! !> @file header.f90 !--------------------------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General ! Public License as published by the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General ! Public License for more details. ! ! You should have received a copy of the GNU General Public License along with PALM. If not, see ! . ! ! Copyright 1997-2020 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------------------------! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: header.f90 4646 2020-08-24 16:02:40Z monakurppa $ ! file re-formatted to follow the PALM coding standard ! ! 4586 2020-07-01 16:16:43Z gronemeier ! Renamed rif to Ri (gradient Richardson number, 1D model) ! and zeta (= z_mo / ol, stability parameter, 3D model) ! ! 4573 2020-06-24 13:08:47Z oliver.maas ! added statement for pt_surface_heating_rate ! ! 4536 2020-05-17 17:24:13Z raasch ! output of restart data format added ! ! 4473 2020-03-25 21:04:07Z gronemeier ! revised message if wall_adjustment is used ! ! 4444 2020-03-05 15:59:50Z raasch ! bugfix: cpp-directives for serial mode added ! ! 4360 2020-01-07 11:25:50Z suehring ! Bugfix, character length too short, caused crash on NEC. ! ! 4309 2019-11-26 18:49:59Z suehring ! replaced recycling_yshift by y_shift ! ! 4301 2019-11-22 12:09:09Z oliver.maas ! ! 4297 2019-11-21 10:37:50Z oliver.maas ! Adjusted format for simulated time and related quantities ! ! 4297 2019-11-21 10:37:50Z oliver.maas ! adjusted message to the changed parameter recycling_yshift ! ! 4227 2019-09-10 18:04:34Z gronemeier ! implement new palm_date_time_mod ! ! 4223 2019-09-10 09:20:47Z gronemeier ! Write information about rotation angle ! ! 4182 2019-08-22 15:20:23Z scharf ! Corrected "Former revisions" section ! ! 4168 2019-08-16 13:50:17Z suehring ! Replace function get_topography_top_index by topo_top_ind ! ! 4069 2019-07-01 14:05:51Z Giersch ! Masked output running index mid has been introduced as a local variable to avoid runtime error ! (Loop variable has been modified) in time_integration ! ! 4023 2019-06-12 13:20:01Z maronga ! Renamed "coupling start time" to "spinup time" ! ! 4017 2019-06-06 12:16:46Z schwenkel ! unused variable removed ! ! 3655 2019-01-07 16:51:22Z knoop ! Implementation of the PALM module interface ! ! Revision 1.1 1997/08/11 06:17:20 raasch ! Initial revision ! ! ! Description: ! ------------ !> Writing a header with all important information about the current run. !> This subroutine is called three times, two times at the beginning (writing information on !> files RUN_CONTROL and HEADER) and one time at the end of the run, then writing !> additional information about CPU-usage on file !> header. !--------------------------------------------------------------------------------------------------! SUBROUTINE header USE arrays_3d, & ONLY: pt_init, q_init, s_init, sa_init, ug, vg, w_subs, zu, zw USE basic_constants_and_equations_mod, & ONLY: g, kappa USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model USE control_parameters USE cpulog, & ONLY: log_point_s USE grid_variables, & ONLY: dx, dy USE indices, & ONLY: mg_loc_ind, nnx, nny, nnz, nx, ny, nxl_mg, nxr_mg, nyn_mg, nys_mg, nzt, nzt_mg, & topo_top_ind USE kinds USE model_1d_mod, & ONLY: damp_level_ind_1d, dt_pr_1d, dt_run_control_1d, end_time_1d USE module_interface, & ONLY: module_interface_header USE netcdf_interface, & ONLY: netcdf_data_format, netcdf_data_format_string, netcdf_deflate USE ocean_mod, & ONLY: ibc_sa_t, prho_reference, sa_surface, sa_vertical_gradient, & sa_vertical_gradient_level, sa_vertical_gradient_level_ind USE palm_date_time_mod, & ONLY: get_date_time USE pegrid #if defined( __parallel ) USE pmc_handle_communicator, & ONLY: pmc_get_model_info USE pmc_interface, & ONLY: nested_run, nesting_datatransfer_mode, nesting_mode #endif USE surface_mod, & ONLY: surf_def_h USE turbulence_closure_mod, & ONLY: rans_const_c, rans_const_sigma IMPLICIT NONE CHARACTER (LEN=2) :: do2d_mode !< mode of 2D data output (xy, xz, yz) CHARACTER (LEN=5) :: section_chr !< string indicating grid information where to output 2D slices CHARACTER (LEN=10) :: host_chr !< string for hostname CHARACTER (LEN=16) :: begin_chr !< string indication start time for the data output CHARACTER (LEN=16) :: coor_chr !< dummy string CHARACTER (LEN=23) :: date_time_str !