!> @file indoor_model_mod.f90 !--------------------------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General ! Public License as published by the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General ! Public License for more details. ! ! You should have received a copy of the GNU General Public License along with PALM. If not, see ! . ! ! Copyright 2018-2020 Leibniz Universitaet Hannover ! Copyright 2018-2020 Hochschule Offenburg !--------------------------------------------------------------------------------------------------! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: indoor_model_mod.f90 4768 2020-11-02 19:11:23Z hellstea $ ! Enable 3D data output also with 64-bit precision ! ! 4750 2020-10-16 14:27:48Z suehring ! - Namelist parameter added to switch-off/on the indoor model during wall/soil spinup ! - Bugfix in window-wall treatment during spinup - in the urban-surface model the window fraction ! is set to zero during spinup, so it is done here also ! - Bugfix in wall treatment - inner wall temperature was too low due to wrong weighting of ! wall/green/window fractions ! ! 4730 2020-10-07 10:48:51Z suehring ! Bugfix - avoid divisions by zero ! ! 4709 2020-09-28 19:20:00Z maronga ! Bugfix: avoid division by zero in case of zero window fraction (now also for vertical walls). ! Reactivated waste heat. ! ! 4704 2020-09-28 10:13:03Z maronga ! Bugfix: avoid division by zero in case of zero window fraction ! ! 4702 2020-09-27 18:39:00Z maronga ! Removed unused variable indoor_wall_window_temperature ! ! 4701 2020-09-27 11:02:15Z maronga ! Heat transfer for wall and windows back to USM separated into q_wall and q_win (instead q_wall_win). ! Heat flow direction revised (heat flow positive from outside to inside). ! New variable indoor_wall_temperature (for q_wall). ! Removed unused quantity q_trans. ! ! 4698 2020-09-25 08:37:55Z maronga ! Fixed faulty characters ! ! 4687 2020-09-21 19:40:16Z maronga ! Bugfix: values of theta_m_t_prev were not stored for individual surfaces and thus re-used by all ! surfaces and buildings, which led to excessive indoor temperatures ! ! 4681 2020-09-16 10:23:06Z pavelkrc ! Bugfix for implementation of downward surfaces ! ! 4671 2020-09-09 20:27:58Z pavelkrc ! Implementation of downward facing USM and LSM surfaces ! ! 4646 2020-08-24 16:02:40Z raasch ! file re-formatted to follow the PALM coding standard ! ! 4481 2020-03-31 18:55:54Z maronga ! Change order of dimension in surface array %frac to allow for better vectorization. ! ! 4441 2020-03-04 19:20:35Z suehring ! Major bugfix in calculation of energy demand - floor-area-per-facade was wrongly calculated ! leading to unrealistically high energy demands and thus to unreallistically high waste-heat ! fluxes. ! ! 4346 2019-12-18 11:55:56Z motisi ! Introduction of wall_flags_total_0, which currently sets bits based on static topography ! information used in wall_flags_static_0 ! ! 4329 2019-12-10 15:46:36Z motisi ! Renamed wall_flags_0 to wall_flags_static_0 ! ! 4310 2019-11-26 19:01:28Z suehring ! Remove dt_indoor from namelist input. The indoor model is an hourly-based model, calling it ! more/less often lead to inaccurate results. ! ! 4299 2019-11-22 10:13:38Z suehring ! Output of indoor temperature revised (to avoid non-defined values within buildings) ! ! 4267 2019-10-16 18:58:49Z suehring ! Bugfix in initialization, some indices to access building_pars where wrong. ! Introduction of seasonal parameters. ! ! 4246 2019-09-30 09:27:52Z pavelkrc ! ! ! 4242 2019-09-27 12:59:10Z suehring ! Bugfix in array index ! ! 4238 2019-09-25 16:06:01Z suehring ! - Bugfix in determination of minimum facade height and in location message ! - Bugfix, avoid division by zero ! - Some optimization ! ! 4227 2019-09-10 18:04:34Z gronemeier ! implement new palm_date_time_mod ! ! 4217 2019-09-04 09:47:05Z scharf ! Corrected "Former revisions" section ! ! 4209 2019-09-02 12:00:03Z suehring ! - Bugfix in initialization of indoor temperature ! - Prescibe default indoor temperature in case it is not given in the namelist input ! ! 4182 2019-08-21 14:37:54Z scharf ! Corrected "Former revisions" section ! ! 4148 2019-08-08 11:26:00Z suehring ! Bugfix in case of non grid-resolved buildings. Further, vertical grid spacing is now considered at ! the correct level. ! - change calculation of a_m and c_m ! - change calculation of u-values (use h_es in building array) ! - rename h_tr_... to h_t_... ! h_tr_em to h_t_wm ! h_tr_op to h_t_wall ! h_tr_w to h_t_es ! - rename h_ve to h_v ! - rename h_is to h_ms ! - inserted net_floor_area ! - inserted params_waste_heat_h, params_waste_heat_c from building database ! in building array ! - change calculation of q_waste_heat ! - bugfix in averaging mean indoor temperature ! ! 3759 2019-02-21 15:53:45Z suehring ! - Calculation of total building volume ! - Several bugfixes ! - Calculation of building height revised ! ! 3745 2019-02-15 18:57:56Z suehring ! - remove building_type from module ! - initialize parameters for each building individually instead of a bulk initializaion with ! identical building type for all ! - output revised ! - add missing _wp ! - some restructuring of variables in building data structure ! ! 3744 2019-02-15 18:38:58Z suehring ! Some interface calls moved to module_interface + cleanup ! ! 3469 2018-10-30 20:05:07Z kanani ! Initial revision (tlang, suehring, kanani, srissman)! ! ! Authors: ! -------- ! @author Tobias Lang ! @author Jens Pfafferott ! @author Farah Kanani-Suehring ! @author Matthias Suehring ! @author Sascha Rissmann ! @author Bjoern Maronga ! ! ! Description: ! ------------ !> Module for Indoor Climate Model (ICM) !> The module is based on the DIN EN ISO 13790 with simplified hour-based procedure. !> This model is a equivalent circuit diagram of a three-point RC-model (5R1C). !> This module differs between indoor-air temperature an average temperature of indoor surfaces which make it prossible to determine !> thermal comfort !> the heat transfer between indoor and outdoor is simplified !> @todo Many statement comments that are given as doxygen comments need to be changed to normal comments !> @todo Replace window_area_per_facade by %frac(1,m) for window !> @todo emissivity change for window blinds if solar_protection_on=1 !> @note Do we allow use of integer flags, or only logical flags? (concerns e.g. cooling_on, heating_on) !> @note How to write indoor temperature output to pt array? !> !> @bug Calculation of iwghf_eb and iwghf_eb_window is faulty !--------------------------------------------------------------------------------------------------! MODULE indoor_model_mod USE arrays_3d, & ONLY: ddzw, & dzw, & pt USE control_parameters, & ONLY: initializing_actions USE kinds USE netcdf_data_input_mod, & ONLY: building_id_f, building_type_f USE palm_date_time_mod, & ONLY: get_date_time, northward_equinox, seconds_per_hour, southward_equinox USE surface_mod, & ONLY: surf_usm_h, surf_usm_v IMPLICIT NONE ! !-- Define data structure for buidlings. TYPE build INTEGER(iwp) :: id !< building ID INTEGER(iwp) :: kb_max !< highest vertical index of a building INTEGER(iwp) :: kb_min !< lowest vertical index of a building INTEGER(iwp) :: num_facades_per_building_h = 0 !< total number of horizontal facades elements INTEGER(iwp) :: num_facades_per_building_h_l = 0 !< number of horizontal facade elements on local subdomain INTEGER(iwp) :: num_facades_per_building_v = 0 !< total number of vertical facades elements INTEGER(iwp) :: num_facades_per_building_v_l = 0 !< number of vertical facade elements on local subdomain INTEGER(iwp) :: ventilation_int_loads !< [-] allocation of activity in the building INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: l_h !< index array linking surface-element orientation index !< for horizontal surfaces with building INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: l_v !< index array linking surface-element orientation index !< for vertical surfaces with building INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: m_h !< index array linking surface-element index for !< horizontal surfaces with building INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: m_v !< index array linking surface-element index for !< vertical surfaces with building INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: num_facade_h !< number of horizontal facade elements per buidling !< and height level INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: num_facade_v !< number of vertical facades elements per buidling !< and height level LOGICAL :: on_pe = .FALSE. !< flag indicating whether a building with certain ID is on local subdomain REAL(wp) :: air_change_high !< [1/h] air changes per time_utc_hour REAL(wp) :: air_change_low !< [1/h] air changes per time_utc_hour REAL(wp) :: area_facade !< [m2] area of total facade REAL(wp) :: building_height !< building height REAL(wp) :: eta_ve !< [-] heat recovery efficiency REAL(wp) :: factor_a !< [-] Dynamic parameters specific effective surface according to Table 12; 2.5 !< (very light, light and medium), 3.0 (heavy), 3.5 (very heavy) REAL(wp) :: factor_c !< [J/(m2 K)] Dynamic parameters inner heatstorage according to Table 12; 80000 !< (very light), 110000 (light), 165000 (medium), 260000 (heavy), 370000 (very heavy) REAL(wp) :: f_c_win !< [-] shading factor REAL(wp) :: fapf !< [m2/m2] floor area per facade REAL(wp) :: g_value_win !< [-] SHGC factor REAL(wp) :: h_es !< [W/(m2 K)] surface-related heat transfer coefficient between extern and surface REAL(wp) :: height_cei_con !< [m] ceiling construction heigth REAL(wp) :: height_storey !< [m] storey heigth REAL(wp) :: params_waste_heat_c !< [-] anthropogenic heat outputs for cooling e.g. 1.33 for KKM with COP = 3 REAL(wp) :: params_waste_heat_h !< [-] anthropogenic heat outputs for heating e.g. 1 - 0.9 = 0.1 for combustion with !