion limit in the initial phase of a run (at k=1, dz/2 occurs !-- in the limiting formula!). !-- Please note, in case land- or urban-surface model is used and a !-- spinup is applied, masking the lowest computational level is not !-- possible as MOST as well as energy-balance parametrizations will not !-- work with zero wind velocity. IF ( ibc_uv_b /= 1 .AND. .NOT. spinup ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt u(k,j,i) = MERGE( u(k,j,i), 0.0_wp, & BTEST( wall_flags_0(k,j,i), 20 ) ) v(k,j,i) = MERGE( v(k,j,i), 0.0_wp, & BTEST( wall_flags_0(k,j,i), 21 ) ) ENDDO ENDDO ENDDO ENDIF IF ( humidity ) THEN DO i = nxlg, nxrg DO j = nysg, nyng q(:,j,i) = q_init ENDDO ENDDO ENDIF IF ( passive_scalar ) THEN DO i = nxlg, nxrg DO j = nysg, nyng s(:,j,i) = s_init ENDDO ENDDO ENDIF ! !-- Compute initial temperature field and other constants used in case !-- of a sloping surface IF ( sloping_surface ) CALL init_slope ! !-- Initialize surface variables, e.g. friction velocity, momentum !-- fluxes, etc. CALL init_surfaces ! !-- Initialize synthetic turbulence generator if required IF( use_syn_turb_gen ) CALL stg_init CALL location_message( 'initializing with constant profiles', 'finished' ) ELSEIF ( INDEX(initializing_actions, 'by_user') /= 0 ) & THEN CALL location_message( 'initializing by user', 'start' ) ! !-- Pre-initialize surface variables, i.e. setting start- and end-indices !-- at each (j,i)-location. Please note, this does not supersede !-- user-defined initialization of surface quantities. CALL init_surfaces ! !-- Initialization will completely be done by the user CALL user_init_3d_model CALL location_message( 'initializing by user', 'finished' ) ENDIF CALL location_message( 'initializing statistics, boundary conditions, etc.', 'start' ) ! !-- Bottom boundary IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2 ) THEN u(nzb,:,:) = 0.0_wp v(nzb,:,:) = 0.0_wp ENDIF ! !-- Apply channel flow boundary condition IF ( TRIM( bc_uv_t ) == 'dirichlet_0' ) THEN u(nzt+1,:,:) = 0.0_wp v(nzt+1,:,:) = 0.0_wp ENDIF ! !-- Calculate virtual potential temperature IF ( humidity ) vpt = pt * ( 1.0_wp + 0.61_wp * q ) ! !-- Store initial profiles for output purposes etc.. Please note, in case of !-- initialization of u, v, w, pt, and q via output data derived from larger !-- scale models, data will not be horizontally homogeneous. Actually, a mean !-- profile should be calculated before. hom(:,1,5,:) = SPREAD( u(:,nys,nxl), 2, statistic_regions+1 ) hom(:,1,6,:) = SPREAD( v(:,nys,nxl), 2, statistic_regions+1 ) IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2) THEN hom(nzb,1,5,:) = 0.0_wp hom(nzb,1,6,:) = 0.0_wp ENDIF hom(:,1,7,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) IF ( humidity ) THEN ! !-- Store initial profile of total water content, virtual potential !-- temperature hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) hom(:,1,29,:) = SPREAD( vpt(:,nys,nxl), 2, statistic_regions+1 ) ! !-- Store initial profile of mixing ratio and potential !-- temperature IF ( bulk_cloud_model .OR. cloud_droplets ) THEN hom(:,1,27,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) hom(:,1,28,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) ENDIF ENDIF ! !-- Store initial scalar profile IF ( passive_scalar ) THEN hom(:,1,121,:) = SPREAD( s(:,nys,nxl), 2, statistic_regions+1 ) ENDIF ! !-- Initialize the random number generators (from numerical recipes) CALL random_function_ini IF ( random_generator == 'random-parallel' ) THEN CALL init_parallel_random_generator( nx, nys, nyn, nxl, nxr ) ENDIF ! !-- Set the reference state to be used in the buoyancy terms (for ocean runs !