!> @file indoor_model_mod.f90
!--------------------------------------------------------------------------------!
! This file is part of the PALM model system.
!
! PALM is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
! A PARTICULAR PURPOSE. See the GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along with
! PALM. If not, see .
!
! Copyright 2018-2019 Leibniz Universitaet Hannover
! Copyright 2018-2019 Hochschule Offenburg
!--------------------------------------------------------------------------------!
!
! Current revisions:
! -----------------
!
!
! Former revisions:
! -----------------
! $Id: indoor_model_mod.f90 4346 2019-12-18 11:55:56Z monakurppa $
! Introduction of wall_flags_total_0, which currently sets bits based on static
! topography information used in wall_flags_static_0
!
! 4329 2019-12-10 15:46:36Z motisi
! Renamed wall_flags_0 to wall_flags_static_0
!
! 4310 2019-11-26 19:01:28Z suehring
! Remove dt_indoor from namelist input. The indoor model is an hourly-based
! model, calling it more/less often lead to inaccurate results.
!
! 4299 2019-11-22 10:13:38Z suehring
! Output of indoor temperature revised (to avoid non-defined values within
! buildings)
!
! 4267 2019-10-16 18:58:49Z suehring
! Bugfix in initialization, some indices to access building_pars where wrong.
! Introduction of seasonal parameters.
!
! 4246 2019-09-30 09:27:52Z pavelkrc
!
!
! 4242 2019-09-27 12:59:10Z suehring
! Bugfix in array index
!
! 4238 2019-09-25 16:06:01Z suehring
! - Bugfix in determination of minimum facade height and in location message
! - Bugfix, avoid division by zero
! - Some optimization
!
! 4227 2019-09-10 18:04:34Z gronemeier
! implement new palm_date_time_mod
!
! 4217 2019-09-04 09:47:05Z scharf
! Corrected "Former revisions" section
!
! 4209 2019-09-02 12:00:03Z suehring
! - Bugfix in initialization of indoor temperature
! - Prescibe default indoor temperature in case it is not given in the
! namelist input
!
! 4182 2019-08-21 14:37:54Z scharf
! Corrected "Former revisions" section
!
! 4148 2019-08-08 11:26:00Z suehring
! Bugfix in case of non grid-resolved buildings. Further, vertical grid spacing
! is now considered at the correct level.
! - change calculation of a_m and c_m
! - change calculation of u-values (use h_es in building array)
! - rename h_tr_... to h_t_...
! h_tr_em to h_t_wm
! h_tr_op to h_t_wall
! h_tr_w to h_t_es
! - rename h_ve to h_v
! - rename h_is to h_ms
! - inserted net_floor_area
! - inserted params_waste_heat_h, params_waste_heat_c from building database
! in building array
! - change calculation of q_waste_heat
! - bugfix in averaging mean indoor temperature
!
! 3759 2019-02-21 15:53:45Z suehring
! - Calculation of total building volume
! - Several bugfixes
! - Calculation of building height revised
!
! 3745 2019-02-15 18:57:56Z suehring
! - remove building_type from module
! - initialize parameters for each building individually instead of a bulk
! initializaion with identical building type for all
! - output revised
! - add missing _wp
! - some restructuring of variables in building data structure
!
! 3744 2019-02-15 18:38:58Z suehring
! Some interface calls moved to module_interface + cleanup
!
! 3469 2018-10-30 20:05:07Z kanani
! Initial revision (tlang, suehring, kanani, srissman)!
!
! Authors:
! --------
! @author Tobias Lang
! @author Jens Pfafferott
! @author Farah Kanani-Suehring
! @author Matthias Suehring
! @author Sascha Rißmann
!
!
! Description:
! ------------
!>
!> Module for Indoor Climate Model (ICM)
!> The module is based on the DIN EN ISO 13790 with simplified hour-based procedure.
!> This model is a equivalent circuit diagram of a three-point RC-model (5R1C).
!> This module differ between indoor-air temperature an average temperature of indoor surfaces which make it prossible to determine thermal comfort
!> the heat transfer between indoor and outdoor is simplified
!> @todo Replace window_area_per_facade by %frac(1,m) for window
!> @todo emissivity change for window blinds if solar_protection_on=1
!> @note Do we allow use of integer flags, or only logical flags? (concerns e.g. cooling_on, heating_on)
!> @note How to write indoor temperature output to pt array?
!>
!> @bug
!------------------------------------------------------------------------------!
MODULE indoor_model_mod
USE control_parameters, &
ONLY: initializing_actions
USE kinds
USE netcdf_data_input_mod, &
ONLY: building_id_f, building_type_f
USE palm_date_time_mod, &
ONLY: get_date_time, northward_equinox, seconds_per_hour, &
southward_equinox
USE surface_mod, &
ONLY: surf_usm_h, surf_usm_v
IMPLICIT NONE
!
!-- Define data structure for buidlings.
TYPE build
INTEGER(iwp) :: id !< building ID
INTEGER(iwp) :: kb_min !< lowest vertical index of a building
INTEGER(iwp) :: kb_max !< highest vertical index of a building
INTEGER(iwp) :: num_facades_per_building_h = 0 !< total number of horizontal facades elements
INTEGER(iwp) :: num_facades_per_building_h_l = 0 !< number of horizontal facade elements on local subdomain
INTEGER(iwp) :: num_facades_per_building_v = 0 !< total number of vertical facades elements
INTEGER(iwp) :: num_facades_per_building_v_l = 0 !< number of vertical facade elements on local subdomain
INTEGER(iwp) :: ventilation_int_loads !< [-] allocation of activity in the building
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: l_v !< index array linking surface-element orientation index
!< for vertical surfaces with building
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: m_h !< index array linking surface-element index for
!< horizontal surfaces with building
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: m_v !< index array linking surface-element index for
!< vertical surfaces with building
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: num_facade_h !< number of horizontal facade elements per buidling
!< and height level
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: num_facade_v !< number of vertical facades elements per buidling
!< and height level
LOGICAL :: on_pe = .FALSE. !< flag indicating whether a building with certain ID is on local subdomain
REAL(wp) :: air_change_high !< [1/h] air changes per time_utc_hour
REAL(wp) :: air_change_low !< [1/h] air changes per time_utc_hour
REAL(wp) :: area_facade !< [m2] area of total facade
REAL(wp) :: building_height !< building height
REAL(wp) :: eta_ve !< [-] heat recovery efficiency
REAL(wp) :: factor_a !< [-] Dynamic parameters specific effective surface according to Table 12; 2.5
!< (very light, light and medium), 3.0 (heavy), 3.5 (very heavy)
REAL(wp) :: factor_c !< [J/(m2 K)] Dynamic parameters inner heatstorage according to Table 12; 80000
!< (very light), 110000 (light), 165000 (medium), 260000 (heavy), 370000 (very heavy)
REAL(wp) :: f_c_win !< [-] shading factor
REAL(wp) :: g_value_win !< [-] SHGC factor
REAL(wp) :: h_es !< [W/(m2 K)] surface-related heat transfer coefficient between extern and surface
REAL(wp) :: height_cei_con !< [m] ceiling construction heigth
REAL(wp) :: height_storey !< [m] storey heigth
REAL(wp) :: params_waste_heat_c !< [-] anthropogenic heat outputs for cooling e.g. 1.33 for KKM with COP = 3
REAL(wp) :: params_waste_heat_h !< [-] anthropogenic heat outputs for heating e.g. 1 - 0.9 = 0.1 for combustion with eta = 0.9 or -2 for WP with COP = 3
REAL(wp) :: phi_c_max !< [W] Max. Cooling capacity (negative)
REAL(wp) :: phi_h_max !< [W] Max. Heating capacity (positive)
REAL(wp) :: q_c_max !< [W/m2] Max. Cooling heat flux per netto floor area (negative)
REAL(wp) :: q_h_max !< [W/m2] Max. Heating heat flux per netto floor area (positive)
REAL(wp) :: qint_high !< [W/m2] internal heat gains, option Database qint_0-23
REAL(wp) :: qint_low !< [W/m2] internal heat gains, option Database qint_0-23
REAL(wp) :: lambda_at !< [-] ratio internal surface/floor area chap. 7.2.2.2.
REAL(wp) :: lambda_layer3 !< [W/(m*K)] Thermal conductivity of the inner layer
REAL(wp) :: net_floor_area !< [m2] netto ground area
REAL(wp) :: s_layer3 !< [m] half thickness of the inner layer (layer_3)
REAL(wp) :: theta_int_c_set !< [degree_C] Max. Setpoint temperature (summer)
REAL(wp) :: theta_int_h_set !< [degree_C] Max. Setpoint temperature (winter)
REAL(wp) :: u_value_win !< [W/(m2*K)] transmittance
REAL(wp) :: vol_tot !< [m3] total building volume
REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in !< mean building indoor temperature, height dependent
REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in_l !< mean building indoor temperature on local subdomain, height dependent
REAL(wp), DIMENSION(:), ALLOCATABLE :: volume !< total building volume, height dependent
REAL(wp), DIMENSION(:), ALLOCATABLE :: vol_frac !< fraction of local on total building volume, height dependent
REAL(wp), DIMENSION(:), ALLOCATABLE :: vpf !< building volume volume per facade element, height dependent
END TYPE build
TYPE(build), DIMENSION(:), ALLOCATABLE :: buildings !< building array
INTEGER(iwp) :: num_build !< total number of buildings in domain
!