< string for date and time information CHARACTER (LEN=26) :: ver_rev !< string for run identification #if defined( __parallel ) CHARACTER (LEN=32) :: cpl_name !< name of child domain (nesting mode only) #endif CHARACTER (LEN=40) :: output_format !< netcdf format CHARACTER (LEN=70) :: char1 !< dummy varialbe used for various strings CHARACTER (LEN=70) :: char2 !< string containing informating about the advected distance in case of Galilei !< transformation CHARACTER (LEN=70) :: dopr_chr !< string indicating profile output variables CHARACTER (LEN=70) :: do2d_xy !< string indicating 2D-xy output variables CHARACTER (LEN=70) :: do2d_xz !< string indicating 2D-xz output variables CHARACTER (LEN=70) :: do2d_yz !< string indicating 2D-yz output variables CHARACTER (LEN=70) :: do3d_chr !< string indicating 3D output variables CHARACTER (LEN=70) :: domask_chr !< string indicating masked output variables CHARACTER (LEN=70) :: run_classification !< string classifying type of run, e.g. nested, coupled, etc. CHARACTER (LEN=85) :: r_upper !< string indicating model top boundary condition for various quantities CHARACTER (LEN=85) :: r_lower !< string indicating bottom boundary condition for various quantities CHARACTER (LEN=86) :: coordinates !< string indicating height coordinates for profile-prescribed variables CHARACTER (LEN=86) :: gradients !< string indicating gradients of profile-prescribed variables between the !< prescribed height coordinates CHARACTER (LEN=86) :: slices !< string indicating grid coordinates of profile-prescribed subsidence velocity CHARACTER (LEN=86) :: temperatures !< string indicating profile-prescribed subsidence velocities CHARACTER (LEN=86) :: ugcomponent !< string indicating profile-prescribed geostrophic u-component CHARACTER (LEN=86) :: vgcomponent !< string indicating profile-prescribed geostrophic v-component CHARACTER (LEN=1), DIMENSION(1:3) :: dir = (/ 'x', 'y', 'z' /) !< string indicating masking steps along certain direction INTEGER(iwp) :: av !< index indicating average output quantities INTEGER(iwp) :: bh !< building height in generic single-building setup INTEGER(iwp) :: blx !< building width in grid points along x in generic single-building setup INTEGER(iwp) :: bly !< building width in grid points along y in generic single-building setup INTEGER(iwp) :: bxl !< index for left building wall in generic single-building setup INTEGER(iwp) :: bxr !< index for right building wall in generic single-building setup INTEGER(iwp) :: byn !< index for north building wall in generic single-building setup INTEGER(iwp) :: bys !< index for south building wall in generic single-building setup INTEGER(iwp) :: ch !< canyon depth in generic street-canyon setup INTEGER(iwp) :: count !< number of masked output locations INTEGER(iwp) :: cwx !< canyon width along x in generic street-canyon setup INTEGER(iwp) :: cwy !< canyon width along y in generic street-canyon setup INTEGER(iwp) :: cxl !< index for left canyon wall in generic street-canyon setup INTEGER(iwp) :: cxr !< index for right canyon wall in generic street-canyon setup INTEGER(iwp) :: cyn !< index for north canyon wall in generic street-canyon setup INTEGER(iwp) :: cys !< index for south canyon wall in generic street-canyon setup INTEGER(iwp) :: dim !< running index for masking output locations INTEGER(iwp) :: i !< running index for various loops INTEGER(iwp) :: io !< file unit of HEADER file INTEGER(iwp) :: l !< substring length INTEGER(iwp) :: ll !< substring length INTEGER(iwp) :: mid !< masked output running index #if defined( __parallel ) INTEGER(iwp) :: cpl_parent_id !< parent ID for the respective child model INTEGER(iwp) :: my_cpl_id !< run id in a nested model setup INTEGER(iwp) :: n !< running index over number of couplers in a nested model setup INTEGER(iwp) :: ncpl !< number of coupler in a nested model setup INTEGER(iwp) :: npe_total !< number of total PEs in a coupler (parent + child) #endif REAL(wp) :: cpuseconds_per_simulated_second !< CPU time (in s) per simulated second #if defined( __parallel ) REAL(wp) :: lower_left_coord_x !< x-coordinate of nest domain REAL(wp) :: lower_left_coord_y !< y-coordinate of nest domain #endif ! !-- Open the output file. At the end of the simulation, output is directed to unit 19. IF ( ( runnr == 0 .OR. force_print_header ) .AND. & .NOT. simulated_time_at_begin /= simulated_time ) THEN io = 15 ! header output on file RUN_CONTROL ELSE io = 19 ! header output on file HEADER ENDIF CALL check_open( io ) ! !