< eta = 0.9 or -2 for WP with COP = 3 REAL(wp) :: phi_c_max !< [W] Max. Cooling capacity (negative) REAL(wp) :: phi_h_max !< [W] Max. Heating capacity (positive) REAL(wp) :: q_c_max !< [W/m2] Max. Cooling heat flux per netto floor area (negative) REAL(wp) :: q_h_max !< [W/m2] Max. Heating heat flux per netto floor area (positive) REAL(wp) :: qint_high !< [W/m2] internal heat gains, option Database qint_0-23 REAL(wp) :: qint_low !< [W/m2] internal heat gains, option Database qint_0-23 REAL(wp) :: lambda_at !< [-] ratio internal surface/floor area chap. 7.2.2.2. REAL(wp) :: lambda_layer3 !< [W/(m*K)] Thermal conductivity of the inner layer REAL(wp) :: net_floor_area !< [m2] netto ground area REAL(wp) :: s_layer3 !< [m] half thickness of the inner layer (layer_3) REAL(wp) :: theta_int_c_set !< [degree_C] Max. Setpoint temperature (summer) REAL(wp) :: theta_int_h_set !< [degree_C] Max. Setpoint temperature (winter) REAL(wp) :: u_value_win !< [W/(m2*K)] transmittance REAL(wp) :: vol_tot !< [m3] total building volume REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in !< mean building indoor temperature, height dependent REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in_l !< mean building indoor temperature on local subdomain, height dependent REAL(wp), DIMENSION(:), ALLOCATABLE :: theta_m_t_prev_h !< [degree_C] value of theta_m_t from previous time step (horizontal) REAL(wp), DIMENSION(:), ALLOCATABLE :: theta_m_t_prev_v !< [degree_C] value of theta_m_t from previous time step (vertical) REAL(wp), DIMENSION(:), ALLOCATABLE :: volume !< total building volume, height dependent REAL(wp), DIMENSION(:), ALLOCATABLE :: vol_frac !< fraction of local on total building volume, height dependent REAL(wp), DIMENSION(:), ALLOCATABLE :: vpf !< building volume volume per facade element, height dependent END TYPE build TYPE(build), DIMENSION(:), ALLOCATABLE :: buildings !< building array INTEGER(iwp) :: cooling_on !< Indoor cooling flag (0=off, 1=on) INTEGER(iwp) :: heating_on !< Indoor heating flag (0=off, 1=on) INTEGER(iwp) :: num_build !< total number of buildings in domain INTEGER(iwp) :: solar_protection_off !< Solar protection off INTEGER(iwp) :: solar_protection_on !< Solar protection on LOGICAL :: indoor_during_spinup = .FALSE. !< namelist parameter used to switch-off/on the indoor model during spinup ! !-- Declare all global variables within the module REAL(wp), PARAMETER :: dt_indoor = 3600.0_wp !< [s] time interval for indoor-model application, fixed to !< 3600.0 due to model requirements REAL(wp), PARAMETER :: h_is = 3.45_wp !< [W/(m2 K)] surface-related heat transfer coefficient between !< surface and air (chap. 7.2.2.2) REAL(wp), PARAMETER :: h_ms = 9.1_wp !< [W/(m2 K)] surface-related heat transfer coefficient between !< component and surface (chap. 12.2.2) REAL(wp), PARAMETER :: params_f_f = 0.3_wp !< [-] frame ratio chap. 8.3.2.1.1 for buildings with mostly !< cooling 2.0_wp REAL(wp), PARAMETER :: params_f_w = 0.9_wp !< [-] correction factor (fuer nicht senkrechten Stahlungseinfall !< DIN 4108-2 chap.8, (hier konstant, keine Winkelabhängigkeit) REAL(wp), PARAMETER :: params_f_win = 0.5_wp !< [-] proportion of window area, Database A_win aus !< Datenbank 27 window_area_per_facade_percent REAL(wp), PARAMETER :: params_solar_protection = 300.0_wp !< [W/m2] chap. G.5.3.1 sun protection closed, if the radiation !< on facade exceeds this value REAL(wp) :: a_m !< [m2] the effective mass-related area REAL(wp) :: air_change !< [1/h] Airflow REAL(wp) :: c_m !< [J/K] internal heat storage capacity REAL(wp) :: facade_element_area !< [m2_facade] building surface facade REAL(wp) :: floor_area_per_facade !< [m2/m2] floor area per facade area REAL(wp) :: h_t_1 !< [W/K] Heat transfer coefficient auxiliary variable 1 REAL(wp) :: h_t_2 !< [W/K] Heat transfer coefficient auxiliary variable 2 REAL(wp) :: h_t_3 !< [W/K] Heat transfer coefficient auxiliary variable 3 REAL(wp) :: h_t_es !< [W/K] heat transfer coefficient of doors, windows, curtain walls and !< glazed walls (assumption: thermal mass=0) REAL(wp) :: h_t_is !< [W/K] thermal coupling conductance (Thermischer Kopplungsleitwert) REAL(wp) :: h_t_ms !< [W/K] Heat transfer conductance term (got with h_t_wm the thermal mass) REAL(wp) :: h_t_wall !< [W/K] heat transfer coefficient of opaque components (assumption: got all !< thermal mass) contains of h_t_wm and h_t_ms REAL(wp) :: h_t_wm !< [W/K] Heat transfer coefficient of the emmision (got with h_t_ms the !< thermal mass) REAL(wp) :: h_v !< [W/K] heat transfer of ventilation REAL(wp) :: indoor_volume_per_facade !< [m3] indoor air volume per facade element REAL(wp) :: initial_indoor_temperature = 293.15 !< [K] initial indoor temperature (namelist parameter) REAL(wp) :: net_sw_in !< [W/m2] net short-wave radiation REAL(wp) :: phi_hc_nd !< [W] heating demand and/or cooling demand REAL(wp) :: phi_hc_nd_10 !< [W] heating demand and/or cooling demand for heating or cooling REAL(wp) :: phi_hc_nd_ac !< [W] actual heating demand and/or cooling demand REAL(wp) :: phi_hc_nd_un !< [W] unlimited heating demand and/or cooling demand which is necessary to !< reach the demanded required temperature (heating is positive, !< cooling is negative) REAL(wp) :: phi_ia !< [W] internal air load = internal loads * 0.5, Eq. (C.1) REAL(wp) :: phi_m !< [W] mass specific thermal load (internal and external) REAL(wp) :: phi_mtot !< [W] total mass specific thermal load (internal and external) REAL(wp) :: phi_sol !< [W] solar loads REAL(wp) :: phi_st !< [W] mass specific thermal load implied non thermal mass REAL(wp) :: q_wall !< [W/m2]heat flux from indoor into wall REAL(wp) :: q_win !< [W/m2]heat flux from indoor into window REAL(wp) :: q_waste_heat !< [W/m2]waste heat, sum of waste heat over the roof to Palm REAL(wp) :: q_c_m !< [W] Energy of thermal storage mass specific thermal load for internal !< and external heatsources (for energy bilanz) REAL(wp) :: q_c_st !< [W] Energy of thermal storage mass specific thermal load implied non !< thermal mass (for energy bilanz) REAL(wp) :: q_int !< [W] Energy of internal air load (for energy bilanz) REAL(wp) :: q_sol !< [W] Energy of solar (for energy bilanz) REAL(wp) :: q_vent !< [W] Energy of ventilation (for energy bilanz) REAL(wp) :: schedule_d !< [-] activation for internal loads (low or high + low) REAL(wp) :: skip_time_do_indoor = 0.0_wp !< [s] Indoor model is not called before this time REAL(wp) :: theta_air !< [degree_C] air temperature of the RC-node REAL(wp) :: theta_air_0 !< [degree_C] air temperature of the RC-node in equilibrium REAL(wp) :: theta_air_10 !< [degree_C] air temperature of the RC-node from a heating capacity !< of 10 W/m2 REAL(wp) :: theta_air_ac !< [degree_C] actual room temperature after heating/cooling REAL(wp) :: theta_air_set !< [degree_C] Setpoint_temperature for the room REAL(wp) :: theta_m !< [degree_C} inner temperature of the RC-node REAL(wp) :: theta_m_t !< [degree_C] (Fictive) component temperature during timestep REAL(wp) :: theta_op !< [degree_C] operative temperature REAL(wp) :: theta_s !< [degree_C] surface temperature of the RC-node REAL(wp) :: time_indoor = 0.0_wp !< [s] time since last call of indoor model REAL(wp) :: total_area !< [m2] area of all surfaces pointing to zone REAL(wp) :: window_area_per_facade !< [m2] window area per facade element ! !-- Definition of seasonal parameters, summer and winter, for different building types REAL(wp), DIMENSION(0:1,1:7) :: summer_pars = RESHAPE( (/ & ! building_type 1 0.5_wp, & ! basical airflow without occupancy of the room 2.0_wp, & ! additional airflow depend of occupancy of the room 0.5_wp, & ! building_type 2: basical airflow without occupancy ! of the room 2.0_wp, & ! additional airflow depend of occupancy of the room 0.8_wp, & ! building_type 3: basical airflow without occupancy ! of the room 2.0_wp, & ! additional airflow depend of occupancy of the room 0.1_wp, & ! building_type 4: basical airflow without occupancy ! of the room 1.5_wp, & ! additional airflow depend of occupancy of the room 0.1_wp, & ! building_type 5: basical airflow without occupancy ! of the room 1.5_wp, & ! additional airflow depend of occupancy of the room 0.1_wp, & ! building_type 6: basical airflow without occupancy ! of the room 1.5_wp, & ! additional airflow depend of occupancy of the room 0.1_wp, & ! building_type 7: basical airflow without occupancy ! of the room 1.5_wp & ! additional airflow depend of occupancy of the room /), (/ 2, 7 /) ) REAL(wp), DIMENSION(0:1,1:7) :: winter_pars = RESHAPE( (/ & ! building_type 1 0.1_wp, & ! basical airflow without occupancy of the room 0.5_wp, & ! additional airflow depend of occupancy of the room 0.1_wp, & ! building_type 2: basical airflow without occupancy ! of the room 0.5_wp, & ! additional airflow depend of occupancy of the room 0.1_wp, & ! building_type 3: basical airflow without occupancy ! of the room 0.5_wp, & ! additional airflow depend of occupancy of the room 0.1_wp, & ! building_type 4: basical airflow without occupancy ! of the room 1.5_wp, & ! additional airflow depend of occupancy of the room 0.1_wp, & ! building_type 5: basical airflow without occupancy ! of the room 1.5_wp, & ! additional airflow depend of occupancy of the room 0.1_wp, & ! building_type 6: basical airflow without occupancy ! of the room 1.5_wp, & ! additional airflow depend of occupancy of the room 0.1_wp, & ! building_type 7: basical airflow without occupancy ! of the room 1.5_wp & ! additional airflow depend of occupancy of the room /), (/ 2, 7 /) ) SAVE PRIVATE ! !-- Add INTERFACES that must be available to other modules PUBLIC im_init, im_main_heatcool, im_parin, im_define_netcdf_grid, im_check_data_output, & im_data_output_3d, im_check_parameters ! !-- Add VARIABLES that must be available to other modules PUBLIC dt_indoor, & indoor_during_spinup, & skip_time_do_indoor, & time_indoor ! !