!-- Declare all global variables within the module
INTEGER(iwp) :: cooling_on !< Indoor cooling flag (0=off, 1=on)
INTEGER(iwp) :: heating_on !< Indoor heating flag (0=off, 1=on)
INTEGER(iwp) :: solar_protection_off !< Solar protection off
INTEGER(iwp) :: solar_protection_on !< Solar protection on
REAL(wp), PARAMETER :: dt_indoor = 3600.0_wp !< [s] time interval for indoor-model application, fixed to 3600.0 due to model requirements
REAL(wp) :: a_m !< [m2] the effective mass-related area
REAL(wp) :: air_change !< [1/h] Airflow
REAL(wp) :: c_m !< [J/K] internal heat storage capacity
REAL(wp) :: facade_element_area !< [m2_facade] building surface facade
REAL(wp) :: floor_area_per_facade !< [m2/m2] floor area per facade area
REAL(wp) :: h_t_1 !< [W/K] Heat transfer coefficient auxiliary variable 1
REAL(wp) :: h_t_2 !< [W/K] Heat transfer coefficient auxiliary variable 2
REAL(wp) :: h_t_3 !< [W/K] Heat transfer coefficient auxiliary variable 3
REAL(wp) :: h_t_wm !< [W/K] Heat transfer coefficient of the emmision (got with h_t_ms the thermal mass)
REAL(wp) :: h_t_is !< [W/K] thermal coupling conductance (Thermischer Kopplungsleitwert)
REAL(wp) :: h_t_ms !< [W/K] Heat transfer conductance term (got with h_t_wm the thermal mass)
REAL(wp) :: h_t_wall !< [W/K] heat transfer coefficient of opaque components (assumption: got all
!< thermal mass) contains of h_t_wm and h_t_ms
REAL(wp) :: h_t_es !< [W/K] heat transfer coefficient of doors, windows, curtain walls and
!< glazed walls (assumption: thermal mass=0)
REAL(wp) :: h_v !< [W/K] heat transfer of ventilation
REAL(wp) :: indoor_volume_per_facade !< [m3] indoor air volume per facade element
REAL(wp) :: initial_indoor_temperature = 293.15 !< [K] initial indoor temperature (namelist parameter)
REAL(wp) :: net_sw_in !< [W/m2] net short-wave radiation
REAL(wp) :: phi_hc_nd !< [W] heating demand and/or cooling demand
REAL(wp) :: phi_hc_nd_10 !< [W] heating demand and/or cooling demand for heating or cooling
REAL(wp) :: phi_hc_nd_ac !< [W] actual heating demand and/or cooling demand
REAL(wp) :: phi_hc_nd_un !< [W] unlimited heating demand and/or cooling demand which is necessary to
!< reach the demanded required temperature (heating is positive,
!< cooling is negative)
REAL(wp) :: phi_ia !< [W] internal air load = internal loads * 0.5, Eq. (C.1)
REAL(wp) :: phi_m !< [W] mass specific thermal load (internal and external)
REAL(wp) :: phi_mtot !< [W] total mass specific thermal load (internal and external)
REAL(wp) :: phi_sol !< [W] solar loads
REAL(wp) :: phi_st !< [W] mass specific thermal load implied non thermal mass
REAL(wp) :: q_wall_win !< [W/m2]heat flux from indoor into wall/window
REAL(wp) :: q_waste_heat !< [W/m2]waste heat, sum of waste heat over the roof to Palm
REAL(wp) :: q_c_m !< [W] Energy of thermal storage mass specific thermal load for internal
!< and external heatsources (for energy bilanz)
REAL(wp) :: q_c_st !< [W] Energy of thermal storage mass specific thermal load implied non thermal mass (for energy bilanz)
REAL(wp) :: q_int !< [W] Energy of internal air load (for energy bilanz)
REAL(wp) :: q_sol !< [W] Energy of solar (for energy bilanz)
REAL(wp) :: q_trans !< [W] Energy of transmission (for energy bilanz)
REAL(wp) :: q_vent !< [W] Energy of ventilation (for energy bilanz)
REAL(wp) :: schedule_d !< [-] activation for internal loads (low or high + low)
REAL(wp) :: skip_time_do_indoor = 0.0_wp !< [s] Indoor model is not called before this time
REAL(wp) :: theta_air !< [degree_C] air temperature of the RC-node
REAL(wp) :: theta_air_0 !< [degree_C] air temperature of the RC-node in equilibrium
REAL(wp) :: theta_air_10 !< [degree_C] air temperature of the RC-node from a heating capacity
!< of 10 W/m2
REAL(wp) :: theta_air_ac !< [degree_C] actual room temperature after heating/cooling
REAL(wp) :: theta_air_set !< [degree_C] Setpoint_temperature for the room
REAL(wp) :: theta_m !< [degree_C} inner temperature of the RC-node
REAL(wp) :: theta_m_t !< [degree_C] (Fictive) component temperature timestep
REAL(wp) :: theta_m_t_prev !< [degree_C] (Fictive) component temperature previous timestep (do not change)
REAL(wp) :: theta_op !< [degree_C] operative temperature
REAL(wp) :: theta_s !< [degree_C] surface temperature of the RC-node
REAL(wp) :: time_indoor = 0.0_wp !< [s] time since last call of indoor model
REAL(wp) :: total_area !< [m2] area of all surfaces pointing to zone
REAL(wp) :: window_area_per_facade !< [m2] window area per facade element
REAL(wp), PARAMETER :: h_is = 3.45_wp !< [W/(m2 K)] surface-related heat transfer coefficient between
!< surface and air (chap. 7.2.2.2)
REAL(wp), PARAMETER :: h_ms = 9.1_wp !< [W/(m2 K)] surface-related heat transfer coefficient between component and surface (chap. 12.2.2)
REAL(wp), PARAMETER :: params_f_f = 0.3_wp !< [-] frame ratio chap. 8.3.2.1.1 for buildings with mostly cooling 2.0_wp
REAL(wp), PARAMETER :: params_f_w = 0.9_wp !< [-] correction factor (fuer nicht senkrechten Stahlungseinfall
!< DIN 4108-2 chap.8, (hier konstant, keine Winkelabhängigkeit)
REAL(wp), PARAMETER :: params_f_win = 0.5_wp !< [-] proportion of window area, Database A_win aus
!< Datenbank 27 window_area_per_facade_percent
REAL(wp), PARAMETER :: params_solar_protection = 300.0_wp !< [W/m2] chap. G.5.3.1 sun protection closed, if the radiation
!< on facade exceeds this value
!
!-- Definition of seasonal parameters, summer and winter, for different building types
REAL(wp), DIMENSION(0:1,1:7) :: summer_pars = RESHAPE( (/ & ! building_type 1
0.5_wp, & ! basical airflow without occupancy of the room
2.0_wp, & ! additional airflow depend of occupancy of the room
0.5_wp, & ! building_type 2: basical airflow without occupancy of the room
2.0_wp, & ! additional airflow depend of occupancy of the room
0.8_wp, & ! building_type 3: basical airflow without occupancy of the room
2.0_wp, & ! additional airflow depend of occupancy of the room
0.1_wp, & ! building_type 4: basical airflow without occupancy of the room
1.5_wp, & ! additional airflow depend of occupancy of the room
0.1_wp, & ! building_type 5: basical airflow without occupancy of the room
1.5_wp, & ! additional airflow depend of occupancy of the room
0.1_wp, & ! building_type 6: basical airflow without occupancy of the room
1.5_wp, & ! additional airflow depend of occupancy of the room
0.1_wp, & ! building_type 7: basical airflow without occupancy of the room
1.5_wp & ! additional airflow depend of occupancy of the room
/), (/ 2, 7 /) )
REAL(wp), DIMENSION(0:1,1:7) :: winter_pars = RESHAPE( (/ & ! building_type 1
0.1_wp, & ! basical airflow without occupancy of the room
0.5_wp, & ! additional airflow depend of occupancy of the room
0.1_wp, & ! building_type 2: basical airflow without occupancy of the room
0.5_wp, & ! additional airflow depend of occupancy of the room
0.1_wp, & ! building_type 3: basical airflow without occupancy of the room
0.5_wp, & ! additional airflow depend of occupancy of the room
0.1_wp, & ! building_type 4: basical airflow without occupancy of the room
1.5_wp, & ! additional airflow depend of occupancy of the room
0.1_wp, & ! building_type 5: basical airflow without occupancy of the room
1.5_wp, & ! additional airflow depend of occupancy of the room
0.1_wp, & ! building_type 6: basical airflow without occupancy of the room
1.5_wp, & ! additional airflow depend of occupancy of the room
0.1_wp, & ! building_type 7: basical airflow without occupancy of the room
1.5_wp & ! additional airflow depend of occupancy of the room
/), (/ 2, 7 /) )
SAVE
PRIVATE
!
!-- Add INTERFACES that must be available to other modules
PUBLIC im_init, im_main_heatcool, im_parin, im_define_netcdf_grid, &
im_check_data_output, im_data_output_3d, im_check_parameters
!
!-- Add VARIABLES that must be available to other modules
PUBLIC dt_indoor, skip_time_do_indoor, time_indoor
!
!-- PALM interfaces:
!-- Data output checks for 2D/3D data to be done in check_parameters
INTERFACE im_check_data_output
MODULE PROCEDURE im_check_data_output
END INTERFACE im_check_data_output
!
!-- Input parameter checks to be done in check_parameters
INTERFACE im_check_parameters
MODULE PROCEDURE im_check_parameters
END INTERFACE im_check_parameters
!
!-- Data output of 3D data
INTERFACE im_data_output_3d
MODULE PROCEDURE im_data_output_3d
END INTERFACE im_data_output_3d
!
!-- Definition of data output quantities
INTERFACE im_define_netcdf_grid
MODULE PROCEDURE im_define_netcdf_grid
END INTERFACE im_define_netcdf_grid
!
! !
! !-- Output of information to the header file
! INTERFACE im_header
! MODULE PROCEDURE im_header
! END INTERFACE im_header
!
!-- Calculations for indoor temperatures
INTERFACE im_calc_temperatures
MODULE PROCEDURE im_calc_temperatures
END INTERFACE im_calc_temperatures
!
!-- Initialization actions
INTERFACE im_init
MODULE PROCEDURE im_init
END INTERFACE im_init
!
!-- Main part of indoor model
INTERFACE im_main_heatcool
MODULE PROCEDURE im_main_heatcool
END INTERFACE im_main_heatcool
!
!-- Reading of NAMELIST parameters
INTERFACE im_parin
MODULE PROCEDURE im_parin
END INTERFACE im_parin
CONTAINS
!------------------------------------------------------------------------------!
! Description:
! ------------
!< Calculation of the air temperatures and mean radiation temperature
!< This is basis for the operative temperature
!< Based on a Crank-Nicholson scheme with a timestep of a hour
!------------------------------------------------------------------------------!
SUBROUTINE im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, &
near_facade_temperature, phi_hc_nd_dummy )
USE arrays_3d, &
ONLY: pt
IMPLICIT NONE
INTEGER(iwp) :: i
INTEGER(iwp) :: j
INTEGER(iwp) :: k
REAL(wp) :: indoor_wall_window_temperature !< weighted temperature of innermost wall/window layer
REAL(wp) :: near_facade_temperature
REAL(wp) :: phi_hc_nd_dummy
!
!-- Calculation of total mass specific thermal load (internal and external)
phi_mtot = ( phi_m + h_t_wm * indoor_wall_window_temperature &
+ h_t_3 * ( phi_st + h_t_es * pt(k,j,i) &
+ h_t_1 * &
( ( ( phi_ia + phi_hc_nd_dummy ) / h_v ) &
+ near_facade_temperature ) &
) / h_t_2 &
) !< [degree_C] Eq. (C.5)
!
!-- Calculation of component temperature at factual timestep
theta_m_t = ( ( theta_m_t_prev &
* ( ( c_m / 3600.0_wp ) - 0.5_wp * ( h_t_3 + h_t_wm ) ) &
+ phi_mtot &
) &
/ ( ( c_m / 3600.0_wp ) + 0.5_wp * ( h_t_3 + h_t_wm ) ) &
) !< [degree_C] Eq. (C.4)
!
!-- Calculation of mean inner temperature for the RC-node in actual timestep
theta_m = ( theta_m_t + theta_m_t_prev ) * 0.5_wp !< [degree_C] Eq. (C.9)
!