-- At the end of the run, output file (HEADER) will be rewritten with new information IF ( io == 19 .AND. simulated_time_at_begin /= simulated_time ) REWIND( 19 ) ! !-- Determine kind of model run IF ( TRIM( initializing_actions ) == 'read_restart_data' ) THEN run_classification = 'restart run' ELSEIF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN run_classification = 'run with cyclic fill of 3D - prerun data' ELSEIF ( INDEX( initializing_actions, 'set_constant_profiles' ) /= 0 ) THEN run_classification = 'run without 1D - prerun' ELSEIF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN run_classification = 'run with 1D - prerun' ELSEIF ( INDEX( initializing_actions, 'inifor' ) /= 0 ) THEN run_classification = 'run initialized with COSMO data' ELSEIF ( INDEX( initializing_actions, 'by_user' ) /=0 ) THEN run_classification = 'run initialized by user' ELSEIF ( INDEX( initializing_actions, 'initialize_vortex' ) /=0 ) THEN run_classification = 'run additionally initialized by a Rankine-vortex' ELSEIF ( INDEX( initializing_actions, 'initialize_ptanom' ) /=0 ) THEN run_classification = 'run additionally initialized by temperature anomaly' ELSE message_string = ' unknown action(s): ' // TRIM( initializing_actions ) CALL message( 'header', 'PA0191', 0, 0, 0, 6, 0 ) ENDIF #if defined( __parallel ) IF ( nested_run ) run_classification = 'nested ' // run_classification(1:63) #endif IF ( ocean_mode ) THEN run_classification = 'ocean - ' // run_classification(1:61) ELSE run_classification = 'atmosphere - ' // run_classification(1:57) ENDIF ! !-- Run-identification, date, time, host host_chr = host(1:10) ver_rev = TRIM( version ) // ' ' // TRIM( revision ) WRITE ( io, 100 ) ver_rev, TRIM( run_classification ) IF ( TRIM( coupling_mode ) /= 'uncoupled' ) THEN WRITE ( io, 101 ) coupling_mode ENDIF #if defined( __parallel ) IF ( coupling_start_time /= 0.0_wp .AND. .NOT. spinup ) THEN IF ( coupling_start_time > simulated_time_at_begin ) THEN WRITE ( io, 109 ) ELSE WRITE ( io, 114 ) ENDIF ENDIF #endif IF ( ensemble_member_nr /= 0 ) THEN WRITE ( io, 512 ) run_date, run_identifier, run_time, runnr, ADJUSTR( host_chr ), & ensemble_member_nr ELSE WRITE ( io, 102 ) run_date, run_identifier, run_time, runnr, ADJUSTR( host_chr ) ENDIF #if defined( __parallel ) IF ( npex == -1 .AND. npey == -1 ) THEN char1 = 'calculated' ELSE char1 = 'predefined' ENDIF IF ( threads_per_task == 1 ) THEN WRITE ( io, 103 ) numprocs, pdims(1), pdims(2), TRIM( char1 ) ELSE WRITE ( io, 104 ) numprocs*threads_per_task, numprocs, threads_per_task, pdims(1), & pdims(2), TRIM( char1 ) ENDIF IF ( pdims(2) == 1 ) THEN WRITE ( io, 107 ) 'x' ELSEIF ( pdims(1) == 1 ) THEN WRITE ( io, 107 ) 'y' ENDIF IF ( numprocs /= maximum_parallel_io_streams ) THEN WRITE ( io, 108 ) maximum_parallel_io_streams ENDIF #endif #if defined( __parallel ) ! !-- Nesting informations IF ( nested_run ) THEN WRITE ( io, 600 ) TRIM( nesting_mode ), TRIM( nesting_datatransfer_mode ) CALL pmc_get_model_info( ncpl = ncpl, cpl_id = my_cpl_id ) DO n = 1, ncpl CALL pmc_get_model_info( request_for_cpl_id = n, cpl_name = cpl_name, & cpl_parent_id = cpl_parent_id, & lower_left_x = lower_left_coord_x, & lower_left_y = lower_left_coord_y, & npe_total = npe_total ) IF ( n == my_cpl_id ) THEN char1 = '*' ELSE char1 = ' ' ENDIF WRITE ( io, 601 ) TRIM( char1 ), n, cpl_parent_id, npe_total, lower_left_coord_x, & lower_left_coord_y, TRIM( cpl_name ) ENDDO ENDIF #endif WRITE ( io, 99 ) ! !-- Numerical schemes WRITE ( io, 110 ) IF ( rans_mode ) THEN WRITE ( io, 124 ) TRIM( turbulence_closure ), 'RANS' ELSE WRITE ( io, 124 ) TRIM( turbulence_closure ), 'LES' ENDIF WRITE ( io, 121 ) TRIM( approximation ) IF ( psolver(1:7) == 'poisfft' ) THEN WRITE ( io, 111 ) TRIM( fft_method ) IF ( transpose_compute_overlap ) WRITE( io, 115 ) ELSEIF ( psolver == 'sor' ) THEN WRITE ( io, 112 ) nsor_ini, nsor, omega_sor ELSEIF ( psolver(1:9) == 'multigrid' ) THEN WRITE ( io, 135 ) TRIM(psolver), cycle_mg, maximum_grid_level, ngsrb IF ( mg_cycles == -1 ) THEN WRITE ( io, 140 ) residual_limit ELSE WRITE ( io, 141 ) mg_cycles ENDIF IF ( mg_switch_to_pe0_level == 0 ) THEN WRITE ( io, 136 ) nxr_mg(1)-nxl_mg(1)+1, nyn_mg(1)-nys_mg(1)+1, nzt_mg(1) ELSEIF ( mg_switch_to_pe0_level /= -1 ) THEN WRITE ( io, 137 ) mg_switch_to_pe0_level, & mg_loc_ind(2,0)-mg_loc_ind(1,0)+1, & mg_loc_ind(4,0)-mg_loc_ind(3,0)+1, & nzt_mg(mg_switch_to_pe0_level), & nxr_mg(1)-nxl_mg(1)+1, nyn_mg(1)-nys_mg(1)+1, & nzt_mg(1) ENDIF IF ( psolver == 'multigrid_noopt' .AND. masking_method ) WRITE ( io, 144 ) ENDIF IF ( call_psolver_at_all_substeps .AND. timestep_scheme(1:5) == 'runge' ) THEN WRITE ( io, 142 ) ENDIF IF ( momentum_advec == 'pw-scheme' ) THEN WRITE ( io, 113 ) ELSEIF (momentum_advec == 'ws-scheme' ) THEN WRITE ( io, 503 ) ENDIF IF ( scalar_advec == 'pw-scheme' ) THEN WRITE ( io, 116 ) ELSEIF ( scalar_advec == 'ws-scheme' ) THEN WRITE ( io, 504 ) ELSE WRITE ( io, 118 ) ENDIF WRITE ( io, 139 ) TRIM( loop_optimization ) IF ( galilei_transformation ) THEN IF ( use_ug_for_galilei_tr ) THEN char1 = '0.6 * geostrophic wind' ELSE char1 = 'mean wind in model domain' ENDIF IF ( simulated_time_at_begin == simulated_time ) THEN char2 = 'at the start of the run' ELSE char2 = 'at the end of the run' ENDIF WRITE ( io, 119 ) TRIM( char1 ), TRIM( char2 ), advected_distance_x/1000.0_wp, & advected_distance_y/1000.0_wp ENDIF WRITE ( io, 122 ) timestep_scheme IF ( use_upstream_for_tke ) WRITE ( io, 143 ) IF ( rayleigh_damping_factor /= 0.0_wp ) THEN IF ( .NOT. ocean_mode ) THEN WRITE ( io, 123 ) 'above', rayleigh_damping_height, rayleigh_damping_factor ELSE WRITE ( io, 123 ) 'below', rayleigh_damping_height, rayleigh_damping_factor ENDIF ENDIF IF ( neutral ) WRITE ( io, 131 ) pt_surface IF ( humidity ) THEN IF ( .NOT. bulk_cloud_model ) THEN WRITE ( io, 129 ) ELSE WRITE ( io, 130 ) ENDIF ENDIF IF ( passive_scalar ) WRITE ( io, 134 ) IF ( conserve_volume_flow ) THEN WRITE ( io, 150 ) conserve_volume_flow_mode IF ( TRIM( conserve_volume_flow_mode ) == 'bulk_velocity' ) THEN WRITE ( io, 151 ) u_bulk, v_bulk ENDIF ELSEIF ( dp_external ) THEN IF ( dp_smooth ) THEN WRITE ( io, 152 ) dpdxy, dp_level_b, ', vertically smoothed.' ELSE WRITE ( io, 152 ) dpdxy, dp_level_b, '.' ENDIF ENDIF WRITE ( io, 99 ) ! !-- Runtime and timestep information WRITE ( io, 200 ) IF ( .NOT. dt_fixed ) THEN WRITE ( io, 201 ) dt_max, cfl_factor ELSE WRITE ( io, 202 ) dt ENDIF WRITE ( io, 203 ) simulated_time_at_begin, end_time IF ( time_restart /= 9999999.9_wp .AND. simulated_time_at_begin == simulated_time ) THEN IF ( dt_restart == 9999999.9_wp ) THEN WRITE ( io, 204 ) ' Restart at: ',time_restart ELSE WRITE ( io, 205 ) ' Restart at: ',time_restart, dt_restart ENDIF ENDIF IF ( simulated_time_at_begin /= simulated_time ) THEN i = MAX ( log_point_s(10)%counts, 1 ) IF ( ( simulated_time - simulated_time_at_begin ) == 0.0_wp ) THEN cpuseconds_per_simulated_second = 0.0_wp ELSE cpuseconds_per_simulated_second = log_point_s(10)%sum / & ( simulated_time - simulated_time_at_begin ) ENDIF WRITE ( io, 206 ) simulated_time, log_point_s(10)%sum, & log_point_s(10)%sum / REAL( i, KIND=wp ), cpuseconds_per_simulated_second IF ( time_restart /= 9999999.9_wp .AND. time_restart < end_time ) THEN IF ( dt_restart == 9999999.9_wp ) THEN WRITE ( io, 204 ) ' Next restart at: ',time_restart ELSE WRITE ( io, 205 ) ' Next restart at: ',time_restart, dt_restart ENDIF ENDIF ENDIF ! !-- Start time for coupled runs, if independent precursor runs for atmosphere and ocean are used or !-- have been used. In this case, coupling_start_time defines the time when the coupling is !-- switched on. IF ( coupling_start_time /= 0.0_wp ) THEN WRITE ( io, 207 ) coupling_start_time ENDIF ! !-- Computational grid IF ( .NOT. ocean_mode ) THEN WRITE ( io, 250 ) dx, dy DO i = 1, number_stretch_level_start+1 WRITE ( io, 253 ) i, dz(i) ENDDO WRITE( io, 251 ) (nx+1)*dx, (ny+1)*dy, zu(nzt+1) IF ( ANY( dz_stretch_level_start_index < nzt+1 ) ) THEN WRITE( io, '(A)', advance='no') ' Vertical stretching starts at height:' DO i = 1, number_stretch_level_start WRITE ( io, '(F10.1,A3)', advance='no' ) dz_stretch_level_start(i), ' m,' ENDDO WRITE( io, '(/,A)', advance='no') ' Vertical stretching starts at index: ' DO i = 1, number_stretch_level_start WRITE ( io, '(I12,A1)', advance='no' ) dz_stretch_level_start_index(i), ',' ENDDO WRITE( io, '(/,A)', advance='no') ' Vertical stretching ends at height: ' DO i = 1, number_stretch_level_start WRITE ( io, '(F10.1,A3)', advance='no' ) dz_stretch_level_end(i), ' m,' ENDDO WRITE( io, '(/,A)', advance='no') ' Vertical stretching ends