-- the reference state will be set (overwritten) in init_ocean) IF ( use_single_reference_value ) THEN IF ( .NOT. humidity ) THEN ref_state(:) = pt_reference ELSE ref_state(:) = vpt_reference ENDIF ELSE IF ( .NOT. humidity ) THEN ref_state(:) = pt_init(:) ELSE ref_state(:) = vpt(:,nys,nxl) ENDIF ENDIF ! !-- For the moment, vertical velocity is zero w = 0.0_wp ! !-- Initialize array sums (must be defined in first call of pres) sums = 0.0_wp ! !-- In case of iterative solvers, p must get an initial value IF ( psolver(1:9) == 'multigrid' .OR. psolver == 'sor' ) p = 0.0_wp ! !-- Impose vortex with vertical axis on the initial velocity profile IF ( INDEX( initializing_actions, 'initialize_vortex' ) /= 0 ) THEN CALL init_rankine ENDIF ! !-- Impose temperature anomaly (advection test only) or warm air bubble !-- close to surface IF ( INDEX( initializing_actions, 'initialize_ptanom' ) /= 0 .OR. & INDEX( initializing_actions, 'initialize_bubble' ) /= 0 ) THEN CALL init_pt_anomaly ENDIF ! !-- If required, change the surface temperature at the start of the 3D run IF ( pt_surface_initial_change /= 0.0_wp ) THEN pt(nzb,:,:) = pt(nzb,:,:) + pt_surface_initial_change ENDIF ! !-- If required, change the surface humidity/scalar at the start of the 3D !-- run IF ( humidity .AND. q_surface_initial_change /= 0.0_wp ) & q(nzb,:,:) = q(nzb,:,:) + q_surface_initial_change IF ( passive_scalar .AND. s_surface_initial_change /= 0.0_wp ) & s(nzb,:,:) = s(nzb,:,:) + s_surface_initial_change ! !-- Initialize old and new time levels. tpt_m = 0.0_wp; tu_m = 0.0_wp; tv_m = 0.0_wp; tw_m = 0.0_wp pt_p = pt; u_p = u; v_p = v; w_p = w IF ( humidity ) THEN tq_m = 0.0_wp q_p = q ENDIF IF ( passive_scalar ) THEN ts_m = 0.0_wp s_p = s ENDIF CALL location_message( 'initializing statistics, boundary conditions, etc.', 'finished' ) ELSEIF ( TRIM( initializing_actions ) == 'read_restart_data' .OR. & TRIM( initializing_actions ) == 'cyclic_fill' ) & THEN CALL location_message( 'initializing in case of restart / cyclic_fill', 'start' ) ! !-- Initialize surface elements and its attributes, e.g. heat- and !-- momentumfluxes, roughness, scaling parameters. As number of surface !-- elements might be different between runs, e.g. in case of cyclic fill, !-- and not all surface elements are read, surface elements need to be !-- initialized before. !-- Please note, in case of cyclic fill, surfaces should be initialized !-- after restart data is read, else, individual settings of surface !-- parameters will be overwritten from data of precursor run, hence, !-- init_surfaces is called a second time after reading the restart data. CALL init_surfaces ! !-- When reading data for cyclic fill of 3D prerun data files, read !-- some of the global variables from the restart file which are required !-- for initializing the inflow IF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN DO i = 0, io_blocks-1 IF ( i == io_group ) THEN CALL rrd_read_parts_of_global ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ENDIF ! !-- Read processor specific binary data from restart file DO i = 0, io_blocks-1 IF ( i == io_group ) THEN CALL rrd_local ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ! !-- In case of cyclic fill, call init_surfaces a second time, so that !-- surface properties such as heat fluxes are initialized as prescribed. IF ( TRIM( initializing_actions ) == 'cyclic_fill' ) & CALL init_surfaces ! !-- In case of complex terrain and cyclic fill method as initialization, !-- shift initial data in the vertical direction for each point in the !-- x-y-plane depending on local surface height IF ( complex_terrain .AND. & TRIM( initializing_actions ) == 'cyclic_fill' ) THEN DO i = nxlg, nxrg DO j = nysg, nyng nz_u_shift = get_topography_top_index_ji( j, i, 'u' ) nz_v_shift = get_topography_top_index_ji( j, i, 'v' ) nz_w_shift = get_topography_top_index_ji( j, i, 'w' ) nz_s_shift = get_topography_top_index_ji( j, i, 's' ) u(nz_u_shift:nzt+1,j,i) = u(0:nzt+1-nz_u_shift,j,i) v(nz_v_shift:nzt+1,j,i) = v(0:nzt+1-nz_v_shift,j,i) w(nz_w_shift:nzt+1,j,i) = w(0:nzt+1-nz_w_shift,j,i) p(nz_s_shift:nzt+1,j,i) = p(0:nzt+1-nz_s_shift,j,i) pt(nz_s_shift:nzt+1,j,i) = pt(0:nzt+1-nz_s_shift,j,i) ENDDO ENDDO ENDIF ! !