!> @file indoor_model_mod.f90
!--------------------------------------------------------------------------------!
! This file is part of the PALM model system.
!
! PALM is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
! A PARTICULAR PURPOSE. See the GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along with
! PALM. If not, see .
!
! Copyright 2018-2018 Leibniz Universitaet Hannover
! Copyright 2018-2018 Hochschule Offenburg
!--------------------------------------------------------------------------------!
!
! Current revisions:
! -----------------
!
!
! Former revisions:
! -----------------
! $Id: indoor_model_mod.f90 3597 2018-12-04 08:40:18Z maronga $
! Renamed t_surf_10cm to pt_10cm
!
! 3593 2018-12-03 13:51:13Z kanani
! Replace degree symbol by degree_C
!
! 3524 2018-11-14 13:36:44Z raasch
! working precision added to make code Fortran 2008 conform
!
! 3469 2018-10-30 20:05:07Z kanani
! Initial revision (tlang, suehring, kanani, srissman)
!
!
!
! Authors:
! --------
! @author Tobias Lang
! @author Jens Pfafferott
! @author Farah Kanani-Suehring
! @author Matthias Suehring
! @author Sascha Rißmann
!
!
! Description:
! ------------
!>
!> Module for Indoor Climate Model (ICM)
!> The module is based on the DIN EN ISO 13790 with simplified hour-based procedure.
!> This model is a equivalent circuit diagram of a three-point RC-model (5R1C).
!> This module differ between indoor-air temperature an average temperature of indoor surfaces which make it prossible to determine thermal comfort
!> the heat transfer between indoor and outdoor is simplified
!> @todo Replace window_area_per_facade by %frac(1,m) for window
!> @todo emissivity change for window blinds if solar_protection_on=1
!> @todo write datas in netcdf file as output data
!> @todo reduce the building volume with netto ground surface to take respect costruction areas like walls and ceilings. Have effect on factor_a, factor_c, airchange and lambda_at
!>
!> @note Do we allow use of integer flags, or only logical flags? (concerns e.g. cooling_on, heating_on)
!> @note How to write indoor temperature output to pt array?
!>
!> @bug
!------------------------------------------------------------------------------!
MODULE indoor_model_mod
USE control_parameters, &
ONLY: initializing_actions
USE kinds
USE surface_mod, &
ONLY: surf_usm_h, surf_usm_v
IMPLICIT NONE
!
!-- Define data structure for buidlings.
TYPE build
INTEGER(iwp) :: id !< building ID
INTEGER(iwp) :: kb_min !< lowest vertical index of a building
INTEGER(iwp) :: kb_max !< highest vertical index of a building
INTEGER(iwp) :: num_facades_per_building_h !< total number of horizontal facades elements
INTEGER(iwp) :: num_facades_per_building_h_l !< number of horizontal facade elements on local subdomain
INTEGER(iwp) :: num_facades_per_building_v !< total number of vertical facades elements
INTEGER(iwp) :: num_facades_per_building_v_l !< number of vertical facade elements on local subdomain
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: l_v !< index array linking surface-element orientation index
!< for vertical surfaces with building
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: m_h !< index array linking surface-element index for
!< horizontal surfaces with building
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: m_v !< index array linking surface-element index for
!< vertical surfaces with building
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: num_facade_h !< number of horizontal facade elements per buidling
!< and height level
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: num_facade_v !< number of vertical facades elements per buidling
!< and height level
LOGICAL :: on_pe = .FALSE. !< flag indicating whether a building with certain ID is on local subdomain
REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in !< mean building indoor temperature, height dependent
REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in_l !< mean building indoor temperature on local subdomain, height dependent
REAL(wp), DIMENSION(:), ALLOCATABLE :: volume !< total building volume, height dependent
REAL(wp), DIMENSION(:), ALLOCATABLE :: vol_frac !< fraction of local on total building volume, height dependent
REAL(wp), DIMENSION(:), ALLOCATABLE :: vpf !< building volume volume per facade element, height dependent
END TYPE build
TYPE(build), DIMENSION(:), ALLOCATABLE :: buildings !< building array
INTEGER(iwp) :: num_build !< total number of buildings in domain
REAL(wp) :: volume_fraction
REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in !< dummy array for indoor temperature for the
!< total building volume at each discrete height level
REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in_l !< dummy array for indoor temperature for the
!< local building volume fraction at each discrete height level
!
!-- Declare all global variables within the module
INTEGER(iwp) :: building_type = 1 !< namelist parameter with
!< X1=construction year (cy) 1950, X2=cy 2000, X3=cy 2050
!< R=Residental building, O=Office, RW=Enlarged Windows, P=Panel type (Plattenbau) WBS 70, H=Hospital (in progress), I=Industrial halls (in progress), S=Special Building (in progress)
!< (0=R1, 1=R2, 2=R3, 3=O1, 4=O2, 5=O3,...)
INTEGER(iwp) :: cooling_on !< Indoor cooling flag (0=off, 1=on)
INTEGER(iwp) :: heating_on !< Indoor heating flag (0=off, 1=on)
INTEGER(iwp) :: solar_protection_off !< Solar protection off
INTEGER(iwp) :: solar_protection_on !< Solar protection on
REAL(wp) :: air_change_high !< [1/h] air changes per time_utc_hour
REAL(wp) :: air_change_low !< [1/h] air changes per time_utc_hour
REAL(wp) :: eff_mass_area !< [m²] the effective mass-related area
REAL(wp) :: floor_area_per_facade !< [m²] net floor area (Sum of all floors)
REAL(wp) :: total_area ! CORRECT?)
REAL(wp) :: qint_high !< [W/m2] internal heat gains, option Database qint_0-23
REAL(wp) :: qint_low !< [W/m2] internal heat gains, option Database qint_0-23
REAL(wp) :: phi_c_max !< [W] Max. Cooling capacity (negative)
REAL(wp) :: phi_h_max !< [W] Max. Heating capacity (negative)
REAL(wp) :: phi_hc_nd ! Initialization of the indoor model.
!> Static information are calculated here, e.g. building parameters and
!> geometrical information, everything that doesn't change in time.
!
!-- Input values
!-- Input datas from Palm, M4
! i_global --> net_sw_in !global radiation [W/m2]
! theta_e --> pt(k,j,i) !undisturbed outside temperature, 1. PALM volume, for windows
! theta_sup = theta_f --> surf_usm_h%pt_10cm(m)
! surf_usm_v(l)%pt_10cm(m) !Air temperature, facade near (10cm) air temperature from 1. Palm volume
! theta_node --> t_wall_h(nzt_wall,m)
! t_wall_v(l)%t(nzt_wall,m) !Temperature of innermost wall layer, for opaque wall
!------------------------------------------------------------------------------!