at index: ' DO i = 1, number_stretch_level_start WRITE ( io, '(I12,A1)', advance='no' ) dz_stretch_level_end_index(i), ',' ENDDO WRITE( io, '(/,A)', advance='no') ' Factor used for stretching: ' DO i = 1, number_stretch_level_start WRITE ( io, '(F12.3,A1)', advance='no' ) dz_stretch_factor_array(i), ',' ENDDO ENDIF ELSE WRITE ( io, 250 ) dx, dy DO i = 1, number_stretch_level_start+1 WRITE ( io, 253 ) i, dz(i) ENDDO WRITE ( io, 251 ) (nx+1)*dx, (ny+1)*dy, zu(0) IF ( ANY( dz_stretch_level_start_index > 0 ) ) THEN WRITE( io, '(A)', advance='no') ' Vertical stretching starts at height:' DO i = 1, number_stretch_level_start WRITE ( io, '(F10.1,A3)', advance='no' ) dz_stretch_level_start(i), ' m,' ENDDO WRITE( io, '(/,A)', advance='no') ' Vertical stretching starts at index: ' DO i = 1, number_stretch_level_start WRITE ( io, '(I12,A1)', advance='no' ) dz_stretch_level_start_index(i), ',' ENDDO WRITE( io, '(/,A)', advance='no') ' Vertical stretching ends at height: ' DO i = 1, number_stretch_level_start WRITE ( io, '(F10.1,A3)', advance='no' ) dz_stretch_level_end(i), ' m,' ENDDO WRITE( io, '(/,A)', advance='no') ' Vertical stretching ends at index: ' DO i = 1, number_stretch_level_start WRITE ( io, '(I12,A1)', advance='no' ) dz_stretch_level_end_index(i), ',' ENDDO WRITE( io, '(/,A)', advance='no') ' Factor used for stretching: ' DO i = 1, number_stretch_level_start WRITE ( io, '(F12.3,A1)', advance='no' ) dz_stretch_factor_array(i), ',' ENDDO ENDIF ENDIF WRITE ( io, 254 ) nx, ny, nzt+1, MIN( nnx, nx+1 ), MIN( nny, ny+1 ), MIN( nnz+2, nzt+2 ) IF ( sloping_surface ) WRITE ( io, 260 ) alpha_surface ! !-- Profile for the large scale vertial velocity. !-- Building output strings, starting with surface value IF ( large_scale_subsidence ) THEN temperatures = ' 0.0' gradients = '------' slices = ' 0' coordinates = ' 0.0' i = 1 DO WHILE ( subs_vertical_gradient_level_i(i) /= -9999 ) WRITE (coor_chr,'(E10.2,7X)') & w_subs(subs_vertical_gradient_level_i(i)) temperatures = TRIM( temperatures ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(E10.2,7X)') subs_vertical_gradient(i) gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(I10,7X)') subs_vertical_gradient_level_i(i) slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(F10.2,7X)') subs_vertical_gradient_level(i) coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) IF ( i == 10 ) THEN EXIT ELSE i = i + 1 ENDIF ENDDO IF ( .NOT. large_scale_forcing ) THEN WRITE ( io, 426 ) TRIM( coordinates ), TRIM( temperatures ), TRIM( gradients ), & TRIM( slices ) ENDIF ENDIF !-- Profile of the geostrophic wind (component ug). !-- Building output strings WRITE ( ugcomponent, '(F6.2)' ) ug_surface gradients = '------' slices = ' 0' coordinates = ' 0.0' i = 1 DO WHILE ( ug_vertical_gradient_level_ind(i) /= -9999 ) WRITE (coor_chr,'(F6.2,1X)') ug(ug_vertical_gradient_level_ind(i)) ugcomponent = TRIM( ugcomponent ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(F6.2,1X)') ug_vertical_gradient(i) gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(I6,1X)') ug_vertical_gradient_level_ind(i) slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(F6.1,1X)') ug_vertical_gradient_level(i) coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) IF ( i == 10 ) THEN EXIT ELSE i = i + 1 ENDIF ENDDO IF ( .NOT. large_scale_forcing ) THEN WRITE ( io, 423 ) TRIM( coordinates ), TRIM( ugcomponent ), TRIM( gradients ), & TRIM( slices ) ENDIF !-- Profile of the geostrophic wind (component vg). !-- Building output strings WRITE ( vgcomponent, '(F6.2)' ) vg_surface gradients = '------' slices = ' 0' coordinates = ' 0.0' i = 1 DO WHILE ( vg_vertical_gradient_level_ind(i) /= -9999 ) WRITE (coor_chr,'(F6.2,1X)') vg(vg_vertical_gradient_level_ind(i)) vgcomponent = TRIM( vgcomponent ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(F6.2,1X)') vg_vertical_gradient(i) gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(I6,1X)') vg_vertical_gradient_level_ind(i) slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(F6.1,1X)') vg_vertical_gradient_level(i) coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) IF ( i == 10 ) THEN EXIT ELSE i = i + 1 ENDIF ENDDO IF ( .NOT. large_scale_forcing ) THEN WRITE ( io, 424 ) TRIM( coordinates ), TRIM( vgcomponent ), TRIM( gradients ), & TRIM( slices ) ENDIF ! !