!-- Calculation of mean surface temperature of the RC-node in actual timestep
theta_s = ( ( h_t_ms * theta_m + phi_st + h_t_es * pt(k,j,i) &
+ h_t_1 * ( near_facade_temperature &
+ ( phi_ia + phi_hc_nd_dummy ) / h_v ) &
) &
/ ( h_t_ms + h_t_es + h_t_1 ) &
) !< [degree_C] Eq. (C.10)
!
!-- Calculation of the air temperature of the RC-node
theta_air = ( h_t_is * theta_s + h_v * near_facade_temperature &
+ phi_ia + phi_hc_nd_dummy ) / ( h_t_is + h_v ) !< [degree_C] Eq. (C.11)
END SUBROUTINE im_calc_temperatures
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Initialization of the indoor model.
!> Static information are calculated here, e.g. building parameters and
!> geometrical information, everything that doesn't change in time.
!
!-- Input values
!-- Input datas from Palm, M4
! i_global --> net_sw_in !< global radiation [W/m2]
! theta_e --> pt(k,j,i) !< undisturbed outside temperature, 1. PALM volume, for windows
! theta_sup = theta_f --> surf_usm_h%pt_10cm(m)
! surf_usm_v(l)%pt_10cm(m) !< Air temperature, facade near (10cm) air temperature from 1. Palm volume
! theta_node --> t_wall_h(nzt_wall,m)
! t_wall_v(l)%t(nzt_wall,m) !< Temperature of innermost wall layer, for opaque wall
!------------------------------------------------------------------------------!
SUBROUTINE im_init
USE arrays_3d, &
ONLY: dzw
USE control_parameters, &
ONLY: message_string, time_since_reference_point
USE indices, &
ONLY: nxl, nxr, nyn, nys, nzb, nzt, wall_flags_total_0
USE grid_variables, &
ONLY: dx, dy
USE pegrid
USE surface_mod, &
ONLY: surf_usm_h, surf_usm_v
USE urban_surface_mod, &
ONLY: building_pars, building_type
IMPLICIT NONE
INTEGER(iwp) :: bt !< local building type
INTEGER(iwp) :: day_of_year !< day of the year
INTEGER(iwp) :: i !< running index along x-direction
INTEGER(iwp) :: j !< running index along y-direction
INTEGER(iwp) :: k !< running index along z-direction
INTEGER(iwp) :: l !< running index for surface-element orientation
INTEGER(iwp) :: m !< running index surface elements
INTEGER(iwp) :: n !< building index
INTEGER(iwp) :: nb !< building index
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids !< building IDs on entire model domain
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_final !< building IDs on entire model domain,
!< multiple occurences are sorted out
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_final_tmp !< temporary array used for resizing
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_l !< building IDs on local subdomain
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_l_tmp !< temporary array used to resize array of building IDs
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: displace_dum !< displacements of start addresses, used for MPI_ALLGATHERV
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: k_max_l !< highest vertical index of a building on subdomain
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: k_min_l !< lowest vertical index of a building on subdomain
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: n_fa !< counting array
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: num_facades_h !< dummy array used for summing-up total number of
!< horizontal facade elements
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: num_facades_v !< dummy array used for summing-up total number of
!< vertical facade elements
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: receive_dum_h !< dummy array used for MPI_ALLREDUCE
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: receive_dum_v !< dummy array used for MPI_ALLREDUCE
INTEGER(iwp), DIMENSION(0:numprocs-1) :: num_buildings !< number of buildings with different ID on entire model domain
INTEGER(iwp), DIMENSION(0:numprocs-1) :: num_buildings_l !< number of buildings with different ID on local subdomain
REAL(wp) :: u_tmp !< dummy for temporary calculation of u-value without h_is
REAL(wp) :: du_tmp !< 1/u_tmp
REAL(wp) :: du_win_tmp !< 1/building(nb)%u_value_win
REAL(wp) :: facade_area_v !< dummy to compute the total facade area from vertical walls
REAL(wp), DIMENSION(:), ALLOCATABLE :: volume !< total building volume at each discrete height level
REAL(wp), DIMENSION(:), ALLOCATABLE :: volume_l !< total building volume at each discrete height level,
!< on local subdomain
CALL location_message( 'initializing indoor model', 'start' )
!
!-- Initializing of indoor model is only possible if buildings can be
!-- distinguished by their IDs.
IF ( .NOT. building_id_f%from_file ) THEN
message_string = 'Indoor model requires information about building_id'
CALL message( 'im_init', 'PA0999', 1, 2, 0, 6, 0 )
ENDIF
!
!-- Determine number of different building IDs on local subdomain.
num_buildings_l = 0
num_buildings = 0
ALLOCATE( build_ids_l(1) )
DO i = nxl, nxr
DO j = nys, nyn
IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN
IF ( num_buildings_l(myid) > 0 ) THEN
IF ( ANY( building_id_f%var(j,i) .EQ. build_ids_l ) ) THEN
CYCLE
ELSE
num_buildings_l(myid) = num_buildings_l(myid) + 1
!
!-- Resize array with different local building ids
ALLOCATE( build_ids_l_tmp(1:SIZE(build_ids_l)) )
build_ids_l_tmp = build_ids_l
DEALLOCATE( build_ids_l )
ALLOCATE( build_ids_l(1:num_buildings_l(myid)) )
build_ids_l(1:num_buildings_l(myid)-1) = &
build_ids_l_tmp(1:num_buildings_l(myid)-1)
build_ids_l(num_buildings_l(myid)) = building_id_f%var(j,i)
DEALLOCATE( build_ids_l_tmp )
ENDIF
!
!-- First occuring building id on PE
ELSE
num_buildings_l(myid) = num_buildings_l(myid) + 1
build_ids_l(1) = building_id_f%var(j,i)
ENDIF
ENDIF
ENDDO
ENDDO
!
!-- Determine number of building IDs for the entire domain. (Note, building IDs
!-- can appear multiple times as buildings might be distributed over several
!-- PEs.)
#if defined( __parallel )
CALL MPI_ALLREDUCE( num_buildings_l, num_buildings, numprocs, &
MPI_INTEGER, MPI_SUM, comm2d, ierr )
#else
num_buildings = num_buildings_l
#endif
ALLOCATE( build_ids(1:SUM(num_buildings)) )
!
!-- Gather building IDs. Therefore, first, determine displacements used
!-- required for MPI_GATHERV call.
ALLOCATE( displace_dum(0:numprocs-1) )
displace_dum(0) = 0
DO i = 1, numprocs-1
displace_dum(i) = displace_dum(i-1) + num_buildings(i-1)
ENDDO
#if defined( __parallel )
CALL MPI_ALLGATHERV( build_ids_l(1:num_buildings_l(myid)), &
num_buildings(myid), &
MPI_INTEGER, &
build_ids, &
num_buildings, &
displace_dum, &
MPI_INTEGER, &
comm2d, ierr )
DEALLOCATE( displace_dum )
#else
build_ids = build_ids_l
#endif
!
!-- Note: in parallel mode, building IDs can occur mutliple times, as
!-- each PE has send its own ids. Therefore, sort out building IDs which
!-- appear multiple times.
num_build = 0
DO n = 1, SIZE(build_ids)
IF ( ALLOCATED(build_ids_final) ) THEN
IF ( ANY( build_ids(n) == build_ids_final ) ) THEN
CYCLE
ELSE
num_build = num_build + 1
!
!-- Resize
ALLOCATE( build_ids_final_tmp(1:num_build) )
build_ids_final_tmp(1:num_build-1) = build_ids_final(1:num_build-1)
DEALLOCATE( build_ids_final )
ALLOCATE( build_ids_final(1:num_build) )
build_ids_final(1:num_build-1) = build_ids_final_tmp(1:num_build-1)
build_ids_final(num_build) = build_ids(n)
DEALLOCATE( build_ids_final_tmp )
ENDIF
ELSE
num_build = num_build + 1
ALLOCATE( build_ids_final(1:num_build) )
build_ids_final(num_build) = build_ids(n)
ENDIF
ENDDO
!
!-- Allocate building-data structure array. Note, this is a global array
!-- and all building IDs on domain are known by each PE. Further attributes,
!-- e.g. height-dependent arrays, however, are only allocated on PEs where
!-- the respective building is present (in order to reduce memory demands).
ALLOCATE( buildings(1:num_build) )
!
!-- Store building IDs and check if building with certain ID is present on
!-- subdomain.
DO nb = 1, num_build
buildings(nb)%id = build_ids_final(nb)
IF ( ANY( building_id_f%var(nys:nyn,nxl:nxr) == buildings(nb)%id ) ) &
buildings(nb)%on_pe = .TRUE.
ENDDO
!
!-- Determine the maximum vertical dimension occupied by each building.
ALLOCATE( k_min_l(1:num_build) )
ALLOCATE( k_max_l(1:num_build) )
k_min_l = nzt + 1
k_max_l = 0
DO i = nxl, nxr
DO j = nys, nyn
IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN
nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), &
DIM = 1 )
DO k = nzb, nzt+1
!
!-- Check if grid point belongs to a building.
IF ( BTEST( wall_flags_total_0(k,j,i), 6 ) ) THEN
k_min_l(nb) = MIN( k_min_l(nb), k )
k_max_l(nb) = MAX( k_max_l(nb), k )
ENDIF
ENDDO
ENDIF
ENDDO
ENDDO
#if defined( __parallel )
CALL MPI_ALLREDUCE( k_min_l(:), buildings(:)%kb_min, num_build, &
MPI_INTEGER, MPI_MIN, comm2d, ierr )
CALL MPI_ALLREDUCE( k_max_l(:), buildings(:)%kb_max, num_build, &
MPI_INTEGER, MPI_MAX, comm2d, ierr )
#else
buildings(:)%kb_min = k_min_l(:)
buildings(:)%kb_max = k_max_l(:)
#endif
DEALLOCATE( k_min_l )
DEALLOCATE( k_max_l )
!
!-- Calculate building height.
DO nb = 1, num_build
buildings(nb)%building_height = 0.0_wp
DO k = buildings(nb)%kb_min, buildings(nb)%kb_max
buildings(nb)%building_height = buildings(nb)%building_height &
+ dzw(k+1)
ENDDO
ENDDO
!
!-- Calculate building volume
DO nb = 1, num_build
!
!-- Allocate temporary array for summing-up building volume
ALLOCATE( volume(buildings(nb)%kb_min:buildings(nb)%kb_max) )
ALLOCATE( volume_l(buildings(nb)%kb_min:buildings(nb)%kb_max) )
volume = 0.0_wp
volume_l = 0.0_wp
!
!-- Calculate building volume per height level on each PE where
!-- these building is present.
IF ( buildings(nb)%on_pe ) THEN
ALLOCATE( buildings(nb)%volume(buildings(nb)%kb_min:buildings(nb)%kb_max) )
ALLOCATE( buildings(nb)%vol_frac(buildings(nb)%kb_min:buildings(nb)%kb_max) )
buildings(nb)%volume = 0.0_wp
buildings(nb)%vol_frac = 0.0_wp
IF ( ANY( building_id_f%var(nys:nyn,nxl:nxr) == buildings(nb)%id ) ) &
THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = buildings(nb)%kb_min, buildings(nb)%kb_max
IF ( building_id_f%var(j,i) /= building_id_f%fill ) &
volume_l(k) = volume_l(k) + dx * dy * dzw(k+1)
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
!