SUBROUTINE im_init
USE arrays_3d, &
ONLY: dzw
USE control_parameters, &
ONLY: message_string
USE indices, &
ONLY: nxl, nxr, nyn, nys, nzb, nzt, wall_flags_0
USE grid_variables, &
ONLY: dx, dy
USE netcdf_data_input_mod, &
ONLY: building_id_f
USE pegrid
USE surface_mod, &
ONLY: surf_usm_h, surf_usm_v
USE urban_surface_mod, &
ONLY: building_pars, building_type
IMPLICIT NONE
INTEGER(iwp) :: fa !< running index for facade elements of each building
INTEGER(iwp) :: i !< running index along x-direction
INTEGER(iwp) :: j !< running index along y-direction
INTEGER(iwp) :: k !< running index along z-direction
INTEGER(iwp) :: l !< running index for surface-element orientation
INTEGER(iwp) :: m !< running index surface elements
INTEGER(iwp) :: n !< building index
INTEGER(iwp) :: nb !< building index
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids !< building IDs on entire model domain
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_final !< building IDs on entire model domain,
!< multiple occurences are sorted out
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_final_tmp !< temporary array used for resizing
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_l !< building IDs on local subdomain
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_l_tmp !< temporary array used to resize array of building IDs
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: displace_dum !< displacements of start addresses, used for MPI_ALLGATHERV
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: k_max_l !< highest vertical index of a building on subdomain
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: k_min_l !< lowest vertical index of a building on subdomain
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: n_fa !< counting array
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: num_facades_h !< dummy array used for summing-up total number of
!< horizontal facade elements
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: num_facades_v !< dummy array used for summing-up total number of
!< vertical facade elements
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: receive_dum_h !< dummy array used for MPI_ALLREDUCE
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: receive_dum_v !< dummy array used for MPI_ALLREDUCE
INTEGER(iwp), DIMENSION(0:numprocs-1) :: num_buildings !< number of buildings with different ID on entire model domain
INTEGER(iwp), DIMENSION(0:numprocs-1) :: num_buildings_l !< number of buildings with different ID on local subdomain
REAL(wp), DIMENSION(:), ALLOCATABLE :: local_weight !< dummy representing fraction of local on total building volume,
!< height dependent
REAL(wp), DIMENSION(:), ALLOCATABLE :: volume !< total building volume at each discrete height level
REAL(wp), DIMENSION(:), ALLOCATABLE :: volume_l !< total building volume at each discrete height level,
!< on local subdomain
!
!-- Initializing of indoor model is only possible if buildings can be
!-- distinguished by their IDs.
IF ( .NOT. building_id_f%from_file ) THEN
message_string = 'Indoor model requires information about building_id'
CALL message( 'im_init', 'PA0999', 1, 2, 0, 6, 0 )
ENDIF
!
!-- Determine number of different building IDs on local subdomain.
num_buildings_l = 0
num_buildings = 0
ALLOCATE( build_ids_l(1) )
DO i = nxl, nxr
DO j = nys, nyn
IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN
IF ( num_buildings_l(myid) > 0 ) THEN
IF ( ANY( building_id_f%var(j,i) .EQ. build_ids_l ) ) THEN
CYCLE
ELSE
num_buildings_l(myid) = num_buildings_l(myid) + 1
!
!-- Resize array with different local building ids
ALLOCATE( build_ids_l_tmp(1:SIZE(build_ids_l)) )
build_ids_l_tmp = build_ids_l
DEALLOCATE( build_ids_l )
ALLOCATE( build_ids_l(1:num_buildings_l(myid)) )
build_ids_l(1:num_buildings_l(myid)-1) = &
build_ids_l_tmp(1:num_buildings_l(myid)-1)
build_ids_l(num_buildings_l(myid)) = building_id_f%var(j,i)
DEALLOCATE( build_ids_l_tmp )
ENDIF
!
!-- First occuring building id on PE
ELSE
num_buildings_l(myid) = num_buildings_l(myid) + 1
build_ids_l(1) = building_id_f%var(j,i)
ENDIF
ENDIF
ENDDO
ENDDO
!
!-- Determine number of building IDs for the entire domain. (Note, building IDs
!-- can appear multiple times as buildings might be distributed over several
!-- PEs.)
#if defined( __parallel )
CALL MPI_ALLREDUCE( num_buildings_l, num_buildings, numprocs, &
MPI_INTEGER, MPI_SUM, comm2d, ierr )
#else
num_buildings = num_buildings_l
#endif
ALLOCATE( build_ids(1:SUM(num_buildings)) )
!
!-- Gather building IDs. Therefore, first, determine displacements used
!-- required for MPI_GATHERV call.
ALLOCATE( displace_dum(0:numprocs-1) )
displace_dum(0) = 0
DO i = 1, numprocs-1
displace_dum(i) = displace_dum(i-1) + num_buildings(i-1)
ENDDO
#if defined( __parallel )
CALL MPI_ALLGATHERV( build_ids_l(1:num_buildings_l(myid)), &
num_buildings(myid), &
MPI_INTEGER, &
build_ids, &
num_buildings, &
displace_dum, &
MPI_INTEGER, &
comm2d, ierr )
DEALLOCATE( displace_dum )
#else
build_ids = build_ids_l
#endif
!
!-- Note: in parallel mode, building IDs can occur mutliple times, as
!-- each PE has send its own ids. Therefore, sort out building IDs which
!-- appear multiple times.
num_build = 0
DO n = 1, SIZE(build_ids)
IF ( ALLOCATED(build_ids_final) ) THEN
IF ( ANY( build_ids(n) .EQ. build_ids_final ) ) THEN !FK: Warum ANY?, Warum .EQ.? --> s.o
CYCLE
ELSE
num_build = num_build + 1
!
!-- Resize
ALLOCATE( build_ids_final_tmp(1:num_build) )
build_ids_final_tmp(1:num_build-1) = build_ids_final(1:num_build-1)
DEALLOCATE( build_ids_final )
ALLOCATE( build_ids_final(1:num_build) )
build_ids_final(1:num_build-1) = build_ids_final_tmp(1:num_build-1)
build_ids_final(num_build) = build_ids(n)
DEALLOCATE( build_ids_final_tmp )
ENDIF
ELSE
num_build = num_build + 1
ALLOCATE( build_ids_final(1:num_build) )
build_ids_final(num_build) = build_ids(n)
ENDIF
ENDDO
!
