!> @file inflow_turbulence.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2020 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: inflow_turbulence.f90 4429 2020-02-27 15:24:30Z monakurppa $ ! bugfix: cpp-directives added for serial mode ! ! 4360 2020-01-07 11:25:50Z suehring ! use y_shift instead of old parameter recycling_yshift ! ! 4297 2019-11-21 10:37:50Z oliver.maas ! changed recycling_yshift so that the y-shift can be a multiple of PE ! instead of y-shift of a half domain width ! ! 4183 2019-08-23 07:33:16Z oliver.maas ! simplified steering of recycling of absolute values by initialization ! parameter recycling_method_for_thermodynamic_quantities ! ! 4182 2019-08-22 15:20:23Z scharf ! Corrected "Former revisions" section ! ! 4172 2019-08-20 11:55:33Z oliver.maas ! added optional recycling of absolute values for pt and q ! ! 3655 2019-01-07 16:51:22Z knoop ! Corrected "Former revisions" section ! ! Initial version (2008/03/07) ! ! Description: ! ------------ !> Imposing turbulence at the respective inflow using the turbulence !> recycling method of Kataoka and Mizuno (2002). !------------------------------------------------------------------------------! SUBROUTINE inflow_turbulence USE arrays_3d, & ONLY: e, inflow_damping_factor, mean_inflow_profiles, pt, q, s, u, v, w #if defined( __parallel ) USE control_parameters, & ONLY: humidity, passive_scalar, recycling_plane, y_shift, & recycling_method_for_thermodynamic_quantities #else USE control_parameters, & ONLY: humidity, passive_scalar, recycling_plane, & recycling_method_for_thermodynamic_quantities #endif USE cpulog, & ONLY: cpu_log, log_point USE indices, & ONLY: nbgp, nxl, ny, nyn, nys, nyng, nysg, nzb, nzt USE kinds USE pegrid IMPLICIT NONE INTEGER(iwp) :: i !< loop index INTEGER(iwp) :: j !< loop index INTEGER(iwp) :: k !< loop index INTEGER(iwp) :: l !< loop index INTEGER(iwp) :: ngp_ifd !< number of grid points stored in avpr INTEGER(iwp) :: ngp_pr !< number of grid points stored in inflow_dist #if defined( __parallel ) INTEGER(iwp) :: next !< ID of receiving PE for y-shift INTEGER(iwp) :: prev !< ID of sending PE for y-shift #endif REAL(wp), DIMENSION(nzb:nzt+1,7,nbgp) :: & avpr !< stores averaged profiles at recycling plane REAL(wp), DIMENSION(nzb:nzt+1,7,nbgp) :: & avpr_l !< auxiliary variable to calculate avpr REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,7,nbgp) :: & inflow_dist !< turbulence signal of vars, added at inflow boundary #if defined( __parallel ) REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,7,nbgp) :: & local_inflow_dist !< auxiliary variable for inflow_dist, used for y-shift #endif CALL cpu_log( log_point(40), 'inflow_turbulence', 'start' ) ! !-- Carry out spanwise averaging in the recycling plane avpr_l = 0.0_wp ngp_pr = ( nzt - nzb + 2 ) * 7 * nbgp ngp_ifd = ngp_pr * ( nyn - nys + 1 + 2 * nbgp ) ! !