-- Initialization of the turbulence recycling method IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. & turbulent_inflow ) THEN ! !-- First store the profiles to be used at the inflow. !-- These profiles are the (temporally) and horizontally averaged vertical !-- profiles from the prerun. Alternatively, prescribed profiles !-- for u,v-components can be used. ALLOCATE( mean_inflow_profiles(nzb:nzt+1,1:num_mean_inflow_profiles) ) IF ( use_prescribed_profile_data ) THEN mean_inflow_profiles(:,1) = u_init ! u mean_inflow_profiles(:,2) = v_init ! v ELSE mean_inflow_profiles(:,1) = hom_sum(:,1,0) ! u mean_inflow_profiles(:,2) = hom_sum(:,2,0) ! v ENDIF mean_inflow_profiles(:,4) = hom_sum(:,4,0) ! pt IF ( humidity ) & mean_inflow_profiles(:,6) = hom_sum(:,41,0) ! q IF ( passive_scalar ) & mean_inflow_profiles(:,7) = hom_sum(:,115,0) ! s ! !-- In case of complex terrain, determine vertical displacement at inflow !-- boundary and adjust mean inflow profiles IF ( complex_terrain ) THEN IF ( nxlg <= 0 .AND. nxrg >= 0 .AND. nysg <= 0 .AND. nyng >= 0 ) THEN nz_u_shift_l = get_topography_top_index_ji( 0, 0, 'u' ) nz_v_shift_l = get_topography_top_index_ji( 0, 0, 'v' ) nz_w_shift_l = get_topography_top_index_ji( 0, 0, 'w' ) nz_s_shift_l = get_topography_top_index_ji( 0, 0, 's' ) ELSE nz_u_shift_l = 0 nz_v_shift_l = 0 nz_w_shift_l = 0 nz_s_shift_l = 0 ENDIF #if defined( __parallel ) CALL MPI_ALLREDUCE(nz_u_shift_l, nz_u_shift, 1, MPI_INTEGER, & MPI_MAX, comm2d, ierr) CALL MPI_ALLREDUCE(nz_v_shift_l, nz_v_shift, 1, MPI_INTEGER, & MPI_MAX, comm2d, ierr) CALL MPI_ALLREDUCE(nz_w_shift_l, nz_w_shift, 1, MPI_INTEGER, & MPI_MAX, comm2d, ierr) CALL MPI_ALLREDUCE(nz_s_shift_l, nz_s_shift, 1, MPI_INTEGER, & MPI_MAX, comm2d, ierr) #else nz_u_shift = nz_u_shift_l nz_v_shift = nz_v_shift_l nz_w_shift = nz_w_shift_l nz_s_shift = nz_s_shift_l #endif mean_inflow_profiles(:,1) = 0.0_wp mean_inflow_profiles(nz_u_shift:nzt+1,1) = hom_sum(0:nzt+1-nz_u_shift,1,0) ! u mean_inflow_profiles(:,2) = 0.0_wp mean_inflow_profiles(nz_v_shift:nzt+1,2) = hom_sum(0:nzt+1-nz_v_shift,2,0) ! v mean_inflow_profiles(nz_s_shift:nzt+1,4) = hom_sum(0:nzt+1-nz_s_shift,4,0) ! pt ENDIF ! !-- If necessary, adjust the horizontal flow field to the prescribed !-- profiles IF ( use_prescribed_profile_data ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 u(k,j,i) = u(k,j,i) - hom_sum(k,1,0) + u_init(k) v(k,j,i) = v(k,j,i) - hom_sum(k,2,0) + v_init(k) ENDDO ENDDO ENDDO ENDIF ! !-- Use these mean profiles at the inflow (provided that Dirichlet !-- conditions are used) IF ( bc_dirichlet_l ) THEN DO j = nysg, nyng DO k = nzb, nzt+1 u(k,j,nxlg:-1) = mean_inflow_profiles(k,1) v(k,j,nxlg:-1) = mean_inflow_profiles(k,2) w(k,j,nxlg:-1) = 0.0_wp pt(k,j,nxlg:-1) = mean_inflow_profiles(k,4) IF ( humidity ) & q(k,j,nxlg:-1) = mean_inflow_profiles(k,6) IF ( passive_scalar ) & s(k,j,nxlg:-1) = mean_inflow_profiles(k,7) ENDDO ENDDO ENDIF ! !-- Calculate the damping factors to be used at the inflow. For a !-- turbulent inflow the turbulent fluctuations have to be limited !-- vertically because otherwise the turbulent inflow layer will grow !-- in time. IF ( inflow_damping_height == 9999999.9_wp ) THEN ! !-- Default: use the inversion height calculated by the prerun; if !-- this is zero, inflow_damping_height must be explicitly !