!-- Allocate building-data structure array. Note, this is a global array
!-- and all building IDs on domain are known by each PE. Further attributes,
!-- e.g. height-dependent arrays, however, are only allocated on PEs where
!-- the respective building is present (in order to reduce memory demands).
ALLOCATE( buildings(1:num_build) )
!
!-- Store building IDs and check if building with certain ID is present on
!-- subdomain.
DO nb = 1, num_build
buildings(nb)%id = build_ids_final(nb)
IF ( ANY( building_id_f%var == buildings(nb)%id ) ) &
buildings(nb)%on_pe = .TRUE.
ENDDO
!
!-- Determine the maximum vertical dimension occupied by each building.
ALLOCATE( k_min_l(1:num_build) )
ALLOCATE( k_max_l(1:num_build) )
k_min_l = nzt + 1
k_max_l = 0
DO i = nxl, nxr
DO j = nys, nyn
IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN
nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), &
DIM = 1 )
DO k = nzb+1, nzt+1
!
!-- Check if grid point belongs to a building.
IF ( BTEST( wall_flags_0(k,j,i), 6 ) ) THEN
k_min_l(nb) = MIN( k_min_l(nb), k )
k_max_l(nb) = MAX( k_max_l(nb), k )
ENDIF
ENDDO
ENDIF
ENDDO
ENDDO
DO nb = 1, num_build
#if defined( __parallel )
CALL MPI_ALLREDUCE( k_min_l(nb), buildings(nb)%kb_min, 1, MPI_INTEGER, &
MPI_MIN, comm2d, ierr )
CALL MPI_ALLREDUCE( k_max_l(nb), buildings(nb)%kb_max, 1, MPI_INTEGER, &
MPI_MAX, comm2d, ierr )
#else
buildings(nb)%kb_min = k_min_l(nb)
buildings(nb)%kb_max = k_max_l(nb)
#endif
ENDDO
DEALLOCATE( k_min_l )
DEALLOCATE( k_max_l )
!
!-- Calculate building volume
DO nb = 1, num_build
!
!-- Allocate temporary array for summing-up building volume
ALLOCATE( volume(buildings(nb)%kb_min:buildings(nb)%kb_max) )
ALLOCATE( volume_l(buildings(nb)%kb_min:buildings(nb)%kb_max) )
volume = 0.0_wp
volume_l = 0.0_wp
!
!-- Calculate building volume per height level on each PE where
!-- these building is present.
IF ( buildings(nb)%on_pe ) THEN
ALLOCATE( buildings(nb)%volume(buildings(nb)%kb_min:buildings(nb)%kb_max) )
ALLOCATE( buildings(nb)%vol_frac(buildings(nb)%kb_min:buildings(nb)%kb_max) )
buildings(nb)%volume = 0.0_wp
buildings(nb)%vol_frac = 0.0_wp
IF ( ANY( building_id_f%var == buildings(nb)%id ) ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = buildings(nb)%kb_min, buildings(nb)%kb_max
IF ( building_id_f%var(j,i) /= building_id_f%fill ) &
volume_l(k) = dx * dy * dzw(k)
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
!
!-- Sum-up building volume from all subdomains
#if defined( __parallel )
CALL MPI_ALLREDUCE( volume_l, volume, SIZE(volume), MPI_REAL, MPI_SUM, &
comm2d, ierr )
#else
volume = volume_l
#endif
!
!-- Save total building volume as well as local fraction on volume on
!-- building data structure.
IF ( ALLOCATED( buildings(nb)%volume ) ) buildings(nb)%volume = volume
!
!-- Determine fraction of local on total building volume
IF ( buildings(nb)%on_pe ) buildings(nb)%vol_frac = volume_l / volume
DEALLOCATE( volume )
DEALLOCATE( volume_l )
ENDDO
!
!-- Allocate arrays for indoor temperature.
DO nb = 1, num_build
IF ( buildings(nb)%on_pe ) THEN
ALLOCATE( buildings(nb)%t_in(buildings(nb)%kb_min:buildings(nb)%kb_max) )
ALLOCATE( buildings(nb)%t_in_l(buildings(nb)%kb_min:buildings(nb)%kb_max) )
buildings(nb)%t_in = 0.0_wp
buildings(nb)%t_in_l = 0.0_wp
ENDIF
ENDDO
!
!-- Allocate arrays for number of facades per height level. Distinguish between
!-- horizontal and vertical facades.
DO nb = 1, num_build
IF ( buildings(nb)%on_pe ) THEN
ALLOCATE( buildings(nb)%num_facade_h(buildings(nb)%kb_min:buildings(nb)%kb_max) )
ALLOCATE( buildings(nb)%num_facade_v(buildings(nb)%kb_min:buildings(nb)%kb_max) )
buildings(nb)%num_facade_h = 0
buildings(nb)%num_facade_v = 0
ENDIF
ENDDO
!
!-- Determine number of facade elements per building on local subdomain.
!-- Distinguish between horizontal and vertical facade elements.
!
!-- Horizontal facades
buildings(:)%num_facades_per_building_h_l = 0
DO m = 1, surf_usm_h%ns
!
!-- For the current facade element determine corresponding building index.
!-- First, obtain j,j,k indices of the building. Please note the
!-- offset between facade/surface element and building location (for
!-- horizontal surface elements the horizontal offsets are zero).
i = surf_usm_h%i(m) + surf_usm_h%ioff
j = surf_usm_h%j(m) + surf_usm_h%joff
k = surf_usm_h%k(m) + surf_usm_h%koff
!
!-- Determine building index and check whether building is on PE
nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), DIM = 1 )
IF ( buildings(nb)%on_pe ) THEN
!
!-- Count number of facade elements at each height level.
buildings(nb)%num_facade_h(k) = buildings(nb)%num_facade_h(k) + 1
!
!-- Moreover, sum up number of local facade elements per building.
buildings(nb)%num_facades_per_building_h_l = &
buildings(nb)%num_facades_per_building_h_l + 1
ENDIF
ENDDO
!
!-- Vertical facades
buildings(:)%num_facades_per_building_v_l = 0
DO l = 0, 3
DO m = 1, surf_usm_v(l)%ns
!
!-- For the current facade element determine corresponding building index.
!-- First, obtain j,j,k indices of the building. Please note the
!-- offset between facade/surface element and building location (for
!-- vertical surface elements the vertical offsets are zero).
i = surf_usm_v(l)%i(m) + surf_usm_v(l)%ioff
j = surf_usm_v(l)%j(m) + surf_usm_v(l)%joff
k = surf_usm_v(l)%k(m) + surf_usm_v(l)%koff
nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), &
DIM = 1 )
IF ( buildings(nb)%on_pe ) THEN
buildings(nb)%num_facade_v(k) = buildings(nb)%num_facade_v(k) + 1
buildings(nb)%num_facades_per_building_v_l = &
buildings(nb)%num_facades_per_building_v_l + 1
ENDIF
ENDDO
ENDDO
!