-- PALM interfaces: !-- Data output checks for 2D/3D data to be done in check_parameters INTERFACE im_check_data_output MODULE PROCEDURE im_check_data_output END INTERFACE im_check_data_output ! !-- Input parameter checks to be done in check_parameters INTERFACE im_check_parameters MODULE PROCEDURE im_check_parameters END INTERFACE im_check_parameters ! !-- Data output of 3D data INTERFACE im_data_output_3d MODULE PROCEDURE im_data_output_3d END INTERFACE im_data_output_3d ! !-- Definition of data output quantities INTERFACE im_define_netcdf_grid MODULE PROCEDURE im_define_netcdf_grid END INTERFACE im_define_netcdf_grid ! ! ! ! !-- Output of information to the header file ! INTERFACE im_header ! MODULE PROCEDURE im_header ! END INTERFACE im_header ! !-- Calculations for indoor temperatures INTERFACE im_calc_temperatures MODULE PROCEDURE im_calc_temperatures END INTERFACE im_calc_temperatures ! !-- Initialization actions INTERFACE im_init MODULE PROCEDURE im_init END INTERFACE im_init ! !-- Main part of indoor model INTERFACE im_main_heatcool MODULE PROCEDURE im_main_heatcool END INTERFACE im_main_heatcool ! !-- Reading of NAMELIST parameters INTERFACE im_parin MODULE PROCEDURE im_parin END INTERFACE im_parin CONTAINS !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !< Calculation of the air temperatures and mean radiation temperature. !< This is basis for the operative temperature. !< Based on a Crank-Nicholson scheme with a timestep of a hour. !--------------------------------------------------------------------------------------------------! SUBROUTINE im_calc_temperatures ( i, j, k, indoor_wall_temperature, & near_facade_temperature, phi_hc_nd_dummy, theta_m_t_prev ) INTEGER(iwp) :: i INTEGER(iwp) :: j INTEGER(iwp) :: k REAL(wp) :: indoor_wall_temperature !< temperature of innermost wall layer evtl in im_calc_temperatures einfügen REAL(wp) :: near_facade_temperature REAL(wp) :: phi_hc_nd_dummy REAL(wp), INTENT(IN) :: theta_m_t_prev ! !-- Calculation of total mass specific thermal load (internal and external) phi_mtot = ( phi_m + h_t_wm * indoor_wall_temperature & + h_t_3 * ( phi_st + h_t_es * pt(k,j,i) & + h_t_1 * & ( ( ( phi_ia + phi_hc_nd_dummy ) / h_v ) & + near_facade_temperature ) & ) / h_t_2 & ) !< [degree_C] Eq. (C.5) ! !-- Calculation of component temperature at current timestep theta_m_t = ( ( theta_m_t_prev & * ( ( c_m / 3600.0_wp ) - 0.5_wp * ( h_t_3 + h_t_wm ) ) & + phi_mtot & ) & / ( ( c_m / 3600.0_wp ) + 0.5_wp * ( h_t_3 + h_t_wm ) ) & ) !< [degree_C] Eq. (C.4) ! !-- Calculation of mean inner temperature for the RC-node in current timestep theta_m = ( theta_m_t + theta_m_t_prev ) * 0.5_wp !< [degree_C] Eq. (C.9) ! !-- Calculation of mean surface temperature of the RC-node in current timestep theta_s = ( ( h_t_ms * theta_m + phi_st + h_t_es * pt(k,j,i) & + h_t_1 * ( near_facade_temperature & + ( phi_ia + phi_hc_nd_dummy ) / h_v ) & ) & / ( h_t_ms + h_t_es + h_t_1 ) & ) !< [degree_C] Eq. (C.10) ! !-- Calculation of the air temperature of the RC-node theta_air = ( h_t_is * theta_s + h_v * near_facade_temperature + phi_ia + phi_hc_nd_dummy ) / & ( h_t_is + h_v ) !< [degree_C] Eq. (C.11) END SUBROUTINE im_calc_temperatures !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Initialization of the indoor model. !> Static information are calculated here, e.g. building parameters and geometrical information, !> anything that doesn't change in time. ! !-- Input values !-- Input datas from Palm, M4 ! i_global --> net_sw_in !< global radiation [W/m2] ! theta_e --> pt(k,j,i) !< undisturbed outside temperature, 1. PALM volume, for windows ! theta_sup = theta_f --> surf_usm_h%pt_10cm(m) ! surf_usm_v(l)%pt_10cm(m) !< Air temperature, facade near (10cm) air temperature from !< 1. Palm volume ! theta_node --> t_wall_h(nzt_wall,m) ! t_wall_v(l)%t(nzt_wall,m) !< Temperature of innermost wall layer, for opaque wall !--------------------------------------------------------------------------------------------------! SUBROUTINE im_init USE control_parameters, & ONLY: message_string, time_since_reference_point USE indices, & ONLY: nxl, nxr, nyn, nys, nzb, nzt, wall_flags_total_0 USE grid_variables, & ONLY: dx, dy USE pegrid USE surface_mod, & ONLY: surf_usm_h, surf_usm_v USE urban_surface_mod, & ONLY: building_pars, building_type INTEGER(iwp) :: bt !< local building type INTEGER(iwp) :: day_of_year !< day of the year INTEGER(iwp) :: i !< running index along x-direction INTEGER(iwp) :: j !< running index along y-direction INTEGER(iwp) :: k !< running index along z-direction INTEGER(iwp) :: l !< running index for surface-element orientation INTEGER(iwp) :: m !< running index surface elements INTEGER(iwp) :: n !< building index INTEGER(iwp) :: nb !< building index INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids !< building IDs on entire model domain INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_final !< building IDs on entire model domain, !< multiple occurences are sorted out INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_final_tmp !< temporary array used for resizing INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_l !< building IDs on local subdomain INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_l_tmp !< temporary array used to resize array of building IDs INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: displace_dum !< displacements of start addresses, used for MPI_ALLGATHERV INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: k_max_l !< highest vertical index of a building on subdomain INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: k_min_l !< lowest vertical index of a building on subdomain INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: n_fa !< counting array INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: num_facades_h !< dummy array used for summing-up total number of !< horizontal facade elements INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: num_facades_v !< dummy array used for summing-up total number of !< vertical facade elements INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: receive_dum_h !< dummy array used for MPI_ALLREDUCE INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: receive_dum_v !< dummy array used for MPI_ALLREDUCE INTEGER(iwp), DIMENSION(0:numprocs-1) :: num_buildings !< number of buildings with different ID on entire model domain INTEGER(iwp), DIMENSION(0:numprocs-1) :: num_buildings_l !< number of buildings with different ID on local subdomain REAL(wp) :: u_tmp !< dummy for temporary calculation of u-value without h_is REAL(wp) :: du_tmp !< 1/u_tmp REAL(wp) :: du_win_tmp !< 1/building(nb)%u_value_win REAL(wp) :: facade_area_v !< dummy to compute the total facade area from vertical walls REAL(wp), DIMENSION(:), ALLOCATABLE :: volume !< total building volume at each discrete height level REAL(wp), DIMENSION(:), ALLOCATABLE :: volume_l !< total building volume at each discrete height level, !< on local subdomain CALL location_message( 'initializing indoor model', 'start' ) ! !-- Initializing of indoor model is only possible if buildings can be distinguished by their IDs. IF ( .NOT. building_id_f%from_file ) THEN message_string = 'Indoor model requires information about building_id' CALL message( 'im_init', 'PA0999', 1, 2, 0, 6, 0 ) ENDIF ! !-- Determine number of different building IDs on local subdomain. num_buildings_l = 0 num_buildings = 0 ALLOCATE( build_ids_l(1) ) DO i = nxl, nxr DO j = nys, nyn IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN IF ( num_buildings_l(myid) > 0 ) THEN IF ( ANY( building_id_f%var(j,i) == build_ids_l ) ) THEN CYCLE ELSE num_buildings_l(myid) = num_buildings_l(myid) + 1 ! !-- Resize array with different local building ids ALLOCATE( build_ids_l_tmp(1:SIZE(build_ids_l)) ) build_ids_l_tmp = build_ids_l DEALLOCATE( build_ids_l ) ALLOCATE( build_ids_l(1:num_buildings_l(myid)) ) build_ids_l(1:num_buildings_l(myid)-1) = & build_ids_l_tmp(1:num_buildings_l(myid)-1) build_ids_l(num_buildings_l(myid)) = building_id_f%var(j,i) DEALLOCATE( build_ids_l_tmp ) ENDIF ! !-- First occuring building id on PE ELSE num_buildings_l(myid) = num_buildings_l(myid) + 1 build_ids_l(1) = building_id_f%var(j,i) ENDIF ENDIF ENDDO ENDDO ! !-- Determine number of building IDs for the entire domain. (Note, building IDs can appear multiple !-- times as buildings might be distributed over several PEs.) #if defined( __parallel ) CALL MPI_ALLREDUCE( num_buildings_l, num_buildings, numprocs, MPI_INTEGER, MPI_SUM, comm2d, & ierr ) #else num_buildings = num_buildings_l #endif ALLOCATE( build_ids(1:SUM(num_buildings)) ) ! !-- Gather building IDs. Therefore, first, determine displacements used required for MPI_GATHERV !-- call. ALLOCATE( displace_dum(0:numprocs-1) ) displace_dum(0) = 0 DO i = 1, numprocs-1 displace_dum(i) = displace_dum(i-1) + num_buildings(i-1) ENDDO #if defined( __parallel ) CALL MPI_ALLGATHERV( build_ids_l(1:num_buildings_l(myid)), & num_buildings(myid), & MPI_INTEGER, & build_ids, & num_buildings, & displace_dum, & MPI_INTEGER, & comm2d, ierr ) DEALLOCATE( displace_dum ) #else build_ids = build_ids_l #endif ! !-- Note: in parallel mode, building IDs can occur mutliple times, as each PE has send its own ids. !-- Therefore, sort out building IDs which appear multiple times. num_build = 0 DO n = 1, SIZE(build_ids) IF ( ALLOCATED(build_ids_final) ) THEN IF ( ANY( build_ids(n) == build_ids_final ) ) THEN CYCLE ELSE num_build = num_build + 1 ! !-- Resize ALLOCATE( build_ids_final_tmp(1:num_build) ) build_ids_final_tmp(1:num_build-1) = build_ids_final(1:num_build-1) DEALLOCATE( build_ids_final ) ALLOCATE( build_ids_final(1:num_build) ) build_ids_final(1:num_build-1) = build_ids_final_tmp(1:num_build-1) build_ids_final(num_build) = build_ids(n) DEALLOCATE( build_ids_final_tmp ) ENDIF ELSE num_build = num_build + 1 ALLOCATE( build_ids_final(1:num_build) ) build_ids_final(num_build) = build_ids(n) ENDIF ENDDO ! !