!-- Sum-up building volume from all subdomains
#if defined( __parallel )
CALL MPI_ALLREDUCE( volume_l, volume, SIZE(volume), MPI_REAL, MPI_SUM, &
comm2d, ierr )
#else
volume = volume_l
#endif
!
!-- Save total building volume as well as local fraction on volume on
!-- building data structure.
IF ( ALLOCATED( buildings(nb)%volume ) ) buildings(nb)%volume = volume
!
!-- Determine fraction of local on total building volume
IF ( buildings(nb)%on_pe ) buildings(nb)%vol_frac = volume_l / volume
!
!-- Calculate total building volume
IF ( ALLOCATED( buildings(nb)%volume ) ) &
buildings(nb)%vol_tot = SUM( buildings(nb)%volume )
DEALLOCATE( volume )
DEALLOCATE( volume_l )
ENDDO
!
!-- Allocate arrays for indoor temperature.
DO nb = 1, num_build
IF ( buildings(nb)%on_pe ) THEN
ALLOCATE( buildings(nb)%t_in(buildings(nb)%kb_min:buildings(nb)%kb_max) )
ALLOCATE( buildings(nb)%t_in_l(buildings(nb)%kb_min:buildings(nb)%kb_max) )
buildings(nb)%t_in = 0.0_wp
buildings(nb)%t_in_l = 0.0_wp
ENDIF
ENDDO
!
!-- Allocate arrays for number of facades per height level. Distinguish between
!-- horizontal and vertical facades.
DO nb = 1, num_build
IF ( buildings(nb)%on_pe ) THEN
ALLOCATE( buildings(nb)%num_facade_h(buildings(nb)%kb_min:buildings(nb)%kb_max) )
ALLOCATE( buildings(nb)%num_facade_v(buildings(nb)%kb_min:buildings(nb)%kb_max) )
buildings(nb)%num_facade_h = 0
buildings(nb)%num_facade_v = 0
ENDIF
ENDDO
!
!-- Determine number of facade elements per building on local subdomain.
!-- Distinguish between horizontal and vertical facade elements.
!
!-- Horizontal facades
buildings(:)%num_facades_per_building_h_l = 0
DO m = 1, surf_usm_h%ns
!
!-- For the current facade element determine corresponding building index.
!-- First, obtain j,j,k indices of the building. Please note the
!-- offset between facade/surface element and building location (for
!-- horizontal surface elements the horizontal offsets are zero).
i = surf_usm_h%i(m) + surf_usm_h%ioff
j = surf_usm_h%j(m) + surf_usm_h%joff
k = surf_usm_h%k(m) + surf_usm_h%koff
!
!-- Determine building index and check whether building is on PE
nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), DIM = 1 )
IF ( buildings(nb)%on_pe ) THEN
!
!-- Count number of facade elements at each height level.
buildings(nb)%num_facade_h(k) = buildings(nb)%num_facade_h(k) + 1
!
!-- Moreover, sum up number of local facade elements per building.
buildings(nb)%num_facades_per_building_h_l = &
buildings(nb)%num_facades_per_building_h_l + 1
ENDIF
ENDDO
!
!-- Vertical facades
buildings(:)%num_facades_per_building_v_l = 0
DO l = 0, 3
DO m = 1, surf_usm_v(l)%ns
!
!-- For the current facade element determine corresponding building index.
!-- First, obtain j,j,k indices of the building. Please note the
!-- offset between facade/surface element and building location (for
!-- vertical surface elements the vertical offsets are zero).
i = surf_usm_v(l)%i(m) + surf_usm_v(l)%ioff
j = surf_usm_v(l)%j(m) + surf_usm_v(l)%joff
k = surf_usm_v(l)%k(m) + surf_usm_v(l)%koff
nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), &
DIM = 1 )
IF ( buildings(nb)%on_pe ) THEN
buildings(nb)%num_facade_v(k) = buildings(nb)%num_facade_v(k) + 1
buildings(nb)%num_facades_per_building_v_l = &
buildings(nb)%num_facades_per_building_v_l + 1
ENDIF
ENDDO
ENDDO
!
!-- Determine total number of facade elements per building and assign number to
!-- building data type.
DO nb = 1, num_build
!
!-- Allocate dummy array used for summing-up facade elements.
!-- Please note, dummy arguments are necessary as building-date type
!-- arrays are not necessarily allocated on all PEs.
ALLOCATE( num_facades_h(buildings(nb)%kb_min:buildings(nb)%kb_max) )
ALLOCATE( num_facades_v(buildings(nb)%kb_min:buildings(nb)%kb_max) )
ALLOCATE( receive_dum_h(buildings(nb)%kb_min:buildings(nb)%kb_max) )
ALLOCATE( receive_dum_v(buildings(nb)%kb_min:buildings(nb)%kb_max) )
num_facades_h = 0
num_facades_v = 0
receive_dum_h = 0
receive_dum_v = 0
IF ( buildings(nb)%on_pe ) THEN
num_facades_h = buildings(nb)%num_facade_h
num_facades_v = buildings(nb)%num_facade_v
ENDIF
#if defined( __parallel )
CALL MPI_ALLREDUCE( num_facades_h, &
receive_dum_h, &
buildings(nb)%kb_max - buildings(nb)%kb_min + 1, &
MPI_INTEGER, &
MPI_SUM, &
comm2d, &
ierr )
CALL MPI_ALLREDUCE( num_facades_v, &
receive_dum_v, &
buildings(nb)%kb_max - buildings(nb)%kb_min + 1, &
MPI_INTEGER, &
MPI_SUM, &
comm2d, &
ierr )
IF ( ALLOCATED( buildings(nb)%num_facade_h ) ) &
buildings(nb)%num_facade_h = receive_dum_h
IF ( ALLOCATED( buildings(nb)%num_facade_v ) ) &
buildings(nb)%num_facade_v = receive_dum_v
#else
buildings(nb)%num_facade_h = num_facades_h
buildings(nb)%num_facade_v = num_facades_v
#endif
!
!-- Deallocate dummy arrays
DEALLOCATE( num_facades_h )
DEALLOCATE( num_facades_v )
DEALLOCATE( receive_dum_h )
DEALLOCATE( receive_dum_v )
!
!-- Allocate index arrays which link facade elements with surface-data type.
!-- Please note, no height levels are considered here (information is stored
!-- in surface-data type itself).
IF ( buildings(nb)%on_pe ) THEN
!
!-- Determine number of facade elements per building.
buildings(nb)%num_facades_per_building_h = SUM( buildings(nb)%num_facade_h )
buildings(nb)%num_facades_per_building_v = SUM( buildings(nb)%num_facade_v )
!
!-- Allocate arrays which link the building with the horizontal and vertical
!-- urban-type surfaces. Please note, linking arrays are allocated over all
!-- facade elements, which is required in case a building is located at the
!-- subdomain boundaries, where the building and the corresponding surface
!-- elements are located on different subdomains.
ALLOCATE( buildings(nb)%m_h(1:buildings(nb)%num_facades_per_building_h_l) )
ALLOCATE( buildings(nb)%l_v(1:buildings(nb)%num_facades_per_building_v_l) )
ALLOCATE( buildings(nb)%m_v(1:buildings(nb)%num_facades_per_building_v_l) )
ENDIF
!
!-- Determine volume per facade element (vpf)
IF ( buildings(nb)%on_pe ) THEN
ALLOCATE( buildings(nb)%vpf(buildings(nb)%kb_min:buildings(nb)%kb_max) )
buildings(nb)%vpf = 0.0_wp
DO k = buildings(nb)%kb_min, buildings(nb)%kb_max
!
!-- In order to avoid division by zero, check if the number of facade
!-- elements is /= 0. This can e.g. happen if a building is embedded
!-- in higher terrain and at a given k-level neither horizontal nor
!-- vertical facade elements are located.
IF ( buildings(nb)%num_facade_h(k) &
+ buildings(nb)%num_facade_v(k) > 0 ) THEN
buildings(nb)%vpf(k) = buildings(nb)%volume(k) / &
REAL( buildings(nb)%num_facade_h(k) + &
buildings(nb)%num_facade_v(k), KIND = wp )
ENDIF
ENDDO
ENDIF
!
!-- Determine volume per total facade area (vpf). For the horizontal facade
!-- area num_facades_per_building_h can be taken, multiplied with dx*dy.
!-- However, due to grid stretching, vertical facade elements must be
!-- summed-up vertically. Please note, if dx /= dy, an error is made!
IF ( buildings(nb)%on_pe ) THEN
facade_area_v = 0.0_wp
DO k = buildings(nb)%kb_min, buildings(nb)%kb_max
facade_area_v = facade_area_v + buildings(nb)%num_facade_v(k) &
* dzw(k+1) * dx
ENDDO
buildings(nb)%vpf = buildings(nb)%vol_tot / &
( buildings(nb)%num_facades_per_building_h * dx * dy + &
facade_area_v )
ENDIF
ENDDO
!
!-- Link facade elements with surface data type.
!-- Allocate array for counting.
ALLOCATE( n_fa(1:num_build) )
n_fa = 1
DO m = 1, surf_usm_h%ns
i = surf_usm_h%i(m) + surf_usm_h%ioff
j = surf_usm_h%j(m) + surf_usm_h%joff
nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), DIM = 1 )
IF ( buildings(nb)%on_pe ) THEN
buildings(nb)%m_h(n_fa(nb)) = m
n_fa(nb) = n_fa(nb) + 1
ENDIF
ENDDO
n_fa = 1
DO l = 0, 3
DO m = 1, surf_usm_v(l)%ns
i = surf_usm_v(l)%i(m) + surf_usm_v(l)%ioff
j = surf_usm_v(l)%j(m) + surf_usm_v(l)%joff
nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), DIM = 1 )
IF ( buildings(nb)%on_pe ) THEN
buildings(nb)%l_v(n_fa(nb)) = l
buildings(nb)%m_v(n_fa(nb)) = m
n_fa(nb) = n_fa(nb) + 1
ENDIF
ENDDO
ENDDO
DEALLOCATE( n_fa )
!
!-- Initialize building parameters, first by mean building type. Note,
!-- in this case all buildings have the same type.
!-- In a second step initialize with building tpyes from static input file,
!-- where building types can be individual for each building.
buildings(:)%lambda_layer3 = building_pars(31,building_type)
buildings(:)%s_layer3 = building_pars(44,building_type)
buildings(:)%f_c_win = building_pars(119,building_type)
buildings(:)%g_value_win = building_pars(120,building_type)
buildings(:)%u_value_win = building_pars(121,building_type)
buildings(:)%eta_ve = building_pars(124,building_type)
buildings(:)%factor_a = building_pars(125,building_type)
buildings(:)%factor_c = building_pars(126,building_type)
buildings(:)%lambda_at = building_pars(127,building_type)
buildings(:)%theta_int_h_set = building_pars(13,building_type)
buildings(:)%theta_int_c_set = building_pars(12,building_type)
buildings(:)%q_h_max = building_pars(128,building_type)
buildings(:)%q_c_max = building_pars(129,building_type)
buildings(:)%qint_high = building_pars(130,building_type)
buildings(:)%qint_low = building_pars(131,building_type)
buildings(:)%height_storey = building_pars(132,building_type)
buildings(:)%height_cei_con = building_pars(133,building_type)
buildings(:)%params_waste_heat_h = building_pars(134,building_type)
buildings(:)%params_waste_heat_c = building_pars(135,building_type)
!