!-- Determine total number of facade elements per building and assign number to
!-- building data type.
DO nb = 1, num_build
!
!-- Allocate dummy array used for summing-up facade elements.
!-- Please note, dummy arguments are necessary as building-date type
!-- arrays are not necessarily allocated on all PEs.
ALLOCATE( num_facades_h(buildings(nb)%kb_min:buildings(nb)%kb_max) )
ALLOCATE( num_facades_v(buildings(nb)%kb_min:buildings(nb)%kb_max) )
ALLOCATE( receive_dum_h(buildings(nb)%kb_min:buildings(nb)%kb_max) )
ALLOCATE( receive_dum_v(buildings(nb)%kb_min:buildings(nb)%kb_max) )
num_facades_h = 0
num_facades_v = 0
receive_dum_h = 0
receive_dum_v = 0
IF ( buildings(nb)%on_pe ) THEN
num_facades_h = buildings(nb)%num_facade_h
num_facades_v = buildings(nb)%num_facade_v
ENDIF
#if defined( __parallel )
CALL MPI_ALLREDUCE( num_facades_h, &
receive_dum_h, &
buildings(nb)%kb_max - buildings(nb)%kb_min + 1, &
MPI_INTEGER, &
MPI_SUM, &
comm2d, &
ierr )
CALL MPI_ALLREDUCE( num_facades_v, &
receive_dum_v, &
buildings(nb)%kb_max - buildings(nb)%kb_min + 1, &
MPI_INTEGER, &
MPI_SUM, &
comm2d, &
ierr )
IF ( ALLOCATED( buildings(nb)%num_facade_h ) ) & !FK: Was wenn not allocated? --> s.o.
buildings(nb)%num_facade_h = receive_dum_h
IF ( ALLOCATED( buildings(nb)%num_facade_v ) ) &
buildings(nb)%num_facade_v = receive_dum_v
#else
buildings(nb)%num_facade_h = num_facades_h
buildings(nb)%num_facade_v = num_facades_v
#endif
!
!-- Deallocate dummy arrays
DEALLOCATE( num_facades_h )
DEALLOCATE( num_facades_v )
DEALLOCATE( receive_dum_h )
DEALLOCATE( receive_dum_v )
!
!-- Allocate index arrays which link facade elements with surface-data type.
!-- Please note, no height levels are considered here (information is stored
!-- in surface-data type itself).
IF ( buildings(nb)%on_pe ) THEN
!
!-- Determine number of facade elements per building.
buildings(nb)%num_facades_per_building_h = SUM( buildings(nb)%num_facade_h )
buildings(nb)%num_facades_per_building_v = SUM( buildings(nb)%num_facade_v )
!
!-- Allocate arrays which link the building with the horizontal and vertical
!-- urban-type surfaces. Please note, linking arrays are allocated over all
!-- facade elements, which is required in case a building is located at the
!-- subdomain boundaries, where the building and the corresponding surface
!-- elements are located on different subdomains.
ALLOCATE( buildings(nb)%m_h(1:buildings(nb)%num_facades_per_building_h_l) )
ALLOCATE( buildings(nb)%l_v(1:buildings(nb)%num_facades_per_building_v_l) )
ALLOCATE( buildings(nb)%m_v(1:buildings(nb)%num_facades_per_building_v_l) )
ENDIF
!
!-- Determine volume per facade element (vpf)
IF ( buildings(nb)%on_pe ) THEN
ALLOCATE( buildings(nb)%vpf(buildings(nb)%kb_min:buildings(nb)%kb_max) )
DO k = buildings(nb)%kb_min, buildings(nb)%kb_max
buildings(nb)%vpf(k) = buildings(nb)%volume(k) / &
( buildings(nb)%num_facade_h(k) + &
buildings(nb)%num_facade_v(k) )
ENDDO
ENDIF
ENDDO
!
!-- Link facade elements with surface data type.
!-- Allocate array for counting.
ALLOCATE( n_fa(1:num_build) )
n_fa = 1
DO m = 1, surf_usm_h%ns
i = surf_usm_h%i(m) + surf_usm_h%ioff
j = surf_usm_h%j(m) + surf_usm_h%joff
nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), DIM = 1 )
buildings(nb)%m_h(n_fa(nb)) = m
n_fa(nb) = n_fa(nb) + 1
ENDDO
n_fa = 1
DO l = 0, 3
DO m = 1, surf_usm_v(l)%ns
i = surf_usm_v(l)%i(m) + surf_usm_v(l)%ioff
j = surf_usm_v(l)%j(m) + surf_usm_v(l)%joff
nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), DIM = 1 )
buildings(nb)%l_v(n_fa(nb)) = l
buildings(nb)%m_v(n_fa(nb)) = m
n_fa(nb) = n_fa(nb) + 1
ENDDO
ENDDO
DEALLOCATE( n_fa )
!
!-- Building parameters by type of building. Assigned in urban_surface_mod.f90
lambda_layer3 = building_pars(63, building_type)
s_layer3 = building_pars(57, building_type)
f_c_win = building_pars(119, building_type)
g_value_win = building_pars(120, building_type)
u_value_win = building_pars(121, building_type)
air_change_low = building_pars(122, building_type)
air_change_high = building_pars(123, building_type)
eta_ve = building_pars(124, building_type)
factor_a = building_pars(125, building_type)
factor_c = building_pars(126, building_type)
lambda_at = building_pars(127, building_type)
theta_int_h_set = building_pars(118, building_type)
theta_int_c_set = building_pars(117, building_type)
phi_h_max = building_pars(128, building_type)
phi_c_max = building_pars(129, building_type)
qint_high = building_pars(130, building_type)
qint_low = building_pars(131, building_type)
height_storey = building_pars(132, building_type)
height_cei_con = building_pars(133, building_type)
!
!-- Setting of initial room temperature [K]
!-- (after first loop, use theta_m_t as theta_m_t_prev)
theta_m_t_prev = initial_indoor_temperature
END SUBROUTINE im_init
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Main part of the indoor model.
!> Calculation of .... (kanani: Please describe)
!------------------------------------------------------------------------------!