-- First, local averaging within the recycling domain i = recycling_plane #if defined( __parallel ) IF ( myidx == id_recycling ) THEN DO l = 1, nbgp DO j = nys, nyn DO k = nzb, nzt + 1 avpr_l(k,1,l) = avpr_l(k,1,l) + u(k,j,i) avpr_l(k,2,l) = avpr_l(k,2,l) + v(k,j,i) avpr_l(k,3,l) = avpr_l(k,3,l) + w(k,j,i) avpr_l(k,4,l) = avpr_l(k,4,l) + pt(k,j,i) avpr_l(k,5,l) = avpr_l(k,5,l) + e(k,j,i) IF ( humidity ) & avpr_l(k,6,l) = avpr_l(k,6,l) + q(k,j,i) IF ( passive_scalar ) & avpr_l(k,7,l) = avpr_l(k,7,l) + s(k,j,i) ENDDO ENDDO i = i + 1 ENDDO ENDIF ! !-- Now, averaging over all PEs IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( avpr_l(nzb,1,1), avpr(nzb,1,1), ngp_pr, MPI_REAL, & MPI_SUM, comm2d, ierr ) #else DO l = 1, nbgp DO j = nys, nyn DO k = nzb, nzt + 1 avpr_l(k,1,l) = avpr_l(k,1,l) + u(k,j,i) avpr_l(k,2,l) = avpr_l(k,2,l) + v(k,j,i) avpr_l(k,3,l) = avpr_l(k,3,l) + w(k,j,i) avpr_l(k,4,l) = avpr_l(k,4,l) + pt(k,j,i) avpr_l(k,5,l) = avpr_l(k,5,l) + e(k,j,i) IF ( humidity ) & avpr_l(k,6,l) = avpr_l(k,6,l) + q(k,j,i) IF ( passive_scalar ) & avpr_l(k,7,l) = avpr_l(k,7,l) + s(k,j,i) ENDDO ENDDO i = i + 1 ENDDO avpr = avpr_l #endif avpr = avpr / ( ny + 1 ) ! !-- Calculate the disturbances at the recycling plane !-- for recycling of absolute quantities, the disturbance is defined as the absolute value !-- (and not as the deviation from the mean profile) i = recycling_plane #if defined( __parallel ) IF ( myidx == id_recycling ) THEN DO l = 1, nbgp DO j = nysg, nyng DO k = nzb, nzt + 1 inflow_dist(k,j,1,l) = u(k,j,i+1) - avpr(k,1,l) inflow_dist(k,j,2,l) = v(k,j,i) - avpr(k,2,l) inflow_dist(k,j,3,l) = w(k,j,i) - avpr(k,3,l) IF ( TRIM( recycling_method_for_thermodynamic_quantities ) & == 'turbulent_fluctuation' ) THEN inflow_dist(k,j,4,l) = pt(k,j,i) - avpr(k,4,l) ELSEIF ( TRIM( recycling_method_for_thermodynamic_quantities ) & == 'absolute_value' ) THEN inflow_dist(k,j,4,l) = pt(k,j,i) ENDIF inflow_dist(k,j,5,l) = e(k,j,i) - avpr(k,5,l) IF ( humidity ) THEN IF ( TRIM( recycling_method_for_thermodynamic_quantities ) & == 'turbulent_fluctuation' ) THEN inflow_dist(k,j,6,l) = q(k,j,i) - avpr(k,6,l) ELSEIF ( TRIM( recycling_method_for_thermodynamic_quantities ) & == 'absolute_value' ) THEN inflow_dist(k,j,6,l) = q(k,j,i) ENDIF ENDIF IF ( passive_scalar ) & inflow_dist(k,j,7,l) = s(k,j,i) - avpr(k,7,l) ENDDO ENDDO i = i + 1 ENDDO ENDIF #else DO l = 1, nbgp DO j = nysg, nyng DO k = nzb, nzt+1 inflow_dist(k,j,1,l) = u(k,j,i+1) - avpr(k,1,l) inflow_dist(k,j,2,l) = v(k,j,i) - avpr(k,2,l) inflow_dist(k,j,3,l) = w(k,j,i) - avpr(k,3,l) IF ( TRIM( recycling_method_for_thermodynamic_quantities ) & == 'turbulent_fluctuation' ) THEN inflow_dist(k,j,4,l) = pt(k,j,i) - avpr(k,4,l) ELSEIF ( TRIM( recycling_method_for_thermodynamic_quantities ) & == 'absolute_value' ) THEN inflow_dist(k,j,4,l) = pt(k,j,i) ENDIF inflow_dist(k,j,5,l) = e(k,j,i) - avpr(k,5,l) IF ( humidity ) THEN IF ( TRIM( recycling_method_for_thermodynamic_quantities ) & == 'turbulent_fluctuation' ) THEN inflow_dist(k,j,6,l) = q(k,j,i) - avpr(k,6,l) ELSEIF ( TRIM( recycling_method_for_thermodynamic_quantities ) & == 'absolute_value' ) THEN inflow_dist(k,j,6,l) = q(k,j,i) ENDIF ENDIF IF ( passive_scalar ) & inflow_dist(k,j,7,l) = s(k,j,i) - avpr(k,7,l) ENDDO ENDDO i = i + 1 ENDDO #endif ! !