!-- Initialize seasonal dependent parameters, depending on day of the year.
!-- First, calculated day of the year.
CALL get_date_time( time_since_reference_point, day_of_year = day_of_year )
!
!-- Summer is defined in between northward- and southward equinox.
IF ( day_of_year >= northward_equinox .AND. &
day_of_year <= southward_equinox ) THEN
buildings(:)%air_change_low = summer_pars(0,building_type)
buildings(:)%air_change_high = summer_pars(1,building_type)
ELSE
buildings(:)%air_change_low = winter_pars(0,building_type)
buildings(:)%air_change_high = winter_pars(1,building_type)
ENDIF
!
!-- Initialize ventilaation load. Please note, building types > 7 are actually
!-- not allowed (check already in urban_surface_mod and netcdf_data_input_mod.
!-- However, the building data base may be later extended.
IF ( building_type == 1 .OR. building_type == 2 .OR. &
building_type == 3 .OR. building_type == 10 .OR. &
building_type == 11 .OR. building_type == 12 ) THEN
buildings(:)%ventilation_int_loads = 1
!
!-- Office, building with large windows
ELSEIF ( building_type == 4 .OR. building_type == 5 .OR. &
building_type == 6 .OR. building_type == 7 .OR. &
building_type == 8 .OR. building_type == 9) THEN
buildings(:)%ventilation_int_loads = 2
!
!-- Industry, hospitals
ELSEIF ( building_type == 13 .OR. building_type == 14 .OR. &
building_type == 15 .OR. building_type == 16 .OR. &
building_type == 17 .OR. building_type == 18 ) THEN
buildings(:)%ventilation_int_loads = 3
ENDIF
!
!-- Initialization of building parameters - level 2
IF ( building_type_f%from_file ) THEN
DO i = nxl, nxr
DO j = nys, nyn
IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN
nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), &
DIM = 1 )
bt = building_type_f%var(j,i)
buildings(nb)%lambda_layer3 = building_pars(31,bt)
buildings(nb)%s_layer3 = building_pars(44,bt)
buildings(nb)%f_c_win = building_pars(119,bt)
buildings(nb)%g_value_win = building_pars(120,bt)
buildings(nb)%u_value_win = building_pars(121,bt)
buildings(nb)%eta_ve = building_pars(124,bt)
buildings(nb)%factor_a = building_pars(125,bt)
buildings(nb)%factor_c = building_pars(126,bt)
buildings(nb)%lambda_at = building_pars(127,bt)
buildings(nb)%theta_int_h_set = building_pars(13,bt)
buildings(nb)%theta_int_c_set = building_pars(12,bt)
buildings(nb)%q_h_max = building_pars(128,bt)
buildings(nb)%q_c_max = building_pars(129,bt)
buildings(nb)%qint_high = building_pars(130,bt)
buildings(nb)%qint_low = building_pars(131,bt)
buildings(nb)%height_storey = building_pars(132,bt)
buildings(nb)%height_cei_con = building_pars(133,bt)
buildings(nb)%params_waste_heat_h = building_pars(134,bt)
buildings(nb)%params_waste_heat_c = building_pars(135,bt)
IF ( day_of_year >= northward_equinox .AND. &
day_of_year <= southward_equinox ) THEN
buildings(nb)%air_change_low = summer_pars(0,bt)
buildings(nb)%air_change_high = summer_pars(1,bt)
ELSE
buildings(nb)%air_change_low = winter_pars(0,bt)
buildings(nb)%air_change_high = winter_pars(1,bt)
ENDIF
!
!-- Initialize ventilaation load. Please note, building types > 7
!-- are actually not allowed (check already in urban_surface_mod
!-- and netcdf_data_input_mod. However, the building data base may
!-- be later extended.
IF ( bt == 1 .OR. bt == 2 .OR. &
bt == 3 .OR. bt == 10 .OR. &
bt == 11 .OR. bt == 12 ) THEN
buildings(nb)%ventilation_int_loads = 1
!
!-- Office, building with large windows
ELSEIF ( bt == 4 .OR. bt == 5 .OR. &
bt == 6 .OR. bt == 7 .OR. &
bt == 8 .OR. bt == 9) THEN
buildings(nb)%ventilation_int_loads = 2
!
!-- Industry, hospitals
ELSEIF ( bt == 13 .OR. bt == 14 .OR. &
bt == 15 .OR. bt == 16 .OR. &
bt == 17 .OR. bt == 18 ) THEN
buildings(nb)%ventilation_int_loads = 3
ENDIF
ENDIF
ENDDO
ENDDO
ENDIF
!
!-- Calculation of surface-related heat transfer coeffiecient
!-- out of standard u-values from building database
!-- only amount of extern and surface is used
!-- otherwise amount between air and surface taken account twice
DO nb = 1, num_build
IF ( buildings(nb)%on_pe ) THEN
du_win_tmp = 1.0_wp / buildings(nb)%u_value_win
u_tmp = buildings(nb)%u_value_win * ( du_win_tmp / ( du_win_tmp - &
0.125_wp + ( 1.0_wp / h_is ) ) )
du_tmp = 1.0_wp / u_tmp
buildings(nb)%h_es = 1.0_wp / ( du_tmp - ( 1.0_wp / h_is ) )
ENDIF
ENDDO
!
!-- Initial room temperature [K]
!-- (after first loop, use theta_m_t as theta_m_t_prev)
theta_m_t_prev = initial_indoor_temperature
!
!-- Initialize indoor temperature. Actually only for output at initial state.
DO nb = 1, num_build
IF ( buildings(nb)%on_pe ) &
buildings(nb)%t_in(:) = initial_indoor_temperature
ENDDO
CALL location_message( 'initializing indoor model', 'finished' )
END SUBROUTINE im_init
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Main part of the indoor model.
!> Calculation of .... (kanani: Please describe)
!------------------------------------------------------------------------------!
SUBROUTINE im_main_heatcool
USE arrays_3d, &
ONLY: ddzw, dzw
! USE basic_constants_and_equations_mod, &
! ONLY: c_p
USE control_parameters, &
ONLY: time_since_reference_point
USE grid_variables, &
ONLY: dx, dy
USE pegrid
USE surface_mod, &
ONLY: ind_veg_wall, ind_wat_win, surf_usm_h, surf_usm_v
USE urban_surface_mod, &
ONLY: nzt_wall, t_wall_h, t_wall_v, t_window_h, t_window_v, &
building_type
IMPLICIT NONE
INTEGER(iwp) :: i !< index of facade-adjacent atmosphere grid point in x-direction
INTEGER(iwp) :: j !< index of facade-adjacent atmosphere grid point in y-direction
INTEGER(iwp) :: k !< index of facade-adjacent atmosphere grid point in z-direction
INTEGER(iwp) :: kk !< vertical index of indoor grid point adjacent to facade
INTEGER(iwp) :: l !< running index for surface-element orientation
INTEGER(iwp) :: m !< running index surface elements
INTEGER(iwp) :: nb !< running index for buildings
INTEGER(iwp) :: fa !< running index for facade elements of each building
REAL(wp) :: indoor_wall_window_temperature !< weighted temperature of innermost wall/window layer
REAL(wp) :: near_facade_temperature !< outside air temperature 10cm away from facade
REAL(wp) :: second_of_day !< second of the current day
REAL(wp) :: time_utc_hour !< time of day (hour UTC)
REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in_l_send !< dummy send buffer used for summing-up indoor temperature per kk-level
REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in_recv !< dummy recv buffer used for summing-up indoor temperature per kk-level
!
!-- Determine time of day in hours.
CALL get_date_time( time_since_reference_point, second_of_day=second_of_day )
time_utc_hour = second_of_day / seconds_per_hour
!
!-- Following calculations must be done for each facade element.
DO nb = 1, num_build
!
!-- First, check whether building is present on local subdomain.
IF ( buildings(nb)%on_pe ) THEN
!
!-- Determine daily schedule. 08:00-18:00 = 1, other hours = 0.
!-- Residental Building, panel WBS 70
IF ( buildings(nb)%ventilation_int_loads == 1 ) THEN
IF ( time_utc_hour >= 8.0_wp .AND. time_utc_hour <= 18.0_wp ) THEN
schedule_d = 0
ELSE
schedule_d = 1
ENDIF
ENDIF
!
!-- Office, building with large windows
IF ( buildings(nb)%ventilation_int_loads == 2 ) THEN
IF ( time_utc_hour >= 8.0_wp .AND. time_utc_hour <= 18.0_wp ) THEN
schedule_d = 1
ELSE
schedule_d = 0
ENDIF
ENDIF
!
!-- Industry, hospitals
IF ( buildings(nb)%ventilation_int_loads == 3 ) THEN
IF ( time_utc_hour >= 6.0_wp .AND. time_utc_hour <= 22.0_wp ) THEN
schedule_d = 1
ELSE
schedule_d = 0
ENDIF
ENDIF
!
!-- Initialize/reset indoor temperature
buildings(nb)%t_in_l = 0.0_wp
!
!-- Horizontal surfaces
DO fa = 1, buildings(nb)%num_facades_per_building_h_l
!
!-- Determine index where corresponding surface-type information
!-- is stored.
m = buildings(nb)%m_h(fa)
!
!-- Determine building height level index.
kk = surf_usm_h%k(m) + surf_usm_h%koff
!
!-- Building geometries --> not time-dependent
facade_element_area = dx * dy !< [m2] surface area per facade element
floor_area_per_facade = buildings(nb)%vpf(kk) * ddzw(kk+1) !< [m2/m2] floor area per facade area
indoor_volume_per_facade = buildings(nb)%vpf(kk) !< [m3/m2] indoor air volume per facade area
buildings(nb)%area_facade = facade_element_area * &
( buildings(nb)%num_facades_per_building_h + &
buildings(nb)%num_facades_per_building_v ) !< [m2] area of total facade
window_area_per_facade = surf_usm_h%frac(ind_wat_win,m) * facade_element_area !< [m2] window area per facade element
buildings(nb)%net_floor_area = buildings(nb)%vol_tot / ( buildings(nb)%height_storey )
total_area = buildings(nb)%net_floor_area !< [m2] area of all surfaces pointing to zone Eq. (9) according to section 7.2.2.2
a_m = buildings(nb)%factor_a * total_area * &
( facade_element_area / buildings(nb)%area_facade ) * &
buildings(nb)%lambda_at !< [m2] standard values according to Table 12 section 12.3.1.2 (calculate over Eq. (65) according to section 12.3.1.2)
c_m = buildings(nb)%factor_c * total_area * &
( facade_element_area / buildings(nb)%area_facade ) !< [J/K] standard values according to table 12 section 12.3.1.2 (calculate over Eq. (66) according to section 12.3.1.2)
!