SUBROUTINE im_main_heatcool
USE arrays_3d, &
ONLY: ddzw, dzw
USE basic_constants_and_equations_mod, &
ONLY: c_p
USE control_parameters, &
ONLY: rho_surface
USE date_and_time_mod, &
ONLY: time_utc
USE grid_variables, &
ONLY: dx, dy
USE pegrid
USE surface_mod, &
ONLY: ind_veg_wall, ind_wat_win, surf_usm_h, surf_usm_v
USE urban_surface_mod, &
ONLY: nzt_wall, t_wall_h, t_wall_v, t_window_h, t_window_v, &
building_type
IMPLICIT NONE
INTEGER(iwp) :: i !< index of facade-adjacent atmosphere grid point in x-direction
INTEGER(iwp) :: j !< index of facade-adjacent atmosphere grid point in y-direction
INTEGER(iwp) :: k !< index of facade-adjacent atmosphere grid point in z-direction
INTEGER(iwp) :: kk !< vertical index of indoor grid point adjacent to facade
INTEGER(iwp) :: l !< running index for surface-element orientation
INTEGER(iwp) :: m !< running index surface elements
INTEGER(iwp) :: nb !< running index for buildings
INTEGER(iwp) :: fa !< running index for facade elements of each building
REAL(wp) :: indoor_wall_window_temperature !< weighted temperature of innermost wall/window layer
REAL(wp) :: near_facade_temperature !< outside air temperature 10cm away from facade
REAL(wp) :: time_utc_hour !< time of day (hour UTC)
REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in_l_send !< dummy send buffer used for summing-up indoor temperature per kk-level
REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in_recv !< dummy recv buffer used for summing-up indoor temperature per kk-level
!
!-- Daily schedule, here for 08:00-18:00 = 1, other hours = 0.
!-- time_utc_hour is calculated here based on time_utc [s] from
!-- date_and_time_mod.
!-- (kanani: Does this schedule not depend on if it's an office or resident
!-- building?)
time_utc_hour = time_utc / 3600.0_wp
!
!-- Allocation of the load profiles to the building types
!-- Residental Building, panel WBS 70
if (building_type == 1 .OR. &
building_type == 2 .OR. &
building_type == 3 .OR. &
building_type == 10 .OR. &
building_type == 11 .OR. &
building_type == 12) then
ventilation_int_loads = 1
!-- Office, building with large windows
else if (building_type == 4 .OR. &
building_type == 5 .OR. &
building_type == 6 .OR. &
building_type == 7 .OR. &
building_type == 8 .OR. &
building_type == 9) then
ventilation_int_loads = 2
!-- Industry, hospitals
else if (building_type == 13 .OR. &
building_type == 14 .OR. &
building_type == 15 .OR. &
building_type == 16 .OR. &
building_type == 17 .OR. &
building_type == 18) then
ventilation_int_loads = 3
end if
!-- Residental Building, panel WBS 70
if (ventilation_int_loads == 1) THEN
if ( time_utc_hour >= 6.0_wp .AND. time_utc_hour <= 8.0_wp ) THEN
schedule_d = 1
else if ( time_utc_hour >= 18.0_wp .AND. time_utc_hour <= 23.0_wp ) THEN
schedule_d = 1
else
schedule_d = 0
end if
end if
!-- Office, building with large windows
if (ventilation_int_loads == 2) THEN
if ( time_utc_hour >= 8.0_wp .AND. time_utc_hour <= 18.0_wp ) THEN
schedule_d = 1
else
schedule_d = 0
end if
end if
!-- Industry, hospitals
if (ventilation_int_loads == 3) THEN
if ( time_utc_hour >= 6.0_wp .AND. time_utc_hour <= 22.0_wp ) THEN
schedule_d = 1
else
schedule_d = 0
end if
end if
!
!-- Following calculations must be done for each facade element.
DO nb = 1, num_build
!
!-- First, check whether building is present on local subdomain.
IF ( buildings(nb)%on_pe ) THEN
!
!-- Initialize/reset indoor temperature
buildings(nb)%t_in = 0.0_wp
buildings(nb)%t_in_l = 0.0_wp
!
!-- Horizontal surfaces
DO fa = 1, buildings(nb)%num_facades_per_building_h_l
!
!-- Determine index where corresponding surface-type information
!-- is stored.
m = buildings(nb)%m_h(fa)
!
!-- Determine building height level index.
kk = surf_usm_h%k(m) + surf_usm_h%koff
!
!-- Building geometries --> not time-dependent
facade_element_area = dx * dy !< [m2] surface area per facade element
floor_area_per_facade = buildings(nb)%vpf(kk) * ddzw(kk) !< [m2] net floor area per facade element
indoor_volume_per_facade = buildings(nb)%vpf(kk) !< [m3] indoor air volume per facade element
window_area_per_facade = surf_usm_h%frac(ind_wat_win,m) * facade_element_area !< [m2] window area per facade element
eff_mass_area = factor_a * floor_area_per_facade !< [m2] standard values according to Table 12 section 12.3.1.2 (calculate over Eq. (65) according to section 12.3.1.2)
c_m = factor_c * floor_area_per_facade !< [J/K] standard values according to table 12 section 12.3.1.2 (calculate over Eq. (66) according to section 12.3.1.2)
total_area = lambda_at * floor_area_per_facade !< [m2] area of all surfaces pointing to zone Eq. (9) according to section 7.2.2.2
!-- Calculation of heat transfer coefficient for transmission --> not time-dependent
h_tr_w = window_area_per_facade * u_value_win !< [W/K] only for windows
h_tr_is = total_area * h_is !< [W/K] with h_is = 3.45 W / (m2 K) between surface and air, Eq. (9)
h_tr_ms = eff_mass_area * h_ms !< [W/K] with h_ms = 9.10 W / (m2 K) between component and surface, Eq. (64)
h_tr_op = 1 / ( 1 / ( ( facade_element_area - window_area_per_facade ) &
* lambda_layer3 / s_layer3 * 0.5 ) + 1 / h_tr_ms )
h_tr_em = 1 / ( 1 / h_tr_op - 1 / h_tr_ms ) !< [W/K] Eq. (63), Section 12.2.2
!
!-- internal air loads dependent on the occupacy of the room
!-- basical internal heat gains (qint_low) with additional internal heat gains by occupancy (qint_high) (0,5*phi_int)
phi_ia = 0.5 * ( ( qint_high * schedule_d + qint_low ) &
* floor_area_per_facade ) !< [W] Eq. (C.1)
!
!-- Airflow dependent on the occupacy of the room
!-- basical airflow (air_change_low) with additional airflow gains by occupancy (air_change_high)
air_change = ( air_change_high * schedule_d + air_change_low ) !< [1/h]?
!