-- Allocate building-data structure array. Note, this is a global array and all building IDs on !-- domain are known by each PE. Further attributes, e.g. height-dependent arrays, however, are only !-- allocated on PEs where the respective building is present (in order to reduce memory demands). ALLOCATE( buildings(1:num_build) ) ! !-- Store building IDs and check if building with certain ID is present on subdomain. DO nb = 1, num_build buildings(nb)%id = build_ids_final(nb) IF ( ANY( building_id_f%var(nys:nyn,nxl:nxr) == buildings(nb)%id ) ) & buildings(nb)%on_pe = .TRUE. ENDDO ! !-- Determine the maximum vertical dimension occupied by each building. ALLOCATE( k_min_l(1:num_build) ) ALLOCATE( k_max_l(1:num_build) ) k_min_l = nzt + 1 k_max_l = 0 DO i = nxl, nxr DO j = nys, nyn IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), DIM=1 ) DO k = nzb, nzt+1 ! !-- Check if grid point belongs to a building. IF ( BTEST( wall_flags_total_0(k,j,i), 6 ) ) THEN k_min_l(nb) = MIN( k_min_l(nb), k ) k_max_l(nb) = MAX( k_max_l(nb), k ) ENDIF ENDDO ENDIF ENDDO ENDDO #if defined( __parallel ) CALL MPI_ALLREDUCE( k_min_l(:), buildings(:)%kb_min, num_build, MPI_INTEGER, MPI_MIN, comm2d, & ierr ) CALL MPI_ALLREDUCE( k_max_l(:), buildings(:)%kb_max, num_build, MPI_INTEGER, MPI_MAX, comm2d, & ierr ) #else buildings(:)%kb_min = k_min_l(:) buildings(:)%kb_max = k_max_l(:) #endif DEALLOCATE( k_min_l ) DEALLOCATE( k_max_l ) ! !-- Calculate building height. DO nb = 1, num_build buildings(nb)%building_height = 0.0_wp DO k = buildings(nb)%kb_min, buildings(nb)%kb_max buildings(nb)%building_height = buildings(nb)%building_height + dzw(k+1) ENDDO ENDDO ! !-- Calculate building volume DO nb = 1, num_build ! !-- Allocate temporary array for summing-up building volume ALLOCATE( volume(buildings(nb)%kb_min:buildings(nb)%kb_max) ) ALLOCATE( volume_l(buildings(nb)%kb_min:buildings(nb)%kb_max) ) volume = 0.0_wp volume_l = 0.0_wp ! !-- Calculate building volume per height level on each PE where these building is present. IF ( buildings(nb)%on_pe ) THEN ALLOCATE( buildings(nb)%volume(buildings(nb)%kb_min:buildings(nb)%kb_max) ) ALLOCATE( buildings(nb)%vol_frac(buildings(nb)%kb_min:buildings(nb)%kb_max) ) buildings(nb)%volume = 0.0_wp buildings(nb)%vol_frac = 0.0_wp IF ( ANY( building_id_f%var(nys:nyn,nxl:nxr) == buildings(nb)%id ) ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = buildings(nb)%kb_min, buildings(nb)%kb_max IF ( building_id_f%var(j,i) /= building_id_f%fill ) & volume_l(k) = volume_l(k) + dx * dy * dzw(k+1) ENDDO ENDDO ENDDO ENDIF ENDIF ! !-- Sum-up building volume from all subdomains #if defined( __parallel ) CALL MPI_ALLREDUCE( volume_l, volume, SIZE(volume), MPI_REAL, MPI_SUM, comm2d, ierr ) #else volume = volume_l #endif ! !-- Save total building volume as well as local fraction on volume on building data structure. IF ( ALLOCATED( buildings(nb)%volume ) ) buildings(nb)%volume = volume ! !-- Determine fraction of local on total building volume IF ( buildings(nb)%on_pe ) buildings(nb)%vol_frac = volume_l / volume ! !-- Calculate total building volume IF ( ALLOCATED( buildings(nb)%volume ) ) buildings(nb)%vol_tot = SUM( buildings(nb)%volume ) DEALLOCATE( volume ) DEALLOCATE( volume_l ) ENDDO ! !-- Allocate arrays for indoor temperature. DO nb = 1, num_build IF ( buildings(nb)%on_pe ) THEN ALLOCATE( buildings(nb)%t_in(buildings(nb)%kb_min:buildings(nb)%kb_max) ) ALLOCATE( buildings(nb)%t_in_l(buildings(nb)%kb_min:buildings(nb)%kb_max) ) buildings(nb)%t_in = 0.0_wp buildings(nb)%t_in_l = 0.0_wp ENDIF ENDDO ! !-- Allocate arrays for number of facades per height level. Distinguish between horizontal and !-- vertical facades. DO nb = 1, num_build IF ( buildings(nb)%on_pe ) THEN ALLOCATE( buildings(nb)%num_facade_h(buildings(nb)%kb_min:buildings(nb)%kb_max) ) ALLOCATE( buildings(nb)%num_facade_v(buildings(nb)%kb_min:buildings(nb)%kb_max) ) buildings(nb)%num_facade_h = 0 buildings(nb)%num_facade_v = 0 ENDIF ENDDO ! !-- Determine number of facade elements per building on local subdomain. !-- Distinguish between horizontal and vertical facade elements. ! !-- Horizontal facades buildings(:)%num_facades_per_building_h_l = 0 DO l = 0, 1 DO m = 1, surf_usm_h(l)%ns ! !-- For the current facade element determine corresponding building index. !-- First, obtain j,j,k indices of the building. Please note the offset between facade/surface !-- element and building location (for horizontal surface elements the horizontal offsets are !-- zero). i = surf_usm_h(l)%i(m) + surf_usm_h(l)%ioff j = surf_usm_h(l)%j(m) + surf_usm_h(l)%joff k = surf_usm_h(l)%k(m) + surf_usm_h(l)%koff ! !-- Determine building index and check whether building is on PE. nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), DIM=1 ) IF ( buildings(nb)%on_pe ) THEN ! !-- Count number of facade elements at each height level. buildings(nb)%num_facade_h(k) = buildings(nb)%num_facade_h(k) + 1 ! !-- Moreover, sum up number of local facade elements per building. buildings(nb)%num_facades_per_building_h_l = & buildings(nb)%num_facades_per_building_h_l + 1 ENDIF ENDDO ENDDO ! !-- Vertical facades buildings(:)%num_facades_per_building_v_l = 0 DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns ! !-- For the current facade element determine corresponding building index. !-- First, obtain j,j,k indices of the building. Please note the offset between facade/surface !-- element and building location (for vertical surface elements the vertical offsets are !-- zero). i = surf_usm_v(l)%i(m) + surf_usm_v(l)%ioff j = surf_usm_v(l)%j(m) + surf_usm_v(l)%joff k = surf_usm_v(l)%k(m) + surf_usm_v(l)%koff nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), DIM=1 ) IF ( buildings(nb)%on_pe ) THEN buildings(nb)%num_facade_v(k) = buildings(nb)%num_facade_v(k) + 1 buildings(nb)%num_facades_per_building_v_l = & buildings(nb)%num_facades_per_building_v_l + 1 ENDIF ENDDO ENDDO ! !-- Determine total number of facade elements per building and assign number to building data type. DO nb = 1, num_build ! !-- Allocate dummy array used for summing-up facade elements. !-- Please note, dummy arguments are necessary as building-date type arrays are not necessarily !-- allocated on all PEs. ALLOCATE( num_facades_h(buildings(nb)%kb_min:buildings(nb)%kb_max) ) ALLOCATE( num_facades_v(buildings(nb)%kb_min:buildings(nb)%kb_max) ) ALLOCATE( receive_dum_h(buildings(nb)%kb_min:buildings(nb)%kb_max) ) ALLOCATE( receive_dum_v(buildings(nb)%kb_min:buildings(nb)%kb_max) ) num_facades_h = 0 num_facades_v = 0 receive_dum_h = 0 receive_dum_v = 0 IF ( buildings(nb)%on_pe ) THEN num_facades_h = buildings(nb)%num_facade_h num_facades_v = buildings(nb)%num_facade_v ENDIF #if defined( __parallel ) CALL MPI_ALLREDUCE( num_facades_h, & receive_dum_h, & buildings(nb)%kb_max - buildings(nb)%kb_min + 1, & MPI_INTEGER, & MPI_SUM, & comm2d, & ierr ) CALL MPI_ALLREDUCE( num_facades_v, & receive_dum_v, & buildings(nb)%kb_max - buildings(nb)%kb_min + 1, & MPI_INTEGER, & MPI_SUM, & comm2d, & ierr ) IF ( ALLOCATED( buildings(nb)%num_facade_h ) ) buildings(nb)%num_facade_h = receive_dum_h IF ( ALLOCATED( buildings(nb)%num_facade_v ) ) buildings(nb)%num_facade_v = receive_dum_v #else buildings(nb)%num_facade_h = num_facades_h buildings(nb)%num_facade_v = num_facades_v #endif ! !-- Deallocate dummy arrays DEALLOCATE( num_facades_h ) DEALLOCATE( num_facades_v ) DEALLOCATE( receive_dum_h ) DEALLOCATE( receive_dum_v ) ! !-- Allocate index arrays which link facade elements with surface-data type. !-- Please note, no height levels are considered here (information is stored in surface-data type !-- itself). IF ( buildings(nb)%on_pe ) THEN ! !-- Determine number of facade elements per building. buildings(nb)%num_facades_per_building_h = SUM( buildings(nb)%num_facade_h ) buildings(nb)%num_facades_per_building_v = SUM( buildings(nb)%num_facade_v ) ! !-- Allocate arrays which link the building with the horizontal and vertical urban-type !-- surfaces. Please note, linking arrays are allocated over all facade elements, which is !-- required in case a building is located at the subdomain boundaries, where the building and !-- the corresponding surface elements are located on different subdomains. ALLOCATE( buildings(nb)%l_h(1:buildings(nb)%num_facades_per_building_h_l) ) ALLOCATE( buildings(nb)%m_h(1:buildings(nb)%num_facades_per_building_h_l) ) ALLOCATE( buildings(nb)%l_v(1:buildings(nb)%num_facades_per_building_v_l) ) ALLOCATE( buildings(nb)%m_v(1:buildings(nb)%num_facades_per_building_v_l) ) ALLOCATE( buildings(nb)%theta_m_t_prev_h(1:buildings(nb)%num_facades_per_building_h_l) ) ALLOCATE( buildings(nb)%theta_m_t_prev_v(1:buildings(nb)%num_facades_per_building_v_l) ) ENDIF IF ( buildings(nb)%on_pe ) THEN ALLOCATE( buildings(nb)%vpf(buildings(nb)%kb_min:buildings(nb)%kb_max) ) buildings(nb)%vpf = 0.0_wp facade_area_v = 0.0_wp DO k = buildings(nb)%kb_min, buildings(nb)%kb_max facade_area_v = facade_area_v + buildings(nb)%num_facade_v(k) * dzw(k+1) * dx ENDDO ! !-- Determine volume per total facade area (vpf). For the horizontal facade area !-- num_facades_per_building_h can be taken, multiplied with dx*dy. !-- However, due to grid stretching, vertical facade elements must be summed-up vertically. !-- Please note, if dx /= dy, an error is made! buildings(nb)%vpf = buildings(nb)%vol_tot / & ( buildings(nb)%num_facades_per_building_h * dx * dy + facade_area_v ) ! !-- Determine floor-area-per-facade. buildings(nb)%fapf = buildings(nb)%num_facades_per_building_h * dx * dy & / ( buildings(nb)%num_facades_per_building_h * dx * dy & + facade_area_v ) ENDIF ENDDO ! !-- Link facade elements with surface data type. !