-- specified. IF ( hom_sum(nzb+6,pr_palm,0) /= 0.0_wp ) THEN inflow_damping_height = hom_sum(nzb+6,pr_palm,0) ELSE WRITE( message_string, * ) 'inflow_damping_height must be ', & 'explicitly specified because&the inversion height ', & 'calculated by the prerun is zero.' CALL message( 'init_3d_model', 'PA0318', 1, 2, 0, 6, 0 ) ENDIF ENDIF IF ( inflow_damping_width == 9999999.9_wp ) THEN ! !-- Default for the transition range: one tenth of the undamped !-- layer inflow_damping_width = 0.1_wp * inflow_damping_height ENDIF ALLOCATE( inflow_damping_factor(nzb:nzt+1) ) DO k = nzb, nzt+1 IF ( zu(k) <= inflow_damping_height ) THEN inflow_damping_factor(k) = 1.0_wp ELSEIF ( zu(k) <= ( inflow_damping_height + inflow_damping_width ) ) THEN inflow_damping_factor(k) = 1.0_wp - & ( zu(k) - inflow_damping_height ) / & inflow_damping_width ELSE inflow_damping_factor(k) = 0.0_wp ENDIF ENDDO ENDIF ! !-- Inside buildings set velocities back to zero IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. & topography /= 'flat' ) THEN ! !-- Inside buildings set velocities back to zero. !-- Other scalars (pt, q, s, p, sa, ...) are ignored at present, !-- maybe revise later. DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt u(k,j,i) = MERGE( u(k,j,i), 0.0_wp, & BTEST( wall_flags_0(k,j,i), 1 ) ) v(k,j,i) = MERGE( v(k,j,i), 0.0_wp, & BTEST( wall_flags_0(k,j,i), 2 ) ) w(k,j,i) = MERGE( w(k,j,i), 0.0_wp, & BTEST( wall_flags_0(k,j,i), 3 ) ) ENDDO ENDDO ENDDO ENDIF ! !-- Calculate initial temperature field and other constants used in case !-- of a sloping surface IF ( sloping_surface ) CALL init_slope ! !-- Initialize new time levels (only done in order to set boundary values !-- including ghost points) pt_p = pt; u_p = u; v_p = v; w_p = w IF ( humidity ) THEN q_p = q ENDIF IF ( passive_scalar ) s_p = s ! !-- Allthough tendency arrays are set in prognostic_equations, they have !-- have to be predefined here because they are used (but multiplied with 0) !-- there before they are set. tpt_m = 0.0_wp; tu_m = 0.0_wp; tv_m = 0.0_wp; tw_m = 0.0_wp IF ( humidity ) THEN tq_m = 0.0_wp ENDIF IF ( passive_scalar ) ts_m = 0.0_wp ! !-- Initialize synthetic turbulence generator in case of restart. IF ( TRIM( initializing_actions ) == 'read_restart_data' .AND. & use_syn_turb_gen ) CALL stg_init CALL location_message( 'initializing in case of restart / cyclic_fill', 'finished' ) ELSE ! !-- Actually this part of the programm should not be reached message_string = 'unknown initializing problem' CALL message( 'init_3d_model', 'PA0193', 1, 2, 0, 6, 0 ) ENDIF ! !-- Initialize TKE, Kh and Km CALL tcm_init IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN ! !-- Initialize old timelevels needed for radiation boundary conditions IF ( bc_radiation_l ) THEN u_m_l(:,:,:) = u(:,:,1:2) v_m_l(:,:,:) = v(:,:,0:1) w_m_l(:,:,:) = w(:,:,0:1) ENDIF IF ( bc_radiation_r ) THEN u_m_r(:,:,:) = u(:,:,nx-1:nx) v_m_r(:,:,:) = v(:,:,nx-1:nx) w_m_r(:,:,:) = w(:,:,nx-1:nx) ENDIF IF ( bc_radiation_s ) THEN u_m_s(:,:,:) = u(:,0:1,:) v_m_s(:,:,:) = v(:,1:2,:) w_m_s(:,:,:) = w(:,0:1,:) ENDIF IF ( bc_radiation_n ) THEN u_m_n(:,:,:) = u(:,ny-1:ny,:) v_m_n(:,:,:) = v(:,ny-1:ny,:) w_m_n(:,:,:) = w(:,ny-1:ny,:) ENDIF ENDIF ! !-- Calculate the initial volume flow at the right and north boundary IF ( conserve_volume_flow ) THEN IF ( use_prescribed_profile_data ) THEN volume_flow_initial_l = 0.0_wp volume_flow_area_l = 0.0_wp IF ( nxr == nx ) THEN DO j = nys, nyn DO k = nzb+1, nzt volume_flow_initial_l(1) = volume_flow_initial_l(1) + & u_init(k) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,nxr), 1 )& ) volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,nxr), 1 )& ) ENDDO ENDDO ENDIF IF ( nyn == ny ) THEN DO i = nxl, nxr DO k = nzb+1, nzt volume_flow_initial_l(2) = volume_flow_initial_l(2) + & v_init(k) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,nyn,i), 2 )& ) volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,nyn,i), 2 )& ) ENDDO ENDDO ENDIF #if defined( __parallel ) CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& 2, MPI_REAL, MPI_SUM, comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & 2, MPI_REAL, MPI_SUM, comm2d, ierr ) #else volume_flow_initial = volume_flow_initial_l volume_flow_area = volume_flow_area_l #endif ELSEIF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN volume_flow_initial_l = 0.0_wp volume_flow_area_l = 0.0_wp IF ( nxr == nx ) THEN DO j = nys, nyn DO k = nzb+1, nzt volume_flow_initial_l(1) = volume_flow_initial_l(1) + & hom_sum(k,1,0) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,nx), 1 ) & ) volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,nx), 1 ) & ) ENDDO ENDDO ENDIF IF ( nyn == ny ) THEN DO i = nxl, nxr DO k = nzb+1, nzt volume_flow_initial_l(2) = volume_flow_initial_l(2) + & hom_sum(k,2,0) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,ny,i), 2 ) & ) volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,ny,i), 2 ) & ) ENDDO ENDDO ENDIF #if defined( __parallel ) CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& 2, MPI_REAL, MPI_SUM, comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & 2, MPI_REAL, MPI_SUM, comm2d, ierr ) #else volume_flow_initial = volume_flow_initial_l volume_flow_area = volume_flow_area_l #endif ELSEIF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN volume_flow_initial_l = 0.0_wp volume_flow_area_l = 0.0_wp IF ( nxr == nx ) THEN DO j = nys, nyn DO k = nzb+1, nzt volume_flow_initial_l(1) = volume_flow_initial_l(1) + & u(k,j,nx) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,nx), 1 ) & ) volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,nx), 1 ) & ) ENDDO ENDDO ENDIF IF ( nyn == ny ) THEN DO i = nxl, nxr DO k = nzb+1, nzt volume_flow_initial_l(2) = volume_flow_initial_l(2) + & v(k,ny,i) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,ny,i), 2 ) & ) volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,ny,i), 2 ) & ) ENDDO ENDDO ENDIF #if defined( __parallel ) CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& 2, MPI_REAL, MPI_SUM, comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & 2, MPI_REAL, MPI_SUM, comm2d, ierr ) #else volume_flow_initial = volume_flow_initial_l volume_flow_area = volume_flow_area_l #endif ENDIF ! !-- In case of 'bulk_velocity' mode, volume_flow_initial is calculated !-- from u|v_bulk instead IF ( TRIM( conserve_volume_flow_mode ) == 'bulk_velocity' ) THEN volume_flow_initial(1) = u_bulk * volume_flow_area(1) volume_flow_initial(2) = v_bulk * volume_flow_area(2) ENDIF ENDIF ! !-- Finally, if random_heatflux is set, disturb shf at horizontal !-- surfaces. Actually, this should be done in surface_mod, where all other !-- initializations of surface quantities are done. However, this !-- would create a ring dependency, hence, it is done here. Maybe delete !-- disturb_heatflux and tranfer the respective code directly into the !-- initialization in surface_mod. IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN IF ( use_surface_fluxes .AND. constant_heatflux .AND. & random_heatflux ) THEN IF ( surf_def_h(0)%ns >= 1 ) CALL disturb_heatflux( surf_def_h(0) ) IF ( surf_lsm_h%ns >= 1 ) CALL disturb_heatflux( surf_lsm_h ) IF ( surf_usm_h%ns >= 1 ) CALL disturb_heatflux( surf_usm_h ) ENDIF ENDIF ! !-- Compute total sum of grid points and the mean surface level height for each !-- statistic region. These are mainly used for horizontal averaging of !-- turbulence statistics. !-- ngp_2dh: number of grid points of a horizontal cross section through the !-- respective statistic region !-- ngp_3d: number of grid points of the respective statistic region ngp_2dh_outer_l = 0 ngp_2dh_outer = 0 ngp_2dh_s_inner_l = 0 ngp_2dh_s_inner = 0 ngp_2dh_l = 0 ngp_2dh = 0 ngp_3d_inner_l = 0.0_wp ngp_3d_inner = 0 ngp_3d = 0 ngp_sums = ( nz + 2 ) * ( pr_palm + max_pr_user ) mean_surface_level_height = 0.0_wp mean_surface_level_height_l = 0.0_wp ! !