-- For parallel runs, send the disturbances to the respective inflow PE #if defined( __parallel ) IF ( myidx == id_recycling .AND. myidx /= id_inflow ) THEN CALL MPI_SEND( inflow_dist(nzb,nysg,1,1), ngp_ifd, MPI_REAL, & id_inflow, 1, comm1dx, ierr ) ELSEIF ( myidx /= id_recycling .AND. myidx == id_inflow ) THEN inflow_dist = 0.0_wp CALL MPI_RECV( inflow_dist(nzb,nysg,1,1), ngp_ifd, MPI_REAL, & id_recycling, 1, comm1dx, status, ierr ) ENDIF ! !-- y-shift for inflow_dist !-- Shift inflow_dist in positive y direction by a number of !-- PEs equal to y_shift IF ( ( y_shift /= 0 ) .AND. myidx == id_inflow ) THEN ! !-- Calculate the ID of the PE which sends data to this PE (prev) and of the !-- PE which receives data from this PE (next). prev = MODULO(myidy - y_shift , pdims(2)) next = MODULO(myidy + y_shift , pdims(2)) local_inflow_dist = 0.0_wp CALL MPI_SENDRECV( inflow_dist(nzb,nysg,1,1), ngp_ifd, MPI_REAL, & next, 1, local_inflow_dist(nzb,nysg,1,1), ngp_ifd, & MPI_REAL, prev, 1, comm1dy, status, ierr ) inflow_dist = local_inflow_dist ENDIF #endif ! !-- Add the disturbance at the inflow IF ( nxl == 0 ) THEN DO j = nysg, nyng DO k = nzb, nzt + 1 u(k,j,-nbgp+1:0) = mean_inflow_profiles(k,1) + & inflow_dist(k,j,1,1:nbgp) * inflow_damping_factor(k) v(k,j,-nbgp:-1) = mean_inflow_profiles(k,2) + & inflow_dist(k,j,2,1:nbgp) * inflow_damping_factor(k) w(k,j,-nbgp:-1) = & inflow_dist(k,j,3,1:nbgp) * inflow_damping_factor(k) IF ( TRIM( recycling_method_for_thermodynamic_quantities ) & == 'turbulent_fluctuation' ) THEN pt(k,j,-nbgp:-1) = mean_inflow_profiles(k,4) + & inflow_dist(k,j,4,1:nbgp) * inflow_damping_factor(k) ELSEIF ( TRIM( recycling_method_for_thermodynamic_quantities ) & == 'absolute_value' ) THEN pt(k,j,-nbgp:-1) = inflow_dist(k,j,4,1:nbgp) ENDIF e(k,j,-nbgp:-1) = mean_inflow_profiles(k,5) + & inflow_dist(k,j,5,1:nbgp) * inflow_damping_factor(k) e(k,j,-nbgp:-1) = MAX( e(k,j,-nbgp:-1), 0.0_wp ) IF ( humidity ) THEN IF ( TRIM( recycling_method_for_thermodynamic_quantities ) & == 'turbulent_fluctuation' ) THEN q(k,j,-nbgp:-1) = mean_inflow_profiles(k,6) + & inflow_dist(k,j,6,1:nbgp) * inflow_damping_factor(k) ELSEIF ( TRIM( recycling_method_for_thermodynamic_quantities ) & == 'absolute_value' ) THEN q(k,j,-nbgp:-1) = inflow_dist(k,j,6,1:nbgp) ENDIF ENDIF IF ( passive_scalar ) & s(k,j,-nbgp:-1) = mean_inflow_profiles(k,7) + & inflow_dist(k,j,7,1:nbgp) * inflow_damping_factor(k) ENDDO ENDDO ENDIF CALL cpu_log( log_point(40), 'inflow_turbulence', 'stop' ) END SUBROUTINE inflow_turbulence