-- Allocate array for counting. ALLOCATE( n_fa(1:num_build) ) n_fa = 1 DO l = 0, 1 DO m = 1, surf_usm_h(l)%ns i = surf_usm_h(l)%i(m) + surf_usm_h(l)%ioff j = surf_usm_h(l)%j(m) + surf_usm_h(l)%joff nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), DIM=1 ) IF ( buildings(nb)%on_pe ) THEN buildings(nb)%l_h(n_fa(nb)) = l buildings(nb)%m_h(n_fa(nb)) = m n_fa(nb) = n_fa(nb) + 1 ENDIF ENDDO ENDDO n_fa = 1 DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) + surf_usm_v(l)%ioff j = surf_usm_v(l)%j(m) + surf_usm_v(l)%joff nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), DIM=1 ) IF ( buildings(nb)%on_pe ) THEN buildings(nb)%l_v(n_fa(nb)) = l buildings(nb)%m_v(n_fa(nb)) = m n_fa(nb) = n_fa(nb) + 1 ENDIF ENDDO ENDDO DEALLOCATE( n_fa ) ! !-- Initialize building parameters, first by mean building type. Note, in this case all buildings !-- have the same type. !-- In a second step initialize with building tpyes from static input file, where building types can !-- be individual for each building. buildings(:)%lambda_layer3 = building_pars(31,building_type) buildings(:)%s_layer3 = building_pars(44,building_type) buildings(:)%f_c_win = building_pars(119,building_type) buildings(:)%g_value_win = building_pars(120,building_type) buildings(:)%u_value_win = building_pars(121,building_type) buildings(:)%eta_ve = building_pars(124,building_type) buildings(:)%factor_a = building_pars(125,building_type) buildings(:)%factor_c = building_pars(126,building_type) buildings(:)%lambda_at = building_pars(127,building_type) buildings(:)%theta_int_h_set = building_pars(13,building_type) buildings(:)%theta_int_c_set = building_pars(12,building_type) buildings(:)%q_h_max = building_pars(128,building_type) buildings(:)%q_c_max = building_pars(129,building_type) buildings(:)%qint_high = building_pars(130,building_type) buildings(:)%qint_low = building_pars(131,building_type) buildings(:)%height_storey = building_pars(132,building_type) buildings(:)%height_cei_con = building_pars(133,building_type) buildings(:)%params_waste_heat_h = building_pars(134,building_type) buildings(:)%params_waste_heat_c = building_pars(135,building_type) ! !-- Initialize seasonal dependent parameters, depending on day of the year. !-- First, calculated day of the year. CALL get_date_time( time_since_reference_point, day_of_year = day_of_year ) ! !-- Summer is defined in between northward- and southward equinox. IF ( day_of_year >= northward_equinox .AND. day_of_year <= southward_equinox ) THEN buildings(:)%air_change_low = summer_pars(0,building_type) buildings(:)%air_change_high = summer_pars(1,building_type) ELSE buildings(:)%air_change_low = winter_pars(0,building_type) buildings(:)%air_change_high = winter_pars(1,building_type) ENDIF ! !-- Initialize ventilation load. Please note, building types > 7 are actually not allowed (check !-- already in urban_surface_mod and netcdf_data_input_mod. !-- However, the building data base may be later extended. IF ( building_type == 1 .OR. building_type == 2 .OR. & building_type == 3 .OR. building_type == 10 .OR. & building_type == 11 .OR. building_type == 12 ) THEN buildings(:)%ventilation_int_loads = 1 ! !-- Office, building with large windows ELSEIF ( building_type == 4 .OR. building_type == 5 .OR. & building_type == 6 .OR. building_type == 7 .OR. & building_type == 8 .OR. building_type == 9) THEN buildings(:)%ventilation_int_loads = 2 ! !-- Industry, hospitals ELSEIF ( building_type == 13 .OR. building_type == 14 .OR. & building_type == 15 .OR. building_type == 16 .OR. & building_type == 17 .OR. building_type == 18 ) THEN buildings(:)%ventilation_int_loads = 3 ENDIF ! !-- Initialization of building parameters - level 2 IF ( building_type_f%from_file ) THEN DO i = nxl, nxr DO j = nys, nyn IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), DIM=1 ) bt = building_type_f%var(j,i) buildings(nb)%lambda_layer3 = building_pars(31,bt) buildings(nb)%s_layer3 = building_pars(44,bt) buildings(nb)%f_c_win = building_pars(119,bt) buildings(nb)%g_value_win = building_pars(120,bt) buildings(nb)%u_value_win = building_pars(121,bt) buildings(nb)%eta_ve = building_pars(124,bt) buildings(nb)%factor_a = building_pars(125,bt) buildings(nb)%factor_c = building_pars(126,bt) buildings(nb)%lambda_at = building_pars(127,bt) buildings(nb)%theta_int_h_set = building_pars(13,bt) buildings(nb)%theta_int_c_set = building_pars(12,bt) buildings(nb)%q_h_max = building_pars(128,bt) buildings(nb)%q_c_max = building_pars(129,bt) buildings(nb)%qint_high = building_pars(130,bt) buildings(nb)%qint_low = building_pars(131,bt) buildings(nb)%height_storey = building_pars(132,bt) buildings(nb)%height_cei_con = building_pars(133,bt) buildings(nb)%params_waste_heat_h = building_pars(134,bt) buildings(nb)%params_waste_heat_c = building_pars(135,bt) IF ( day_of_year >= northward_equinox .AND. day_of_year <= southward_equinox ) THEN buildings(nb)%air_change_low = summer_pars(0,bt) buildings(nb)%air_change_high = summer_pars(1,bt) ELSE buildings(nb)%air_change_low = winter_pars(0,bt) buildings(nb)%air_change_high = winter_pars(1,bt) ENDIF ! !-- Initialize ventilaation load. Please note, building types > 7 !-- are actually not allowed (check already in urban_surface_mod !-- and netcdf_data_input_mod. However, the building data base may !-- be later extended. IF ( bt == 1 .OR. bt == 2 .OR. & bt == 3 .OR. bt == 10 .OR. & bt == 11 .OR. bt == 12 ) THEN buildings(nb)%ventilation_int_loads = 1 ! !-- Office, building with large windows ELSEIF ( bt == 4 .OR. bt == 5 .OR. & bt == 6 .OR. bt == 7 .OR. & bt == 8 .OR. bt == 9) THEN buildings(nb)%ventilation_int_loads = 2 ! !-- Industry, hospitals ELSEIF ( bt == 13 .OR. bt == 14 .OR. & bt == 15 .OR. bt == 16 .OR. & bt == 17 .OR. bt == 18 ) THEN buildings(nb)%ventilation_int_loads = 3 ENDIF ENDIF ENDDO ENDDO ENDIF ! !-- Calculation of surface-related heat transfer coeffiecient out of standard u-values from building !-- database. !-- Only amount of extern and surface is used. !-- Otherwise amount between air and surface taken account twice. DO nb = 1, num_build IF ( buildings(nb)%on_pe ) THEN du_win_tmp = 1.0_wp / buildings(nb)%u_value_win u_tmp = buildings(nb)%u_value_win * ( du_win_tmp / ( du_win_tmp - & 0.125_wp + ( 1.0_wp / h_is ) ) ) du_tmp = 1.0_wp / u_tmp buildings(nb)%h_es = 1.0_wp / ( du_tmp - ( 1.0_wp / h_is ) ) ENDIF ENDDO ! !-- Initialize indoor temperature. Actually only for output at initial state. DO nb = 1, num_build IF ( buildings(nb)%on_pe ) THEN buildings(nb)%t_in(:) = initial_indoor_temperature ! !-- (after first loop, use theta_m_t as theta_m_t_prev) buildings(nb)%theta_m_t_prev_h(:) = initial_indoor_temperature buildings(nb)%theta_m_t_prev_v(:) = initial_indoor_temperature ENDIF ENDDO CALL location_message( 'initializing indoor model', 'finished' ) END SUBROUTINE im_init !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Main part of the indoor model. !> Calculation of .... (kanani: Please describe) !--------------------------------------------------------------------------------------------------! SUBROUTINE im_main_heatcool ! USE basic_constants_and_equations_mod, & ! ONLY: c_p USE control_parameters, & ONLY: time_since_reference_point USE grid_variables, & ONLY: dx, dy USE pegrid USE surface_mod, & ONLY: ind_pav_green, & ind_veg_wall, & ind_wat_win, & surf_usm_h, & surf_usm_v USE urban_surface_mod, & ONLY: building_type, & nzt_wall, & t_green_h, & t_green_v, & t_wall_h, & t_wall_v, & t_window_h, & t_window_v INTEGER(iwp) :: fa !< running index for facade elements of each building INTEGER(iwp) :: i !< index of facade-adjacent atmosphere grid point in x-direction INTEGER(iwp) :: j !< index of facade-adjacent atmosphere grid point in y-direction INTEGER(iwp) :: k !< index of facade-adjacent atmosphere grid point in z-direction INTEGER(iwp) :: kk !< vertical index of indoor grid point adjacent to facade INTEGER(iwp) :: l !< running index for surface-element orientation INTEGER(iwp) :: m !< running index surface elements INTEGER(iwp) :: nb !< running index for buildings LOGICAL :: during_spinup !< flag indicating that the simulation is still in wall/soil spinup REAL(wp) :: frac_green !< dummy for green fraction REAL(wp) :: frac_wall !< dummy for wall fraction REAL(wp) :: frac_win !< dummy for window fraction ! REAL(wp) :: indoor_wall_window_temperature !< weighted temperature of innermost wall/window layer REAL(wp) :: indoor_wall_temperature !< temperature of innermost wall layer evtl in im_calc_temperatures einfügen REAL(wp) :: near_facade_temperature !< outside air temperature 10cm away from facade REAL(wp) :: second_of_day !< second of the current day REAL(wp) :: time_utc_hour !< time of day (hour UTC) REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in_l_send !< dummy send buffer used for summing-up indoor temperature per kk-level REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in_recv !< dummy recv buffer used for summing-up indoor temperature per kk-level ! !-- Determine time of day in hours. CALL get_date_time( time_since_reference_point, second_of_day=second_of_day ) time_utc_hour = second_of_day / seconds_per_hour ! !-- Check if the simulation is still in wall/soil spinup mode during_spinup = MERGE( .TRUE., .FALSE., time_since_reference_point < 0.0_wp ) ! !-- Following calculations must be done for each facade element. DO nb = 1, num_build ! !-- First, check whether building is present on local subdomain. IF ( buildings(nb)%on_pe ) THEN ! !-- Determine daily schedule. 08:00-18:00 = 1, other hours = 0. !-- Residental Building, panel WBS 70 IF ( buildings(nb)%ventilation_int_loads == 1 ) THEN IF ( time_utc_hour >= 8.0_wp .AND. time_utc_hour <= 18.0_wp ) THEN schedule_d = 0 ELSE schedule_d = 1 ENDIF ENDIF ! !-- Office, building with large windows IF ( buildings(nb)%ventilation_int_loads == 2 ) THEN IF ( time_utc_hour >= 8.0_wp .AND. time_utc_hour <= 18.0_wp ) THEN schedule_d = 1 ELSE schedule_d = 0 ENDIF ENDIF ! !