!-- Calculation of heat transfer coefficient for transmission --> not time-dependent
h_t_es = window_area_per_facade * buildings(nb)%h_es !< [W/K] only for windows
h_t_is = buildings(nb)%area_facade * h_is !< [W/K] with h_is = 3.45 W / (m2 K) between surface and air, Eq. (9)
h_t_ms = a_m * h_ms !< [W/K] with h_ms = 9.10 W / (m2 K) between component and surface, Eq. (64)
h_t_wall = 1.0_wp / ( 1.0_wp / ( ( facade_element_area - window_area_per_facade ) & !< [W/K]
* buildings(nb)%lambda_layer3 / buildings(nb)%s_layer3 * 0.5_wp &
) + 1.0_wp / h_t_ms ) !< [W/K] opaque components
h_t_wm = 1.0_wp / ( 1.0_wp / h_t_wall - 1.0_wp / h_t_ms ) !< [W/K] emmision Eq. (63), Section 12.2.2
!
!-- internal air loads dependent on the occupacy of the room
!-- basical internal heat gains (qint_low) with additional internal heat gains by occupancy (qint_high) (0,5*phi_int)
phi_ia = 0.5_wp * ( ( buildings(nb)%qint_high * schedule_d + buildings(nb)%qint_low ) &
* floor_area_per_facade )
q_int = phi_ia / total_area
!
!-- Airflow dependent on the occupacy of the room
!-- basical airflow (air_change_low) with additional airflow gains by occupancy (air_change_high)
air_change = ( buildings(nb)%air_change_high * schedule_d + buildings(nb)%air_change_low ) !< [1/h]?
!
!-- Heat transfer of ventilation
!-- not less than 0.01 W/K to provide division by 0 in further calculations
!-- with heat capacity of air 0.33 Wh/m2K
h_v = MAX( 0.01_wp , ( air_change * indoor_volume_per_facade * &
0.33_wp * (1.0_wp - buildings(nb)%eta_ve ) ) ) !< [W/K] from ISO 13789 Eq.(10)
!-- Heat transfer coefficient auxiliary variables
h_t_1 = 1.0_wp / ( ( 1.0_wp / h_v ) + ( 1.0_wp / h_t_is ) ) !< [W/K] Eq. (C.6)
h_t_2 = h_t_1 + h_t_es !< [W/K] Eq. (C.7)
h_t_3 = 1.0_wp / ( ( 1.0_wp / h_t_2 ) + ( 1.0_wp / h_t_ms ) ) !< [W/K] Eq. (C.8)
!
!-- Net short-wave radiation through window area (was i_global)
net_sw_in = surf_usm_h%rad_sw_in(m) - surf_usm_h%rad_sw_out(m)
!
!-- Quantities needed for im_calc_temperatures
i = surf_usm_h%i(m)
j = surf_usm_h%j(m)
k = surf_usm_h%k(m)
near_facade_temperature = surf_usm_h%pt_10cm(m)
indoor_wall_window_temperature = &
surf_usm_h%frac(ind_veg_wall,m) * t_wall_h(nzt_wall,m) &
+ surf_usm_h%frac(ind_wat_win,m) * t_window_h(nzt_wall,m)
!
!-- Solar thermal gains. If net_sw_in larger than sun-protection
!-- threshold parameter (params_solar_protection), sun protection will
!-- be activated
IF ( net_sw_in <= params_solar_protection ) THEN
solar_protection_off = 1
solar_protection_on = 0
ELSE
solar_protection_off = 0
solar_protection_on = 1
ENDIF
!
!-- Calculation of total heat gains from net_sw_in through windows [W] in respect on automatic sun protection
!-- DIN 4108 - 2 chap.8
phi_sol = ( window_area_per_facade * net_sw_in * solar_protection_off &
+ window_area_per_facade * net_sw_in * buildings(nb)%f_c_win * solar_protection_on ) &
* buildings(nb)%g_value_win * ( 1.0_wp - params_f_f ) * params_f_w
q_sol = phi_sol
!
!-- Calculation of the mass specific thermal load for internal and external heatsources of the inner node
phi_m = (a_m / total_area) * ( phi_ia + phi_sol ) !< [W] Eq. (C.2) with phi_ia=0,5*phi_int
q_c_m = phi_m
!
!-- Calculation mass specific thermal load implied non thermal mass
phi_st = ( 1.0_wp - ( a_m / total_area ) - ( h_t_es / ( 9.1_wp * total_area ) ) ) &
* ( phi_ia + phi_sol ) !< [W] Eq. (C.3) with phi_ia=0,5*phi_int
q_c_st = phi_st
!
!-- Calculations for deriving indoor temperature and heat flux into the wall
!-- Step 1: Indoor temperature without heating and cooling
!-- section C.4.1 Picture C.2 zone 3)
phi_hc_nd = 0.0_wp
CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, &
near_facade_temperature, phi_hc_nd )
!
!-- If air temperature between border temperatures of heating and cooling, assign output variable, then ready
IF ( buildings(nb)%theta_int_h_set <= theta_air .AND. theta_air <= buildings(nb)%theta_int_c_set ) THEN
phi_hc_nd_ac = 0.0_wp
phi_hc_nd = phi_hc_nd_ac
theta_air_ac = theta_air
!
!-- Step 2: Else, apply 10 W/m2 heating/cooling power and calculate indoor temperature
!-- again.
ELSE
!
!-- Temperature not correct, calculation method according to section C4.2
theta_air_0 = theta_air !< temperature without heating/cooling
!
!-- Heating or cooling?
IF ( theta_air_0 > buildings(nb)%theta_int_c_set ) THEN
theta_air_set = buildings(nb)%theta_int_c_set
ELSE
theta_air_set = buildings(nb)%theta_int_h_set
ENDIF
!
!-- Calculate the temperature with phi_hc_nd_10
phi_hc_nd_10 = 10.0_wp * floor_area_per_facade
phi_hc_nd = phi_hc_nd_10
CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, &
near_facade_temperature, phi_hc_nd )
theta_air_10 = theta_air !< temperature with 10 W/m2 of heating
phi_hc_nd_un = phi_hc_nd_10 * (theta_air_set - theta_air_0) &
/ (theta_air_10 - theta_air_0) !< Eq. (C.13)
!
!-- Step 3: With temperature ratio to determine the heating or cooling capacity
!-- If necessary, limit the power to maximum power
!-- section C.4.1 Picture C.2 zone 2) and 4)
buildings(nb)%phi_c_max = buildings(nb)%q_c_max * floor_area_per_facade
buildings(nb)%phi_h_max = buildings(nb)%q_h_max * floor_area_per_facade
IF ( buildings(nb)%phi_c_max < phi_hc_nd_un .AND. phi_hc_nd_un < buildings(nb)%phi_h_max ) THEN
phi_hc_nd_ac = phi_hc_nd_un
phi_hc_nd = phi_hc_nd_un
ELSE
!
!-- Step 4: Inner temperature with maximum heating (phi_hc_nd_un positive) or cooling (phi_hc_nd_un negative)
!-- section C.4.1 Picture C.2 zone 1) and 5)
IF ( phi_hc_nd_un > 0.0_wp ) THEN
phi_hc_nd_ac = buildings(nb)%phi_h_max !< Limit heating
ELSE
phi_hc_nd_ac = buildings(nb)%phi_c_max !< Limit cooling
ENDIF
ENDIF
phi_hc_nd = phi_hc_nd_ac
!
!-- Calculate the temperature with phi_hc_nd_ac (new)
CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, &
near_facade_temperature, phi_hc_nd )
theta_air_ac = theta_air
ENDIF
!
!-- Update theta_m_t_prev
theta_m_t_prev = theta_m_t
q_vent = h_v * ( theta_air - near_facade_temperature )
!
!-- Calculate the operating temperature with weighted mean temperature of air and mean solar temperature
!-- Will be used for thermal comfort calculations
theta_op = 0.3_wp * theta_air_ac + 0.7_wp * theta_s !< [degree_C] operative Temperature Eq. (C.12)
! surf_usm_h%t_indoor(m) = theta_op !< not integrated now
!
!-- Heat flux into the wall. Value needed in urban_surface_mod to
!-- calculate heat transfer through wall layers towards the facade
!-- (use c_p * rho_surface to convert [W/m2] into [K m/s])
q_wall_win = h_t_ms * ( theta_s - theta_m ) &
/ ( facade_element_area &
- window_area_per_facade )
q_trans = q_wall_win * facade_element_area
!
!-- Transfer q_wall_win back to USM (innermost wall/window layer)
surf_usm_h%iwghf_eb(m) = q_wall_win
surf_usm_h%iwghf_eb_window(m) = q_wall_win
!
!-- Sum up operational indoor temperature per kk-level. Further below,
!-- this temperature is reduced by MPI to one temperature per kk-level
!-- and building (processor overlapping)
buildings(nb)%t_in_l(kk) = buildings(nb)%t_in_l(kk) + theta_op
!
!-- Calculation of waste heat
!-- Anthropogenic heat output
IF ( phi_hc_nd_ac > 0.0_wp ) THEN
heating_on = 1
cooling_on = 0
ELSE
heating_on = 0
cooling_on = -1
ENDIF
q_waste_heat = ( phi_hc_nd * ( &
buildings(nb)%params_waste_heat_h * heating_on + &
buildings(nb)%params_waste_heat_c * cooling_on ) &
) / facade_element_area !< [W/m2] , observe the directional convention in PALM!
surf_usm_h%waste_heat(m) = q_waste_heat
ENDDO !< Horizontal surfaces loop
!
!-- Vertical surfaces
DO fa = 1, buildings(nb)%num_facades_per_building_v_l
!
!-- Determine indices where corresponding surface-type information
!-- is stored.
l = buildings(nb)%l_v(fa)
m = buildings(nb)%m_v(fa)
!
!-- Determine building height level index.
kk = surf_usm_v(l)%k(m) + surf_usm_v(l)%koff
!