-- To do: New concept for these non-topography grid points! DO sr = 0, statistic_regions DO i = nxl, nxr DO j = nys, nyn IF ( rmask(j,i,sr) == 1.0_wp ) THEN ! !-- All xy-grid points ngp_2dh_l(sr) = ngp_2dh_l(sr) + 1 ! !-- Determine mean surface-level height. In case of downward- !-- facing walls are present, more than one surface level exist. !-- In this case, use the lowest surface-level height. IF ( surf_def_h(0)%start_index(j,i) <= & surf_def_h(0)%end_index(j,i) ) THEN m = surf_def_h(0)%start_index(j,i) k = surf_def_h(0)%k(m) mean_surface_level_height_l(sr) = & mean_surface_level_height_l(sr) + zw(k-1) ENDIF IF ( surf_lsm_h%start_index(j,i) <= & surf_lsm_h%end_index(j,i) ) THEN m = surf_lsm_h%start_index(j,i) k = surf_lsm_h%k(m) mean_surface_level_height_l(sr) = & mean_surface_level_height_l(sr) + zw(k-1) ENDIF IF ( surf_usm_h%start_index(j,i) <= & surf_usm_h%end_index(j,i) ) THEN m = surf_usm_h%start_index(j,i) k = surf_usm_h%k(m) mean_surface_level_height_l(sr) = & mean_surface_level_height_l(sr) + zw(k-1) ENDIF k_surf = k - 1 DO k = nzb, nzt+1 ! !-- xy-grid points above topography ngp_2dh_outer_l(k,sr) = ngp_2dh_outer_l(k,sr) + & MERGE( 1, 0, BTEST( wall_flags_0(k,j,i), 24 ) ) ngp_2dh_s_inner_l(k,sr) = ngp_2dh_s_inner_l(k,sr) + & MERGE( 1, 0, BTEST( wall_flags_0(k,j,i), 22 ) ) ENDDO ! !-- All grid points of the total domain above topography ngp_3d_inner_l(sr) = ngp_3d_inner_l(sr) + ( nz - k_surf + 2 ) ENDIF ENDDO ENDDO ENDDO sr = statistic_regions + 1 #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( ngp_2dh_l(0), ngp_2dh(0), sr, MPI_INTEGER, MPI_SUM, & comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( ngp_2dh_outer_l(0,0), ngp_2dh_outer(0,0), (nz+2)*sr, & MPI_INTEGER, MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( ngp_2dh_s_inner_l(0,0), ngp_2dh_s_inner(0,0), & (nz+2)*sr, MPI_INTEGER, MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( ngp_3d_inner_l(0), ngp_3d_inner_tmp(0), sr, MPI_REAL, & MPI_SUM, comm2d, ierr ) ngp_3d_inner = INT( ngp_3d_inner_tmp, KIND = SELECTED_INT_KIND( 18 ) ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( mean_surface_level_height_l(0), & mean_surface_level_height(0), sr, MPI_REAL, & MPI_SUM, comm2d, ierr ) mean_surface_level_height = mean_surface_level_height / REAL( ngp_2dh ) #else ngp_2dh = ngp_2dh_l ngp_2dh_outer = ngp_2dh_outer_l ngp_2dh_s_inner = ngp_2dh_s_inner_l ngp_3d_inner = INT( ngp_3d_inner_l, KIND = SELECTED_INT_KIND( 18 ) ) mean_surface_level_height = mean_surface_level_height_l / REAL( ngp_2dh_l ) #endif ngp_3d = INT ( ngp_2dh, KIND = SELECTED_INT_KIND( 18 ) ) * & INT ( (nz + 2 ), KIND = SELECTED_INT_KIND( 18 ) ) ! !-- Set a lower limit of 1 in order to avoid zero divisions in flow_statistics, !-- buoyancy, etc. A zero value will occur for cases where all grid points of !-- the respective subdomain lie below the surface topography ngp_2dh_outer = MAX( 1, ngp_2dh_outer(:,:) ) ngp_3d_inner = MAX( INT(1, KIND = SELECTED_INT_KIND( 18 )), & ngp_3d_inner(:) ) ngp_2dh_s_inner = MAX( 1, ngp_2dh_s_inner(:,:) ) DEALLOCATE( mean_surface_level_height_l, ngp_2dh_l, ngp_2dh_outer_l, & ngp_3d_inner_l, ngp_3d_inner_tmp ) ! !-- Initialize surface forcing corresponding to large-scale forcing. Therein, !-- initialize heat-fluxes, etc. via datatype. Revise it later! IF ( large_scale_forcing .AND. lsf_surf ) THEN IF ( use_surface_fluxes .AND. constant_heatflux ) THEN CALL ls_forcing_surf ( simulated_time ) ENDIF ENDIF ! !-- Initializae 3D offline nesting in COSMO model and read data from !-- external NetCDF file. IF ( nesting_offline ) CALL nesting_offl_init ! !-- Initialize quantities for special advections schemes CALL init_advec ! !