-- Industry, hospitals IF ( buildings(nb)%ventilation_int_loads == 3 ) THEN IF ( time_utc_hour >= 6.0_wp .AND. time_utc_hour <= 22.0_wp ) THEN schedule_d = 1 ELSE schedule_d = 0 ENDIF ENDIF ! !-- Initialize/reset indoor temperature buildings(nb)%t_in_l = 0.0_wp ! !-- Horizontal surfaces DO fa = 1, buildings(nb)%num_facades_per_building_h_l ! !-- Determine indices where corresponding surface-type information is stored. l = buildings(nb)%l_h(fa) m = buildings(nb)%m_h(fa) ! !-- During spinup set window fraction to zero and add these to wall fraction. frac_win = MERGE( surf_usm_h(l)%frac(m,ind_wat_win), 0.0_wp, .NOT. during_spinup ) frac_wall = MERGE( surf_usm_h(l)%frac(m,ind_veg_wall), & surf_usm_h(l)%frac(m,ind_veg_wall) + & surf_usm_h(l)%frac(m,ind_wat_win), & .NOT. during_spinup ) frac_green = surf_usm_h(l)%frac(m,ind_pav_green) ! !-- Determine building height level index. kk = surf_usm_h(l)%k(m) + surf_usm_h(l)%koff ! !-- Building geometries --> not time-dependent facade_element_area = dx * dy !< [m2] surface area per facade element floor_area_per_facade = buildings(nb)%fapf !< [m2/m2] floor area per facade area indoor_volume_per_facade = buildings(nb)%vpf(kk) !< [m3/m2] indoor air volume per facade area buildings(nb)%area_facade = facade_element_area * & ( buildings(nb)%num_facades_per_building_h + & buildings(nb)%num_facades_per_building_v ) !< [m2] area of total facade window_area_per_facade = frac_win * facade_element_area !< [m2] window area per facade element buildings(nb)%net_floor_area = buildings(nb)%vol_tot / ( buildings(nb)%height_storey ) total_area = buildings(nb)%net_floor_area !< [m2] area of all surfaces !< pointing to zone Eq. (9) according to section 7.2.2.2 a_m = buildings(nb)%factor_a * total_area * & ( facade_element_area / buildings(nb)%area_facade ) * & buildings(nb)%lambda_at !< [m2] standard values !< according to Table 12 section 12.3.1.2 (calculate over Eq. (65) according to section 12.3.1.2) c_m = buildings(nb)%factor_c * total_area * & ( facade_element_area / buildings(nb)%area_facade ) !< [J/K] standard values !< according to table 12 section 12.3.1.2 (calculate over Eq. (66) according to section 12.3.1.2) ! !-- Calculation of heat transfer coefficient for transmission --> not time-dependent h_t_es = window_area_per_facade * buildings(nb)%h_es !< [W/K] only for windows h_t_is = buildings(nb)%area_facade * h_is !< [W/K] with h_is = 3.45 W / !< (m2 K) between surface and air, Eq. (9) h_t_ms = a_m * h_ms !< [W/K] with h_ms = 9.10 W / !< (m2 K) between component and surface, Eq. (64) h_t_wall = 1.0_wp / ( 1.0_wp / ( ( facade_element_area - window_area_per_facade ) & !< [W/K] * buildings(nb)%lambda_layer3 / buildings(nb)%s_layer3 * 0.5_wp & ) + 1.0_wp / h_t_ms ) !< [W/K] opaque components h_t_wm = 1.0_wp / ( 1.0_wp / h_t_wall - 1.0_wp / h_t_ms ) !< [W/K] emmision Eq. (63), !< Section 12.2.2 ! !-- Internal air loads dependent on the occupacy of the room. !-- Basical internal heat gains (qint_low) with additional internal heat gains by occupancy (qint_high) (0,5*phi_int). phi_ia = 0.5_wp * ( ( buildings(nb)%qint_high * schedule_d + buildings(nb)%qint_low ) & * floor_area_per_facade ) q_int = phi_ia / total_area ! !-- Airflow dependent on the occupacy of the room. !-- Basical airflow (air_change_low) with additional airflow gains by occupancy (air_change_high) air_change = ( buildings(nb)%air_change_high * schedule_d + buildings(nb)%air_change_low ) !< [1/h]? ! !-- Heat transfer of ventilation. !-- Not less than 0.01 W/K to avoid division by 0 in further calculations with heat !-- capacity of air 0.33 Wh/m2K. h_v = MAX( 0.01_wp , ( air_change * indoor_volume_per_facade * & 0.33_wp * (1.0_wp - buildings(nb)%eta_ve ) ) ) !< [W/K] from ISO 13789 Eq.(10) !-- Heat transfer coefficient auxiliary variables h_t_1 = 1.0_wp / ( ( 1.0_wp / h_v ) + ( 1.0_wp / h_t_is ) ) !< [W/K] Eq. (C.6) h_t_2 = h_t_1 + h_t_es !< [W/K] Eq. (C.7) h_t_3 = 1.0_wp / ( ( 1.0_wp / h_t_2 ) + ( 1.0_wp / h_t_ms ) ) !< [W/K] Eq. (C.8) ! !-- Net short-wave radiation through window area (was i_global) net_sw_in = surf_usm_h(l)%rad_sw_in(m) - surf_usm_h(l)%rad_sw_out(m) ! !-- Quantities needed for im_calc_temperatures i = surf_usm_h(l)%i(m) j = surf_usm_h(l)%j(m) k = surf_usm_h(l)%k(m) near_facade_temperature = surf_usm_h(l)%pt_10cm(m) ! indoor_wall_window_temperature = frac_wall * t_wall_h(l)%val(nzt_wall,m) & ! + frac_win * t_window_h(l)%val(nzt_wall,m) & ! + frac_green * t_green_h(l)%val(nzt_wall,m) indoor_wall_temperature = frac_wall * t_wall_h(l)%val(nzt_wall,m) & + frac_win * t_window_h(l)%val(nzt_wall,m) & + frac_green * t_green_h(l)%val(nzt_wall,m) ! !-- Solar thermal gains. If net_sw_in larger than sun-protection threshold parameter !-- (params_solar_protection), sun protection will be activated. IF ( net_sw_in <= params_solar_protection ) THEN solar_protection_off = 1 solar_protection_on = 0 ELSE solar_protection_off = 0 solar_protection_on = 1 ENDIF ! !-- Calculation of total heat gains from net_sw_in through windows [W] in respect on !-- automatic sun protection. !-- DIN 4108 - 2 chap.8 phi_sol = ( window_area_per_facade * net_sw_in * solar_protection_off & + window_area_per_facade * net_sw_in * buildings(nb)%f_c_win * & solar_protection_on ) & * buildings(nb)%g_value_win * ( 1.0_wp - params_f_f ) * params_f_w q_sol = phi_sol ! !-- Calculation of the mass specific thermal load for internal and external heatsources of !-- the inner node. phi_m = (a_m / total_area) * ( phi_ia + phi_sol ) !< [W] Eq. (C.2) with !< phi_ia=0,5*phi_int q_c_m = phi_m ! !-- Calculation mass specific thermal load implied non thermal mass phi_st = ( 1.0_wp - ( a_m / total_area ) - ( h_t_es / ( 9.1_wp * total_area ) ) ) & * ( phi_ia + phi_sol ) !< [W] Eq. (C.3) with !< phi_ia=0,5*phi_int q_c_st = phi_st ! !-- Calculations for deriving indoor temperature and heat flux into the wall !-- Step 1: indoor temperature without heating and cooling !-- section C.4.1 Picture C.2 zone 3) phi_hc_nd = 0.0_wp CALL im_calc_temperatures ( i, j, k, indoor_wall_temperature, & near_facade_temperature, phi_hc_nd, buildings(nb)%theta_m_t_prev_h(fa) ) ! !-- If air temperature between border temperatures of heating and cooling, assign output !-- variable, then ready. IF ( buildings(nb)%theta_int_h_set <= theta_air .AND. & theta_air <= buildings(nb)%theta_int_c_set ) THEN phi_hc_nd_ac = 0.0_wp phi_hc_nd = phi_hc_nd_ac theta_air_ac = theta_air ! !-- Step 2: Else, apply 10 W/m2 heating/cooling power and calculate indoor temperature !-- again. ELSE ! !-- Temperature not correct, calculation method according to section C4.2 theta_air_0 = theta_air !< temperature without heating/cooling ! !-- Heating or cooling? IF ( theta_air_0 > buildings(nb)%theta_int_c_set ) THEN theta_air_set = buildings(nb)%theta_int_c_set ELSE theta_air_set = buildings(nb)%theta_int_h_set ENDIF ! !-- Calculate the temperature with phi_hc_nd_10 phi_hc_nd_10 = 10.0_wp * floor_area_per_facade phi_hc_nd = phi_hc_nd_10 CALL im_calc_temperatures ( i, j, k, indoor_wall_temperature, & near_facade_temperature, phi_hc_nd, buildings(nb)%theta_m_t_prev_h(fa) ) theta_air_10 = theta_air !< temperature with 10 W/m2 of heating ! !-- Avoid division by zero at first timestep where the denominator can become zero. IF ( ABS( theta_air_10 - theta_air_0 ) < 1E-10_wp ) THEN phi_hc_nd_un = phi_hc_nd_10 ELSE phi_hc_nd_un = phi_hc_nd_10 * ( theta_air_set - theta_air_0 ) & / ( theta_air_10 - theta_air_0 ) !< Eq. (C.13) ENDIF ! !-- Step 3: with temperature ratio to determine the heating or cooling capacity. !-- If necessary, limit the power to maximum power. !-- section C.4.1 Picture C.2 zone 2) and 4) buildings(nb)%phi_c_max = buildings(nb)%q_c_max * floor_area_per_facade buildings(nb)%phi_h_max = buildings(nb)%q_h_max * floor_area_per_facade IF ( buildings(nb)%phi_c_max < phi_hc_nd_un .AND. & phi_hc_nd_un < buildings(nb)%phi_h_max ) THEN phi_hc_nd_ac = phi_hc_nd_un phi_hc_nd = phi_hc_nd_un ELSE ! !-- Step 4: inner temperature with maximum heating (phi_hc_nd_un positive) or cooling !-- (phi_hc_nd_un negative) !-- section C.4.1 Picture C.2 zone 1) and 5) IF ( phi_hc_nd_un > 0.0_wp ) THEN phi_hc_nd_ac = buildings(nb)%phi_h_max !< Limit heating ELSE phi_hc_nd_ac = buildings(nb)%phi_c_max !< Limit cooling ENDIF ENDIF phi_hc_nd = phi_hc_nd_ac ! !-- Calculate the temperature with phi_hc_nd_ac (new) CALL im_calc_temperatures ( i, j, k, indoor_wall_temperature, & near_facade_temperature, phi_hc_nd, buildings(nb)%theta_m_t_prev_h(fa) ) theta_air_ac = theta_air ENDIF ! !-- Update theta_m_t_prev buildings(nb)%theta_m_t_prev_h(fa) = theta_m_t q_vent = h_v * ( theta_air - near_facade_temperature ) ! !-- Calculate the operating temperature with weighted mean temperature of air and mean !-- solar temperature. !-- Will be used for thermal comfort calculations. theta_op = 0.3_wp * theta_air_ac + 0.7_wp * theta_s !< [degree_C] operative Temperature Eq. (C.12) ! surf_usm_h(l)%t_indoor(m) = theta_op !< not integrated now ! !-- Heat flux into the wall. Value needed in urban_surface_mod to !-- calculate heat transfer through wall layers towards the facade !-- (use c_p * rho_surface to convert [W/m2] into [K m/s]) IF ( (facade_element_area - window_area_per_facade) > 0.0_wp ) THEN q_wall = h_t_wm * ( indoor_wall_temperature - theta_m ) & / ( facade_element_area - window_area_per_facade ) ELSE q_wall = 0.0_wp ENDIF IF ( window_area_per_facade > 0.0_wp ) THEN q_win = h_t_es * ( pt(k,j,i) - theta_s ) / ( window_area_per_facade ) ELSE q_win = 0.0_wp ENDIF ! !-- Transfer q_wall & q_win back to USM (innermost wall/window layer) surf_usm_h(l)%iwghf_eb(m) = - q_wall surf_usm_h(l)%iwghf_eb_window(m) = - q_win ! !-- Sum up operational indoor temperature per kk-level. Further below, this temperature is !-- reduced by MPI to one temperature per kk-level and building (processor overlapping). buildings(nb)%t_in_l(kk) = buildings(nb)%t_in_l(kk) + theta_op ! !