!-- (SOME OF THE FOLLOWING (not time-dependent COULD PROBABLY GO INTO A FUNCTION
!-- EXCEPT facade_element_area, EVERYTHING IS CALCULATED EQUALLY)
!-- Building geometries --> not time-dependent
IF ( l == 0 .OR. l == 1 ) facade_element_area = dx * dzw(kk+1) !< [m2] surface area per facade element
IF ( l == 2 .OR. l == 3 ) facade_element_area = dy * dzw(kk+1) !< [m2] surface area per facade element
floor_area_per_facade = buildings(nb)%vpf(kk) * ddzw(kk+1) !< [m2/m2] floor area per facade area
indoor_volume_per_facade = buildings(nb)%vpf(kk) !< [m3/m2] indoor air volume per facade area
buildings(nb)%area_facade = facade_element_area * &
( buildings(nb)%num_facades_per_building_h + &
buildings(nb)%num_facades_per_building_v ) !< [m2] area of total facade
window_area_per_facade = surf_usm_v(l)%frac(ind_wat_win,m) * facade_element_area !< [m2] window area per facade element
buildings(nb)%net_floor_area = buildings(nb)%vol_tot / ( buildings(nb)%height_storey )
total_area = buildings(nb)%net_floor_area !< [m2] area of all surfaces pointing to zone Eq. (9) according to section 7.2.2.2
a_m = buildings(nb)%factor_a * total_area * &
( facade_element_area / buildings(nb)%area_facade ) * &
buildings(nb)%lambda_at !< [m2] standard values according to Table 12 section 12.3.1.2 (calculate over Eq. (65) according to section 12.3.1.2)
c_m = buildings(nb)%factor_c * total_area * &
( facade_element_area / buildings(nb)%area_facade ) !< [J/K] standard values according to table 12 section 12.3.1.2 (calculate over Eq. (66) according to section 12.3.1.2)
!
!-- Calculation of heat transfer coefficient for transmission --> not time-dependent
h_t_es = window_area_per_facade * buildings(nb)%h_es !< [W/K] only for windows
h_t_is = buildings(nb)%area_facade * h_is !< [W/K] with h_is = 3.45 W / (m2 K) between surface and air, Eq. (9)
h_t_ms = a_m * h_ms !< [W/K] with h_ms = 9.10 W / (m2 K) between component and surface, Eq. (64)
h_t_wall = 1.0_wp / ( 1.0_wp / ( ( facade_element_area - window_area_per_facade ) & !< [W/K]
* buildings(nb)%lambda_layer3 / buildings(nb)%s_layer3 * 0.5_wp &
) + 1.0_wp / h_t_ms ) !< [W/K] opaque components
h_t_wm = 1.0_wp / ( 1.0_wp / h_t_wall - 1.0_wp / h_t_ms ) !< [W/K] emmision Eq. (63), Section 12.2.2
!
!-- internal air loads dependent on the occupacy of the room
!-- basical internal heat gains (qint_low) with additional internal heat gains by occupancy (qint_high) (0,5*phi_int)
phi_ia = 0.5_wp * ( ( buildings(nb)%qint_high * schedule_d + buildings(nb)%qint_low ) &
* floor_area_per_facade )
q_int = phi_ia
!
!-- Airflow dependent on the occupacy of the room
!-- basical airflow (air_change_low) with additional airflow gains by occupancy (air_change_high)
air_change = ( buildings(nb)%air_change_high * schedule_d + buildings(nb)%air_change_low )
!
!-- Heat transfer of ventilation
!-- not less than 0.01 W/K to provide division by 0 in further calculations
!-- with heat capacity of air 0.33 Wh/m2K
h_v = MAX( 0.01_wp , ( air_change * indoor_volume_per_facade * &
0.33_wp * (1.0_wp - buildings(nb)%eta_ve ) ) ) !< [W/K] from ISO 13789 Eq.(10)
!-- Heat transfer coefficient auxiliary variables
h_t_1 = 1.0_wp / ( ( 1.0_wp / h_v ) + ( 1.0_wp / h_t_is ) ) !< [W/K] Eq. (C.6)
h_t_2 = h_t_1 + h_t_es !< [W/K] Eq. (C.7)
h_t_3 = 1.0_wp / ( ( 1.0_wp / h_t_2 ) + ( 1.0_wp / h_t_ms ) ) !< [W/K] Eq. (C.8)
!
!-- Net short-wave radiation through window area (was i_global)
net_sw_in = surf_usm_v(l)%rad_sw_in(m) - surf_usm_v(l)%rad_sw_out(m)
!
!-- Quantities needed for im_calc_temperatures
i = surf_usm_v(l)%i(m)
j = surf_usm_v(l)%j(m)
k = surf_usm_v(l)%k(m)
near_facade_temperature = surf_usm_v(l)%pt_10cm(m)
indoor_wall_window_temperature = &
surf_usm_v(l)%frac(ind_veg_wall,m) * t_wall_v(l)%t(nzt_wall,m) &
+ surf_usm_v(l)%frac(ind_wat_win,m) * t_window_v(l)%t(nzt_wall,m)
!
!-- Solar thermal gains. If net_sw_in larger than sun-protection
!-- threshold parameter (params_solar_protection), sun protection will
!-- be activated
IF ( net_sw_in <= params_solar_protection ) THEN
solar_protection_off = 1
solar_protection_on = 0
ELSE
solar_protection_off = 0
solar_protection_on = 1
ENDIF
!
!-- Calculation of total heat gains from net_sw_in through windows [W] in respect on automatic sun protection
!-- DIN 4108 - 2 chap.8
phi_sol = ( window_area_per_facade * net_sw_in * solar_protection_off &
+ window_area_per_facade * net_sw_in * buildings(nb)%f_c_win * solar_protection_on ) &
* buildings(nb)%g_value_win * ( 1.0_wp - params_f_f ) * params_f_w
q_sol = phi_sol
!
!-- Calculation of the mass specific thermal load for internal and external heatsources
phi_m = (a_m / total_area) * ( phi_ia + phi_sol ) !< [W] Eq. (C.2) with phi_ia=0,5*phi_int
q_c_m = phi_m
!
!-- Calculation mass specific thermal load implied non thermal mass
phi_st = ( 1.0_wp - ( a_m / total_area ) - ( h_t_es / ( 9.1_wp * total_area ) ) ) &
* ( phi_ia + phi_sol ) !< [W] Eq. (C.3) with phi_ia=0,5*phi_int
q_c_st = phi_st
!
!-- Calculations for deriving indoor temperature and heat flux into the wall
!-- Step 1: Indoor temperature without heating and cooling
!-- section C.4.1 Picture C.2 zone 3)
phi_hc_nd = 0.0_wp
CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, &
near_facade_temperature, phi_hc_nd )
!
!-- If air temperature between border temperatures of heating and cooling, assign output variable, then ready
IF ( buildings(nb)%theta_int_h_set <= theta_air .AND. theta_air <= buildings(nb)%theta_int_c_set ) THEN
phi_hc_nd_ac = 0.0_wp
phi_hc_nd = phi_hc_nd_ac
theta_air_ac = theta_air
!
!-- Step 2: Else, apply 10 W/m2 heating/cooling power and calculate indoor temperature
!-- again.
ELSE
!
!-- Temperature not correct, calculation method according to section C4.2
theta_air_0 = theta_air !< Note temperature without heating/cooling
!
!-- Heating or cooling?
IF ( theta_air_0 > buildings(nb)%theta_int_c_set ) THEN
theta_air_set = buildings(nb)%theta_int_c_set
ELSE
theta_air_set = buildings(nb)%theta_int_h_set
ENDIF
!-- Calculate the temperature with phi_hc_nd_10
phi_hc_nd_10 = 10.0_wp * floor_area_per_facade
phi_hc_nd = phi_hc_nd_10
CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, &
near_facade_temperature, phi_hc_nd )
theta_air_10 = theta_air !< Note the temperature with 10 W/m2 of heating
phi_hc_nd_un = phi_hc_nd_10 * ( theta_air_set - theta_air_0 ) &
/ ( theta_air_10 - theta_air_0 ) !< Eq. (C.13)
!
!-- Step 3: With temperature ratio to determine the heating or cooling capacity
!-- If necessary, limit the power to maximum power
!-- section C.4.1 Picture C.2 zone 2) and 4)
buildings(nb)%phi_c_max = buildings(nb)%q_c_max * floor_area_per_facade
buildings(nb)%phi_h_max = buildings(nb)%q_h_max * floor_area_per_facade
IF ( buildings(nb)%phi_c_max < phi_hc_nd_un .AND. phi_hc_nd_un < buildings(nb)%phi_h_max ) THEN
phi_hc_nd_ac = phi_hc_nd_un
phi_hc_nd = phi_hc_nd_un
ELSE
!
!-- Step 4: Inner temperature with maximum heating (phi_hc_nd_un positive) or cooling (phi_hc_nd_un negative)
!-- section C.4.1 Picture C.2 zone 1) and 5)
IF ( phi_hc_nd_un > 0.0_wp ) THEN
phi_hc_nd_ac = buildings(nb)%phi_h_max !< Limit heating
ELSE
phi_hc_nd_ac = buildings(nb)%phi_c_max !< Limit cooling
ENDIF
ENDIF
phi_hc_nd = phi_hc_nd_ac
!
!-- Calculate the temperature with phi_hc_nd_ac (new)
CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, &
near_facade_temperature, phi_hc_nd )
theta_air_ac = theta_air
ENDIF
!
!-- Update theta_m_t_prev
theta_m_t_prev = theta_m_t
q_vent = h_v * ( theta_air - near_facade_temperature )
!
!-- Calculate the operating temperature with weighted mean of temperature of air and mean
!-- Will be used for thermal comfort calculations
theta_op = 0.3_wp * theta_air_ac + 0.7_wp * theta_s
! surf_usm_v(l)%t_indoor(m) = theta_op !< not integrated yet
!
!-- Heat flux into the wall. Value needed in urban_surface_mod to
!-- calculate heat transfer through wall layers towards the facade
q_wall_win = h_t_ms * ( theta_s - theta_m ) &
/ ( facade_element_area &
- window_area_per_facade )
q_trans = q_wall_win * facade_element_area
!
!-- Transfer q_wall_win back to USM (innermost wall/window layer)
surf_usm_v(l)%iwghf_eb(m) = q_wall_win
surf_usm_v(l)%iwghf_eb_window(m) = q_wall_win
!
!-- Sum up operational indoor temperature per kk-level. Further below,
!-- this temperature is reduced by MPI to one temperature per kk-level
!-- and building (processor overlapping)
buildings(nb)%t_in_l(kk) = buildings(nb)%t_in_l(kk) + theta_op
!
!-- Calculation of waste heat
!-- Anthropogenic heat output
IF ( phi_hc_nd_ac > 0.0_wp ) THEN
heating_on = 1
cooling_on = 0
ELSE
heating_on = 0
cooling_on = -1
ENDIF
q_waste_heat = ( phi_hc_nd * ( &
buildings(nb)%params_waste_heat_h * heating_on + &
buildings(nb)%params_waste_heat_c * cooling_on ) &
) / facade_element_area !< [W/m2] , observe the directional convention in PALM!
surf_usm_v(l)%waste_heat(m) = q_waste_heat
ENDDO !< Vertical surfaces loop
ENDIF !< buildings(nb)%on_pe
ENDDO !< buildings loop
!
!-- Determine the mean building temperature.
DO nb = 1, num_build
!
!-- Allocate dummy array used for summing-up facade elements.
!-- Please note, dummy arguments are necessary as building-date type
!-- arrays are not necessarily allocated on all PEs.