-- Topography WRITE ( io, 270 ) topography SELECT CASE ( TRIM( topography ) ) CASE ( 'flat' ) ! no actions necessary CASE ( 'single_building' ) blx = INT( building_length_x / dx ) bly = INT( building_length_y / dy ) bh = MINLOC( ABS( zw - building_height ), 1 ) - 1 IF ( ABS( zw(bh ) - building_height ) == & ABS( zw(bh+1) - building_height ) ) bh = bh + 1 IF ( building_wall_left == 9999999.9_wp ) THEN building_wall_left = ( nx + 1 - blx ) / 2 * dx ENDIF bxl = INT ( building_wall_left / dx + 0.5_wp ) bxr = bxl + blx IF ( building_wall_south == 9999999.9_wp ) THEN building_wall_south = ( ny + 1 - bly ) / 2 * dy ENDIF bys = INT ( building_wall_south / dy + 0.5_wp ) byn = bys + bly WRITE ( io, 271 ) building_length_x, building_length_y, building_height, bxl, bxr, bys, & byn CASE ( 'single_street_canyon' ) ch = MINLOC( ABS( zw - canyon_height ), 1 ) - 1 IF ( ABS( zw(ch ) - canyon_height ) == & ABS( zw(ch+1) - canyon_height ) ) ch = ch + 1 IF ( canyon_width_x /= 9999999.9_wp ) THEN ! !-- Street canyon in y direction cwx = NINT( canyon_width_x / dx ) IF ( canyon_wall_left == 9999999.9_wp ) THEN canyon_wall_left = ( nx + 1 - cwx ) / 2 * dx ENDIF cxl = NINT( canyon_wall_left / dx ) cxr = cxl + cwx WRITE ( io, 272 ) 'y', canyon_height, ch, 'u', cxl, cxr ELSEIF ( canyon_width_y /= 9999999.9_wp ) THEN ! !-- Street canyon in x direction cwy = NINT( canyon_width_y / dy ) IF ( canyon_wall_south == 9999999.9_wp ) THEN canyon_wall_south = ( ny + 1 - cwy ) / 2 * dy ENDIF cys = NINT( canyon_wall_south / dy ) cyn = cys + cwy WRITE ( io, 272 ) 'x', canyon_height, ch, 'v', cys, cyn ENDIF CASE ( 'tunnel' ) IF ( tunnel_width_x /= 9999999.9_wp ) THEN ! !-- Tunnel axis in y direction IF ( tunnel_length == 9999999.9_wp .OR. tunnel_length >= ( nx + 1 ) * dx ) THEN WRITE ( io, 273 ) 'y', tunnel_height, tunnel_wall_depth, tunnel_width_x ELSE WRITE ( io, 274 ) 'y', tunnel_height, tunnel_wall_depth, tunnel_width_x, & tunnel_length ENDIF ELSEIF ( tunnel_width_y /= 9999999.9_wp ) THEN ! !-- Tunnel axis in x direction IF ( tunnel_length == 9999999.9_wp .OR. tunnel_length >= ( ny + 1 ) * dy ) THEN WRITE ( io, 273 ) 'x', tunnel_height, tunnel_wall_depth, tunnel_width_y ELSE WRITE ( io, 274 ) 'x', tunnel_height, tunnel_wall_depth, tunnel_width_y, & tunnel_length ENDIF ENDIF END SELECT IF ( TRIM( topography ) /= 'flat' ) THEN IF ( TRIM( topography_grid_convention ) == ' ' ) THEN IF ( TRIM( topography ) == 'single_building' .OR. & TRIM( topography ) == 'single_street_canyon' ) THEN WRITE ( io, 278 ) ELSEIF ( TRIM( topography ) == 'read_from_file' ) THEN WRITE ( io, 279 ) ENDIF ELSEIF ( TRIM( topography_grid_convention ) == 'cell_edge' ) THEN WRITE ( io, 278 ) ELSEIF ( TRIM( topography_grid_convention ) == 'cell_center' ) THEN WRITE ( io, 279 ) ENDIF ENDIF !-- Complex terrain IF ( complex_terrain ) THEN WRITE( io, 280 ) IF ( turbulent_inflow ) THEN WRITE( io, 281 ) zu(topo_top_ind(0,0,0)) ENDIF IF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN WRITE( io, 282 ) ENDIF ENDIF ! !-- Boundary conditions IF ( ibc_p_b == 0 ) THEN r_lower = 'p(0) = 0 |' ELSEIF ( ibc_p_b == 1 ) THEN r_lower = 'p(0) = p(1) |' ENDIF IF ( ibc_p_t == 0 ) THEN r_upper = 'p(nzt+1) = 0 |' ELSE r_upper = 'p(nzt+1) = p(nzt) |' ENDIF IF ( ibc_uv_b == 0 ) THEN r_lower = TRIM( r_lower ) // ' uv(0) = -uv(1) |' ELSE r_lower = TRIM( r_lower ) // ' uv(0) = uv(1) |' ENDIF IF ( TRIM( bc_uv_t ) == 'dirichlet_0' ) THEN r_upper = TRIM( r_upper ) // ' uv(nzt+1) = 0 |' ELSEIF ( ibc_uv_t == 0 ) THEN r_upper = TRIM( r_upper ) // ' uv(nzt+1) = ug(nzt+1), vg(nzt+1) |' ELSE r_upper = TRIM( r_upper ) // ' uv(nzt+1) = uv(nzt) |' ENDIF IF ( ibc_pt_b == 0 ) THEN IF ( land_surface ) THEN r_lower = TRIM( r_lower ) // ' pt(0) = from soil model' ELSE r_lower = TRIM( r_lower ) // ' pt(0) = pt_surface' ENDIF ELSEIF ( ibc_pt_b == 1 ) THEN r_lower = TRIM( r_lower ) // ' pt(0) = pt(1)' ELSEIF ( ibc_pt_b == 2 ) THEN r_lower = TRIM( r_lower ) // ' pt(0) = from coupled model' ENDIF IF ( ibc_pt_t == 0 ) THEN r_upper = TRIM( r_upper ) // ' pt(nzt+1) = pt_top' ELSEIF( ibc_pt_t == 1 ) THEN r_upper = TRIM( r_upper ) // ' pt(nzt+1) = pt(nzt)' ELSEIF( ibc_pt_t == 2 ) THEN r_upper = TRIM( r_upper ) // ' pt(nzt+1) = pt(nzt) + dpt/dz_ini' ENDIF WRITE ( io, 300 ) r_lower, r_upper IF ( .NOT. constant_diffusion ) THEN IF ( ibc_e_b == 1 ) THEN r_lower = 'e(0) = e(1)' ELSE r_lower = 'e(0) = e(1) = (u*/0.1)**2' ENDIF r_upper = 