!-- Heat transfer of ventilation
!-- not less than 0.01 W/K to provide division by 0 in further calculations
!-- with heat capacity of air 0.33 Wh/m2K
h_ve = MAX( 0.01_wp , ( air_change * indoor_volume_per_facade * &
0.33_wp * (1 - eta_ve ) ) ) !< [W/K] from ISO 13789 Eq.(10)
!-- Heat transfer coefficient auxiliary variables
h_tr_1 = 1 / ( ( 1 / h_ve ) + ( 1 / h_tr_is ) ) !< [W/K] Eq. (C.6)
h_tr_2 = h_tr_1 + h_tr_w !< [W/K] Eq. (C.7)
h_tr_3 = 1 / ( ( 1 / h_tr_2 ) + ( 1 / h_tr_ms ) ) !< [W/K] Eq. (C.8)
!
!-- Net short-wave radiation through window area (was i_global)
net_sw_in = surf_usm_h%rad_sw_in(m) - surf_usm_h%rad_sw_out(m)
!
!-- Quantities needed for im_calc_temperatures
i = surf_usm_h%i(m)
j = surf_usm_h%j(m)
k = surf_usm_h%k(m)
near_facade_temperature = surf_usm_h%pt_10cm(m)
indoor_wall_window_temperature = &
surf_usm_h%frac(ind_veg_wall,m) * t_wall_h(nzt_wall,m) &
+ surf_usm_h%frac(ind_wat_win,m) * t_window_h(nzt_wall,m)
!
!-- Solar thermal gains. If net_sw_in larger than sun-protection
!-- threshold parameter (params_solar_protection), sun protection will
!-- be activated
IF ( net_sw_in <= params_solar_protection ) THEN
solar_protection_off = 1
solar_protection_on = 0
ELSE
solar_protection_off = 0
solar_protection_on = 1
ENDIF
!
!-- Calculation of total heat gains from net_sw_in through windows [W] in respect on automatic sun protection
!-- DIN 4108 - 2 chap.8
phi_sol = ( window_area_per_facade * net_sw_in * solar_protection_off &
+ window_area_per_facade * net_sw_in * f_c_win * solar_protection_on ) &
* g_value_win * ( 1 - params_f_f ) * params_f_w !< [W]
!
!-- Calculation of the mass specific thermal load for internal and external heatsources of the inner node
phi_m = (eff_mass_area / total_area) * ( phi_ia + phi_sol ) !< [W] Eq. (C.2) with phi_ia=0,5*phi_int
!
!-- Calculation mass specific thermal load implied non thermal mass
phi_st = ( 1 - ( eff_mass_area / total_area ) - ( h_tr_w / ( 9.1 * total_area ) ) ) &
* ( phi_ia + phi_sol ) !< [W] Eq. (C.3) with phi_ia=0,5*phi_int
!
!-- Calculations for deriving indoor temperature and heat flux into the wall
!-- Step 1: Indoor temperature without heating and cooling
!-- section C.4.1 Picture C.2 zone 3)
phi_hc_nd = 0
CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, &
near_facade_temperature, phi_hc_nd )
!
!-- If air temperature between border temperatures of heating and cooling, assign output variable, then ready
IF ( theta_int_h_set <= theta_air .AND. theta_air <= theta_int_c_set ) THEN
phi_hc_nd_ac = 0
phi_hc_nd = phi_hc_nd_ac
theta_air_ac = theta_air
!
!-- Step 2: Else, apply 10 W/m² heating/cooling power and calculate indoor temperature
!-- again.
ELSE
!
!-- Temperature not correct, calculation method according to section C4.2
theta_air_0 = theta_air !< Note temperature without heating/cooling
!-- Heating or cooling?
IF ( theta_air > theta_int_c_set ) THEN
theta_air_set = theta_int_c_set
ELSE
theta_air_set = theta_int_h_set
ENDIF
!-- Calculate the temperature with phi_hc_nd_10
phi_hc_nd_10 = 10.0_wp * floor_area_per_facade
phi_hc_nd = phi_hc_nd_10
CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, &
near_facade_temperature, phi_hc_nd )
theta_air_10 = theta_air !< Note the temperature with 10 W/m2 of heating
!
phi_hc_nd_un = phi_hc_nd_10 * (theta_air_set - theta_air_0) &
/ (theta_air_10 - theta_air_0) !< Eq. (C.13)
!-- Step 3: With temperature ratio to determine the heating or cooling capacity
!-- If necessary, limit the power to maximum power
!-- section C.4.1 Picture C.2 zone 2) and 4)
IF ( phi_c_max < phi_hc_nd_un .AND. phi_hc_nd_un < phi_h_max ) THEN
phi_hc_nd_ac = phi_hc_nd_un
phi_hc_nd = phi_hc_nd_un
ELSE
!-- Step 4: Inner temperature with maximum heating (phi_hc_nd_un positive) or cooling (phi_hc_nd_un negative)
!-- section C.4.1 Picture C.2 zone 1) and 5)
IF ( phi_hc_nd_un > 0 ) THEN
phi_hc_nd_ac = phi_h_max !< Limit heating
ELSE
phi_hc_nd_ac = phi_c_max !< Limit cooling
ENDIF
ENDIF
phi_hc_nd = phi_hc_nd_ac
!
!-- Calculate the temperature with phi_hc_nd_ac (new)
CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, &
near_facade_temperature, phi_hc_nd )
theta_air_ac = theta_air
ENDIF
!
!-- Update theta_m_t_prev
theta_m_t_prev = theta_m_t
!
!-- Calculate the operating temperature with weighted mean temperature of air and mean solar temperature
!-- Will be used for thermal comfort calculations
theta_op = 0.3 * theta_air_ac + 0.7 * theta_s !< [degree_C] operative Temperature Eq. (C.12)
!
!-- Heat flux into the wall. Value needed in urban_surface_mod to
!-- calculate heat transfer through wall layers towards the facade
!-- (use c_p * rho_surface to convert [W/m2] into [K m/s])
q_wall_win = h_tr_ms * ( theta_s - theta_m ) &
/ ( facade_element_area &
- window_area_per_facade )
!
!-- Transfer q_wall_win back to USM (innermost wall/window layer)
surf_usm_h%iwghf_eb(m) = q_wall_win
surf_usm_h%iwghf_eb_window(m) = q_wall_win
!
!-- Sum up operational indoor temperature per kk-level. Further below,
!-- this temperature is reduced by MPI to one temperature per kk-level
!-- and building (processor overlapping)
buildings(nb)%t_in_l(kk) = buildings(nb)%t_in_l(kk) + theta_op
!