ALLOCATE( t_in_l_send(buildings(nb)%kb_min:buildings(nb)%kb_max) )
ALLOCATE( t_in_recv(buildings(nb)%kb_min:buildings(nb)%kb_max) )
t_in_l_send = 0.0_wp
t_in_recv = 0.0_wp
IF ( buildings(nb)%on_pe ) THEN
t_in_l_send = buildings(nb)%t_in_l
ENDIF
#if defined( __parallel )
CALL MPI_ALLREDUCE( t_in_l_send, &
t_in_recv, &
buildings(nb)%kb_max - buildings(nb)%kb_min + 1, &
MPI_REAL, &
MPI_SUM, &
comm2d, &
ierr )
IF ( ALLOCATED( buildings(nb)%t_in ) ) &
buildings(nb)%t_in = t_in_recv
#else
IF ( ALLOCATED( buildings(nb)%t_in ) ) &
buildings(nb)%t_in = buildings(nb)%t_in_l
#endif
IF ( ALLOCATED( buildings(nb)%t_in ) ) THEN
!
!-- Average indoor temperature. Note, in case a building is completely
!-- surrounded by higher buildings, it may have no facade elements
!-- at some height levels, which will lead to a divide by zero.
DO k = buildings(nb)%kb_min, buildings(nb)%kb_max
IF ( buildings(nb)%num_facade_h(k) + &
buildings(nb)%num_facade_v(k) > 0 ) THEN
buildings(nb)%t_in(k) = buildings(nb)%t_in(k) / &
REAL( buildings(nb)%num_facade_h(k) + &
buildings(nb)%num_facade_v(k), KIND = wp )
ENDIF
ENDDO
!
!-- If indoor temperature is not defined because of missing facade
!-- elements, the values from the above-lying level will be taken.
!-- At least at the top of the buildings facades are defined, so that
!-- at least there an indoor temperature is defined. This information
!-- will propagate downwards the building.
DO k = buildings(nb)%kb_max-1, buildings(nb)%kb_min, -1
IF ( buildings(nb)%num_facade_h(k) + &
buildings(nb)%num_facade_v(k) <= 0 ) THEN
buildings(nb)%t_in(k) = buildings(nb)%t_in(k+1)
ENDIF
ENDDO
ENDIF
!
!-- Deallocate dummy arrays
DEALLOCATE( t_in_l_send )
DEALLOCATE( t_in_recv )
ENDDO
END SUBROUTINE im_main_heatcool
!-----------------------------------------------------------------------------!
! Description:
!-------------
!> Check data output for plant canopy model
!-----------------------------------------------------------------------------!
SUBROUTINE im_check_data_output( var, unit )
IMPLICIT NONE
CHARACTER (LEN=*) :: unit !<
CHARACTER (LEN=*) :: var !<
SELECT CASE ( TRIM( var ) )
CASE ( 'im_hf_roof')
unit = 'W m-2'
CASE ( 'im_hf_wall_win' )
unit = 'W m-2'
CASE ( 'im_hf_wall_win_waste' )
unit = 'W m-2'
CASE ( 'im_hf_roof_waste' )
unit = 'W m-2'
CASE ( 'im_t_indoor_mean' )
unit = 'K'
CASE ( 'im_t_indoor_roof' )
unit = 'K'
CASE ( 'im_t_indoor_wall_win' )
unit = 'K'
CASE DEFAULT
unit = 'illegal'
END SELECT
END SUBROUTINE
!-----------------------------------------------------------------------------!
! Description:
!-------------
!> Check parameters routine for plant canopy model
!-----------------------------------------------------------------------------!
SUBROUTINE im_check_parameters
! USE control_parameters,
! ONLY: message_string
IMPLICIT NONE
END SUBROUTINE im_check_parameters
!-----------------------------------------------------------------------------!
! Description:
!-------------
!> Subroutine defining appropriate grid for netcdf variables.
!> It is called from subroutine netcdf.
!-----------------------------------------------------------------------------!
SUBROUTINE im_define_netcdf_grid( var, found, grid_x, grid_y, grid_z )
IMPLICIT NONE
CHARACTER (LEN=*), INTENT(IN) :: var
LOGICAL, INTENT(OUT) :: found
CHARACTER (LEN=*), INTENT(OUT) :: grid_x
CHARACTER (LEN=*), INTENT(OUT) :: grid_y
CHARACTER (LEN=*), INTENT(OUT) :: grid_z
found = .TRUE.
!
!-- Check for the grid
SELECT CASE ( TRIM( var ) )
CASE ( 'im_hf_roof', 'im_hf_roof_waste' )
grid_x = 'x'
grid_y = 'y'
grid_z = 'zw'
!
!-- Heat fluxes at vertical walls are actually defined on stagged grid, i.e. xu, yv.
CASE ( 'im_hf_wall_win', 'im_hf_wall_win_waste' )
grid_x = 'x'
grid_y = 'y'
grid_z = 'zu'
CASE ( 'im_t_indoor_mean', 'im_t_indoor_roof', 'im_t_indoor_wall_win')
grid_x = 'x'
grid_y = 'y'
grid_z = 'zw'
CASE DEFAULT
found = .FALSE.
grid_x = 'none'
grid_y = 'none'
grid_z = 'none'
END SELECT
END SUBROUTINE im_define_netcdf_grid
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining 3D output variables
!------------------------------------------------------------------------------!
SUBROUTINE im_data_output_3d( av, variable, found, local_pf, fill_value, &
nzb_do, nzt_do )
USE indices
USE kinds
IMPLICIT NONE
CHARACTER (LEN=*) :: variable !<
INTEGER(iwp) :: av !<
INTEGER(iwp) :: i !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: k !<
INTEGER(iwp) :: l !<
INTEGER(iwp) :: m !<
INTEGER(iwp) :: nb !< index of the building in the building data structure
INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0)
INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d)
LOGICAL :: found !<
REAL(wp), INTENT(IN) :: fill_value !< value for the _FillValue attribute
REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !<
local_pf = fill_value
found = .TRUE.
SELECT CASE ( TRIM( variable ) )
!
!-- Output of indoor temperature. All grid points within the building are
!-- filled with values, while atmospheric grid points are set to _FillValues.
CASE ( 'im_t_indoor_mean' )
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN
!
!-- Determine index of the building within the building data structure.
nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), &
DIM = 1 )
IF ( buildings(nb)%on_pe ) THEN
!
!-- Write mean building temperature onto output array. Please note,
!-- in contrast to many other loops in the output, the vertical
!-- bounds are determined by the lowest and hightest vertical index
!-- occupied by the building.
DO k = buildings(nb)%kb_min, buildings(nb)%kb_max
local_pf(i,j,k) = buildings(nb)%t_in(k)
ENDDO
ENDIF
ENDIF
ENDDO
ENDDO
ENDIF
CASE ( 'im_hf_roof' )
IF ( av == 0 ) THEN
DO m = 1, surf_usm_h%ns
i = surf_usm_h%i(m) !+ surf_usm_h%ioff
j = surf_usm_h%j(m) !+ surf_usm_h%joff
k = surf_usm_h%k(m) !+ surf_usm_h%koff
local_pf(i,j,k) = surf_usm_h%iwghf_eb(m)
ENDDO
ENDIF
CASE ( 'im_hf_roof_waste' )
IF ( av == 0 ) THEN
DO m = 1, surf_usm_h%ns
i = surf_usm_h%i(m) !+ surf_usm_h%ioff
j = surf_usm_h%j(m) !+ surf_usm_h%joff
k = surf_usm_h%k(m) !+ surf_usm_h%koff
local_pf(i,j,k) = surf_usm_h%waste_heat(m)
ENDDO
ENDIF
CASE ( 'im_hf_wall_win' )
IF ( av == 0 ) THEN
DO l = 0, 3
DO m = 1, surf_usm_v(l)%ns
i = surf_usm_v(l)%i(m) !+ surf_usm_v(l)%ioff
j = surf_usm_v(l)%j(m) !+ surf_usm_v(l)%joff
k = surf_usm_v(l)%k(m) !+ surf_usm_v(l)%koff
local_pf(i,j,k) = surf_usm_v(l)%iwghf_eb(m)
ENDDO
ENDDO
ENDIF
CASE ( 'im_hf_wall_win_waste' )
IF ( av == 0 ) THEN
DO l = 0, 3
DO m = 1, surf_usm_v(l)%ns
i = surf_usm_v(l)%i(m) !+ surf_usm_v(l)%ioff
j = surf_usm_v(l)%j(m) !+ surf_usm_v(l)%joff
k = surf_usm_v(l)%k(m) !+ surf_usm_v(l)%koff
local_pf(i,j,k) = surf_usm_v(l)%waste_heat(m)
ENDDO
ENDDO
ENDIF
!
!< NOTE im_t_indoor_roof and im_t_indoor_wall_win not work yet
! CASE ( 'im_t_indoor_roof' )
! IF ( av == 0 ) THEN
! DO m = 1, surf_usm_h%ns
! i = surf_usm_h%i(m) !+ surf_usm_h%ioff
! j = surf_usm_h%j(m) !+ surf_usm_h%joff
! k = surf_usm_h%k(m) !+ surf_usm_h%koff
! local_pf(i,j,k) = surf_usm_h%t_indoor(m)
! ENDDO
! ENDIF
!
! CASE ( 'im_t_indoor_wall_win' )
! IF ( av == 0 ) THEN
! DO l = 0, 3
! DO m = 1, surf_usm_v(l)%ns
! i = surf_usm_v(l)%i(m) !+ surf_usm_v(l)%ioff
! j = surf_usm_v(l)%j(m) !+ surf_usm_v(l)%joff
! k = surf_usm_v(l)%k(m) !+ surf_usm_v(l)%koff
! local_pf(i,j,k) = surf_usm_v(l)%t_indoor(m)
! ENDDO
! ENDDO
! ENDIF
CASE DEFAULT
found = .FALSE.
END SELECT
END SUBROUTINE im_data_output_3d
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Parin for &indoor_parameters for indoor model
!------------------------------------------------------------------------------!
SUBROUTINE im_parin
USE control_parameters, &
ONLY: indoor_model
IMPLICIT NONE
CHARACTER (LEN=80) :: line !< string containing current line of file PARIN
NAMELIST /indoor_parameters/ initial_indoor_temperature
!
!-- Try to find indoor model package
REWIND ( 11 )
line = ' '
DO WHILE ( INDEX( line, '&indoor_parameters' ) == 0 )
READ ( 11, '(A)', END=10 ) line
ENDDO
BACKSPACE ( 11 )
!
!-- Read user-defined namelist
READ ( 11, indoor_parameters )
!
!-- Set flag that indicates that the indoor model is switched on
indoor_model = .TRUE.
!
!-- Activate spinup (maybe later
! IF ( spinup_time > 0.0_wp ) THEN
! coupling_start_time = spinup_time
! end_time = end_time + spinup_time
! IF ( spinup_pt_mean == 9999999.9_wp ) THEN
! spinup_pt_mean = pt_surface
! ENDIF
! spinup = .TRUE.
! ENDIF
10 CONTINUE
END SUBROUTINE im_parin
END MODULE indoor_model_mod