-- Calculation of waste heat. !-- Anthropogenic heat output. IF ( phi_hc_nd_ac > 0.0_wp ) THEN heating_on = 1 cooling_on = 0 ELSE heating_on = 0 cooling_on = -1 ENDIF q_waste_heat = ( phi_hc_nd * ( & buildings(nb)%params_waste_heat_h * heating_on + & buildings(nb)%params_waste_heat_c * cooling_on ) & ) / facade_element_area !< [W/m2] , observe the directional !< convention in PALM! surf_usm_h(l)%waste_heat(m) = q_waste_heat ENDDO !< Horizontal surfaces loop ! !-- Vertical surfaces DO fa = 1, buildings(nb)%num_facades_per_building_v_l ! !-- Determine indices where corresponding surface-type information is stored. l = buildings(nb)%l_v(fa) m = buildings(nb)%m_v(fa) ! !-- During spinup set window fraction to zero and add these to wall fraction. frac_win = MERGE( surf_usm_v(l)%frac(m,ind_wat_win), 0.0_wp, .NOT. during_spinup ) frac_wall = MERGE( surf_usm_v(l)%frac(m,ind_veg_wall), & surf_usm_v(l)%frac(m,ind_veg_wall) + & surf_usm_v(l)%frac(m,ind_wat_win), & .NOT. during_spinup ) frac_green = surf_usm_v(l)%frac(m,ind_pav_green) ! !-- Determine building height level index. kk = surf_usm_v(l)%k(m) + surf_usm_v(l)%koff ! !-- (SOME OF THE FOLLOWING (not time-dependent) COULD PROBABLY GO INTO A FUNCTION !-- EXCEPT facade_element_area, EVERYTHING IS CALCULATED EQUALLY) !-- Building geometries --> not time-dependent IF ( l == 0 .OR. l == 1 ) facade_element_area = dx * dzw(kk+1) !< [m2] surface area per facade element IF ( l == 2 .OR. l == 3 ) facade_element_area = dy * dzw(kk+1) !< [m2] surface area per facade element floor_area_per_facade = buildings(nb)%fapf !< [m2/m2] floor area per facade area indoor_volume_per_facade = buildings(nb)%vpf(kk) !< [m3/m2] indoor air volume per facade area buildings(nb)%area_facade = facade_element_area * & ( buildings(nb)%num_facades_per_building_h + & buildings(nb)%num_facades_per_building_v ) !< [m2] area of total facade window_area_per_facade = frac_win * facade_element_area !< [m2] window area per facade element buildings(nb)%net_floor_area = buildings(nb)%vol_tot / ( buildings(nb)%height_storey ) total_area = buildings(nb)%net_floor_area !< [m2] area of all surfaces !< pointing to zone Eq. (9) according to section 7.2.2.2 a_m = buildings(nb)%factor_a * total_area * & ( facade_element_area / buildings(nb)%area_facade ) * & buildings(nb)%lambda_at !< [m2] standard values !< according to Table 12 section 12.3.1.2 (calculate over Eq. (65) according to section 12.3.1.2) c_m = buildings(nb)%factor_c * total_area * & ( facade_element_area / buildings(nb)%area_facade ) !< [J/K] standard values !< according to table 12 section 12.3.1.2 (calculate over Eq. (66) according to section 12.3.1.2) ! !-- Calculation of heat transfer coefficient for transmission --> not time-dependent h_t_es = window_area_per_facade * buildings(nb)%h_es !< [W/K] only for windows h_t_is = buildings(nb)%area_facade * h_is !< [W/K] with h_is = 3.45 W / !< (m2 K) between surface and air, Eq. (9) h_t_ms = a_m * h_ms !< [W/K] with h_ms = 9.10 W / !< (m2 K) between component and surface, Eq. (64) h_t_wall = 1.0_wp / ( 1.0_wp / ( ( facade_element_area - window_area_per_facade ) & !< [W/K] * buildings(nb)%lambda_layer3 / buildings(nb)%s_layer3 * 0.5_wp & ) + 1.0_wp / h_t_ms ) !< [W/K] opaque components h_t_wm = 1.0_wp / ( 1.0_wp / h_t_wall - 1.0_wp / h_t_ms ) !< [W/K] emmision Eq. (63), Section 12.2.2 ! !-- Internal air loads dependent on the occupacy of the room. !-- Basical internal heat gains (qint_low) with additional internal heat gains by occupancy !-- (qint_high) (0,5*phi_int) phi_ia = 0.5_wp * ( ( buildings(nb)%qint_high * schedule_d + buildings(nb)%qint_low ) & * floor_area_per_facade ) q_int = phi_ia ! !-- Airflow dependent on the occupacy of the room. !-- Basical airflow (air_change_low) with additional airflow gains by occupancy !-- (air_change_high) air_change = ( buildings(nb)%air_change_high * schedule_d + & buildings(nb)%air_change_low ) ! !-- Heat transfer of ventilation. !-- Not less than 0.01 W/K to avoid division by 0 in further calculations with heat !-- capacity of air 0.33 Wh/m2K h_v = MAX( 0.01_wp , ( air_change * indoor_volume_per_facade * & 0.33_wp * (1.0_wp - buildings(nb)%eta_ve ) ) ) !< [W/K] from ISO 13789 !< Eq.(10) !-- Heat transfer coefficient auxiliary variables h_t_1 = 1.0_wp / ( ( 1.0_wp / h_v ) + ( 1.0_wp / h_t_is ) ) !< [W/K] Eq. (C.6) h_t_2 = h_t_1 + h_t_es !< [W/K] Eq. (C.7) h_t_3 = 1.0_wp / ( ( 1.0_wp / h_t_2 ) + ( 1.0_wp / h_t_ms ) ) !< [W/K] Eq. (C.8) ! !-- Net short-wave radiation through window area (was i_global) net_sw_in = surf_usm_v(l)%rad_sw_in(m) - surf_usm_v(l)%rad_sw_out(m) ! !-- Quantities needed for im_calc_temperatures i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) near_facade_temperature = surf_usm_v(l)%pt_10cm(m) ! indoor_wall_window_temperature = frac_wall * t_wall_v(l)%val(nzt_wall,m) & ! + frac_win * t_window_v(l)%val(nzt_wall,m) & ! + frac_green * t_green_v(l)%val(nzt_wall,m) indoor_wall_temperature = frac_wall * t_wall_v(l)%val(nzt_wall,m) & + frac_win * t_window_v(l)%val(nzt_wall,m) & + frac_green * t_green_v(l)%val(nzt_wall,m) ! !-- Solar thermal gains. If net_sw_in larger than sun-protection !-- threshold parameter (params_solar_protection), sun protection will !-- be activated IF ( net_sw_in <= params_solar_protection ) THEN solar_protection_off = 1 solar_protection_on = 0 ELSE solar_protection_off = 0 solar_protection_on = 1 ENDIF ! !-- Calculation of total heat gains from net_sw_in through windows [W] in respect on !-- automatic sun protection. !-- DIN 4108 - 2 chap.8 phi_sol = ( window_area_per_facade * net_sw_in * solar_protection_off & + window_area_per_facade * net_sw_in * buildings(nb)%f_c_win * & solar_protection_on ) & * buildings(nb)%g_value_win * ( 1.0_wp - params_f_f ) * params_f_w q_sol = phi_sol ! !-- Calculation of the mass specific thermal load for internal and external heatsources. phi_m = (a_m / total_area) * ( phi_ia + phi_sol ) !< [W] Eq. (C.2) with phi_ia=0,5*phi_int q_c_m = phi_m ! !-- Calculation mass specific thermal load implied non thermal mass. phi_st = ( 1.0_wp - ( a_m / total_area ) - ( h_t_es / ( 9.1_wp * total_area ) ) ) & * ( phi_ia + phi_sol ) !< [W] Eq. (C.3) with !< phi_ia=0,5*phi_int q_c_st = phi_st ! !-- Calculations for deriving indoor temperature and heat flux into the wall. !-- Step 1: indoor temperature without heating and cooling. !-- section C.4.1 Picture C.2 zone 3) phi_hc_nd = 0.0_wp CALL im_calc_temperatures ( i, j, k, indoor_wall_temperature, & near_facade_temperature, phi_hc_nd, buildings(nb)%theta_m_t_prev_v(fa) ) ! !-- If air temperature between border temperatures of heating and cooling, assign output !-- variable, then ready. IF ( buildings(nb)%theta_int_h_set <= theta_air .AND. & theta_air <= buildings(nb)%theta_int_c_set ) THEN phi_hc_nd_ac = 0.0_wp phi_hc_nd = phi_hc_nd_ac theta_air_ac = theta_air ! !-- Step 2: Else, apply 10 W/m2 heating/cooling power and calculate indoor temperature !-- again. ELSE ! !-- Temperature not correct, calculation method according to section C4.2 theta_air_0 = theta_air !< Note temperature without heating/cooling ! !-- Heating or cooling? IF ( theta_air_0 > buildings(nb)%theta_int_c_set ) THEN theta_air_set = buildings(nb)%theta_int_c_set ELSE theta_air_set = buildings(nb)%theta_int_h_set ENDIF !-- Calculate the temperature with phi_hc_nd_10 phi_hc_nd_10 = 10.0_wp * floor_area_per_facade phi_hc_nd = phi_hc_nd_10 CALL im_calc_temperatures ( i, j, k, indoor_wall_temperature, & near_facade_temperature, phi_hc_nd, buildings(nb)%theta_m_t_prev_v(fa) ) theta_air_10 = theta_air !< Note the temperature with 10 W/m2 of heating ! !-- Avoid division by zero at first timestep where the denominator can become zero. IF ( ABS( theta_air_10 - theta_air_0 ) < 1E-10_wp ) THEN phi_hc_nd_un = phi_hc_nd_10 ELSE phi_hc_nd_un = phi_hc_nd_10 * ( theta_air_set - theta_air_0 ) & / ( theta_air_10 - theta_air_0 ) !< Eq. (C.13) ENDIF ! !-- Step 3: with temperature ratio to determine the heating or cooling capacity !-- If necessary, limit the power to maximum power. !-- section C.4.1 Picture C.2 zone 2) and 4) buildings(nb)%phi_c_max = buildings(nb)%q_c_max * floor_area_per_facade buildings(nb)%phi_h_max = buildings(nb)%q_h_max * floor_area_per_facade IF ( buildings(nb)%phi_c_max < phi_hc_nd_un .AND. & phi_hc_nd_un < buildings(nb)%phi_h_max ) THEN phi_hc_nd_ac = phi_hc_nd_un phi_hc_nd = phi_hc_nd_un ELSE ! !-- Step 4: inner temperature with maximum heating (phi_hc_nd_un positive) or cooling !-- (phi_hc_nd_un negative) !-- section C.4.1 Picture C.2 zone 1) and 5) IF ( phi_hc_nd_un > 0.0_wp ) THEN phi_hc_nd_ac = buildings(nb)%phi_h_max !< Limit heating ELSE phi_hc_nd_ac = buildings(nb)%phi_c_max !< Limit cooling ENDIF ENDIF phi_hc_nd = phi_hc_nd_ac ! !-- Calculate the temperature with phi_hc_nd_ac (new) CALL im_calc_temperatures ( i, j, k, indoor_wall_temperature, & near_facade_temperature, phi_hc_nd, buildings(nb)%theta_m_t_prev_v(fa) ) theta_air_ac = theta_air ENDIF ! !-- Update theta_m_t_prev buildings(nb)%theta_m_t_prev_v(fa) = theta_m_t q_vent = h_v * ( theta_air - near_facade_temperature ) ! !-- Calculate the operating temperature with weighted mean of temperature of air and mean. !-- Will be used for thermal comfort calculations. theta_op = 0.3_wp * theta_air_ac + 0.7_wp * theta_s ! surf_usm_v(l)%t_indoor(m) = theta_op !< not integrated yet ! !-- Heat flux into the wall. Value needed in urban_surface_mod to !-- calculate heat transfer through wall layers towards the facade IF ( (facade_element_area - window_area_per_facade) > 0.0_wp ) THEN q_wall = h_t_wm * ( indoor_wall_temperature - theta_m ) & / ( facade_element_area - window_area_per_facade ) ELSE q_wall = 0.0_wp ENDIF IF ( window_area_per_facade > 0.0_wp ) THEN q_win = h_t_es * ( pt(k,j,i) - theta_s ) / ( window_area_per_facade ) ELSE q_win = 0.0_wp ENDIF ! !