-- Impose random perturbation on the horizontal velocity field and then !-- remove the divergences from the velocity field at the initial stage IF ( create_disturbances .AND. disturbance_energy_limit /= 0.0_wp .AND. & TRIM( initializing_actions ) /= 'read_restart_data' .AND. & TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN ! !-- Needed for both disturb_field and pres !$ACC DATA & !$ACC CREATE(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) CALL location_message( 'creating initial disturbances', 'start' ) CALL disturb_field( 'u', tend, u ) CALL disturb_field( 'v', tend, v ) CALL location_message( 'creating initial disturbances', 'finished' ) !$ACC DATA & !$ACC CREATE(d(nzb+1:nzt,nys:nyn,nxl:nxr)) & !$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPYIN(rho_air(nzb:nzt+1), rho_air_zw(nzb:nzt+1)) & !$ACC COPYIN(ddzu(1:nzt+1), ddzw(1:nzt+1)) & !$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPYIN(bc_h(0:1)) & !$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) & !$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) & !$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) & !$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) & !$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) & !$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns)) CALL location_message( 'applying pressure solver', 'start' ) n_sor = nsor_ini CALL pres n_sor = nsor CALL location_message( 'applying pressure solver', 'finished' ) !$ACC END DATA !$ACC END DATA ENDIF ! !-- If required, initialize dvrp-software IF ( dt_dvrp /= 9999999.9_wp ) CALL init_dvrp ! !-- Initialize quantities for handling cloud physics. !-- This routine must be called before lpm_init, becaus otherwise, !-- array d_exner, needed in data_output_dvrp (called by lpm_init) is not defined. IF ( .NOT. ocean_mode ) THEN ALLOCATE( hyp(nzb:nzt+1) ) ALLOCATE( d_exner(nzb:nzt+1) ) ALLOCATE( exner(nzb:nzt+1) ) ALLOCATE( hyrho(nzb:nzt+1) ) ! !-- Check temperature in case of too large domain height DO k = nzb, nzt+1 IF ( ( pt_surface * exner_function(surface_pressure * 100.0_wp) - g/c_p * zu(k) ) < 0.0_wp ) THEN WRITE( message_string, * ) 'absolute temperature < 0.0 at zu(', k, & ') = ', zu(k) CALL message( 'init_3d_model', 'PA0142', 1, 2, 0, 6, 0 ) ENDIF ENDDO ! !-- Calculate vertical profile of the hydrostatic pressure (hyp) hyp = barometric_formula(zu, pt_surface * exner_function(surface_pressure * 100.0_wp), surface_pressure * 100.0_wp) d_exner = exner_function_invers(hyp) exner = 1.0_wp / exner_function_invers(hyp) hyrho = ideal_gas_law_rho_pt(hyp, pt_init) ! !-- Compute reference density rho_surface = ideal_gas_law_rho(surface_pressure * 100.0_wp, pt_surface * exner_function(surface_pressure * 100.0_wp)) ENDIF ! !-- If required, initialize particles IF ( particle_advection ) CALL lpm_init ! !-- If required, initialize particles IF ( agents_active ) CALL mas_init ! !-- In case the synthetic turbulence generator does not have any information !-- about the inflow turbulence, these information will be parametrized !-- depending on the initial atmospheric conditions and surface properties. !-- Please note, within pre-determined time intervals these turbulence !-- information can be updated if desired. IF ( use_syn_turb_gen .AND. parametrize_inflow_turbulence ) THEN CALL stg_adjust ENDIF ! !-- Initializing actions for all other modules CALL module_interface_init ! !-- Initialize surface layer (done after LSM as roughness length are required !-- for initialization IF ( constant_flux_layer ) CALL init_surface_layer_fluxes ! !-- Initialize surface data output IF ( surface_output ) CALL surface_data_output_init ! !-- Initialize the ws-scheme. IF ( ws_scheme_sca .OR. ws_scheme_mom ) CALL ws_init ! !