'e(nzt+1) = e(nzt) = e(nzt-1)' WRITE ( io, 301 ) 'e', r_lower, r_upper ENDIF IF ( ocean_mode ) THEN r_lower = 'sa(0) = sa(1)' IF ( ibc_sa_t == 0 ) THEN r_upper = 'sa(nzt+1) = sa_surface' ELSE r_upper = 'sa(nzt+1) = sa(nzt)' ENDIF WRITE ( io, 301 ) 'sa', r_lower, r_upper ENDIF IF ( humidity ) THEN IF ( ibc_q_b == 0 ) THEN IF ( land_surface ) THEN r_lower = 'q(0) = from soil model' ELSE r_lower = 'q(0) = q_surface' ENDIF ELSE r_lower = 'q(0) = q(1)' ENDIF IF ( ibc_q_t == 0 ) THEN r_upper = 'q(nzt+1) = q_top' ELSE r_upper = 'q(nzt+1) = q(nzt) + dq/dz' ENDIF WRITE ( io, 301 ) 'q', r_lower, r_upper ENDIF IF ( passive_scalar ) THEN IF ( ibc_s_b == 0 ) THEN r_lower = 's(0) = s_surface' ELSE r_lower = 's(0) = s(1)' ENDIF IF ( ibc_s_t == 0 ) THEN r_upper = 's(nzt+1) = s_top' ELSEIF ( ibc_s_t == 1 ) THEN r_upper = 's(nzt+1) = s(nzt)' ELSEIF ( ibc_s_t == 2 ) THEN r_upper = 's(nzt+1) = s(nzt) + ds/dz' ENDIF WRITE ( io, 301 ) 's', r_lower, r_upper ENDIF IF ( use_surface_fluxes ) THEN WRITE ( io, 303 ) IF ( constant_heatflux ) THEN IF ( large_scale_forcing .AND. lsf_surf ) THEN IF ( surf_def_h(0)%ns >= 1 ) WRITE ( io, 306 ) surf_def_h(0)%shf(1) ELSE WRITE ( io, 306 ) surface_heatflux ENDIF IF ( random_heatflux ) WRITE ( io, 307 ) ENDIF IF ( humidity .AND. constant_waterflux ) THEN IF ( large_scale_forcing .AND. lsf_surf ) THEN WRITE ( io, 311 ) surf_def_h(0)%qsws(1) ELSE WRITE ( io, 311 ) surface_waterflux ENDIF ENDIF IF ( passive_scalar .AND. constant_scalarflux ) THEN WRITE ( io, 313 ) surface_scalarflux ENDIF ENDIF IF ( use_top_fluxes ) THEN WRITE ( io, 304 ) IF ( coupling_mode == 'uncoupled' ) THEN WRITE ( io, 320 ) top_momentumflux_u, top_momentumflux_v IF ( constant_top_heatflux ) THEN WRITE ( io, 306 ) top_heatflux ENDIF ELSEIF ( coupling_mode == 'ocean_to_atmosphere' ) THEN WRITE ( io, 316 ) ENDIF IF ( ocean_mode .AND. constant_top_salinityflux ) WRITE ( io, 309 ) top_salinityflux IF ( humidity ) WRITE ( io, 315 ) IF ( passive_scalar .AND. constant_top_scalarflux ) WRITE ( io, 302 ) top_scalarflux ENDIF IF ( constant_flux_layer ) THEN WRITE ( io, 305 ) (zu(1)-zu(0)), roughness_length, z0h_factor*roughness_length, kappa, & zeta_min, zeta_max IF ( .NOT. constant_heatflux ) WRITE ( io, 308 ) IF ( humidity .AND. .NOT. constant_waterflux ) THEN WRITE ( io, 312 ) ENDIF IF ( passive_scalar .AND. .NOT. constant_scalarflux ) THEN WRITE ( io, 314 ) ENDIF ELSE IF ( INDEX( initializing_actions, 'set_1d-model_profiles') /= 0 ) THEN WRITE ( io, 310 ) zeta_min, zeta_max ENDIF ENDIF WRITE ( io, 317 ) bc_lr, bc_ns IF ( .NOT. bc_lr_cyc .OR. .NOT. bc_ns_cyc ) THEN WRITE ( io, 318 ) use_cmax, pt_damping_width, pt_damping_factor IF ( turbulent_inflow ) THEN IF ( y_shift == 0 ) THEN WRITE ( io, 319 ) recycling_width, recycling_plane, & inflow_damping_height, inflow_damping_width ELSE WRITE ( io, 322 ) y_shift, recycling_width, recycling_plane, & inflow_damping_height, inflow_damping_width END IF ENDIF IF ( turbulent_outflow ) THEN WRITE ( io, 323 ) outflow_source_plane, INT( outflow_source_plane / dx ) ENDIF ENDIF ! !-- Initial Profiles WRITE ( io, 321 ) ! !-- Initial wind profiles IF ( u_profile(1) /= 9999999.9_wp ) WRITE ( io, 427 ) ! !-- Initial temperature profile !-- Building output strings, starting with surface temperature WRITE ( temperatures, '(F6.2)' ) pt_surface gradients = '------' slices = ' 0' coordinates = ' 0.0' i = 1 DO WHILE ( pt_vertical_gradient_level_ind(i) /= -9999 ) WRITE ( coor_chr, '(F7.2)' ) pt_init(pt_vertical_gradient_level_ind(i)) temperatures = TRIM( temperatures ) // ' ' // TRIM( coor_chr ) WRITE ( coor_chr, '(F7.2)' ) pt_vertical_gradient(i) gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) WRITE ( coor_chr, '(I7)' ) pt_vertical_gradient_level_ind(i) slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) WRITE ( coor_chr, '(F7.1)' ) pt_vertical_gradient_level(i) coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) IF ( i == 10 ) THEN EXIT ELSE i = i + 1 ENDIF ENDDO IF ( .NOT. nudging ) THEN WRITE ( io, 420 ) TRIM( coordinates ), TRIM( temperatures ), TRIM( gradients ), & TRIM( slices ) ELSE WRITE ( io, 428 ) ENDIF ! !-- Initial humidity profile !