-- Transfer q_wall & q_win back to USM (innermost wall/window layer) surf_usm_v(l)%iwghf_eb(m) = - q_wall surf_usm_v(l)%iwghf_eb_window(m) = - q_win ! print*, "wwfjg", surf_usm_v(l)%iwghf_eb(m), surf_usm_v(l)%iwghf_eb_window(m) ! !-- Sum up operational indoor temperature per kk-level. Further below, this temperature is !-- reduced by MPI to one temperature per kk-level and building (processor overlapping). buildings(nb)%t_in_l(kk) = buildings(nb)%t_in_l(kk) + theta_op ! !-- Calculation of waste heat. !-- Anthropogenic heat output. IF ( phi_hc_nd_ac > 0.0_wp ) THEN heating_on = 1 cooling_on = 0 ELSE heating_on = 0 cooling_on = -1 ENDIF q_waste_heat = ( phi_hc_nd * ( buildings(nb)%params_waste_heat_h * heating_on + & buildings(nb)%params_waste_heat_c * cooling_on ) & ) / facade_element_area !< [W/m2] , observe the directional convention in !< PALM! surf_usm_v(l)%waste_heat(m) = q_waste_heat ENDDO !< Vertical surfaces loop ENDIF !< buildings(nb)%on_pe ENDDO !< buildings loop ! !-- Determine the mean building temperature. DO nb = 1, num_build ! !-- Allocate dummy array used for summing-up facade elements. !-- Please note, dummy arguments are necessary as building-date type arrays are not necessarily !-- allocated on all PEs. ALLOCATE( t_in_l_send(buildings(nb)%kb_min:buildings(nb)%kb_max) ) ALLOCATE( t_in_recv(buildings(nb)%kb_min:buildings(nb)%kb_max) ) t_in_l_send = 0.0_wp t_in_recv = 0.0_wp IF ( buildings(nb)%on_pe ) THEN t_in_l_send = buildings(nb)%t_in_l ENDIF #if defined( __parallel ) CALL MPI_ALLREDUCE( t_in_l_send, & t_in_recv, & buildings(nb)%kb_max - buildings(nb)%kb_min + 1, & MPI_REAL, & MPI_SUM, & comm2d, & ierr ) IF ( ALLOCATED( buildings(nb)%t_in ) ) buildings(nb)%t_in = t_in_recv #else IF ( ALLOCATED( buildings(nb)%t_in ) ) buildings(nb)%t_in = buildings(nb)%t_in_l #endif IF ( ALLOCATED( buildings(nb)%t_in ) ) THEN ! !-- Average indoor temperature. Note, in case a building is completely surrounded by higher !-- buildings, it may have no facade elements at some height levels, which will lead to a !-- division by zero. DO k = buildings(nb)%kb_min, buildings(nb)%kb_max IF ( buildings(nb)%num_facade_h(k) + buildings(nb)%num_facade_v(k) > 0 ) THEN buildings(nb)%t_in(k) = buildings(nb)%t_in(k) / & REAL( buildings(nb)%num_facade_h(k) + & buildings(nb)%num_facade_v(k), KIND = wp ) ENDIF ENDDO ! !-- If indoor temperature is not defined because of missing facade elements, the values from !-- the above-lying level will be taken. !-- At least at the top of the buildings facades are defined, so that at least there an indoor !-- temperature is defined. This information will propagate downwards the building. DO k = buildings(nb)%kb_max-1, buildings(nb)%kb_min, -1 IF ( buildings(nb)%num_facade_h(k) + buildings(nb)%num_facade_v(k) <= 0 ) THEN buildings(nb)%t_in(k) = buildings(nb)%t_in(k+1) ENDIF ENDDO ENDIF ! !-- Deallocate dummy arrays DEALLOCATE( t_in_l_send ) DEALLOCATE( t_in_recv ) ENDDO END SUBROUTINE im_main_heatcool !--------------------------------------------------------------------------------------------------! ! Description: !------------- !> Check data output for plant canopy model !--------------------------------------------------------------------------------------------------! SUBROUTINE im_check_data_output( var, unit ) CHARACTER (LEN=*) :: unit !< CHARACTER (LEN=*) :: var !< SELECT CASE ( TRIM( var ) ) CASE ( 'im_hf_roof') unit = 'W m-2' CASE ( 'im_hf_wall_win' ) unit = 'W m-2' CASE ( 'im_hf_wall_win_waste' ) unit = 'W m-2' CASE ( 'im_hf_roof_waste' ) unit = 'W m-2' CASE ( 'im_t_indoor_mean' ) unit = 'K' CASE ( 'im_t_indoor_roof' ) unit = 'K' CASE ( 'im_t_indoor_wall_win' ) unit = 'K' CASE ( 'im_t_indoor_wall' ) unit = 'K' CASE DEFAULT unit = 'illegal' END SELECT END SUBROUTINE !--------------------------------------------------------------------------------------------------! ! Description: !------------- !> Check parameters routine for plant canopy model !--------------------------------------------------------------------------------------------------! SUBROUTINE im_check_parameters ! USE control_parameters, ! ONLY: message_string END SUBROUTINE im_check_parameters !--------------------------------------------------------------------------------------------------! ! Description: !------------- !> Subroutine defining appropriate grid for netcdf variables. !> It is called from subroutine netcdf. !--------------------------------------------------------------------------------------------------! SUBROUTINE im_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) CHARACTER (LEN=*), INTENT(OUT) :: grid_x CHARACTER (LEN=*), INTENT(OUT) :: grid_y CHARACTER (LEN=*), INTENT(OUT) :: grid_z CHARACTER (LEN=*), INTENT(IN) :: var LOGICAL, INTENT(OUT) :: found found = .TRUE. ! !-- Check for the grid SELECT CASE ( TRIM( var ) ) CASE ( 'im_hf_roof', 'im_hf_roof_waste' ) grid_x = 'x' grid_y = 'y' grid_z = 'zw' ! !-- Heat fluxes at vertical walls are actually defined on stagged grid, i.e. xu, yv. CASE ( 'im_hf_wall_win', 'im_hf_wall_win_waste' ) grid_x = 'x' grid_y = 'y' grid_z = 'zu' CASE ( 'im_t_indoor_mean', 'im_t_indoor_roof', 'im_t_indoor_wall_win', 'indoor_wall' ) grid_x = 'x' grid_y = 'y' grid_z = 'zw' CASE DEFAULT found = .FALSE. grid_x = 'none' grid_y = 'none' grid_z = 'none' END SELECT END SUBROUTINE im_define_netcdf_grid !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine defining 3D output variables !--------------------------------------------------------------------------------------------------! SUBROUTINE im_data_output_3d( av, variable, found, local_pf, fill_value, nzb_do, nzt_do ) USE indices USE kinds CHARACTER (LEN=*) :: variable !< INTEGER(iwp) :: av !< INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< INTEGER(iwp) :: l !< INTEGER(iwp) :: m !< INTEGER(iwp) :: nb !< index of the building in the building data structure INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0) INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) LOGICAL :: found !< REAL(wp), INTENT(IN) :: fill_value !< value for the _FillValue attribute REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< local_pf = fill_value found = .TRUE. SELECT CASE ( TRIM( variable ) ) ! !-- Output of indoor temperature. All grid points within the building are filled with values, !-- while atmospheric grid points are set to _FillValues. CASE ( 'im_t_indoor_mean' ) IF ( av == 0 ) THEN DO i = nxl, nxr DO j = nys, nyn IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN ! !-- Determine index of the building within the building data structure. nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), DIM=1 ) IF ( buildings(nb)%on_pe ) THEN ! !-- Write mean building temperature onto output array. Please note, in !-- contrast to many other loops in the output, the vertical bounds are !-- determined by the lowest and hightest vertical index occupied by the !-- building. DO k = buildings(nb)%kb_min, buildings(nb)%kb_max local_pf(i,j,k) = buildings(nb)%t_in(k) ENDDO ENDIF ENDIF ENDDO ENDDO ENDIF CASE ( 'im_hf_roof' ) IF ( av == 0 ) THEN DO m = 1, surf_usm_h(0)%ns i = surf_usm_h(0)%i(m) !+ surf_usm_h%ioff j = surf_usm_h(0)%j(m) !+ surf_usm_h%joff k = surf_usm_h(0)%k(m) !+ surf_usm_h%koff local_pf(i,j,k) = surf_usm_h(0)%iwghf_eb(m) ENDDO ENDIF CASE ( 'im_hf_roof_waste' ) IF ( av == 0 ) THEN DO m = 1, surf_usm_h(0)%ns i = surf_usm_h(0)%i(m) !+ surf_usm_h%ioff j = surf_usm_h(0)%j(m) !+ surf_usm_h%joff k = surf_usm_h(0)%k(m) !+ surf_usm_h%koff local_pf(i,j,k) = surf_usm_h(0)%waste_heat(m) ENDDO ENDIF CASE ( 'im_hf_wall_win' ) IF ( av == 0 ) THEN DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) !+ surf_usm_v(l)%ioff j = surf_usm_v(l)%j(m) !+ surf_usm_v(l)%joff k = surf_usm_v(l)%k(m) !+ surf_usm_v(l)%koff local_pf(i,j,k) = surf_usm_v(l)%iwghf_eb(m) ENDDO ENDDO ENDIF CASE ( 'im_hf_wall_win_waste' ) IF ( av == 0 ) THEN DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) !+ surf_usm_v(l)%ioff j = surf_usm_v(l)%j(m) !+ surf_usm_v(l)%joff k = surf_usm_v(l)%k(m) !+ surf_usm_v(l)%koff local_pf(i,j,k) = surf_usm_v(l)%waste_heat(m) ENDDO ENDDO ENDIF ! !< NOTE im_t_indoor_roof and im_t_indoor_wall_win not work yet ! CASE ( 'im_t_indoor_roof' ) ! IF ( av == 0 ) THEN ! DO m = 1, surf_usm_h%ns ! i = surf_usm_h%i(m) !+ surf_usm_h%ioff ! j = surf_usm_h%j(m) !+ surf_usm_h%joff ! k = surf_usm_h%k(m) !+ surf_usm_h%koff ! local_pf(i,j,k) = surf_usm_h%t_indoor(m) ! ENDDO ! ENDIF ! ! CASE ( 'im_t_indoor_wall_win' ) ! IF ( av == 0 ) THEN ! DO l = 0, 3 ! DO m = 1, surf_usm_v(l)%ns ! i = surf_usm_v(l)%i(m) !+ surf_usm_v(l)%ioff ! j = surf_usm_v(l)%j(m) !+ surf_usm_v(l)%joff ! k = surf_usm_v(l)%k(m) !+ surf_usm_v(l)%koff ! local_pf(i,j,k) = surf_usm_v(l)%t_indoor(m) ! ENDDO ! ENDDO ! ENDIF CASE DEFAULT found = .FALSE. END SELECT END SUBROUTINE im_data_output_3d !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Parin for &indoor_parameters for indoor model !--------------------------------------------------------------------------------------------------! SUBROUTINE im_parin USE control_parameters, & ONLY: indoor_model CHARACTER (LEN=80) :: line !< string containing current line of file PARIN NAMELIST /indoor_parameters/ indoor_during_spinup, & initial_indoor_temperature ! !-- Try to find indoor model package REWIND ( 11 ) line = ' ' DO WHILE ( INDEX( line, '&indoor_parameters' ) == 0 ) READ ( 11, '(A)', END=10 ) line ENDDO BACKSPACE ( 11 ) ! !-- Read user-defined namelist READ ( 11, indoor_parameters ) ! !-- Set flag that indicates that the indoor model is switched on indoor_model = .TRUE. ! !-- Activate spinup (maybe later ! IF ( spinup_time > 0.0_wp ) THEN ! coupling_start_time = spinup_time ! end_time = end_time + spinup_time ! IF ( spinup_pt_mean == 9999999.9_wp ) THEN ! spinup_pt_mean = pt_surface ! ENDIF ! spinup = .TRUE. ! ENDIF 10 CONTINUE END SUBROUTINE im_parin END MODULE indoor_model_mod