-- Perform post-initializing checks for all other modules CALL module_interface_init_checks ! !-- Setting weighting factors for calculation of perturbation pressure !-- and turbulent quantities from the RK substeps IF ( TRIM(timestep_scheme) == 'runge-kutta-3' ) THEN ! for RK3-method weight_substep(1) = 1._wp/6._wp weight_substep(2) = 3._wp/10._wp weight_substep(3) = 8._wp/15._wp weight_pres(1) = 1._wp/3._wp weight_pres(2) = 5._wp/12._wp weight_pres(3) = 1._wp/4._wp ELSEIF ( TRIM(timestep_scheme) == 'runge-kutta-2' ) THEN ! for RK2-method weight_substep(1) = 1._wp/2._wp weight_substep(2) = 1._wp/2._wp weight_pres(1) = 1._wp/2._wp weight_pres(2) = 1._wp/2._wp ELSE ! for Euler-method weight_substep(1) = 1.0_wp weight_pres(1) = 1.0_wp ENDIF ! !-- Initialize Rayleigh damping factors rdf = 0.0_wp rdf_sc = 0.0_wp IF ( rayleigh_damping_factor /= 0.0_wp ) THEN IF ( .NOT. ocean_mode ) THEN DO k = nzb+1, nzt IF ( zu(k) >= rayleigh_damping_height ) THEN rdf(k) = rayleigh_damping_factor * & ( SIN( pi * 0.5_wp * ( zu(k) - rayleigh_damping_height ) & / ( zu(nzt) - rayleigh_damping_height ) ) & )**2 ENDIF ENDDO ELSE ! !-- In ocean mode, rayleigh damping is applied in the lower part of the !-- model domain DO k = nzt, nzb+1, -1 IF ( zu(k) <= rayleigh_damping_height ) THEN rdf(k) = rayleigh_damping_factor * & ( SIN( pi * 0.5_wp * ( rayleigh_damping_height - zu(k) ) & / ( rayleigh_damping_height - zu(nzb+1) ) ) & )**2 ENDIF ENDDO ENDIF ENDIF IF ( scalar_rayleigh_damping ) rdf_sc = rdf ! !-- Initialize the starting level and the vertical smoothing factor used for !-- the external pressure gradient dp_smooth_factor = 1.0_wp IF ( dp_external ) THEN ! !-- Set the starting level dp_level_ind_b only if it has not been set before !-- (e.g. in init_grid). IF ( dp_level_ind_b == 0 ) THEN ind_array = MINLOC( ABS( dp_level_b - zu ) ) dp_level_ind_b = ind_array(1) - 1 + nzb ! MINLOC uses lower array bound 1 ENDIF IF ( dp_smooth ) THEN dp_smooth_factor(:dp_level_ind_b) = 0.0_wp DO k = dp_level_ind_b+1, nzt dp_smooth_factor(k) = 0.5_wp * ( 1.0_wp + SIN( pi * & ( REAL( k - dp_level_ind_b, KIND=wp ) / & REAL( nzt - dp_level_ind_b, KIND=wp ) - 0.5_wp ) ) ) ENDDO ENDIF ENDIF ! !-- Initialize damping zone for the potential temperature in case of !-- non-cyclic lateral boundaries. The damping zone has the maximum value !-- at the inflow boundary and decreases to zero at pt_damping_width. ptdf_x = 0.0_wp ptdf_y = 0.0_wp IF ( bc_lr_dirrad ) THEN DO i = nxl, nxr IF ( ( i * dx ) < pt_damping_width ) THEN ptdf_x(i) = pt_damping_factor * ( SIN( pi * 0.5_wp * & REAL( pt_damping_width - i * dx, KIND=wp ) / ( & REAL( pt_damping_width, KIND=wp ) ) ) )**2 ENDIF ENDDO ELSEIF ( bc_lr_raddir ) THEN DO i = nxl, nxr IF ( ( i * dx ) > ( nx * dx - pt_damping_width ) ) THEN ptdf_x(i) = pt_damping_factor * & SIN( pi * 0.5_wp * & ( ( i - nx ) * dx + pt_damping_width ) / & REAL( pt_damping_width, KIND=wp ) )**2 ENDIF ENDDO ELSEIF ( bc_ns_dirrad ) THEN DO j = nys, nyn IF ( ( j * dy ) > ( ny * dy - pt_damping_width ) ) THEN ptdf_y(j) = pt_damping_factor * & SIN( pi * 0.5_wp * & ( ( j - ny ) * dy + pt_damping_width ) / & REAL( pt_damping_width, KIND=wp ) )**2 ENDIF ENDDO ELSEIF ( bc_ns_raddir ) THEN DO j = nys, nyn IF ( ( j * dy ) < pt_damping_width ) THEN ptdf_y(j) = pt_damping_factor * & SIN( pi * 0.5_wp * & ( pt_damping_width - j * dy ) / & REAL( pt_damping_width, KIND=wp ) )**2 ENDIF ENDDO ENDIF ! !-- Input binary data file is not needed anymore. This line must be placed !-- after call of user_init! CALL close_file( 13 ) ! !-- In case of nesting, put an barrier to assure that all parent and child !-- domains finished initialization. #if defined( __parallel ) IF ( nested_run ) CALL MPI_BARRIER( MPI_COMM_WORLD, ierr ) #endif CALL location_message( 'init_3d_model', 'finished' ) END SUBROUTINE init_3d_model