!-- Calculation of waste heat
!-- Anthropogenic heat output
IF ( phi_hc_nd_ac > 0 ) THEN
heating_on = 1
cooling_on = 0
ELSE
heating_on = 0
cooling_on = 1
ENDIF
q_waste_heat = (phi_hc_nd * (params_waste_heat_h * heating_on + params_waste_heat_c * cooling_on)) !< [W/m2] anthropogenic heat output
! surf_usm_h%shf(m)=q_waste_heat
ENDDO !< Horizontal surfaces loop
!
!-- Vertical surfaces
DO fa = 1, buildings(nb)%num_facades_per_building_v_l
!
!-- Determine indices where corresponding surface-type information
!-- is stored.
l = buildings(nb)%l_v(fa)
m = buildings(nb)%m_v(fa)
!
!-- Determine building height level index.
kk = surf_usm_v(l)%k(m) + surf_usm_v(l)%koff
!
!-- Building geometries --> not time-dependent
IF ( l == 0 .OR. l == 1 ) facade_element_area = dx * dzw(kk) !< [m2] surface area per facade element
IF ( l == 2 .OR. l == 3 ) facade_element_area = dy * dzw(kk) !< [m2] surface area per facade element
floor_area_per_facade = buildings(nb)%vpf(kk) * ddzw(kk) !< [m2] net floor area per facade element
indoor_volume_per_facade = buildings(nb)%vpf(kk) !< [m3] indoor air volume per facade element
window_area_per_facade = surf_usm_v(l)%frac(ind_wat_win,m) * facade_element_area !< [m2] window area per facade element
eff_mass_area = factor_a * floor_area_per_facade !< [m2] standard values according to Table 12 section 12.3.1.2 (calculate over Eq. (65) according to section 12.3.1.2)
c_m = factor_c * floor_area_per_facade !< [J/K] standard values according to table 12 section 12.3.1.2 (calculate over Eq. (66) according to section 12.3.1.2)
total_area = lambda_at * floor_area_per_facade !< [m2] area of all surfaces pointing to zone Eq. (9) according to section 7.2.2.2
!
!-- Calculation of heat transfer coefficient for transmission --> not time-dependent
h_tr_w = window_area_per_facade * u_value_win !< [W/K] only for windows
h_tr_is = total_area * h_is !< [W/K] with h_is = 3.45 W / (m2 K) between surface and air, Eq. (9)
h_tr_ms = eff_mass_area * h_ms !< [W/K] with h_ms = 9.10 W / (m2 K) between component and surface, Eq. (64)
h_tr_op = 1 / ( 1 / ( ( facade_element_area - window_area_per_facade ) &
* lambda_layer3 / s_layer3 * 0.5 ) + 1 / h_tr_ms )
h_tr_em = 1 / ( 1 / h_tr_op - 1 / h_tr_ms ) !< [W/K] Eq. (63), Section 12.2.2
!
!-- internal air loads dependent on the occupacy of the room
!-- basical internal heat gains (qint_low) with additional internal heat gains by occupancy (qint_high) (0,5*phi_int)
phi_ia = 0.5 * ( ( qint_high * schedule_d + qint_low ) &
* floor_area_per_facade ) !< [W] Eq. (C.1)
!
!-- Airflow dependent on the occupacy of the room
!-- basical airflow (air_change_low) with additional airflow gains by occupancy (air_change_high)
air_change = ( air_change_high * schedule_d + air_change_low )
!
!-- Heat transfer of ventilation
!-- not less than 0.01 W/K to provide division by 0 in further calculations
!-- with heat capacity of air 0.33 Wh/m2K
h_ve = MAX( 0.01_wp , ( air_change * indoor_volume_per_facade * &
0.33_wp * (1 - eta_ve ) ) ) !< [W/K] from ISO 13789 Eq.(10)
!-- Heat transfer coefficient auxiliary variables
h_tr_1 = 1 / ( ( 1 / h_ve ) + ( 1 / h_tr_is ) ) !< [W/K] Eq. (C.6)
h_tr_2 = h_tr_1 + h_tr_w !< [W/K] Eq. (C.7)
h_tr_3 = 1 / ( ( 1 / h_tr_2 ) + ( 1 / h_tr_ms ) ) !< [W/K] Eq. (C.8)
!
!-- Net short-wave radiation through window area (was i_global)
net_sw_in = surf_usm_v(l)%rad_sw_in(m) - surf_usm_v(l)%rad_sw_out(m)
!
!-- Quantities needed for im_calc_temperatures
i = surf_usm_v(l)%i(m)
j = surf_usm_v(l)%j(m)
k = surf_usm_v(l)%k(m)
near_facade_temperature = surf_usm_v(l)%pt_10cm(m)
indoor_wall_window_temperature = &
surf_usm_v(l)%frac(ind_veg_wall,m) * t_wall_v(l)%t(nzt_wall,m) &
+ surf_usm_v(l)%frac(ind_wat_win,m) * t_window_v(l)%t(nzt_wall,m)
!
!-- Solar thermal gains. If net_sw_in larger than sun-protection
!-- threshold parameter (params_solar_protection), sun protection will
!-- be activated
IF ( net_sw_in <= params_solar_protection ) THEN
solar_protection_off = 1
solar_protection_on = 0
ELSE
solar_protection_off = 0
solar_protection_on = 1
ENDIF
!
!-- Calculation of total heat gains from net_sw_in through windows [W] in respect on automatic sun protection
!-- DIN 4108 - 2 chap.8
phi_sol = ( window_area_per_facade * net_sw_in * solar_protection_off &
+ window_area_per_facade * net_sw_in * f_c_win * solar_protection_on ) &
* g_value_win * ( 1 - params_f_f ) * params_f_w
!
!-- Calculation of the mass specific thermal load for internal and external heatsources
phi_m = (eff_mass_area / total_area) * ( phi_ia + phi_sol ) !< [W] Eq. (C.2) with phi_ia=0,5*phi_int
!
!-- Calculation mass specific thermal load implied non thermal mass
phi_st = ( 1 - ( eff_mass_area / total_area ) - ( h_tr_w / ( 9.1 * total_area ) ) ) &
* ( phi_ia + phi_sol ) !< [W] Eq. (C.3) with phi_ia=0,5*phi_int
!
!-- Calculations for deriving indoor temperature and heat flux into the wall
!-- Step 1: Indoor temperature without heating and cooling
!-- section C.4.1 Picture C.2 zone 3)
phi_hc_nd = 0
CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, &
near_facade_temperature, phi_hc_nd )
!
!-- If air temperature between border temperatures of heating and cooling, assign output variable, then ready
IF ( theta_int_h_set <= theta_air .AND. theta_air <= theta_int_c_set ) THEN
phi_hc_nd_ac = 0
phi_hc_nd = phi_hc_nd_ac
theta_air_ac = theta_air
!
!-- Step 2: Else, apply 10 W/m² heating/cooling power and calculate indoor temperature
!-- again.
ELSE
!
!-- Temperature not correct, calculation method according to section C4.2
theta_air_0 = theta_air !< Note temperature without heating/cooling
!-- Heating or cooling?
IF ( theta_air > theta_int_c_set ) THEN
theta_air_set = theta_int_c_set
ELSE
theta_air_set = theta_int_h_set
ENDIF
!-- Calculate the temperature with phi_hc_nd_10
phi_hc_nd_10 = 10.0_wp * floor_area_per_facade
phi_hc_nd = phi_hc_nd_10
CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, &
near_facade_temperature, phi_hc_nd )
theta_air_10 = theta_air !< Note the temperature with 10 W/m2 of heating
phi_hc_nd_un = phi_hc_nd_10 * (theta_air_set - theta_air_0) &
/ (theta_air_10 - theta_air_0) !< Eq. (C.13)
!
!-- Step 3: With temperature ratio to determine the heating or cooling capacity
!-- If necessary, limit the power to maximum power
!-- section C.4.1 Picture C.2 zone 2) and 4)
IF ( phi_c_max < phi_hc_nd_un .AND. phi_hc_nd_un < phi_h_max ) THEN
phi_hc_nd_ac = phi_hc_nd_un
phi_hc_nd = phi_hc_nd_un
ELSE
!-- Step 4: Inner temperature with maximum heating (phi_hc_nd_un positive) or cooling (phi_hc_nd_un negative)
!-- section C.4.1 Picture C.2 zone 1) and 5)
IF ( phi_hc_nd_un > 0 ) THEN
phi_hc_nd_ac = phi_h_max !< Limit heating
ELSE
phi_hc_nd_ac = phi_c_max !< Limit cooling
ENDIF
ENDIF
phi_hc_nd = phi_hc_nd_ac
!
!-- Calculate the temperature with phi_hc_nd_ac (new)
CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, &
near_facade_temperature, phi_hc_nd )
theta_air_ac = theta_air
ENDIF
!
!-- Update theta_m_t_prev
theta_m_t_prev = theta_m_t
!
!-- Calculate the operating temperature with weighted mean of temperature of air and mean
!-- Will be used for thermal comfort calculations
theta_op = 0.3 * theta_air_ac + 0.7 * theta_s
!
!-- Heat flux into the wall. Value needed in urban_surface_mod to
!-- calculate heat transfer through wall layers towards the facade
q_wall_win = h_tr_ms * ( theta_s - theta_m ) &
/ ( facade_element_area &
- window_area_per_facade )
!
!-- Transfer q_wall_win back to USM (innermost wall/window layer)
surf_usm_v(l)%iwghf_eb(m) = q_wall_win
surf_usm_v(l)%iwghf_eb_window(m) = q_wall_win
!
!-- Sum up operational indoor temperature per kk-level. Further below,
!-- this temperature is reduced by MPI to one temperature per kk-level
!-- and building (processor overlapping)
buildings(nb)%t_in_l(kk) = buildings(nb)%t_in_l(kk) + theta_op
!
!-- Calculation of waste heat
!-- Anthropogenic heat output
IF ( phi_hc_nd_ac > 0 ) THEN
heating_on = 1
cooling_on = 0
ELSE
heating_on = 0
cooling_on = 1
ENDIF
q_waste_heat = (phi_hc_nd * (params_waste_heat_h * heating_on + params_waste_heat_c * cooling_on)) !< [W/m2] , anthropogenic heat output
! surf_usm_v(l)%waste_heat(m)=q_waste_heat
ENDDO !< Vertical surfaces loop
ENDIF !< buildings(nb)%on_pe
ENDDO !< buildings loop
!
!-- Determine total number of facade elements per building and assign number to
!-- building data type.
DO nb = 1, num_build
!
!-- Allocate dummy array used for summing-up facade elements.
!-- Please note, dummy arguments are necessary as building-date type
!-- arrays are not necessarily allocated on all PEs.
ALLOCATE( t_in_l_send(buildings(nb)%kb_min:buildings(nb)%kb_max) )
ALLOCATE( t_in_recv(buildings(nb)%kb_min:buildings(nb)%kb_max) )
t_in_l_send = 0.0_wp
t_in_recv = 0.0_wp
IF ( buildings(nb)%on_pe ) THEN
t_in_l_send = buildings(nb)%t_in_l
ENDIF
#if defined( __parallel )
CALL MPI_ALLREDUCE( t_in_l_send, &
t_in_recv, &
buildings(nb)%kb_max - buildings(nb)%kb_min + 1, &
MPI_REAL, &
MPI_SUM, &
comm2d, &
ierr )
IF ( ALLOCATED( buildings(nb)%t_in ) ) &
buildings(nb)%t_in = t_in_recv
#else
buildings(nb)%t_in = buildings(nb)%t_in_l
#endif
buildings(nb)%t_in = buildings(nb)%t_in / &
( buildings(nb)%num_facade_h + &
buildings(nb)%num_facade_v )
!
!-- Deallocate dummy arrays
DEALLOCATE( t_in_l_send )
DEALLOCATE( t_in_recv )
ENDDO
END SUBROUTINE im_main_heatcool
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Parin for &indoor_parameters for indoor model
!------------------------------------------------------------------------------!
SUBROUTINE im_parin
USE control_parameters, &
ONLY: indoor_model
IMPLICIT NONE
CHARACTER (LEN=80) :: line !< string containing current line of file PARIN
NAMELIST /indoor_parameters/ building_type, dt_indoor, &
initial_indoor_temperature
! line = ' '
!
!-- Try to find indoor model package
REWIND ( 11 )
line = ' '
DO WHILE ( INDEX( line, '&indoor_parameters' ) == 0 )
READ ( 11, '(A)', END=10 ) line
! PRINT*, 'line: ', line
ENDDO
BACKSPACE ( 11 )
!
!-- Read user-defined namelist
READ ( 11, indoor_parameters )
!
!-- Set flag that indicates that the indoor model is switched on
indoor_model = .TRUE.
!
!-- Activate spinup (maybe later
! IF ( spinup_time > 0.0_wp ) THEN
! coupling_start_time = spinup_time
! end_time = end_time + spinup_time
! IF ( spinup_pt_mean == 9999999.9_wp ) THEN
! spinup_pt_mean = pt_surface
! ENDIF
! spinup = .TRUE.
! ENDIF
10 CONTINUE
END SUBROUTINE im_parin
END MODULE indoor_model_mod