-- Building output strings, starting with surface humidity IF ( humidity ) THEN WRITE ( temperatures, '(E8.1)' ) q_surface gradients = '--------' slices = ' 0' coordinates = ' 0.0' i = 1 DO WHILE ( q_vertical_gradient_level_ind(i) /= -9999 ) WRITE ( coor_chr, '(E8.1,4X)' ) q_init(q_vertical_gradient_level_ind(i)) temperatures = TRIM( temperatures ) // ' ' // TRIM( coor_chr ) WRITE ( coor_chr, '(E8.1,4X)' ) q_vertical_gradient(i) gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) WRITE ( coor_chr, '(I8,4X)' ) q_vertical_gradient_level_ind(i) slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) WRITE ( coor_chr, '(F8.1,4X)' ) q_vertical_gradient_level(i) coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) IF ( i == 10 ) THEN EXIT ELSE i = i + 1 ENDIF ENDDO IF ( .NOT. nudging ) THEN WRITE ( io, 421 ) TRIM( coordinates ), TRIM( temperatures ), TRIM( gradients ), & TRIM( slices ) ENDIF ENDIF ! !-- Initial scalar profile !-- Building output strings, starting with surface humidity IF ( passive_scalar ) THEN WRITE ( temperatures, '(E8.1)' ) s_surface gradients = '--------' slices = ' 0' coordinates = ' 0.0' i = 1 DO WHILE ( s_vertical_gradient_level_ind(i) /= -9999 ) WRITE ( coor_chr, '(E8.1,4X)' ) s_init(s_vertical_gradient_level_ind(i)) temperatures = TRIM( temperatures ) // ' ' // TRIM( coor_chr ) WRITE ( coor_chr, '(E8.1,4X)' ) s_vertical_gradient(i) gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) WRITE ( coor_chr, '(I8,4X)' ) s_vertical_gradient_level_ind(i) slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) WRITE ( coor_chr, '(F8.1,4X)' ) s_vertical_gradient_level(i) coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) IF ( i == 10 ) THEN EXIT ELSE i = i + 1 ENDIF ENDDO WRITE ( io, 422 ) TRIM( coordinates ), TRIM( temperatures ), TRIM( gradients ), & TRIM( slices ) ENDIF ! !-- Initial salinity profile !-- Building output strings, starting with surface salinity IF ( ocean_mode ) THEN WRITE ( temperatures, '(F6.2)' ) sa_surface gradients = '------' slices = ' 0' coordinates = ' 0.0' i = 1 DO WHILE ( sa_vertical_gradient_level_ind(i) /= -9999 ) WRITE ( coor_chr, '(F7.2)' ) sa_init(sa_vertical_gradient_level_ind(i)) temperatures = TRIM( temperatures ) // ' ' // TRIM( coor_chr ) WRITE ( coor_chr, '(F7.2)' ) sa_vertical_gradient(i) gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) WRITE ( coor_chr, '(I7)' ) sa_vertical_gradient_level_ind(i) slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) WRITE ( coor_chr, '(F7.1)' ) sa_vertical_gradient_level(i) coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) IF ( i == 10 ) THEN EXIT ELSE i = i + 1 ENDIF ENDDO WRITE ( io, 425 ) TRIM( coordinates ), TRIM( temperatures ), TRIM( gradients ), & TRIM( slices ) ENDIF ! !-- Listing of 1D-profiles WRITE ( io, 325 ) dt_dopr_listing IF ( averaging_interval_pr /= 0.0_wp ) THEN WRITE ( io, 326 ) averaging_interval_pr, dt_averaging_input_pr ENDIF ! !-- DATA output WRITE ( io, 330 ) IF ( averaging_interval_pr /= 0.0_wp ) THEN WRITE ( io, 326 ) averaging_interval_pr, dt_averaging_input_pr ENDIF ! !-- 1D-profiles dopr_chr = 'Profile:' IF ( dopr_n /= 0 ) THEN WRITE ( io, 331 ) output_format = '' output_format = netcdf_data_format_string IF ( netcdf_deflate == 0 ) THEN WRITE ( io, 344 ) output_format ELSE WRITE ( io, 354 ) TRIM( output_format ), netcdf_deflate ENDIF DO i = 1, dopr_n dopr_chr = TRIM( dopr_chr ) // ' ' // TRIM( data_output_pr(i) ) // ',' IF ( LEN_TRIM( dopr_chr ) >= 60 ) THEN WRITE ( io, 332 ) dopr_chr dopr_chr = ' :' ENDIF ENDDO IF ( dopr_chr /= '' ) THEN WRITE ( io, 332 ) dopr_chr ENDIF WRITE ( io, 333 ) dt_dopr, averaging_interval_pr, dt_averaging_input_pr IF ( skip_time_dopr /= 0.0_wp ) WRITE ( io, 339 ) skip_time_dopr ENDIF ! !-- 2D-arrays DO av = 0, 1 i = 1 do2d_xy = '' do2d_xz = '' do2d_yz = '' DO WHILE ( do2d(av,i) /= ' ' ) l = MAX( 2, LEN_TRIM( do2d(av,i) ) ) do2d_mode = do2d(av,i)(l-1:l) SELECT CASE ( do2d_mode ) CASE ( 'xy' ) ll = LEN_TRIM( do2d_xy ) do2d_xy = do2d_xy(1:ll) // ' ' // do2d(av,i)(1:l-3) // ',' CASE ( 'xz' ) ll = LEN_TRIM( do2d_xz ) do2d_xz = do2d_xz(1:ll) // ' ' // do2d(av,i)(1:l-3) // ',' CASE ( 'yz' ) ll = LEN_TRIM( do2d_yz ) do2d_yz = do2d_yz(1:ll) // ' ' // do2d(av,i)(1:l-3) // ',' END SELECT i = i + 1 ENDDO IF ( ( ( do2d_xy /= '' .AND. section(1,1) /= -9999 ) .OR. & ( do2d_xz /= '' .AND. section(1,2) /= -9999 ) .OR. & ( do2d_yz /= '' .AND. section(1,3) /= -9999 ) ) ) THEN IF ( av == 0 ) THEN WRITE ( io, 334 ) '' ELSE WRITE ( io, 334 ) '(time-averaged)' ENDIF IF ( do2d_at_begin ) THEN begin_chr = 'and at the start' ELSE begin_chr = '' ENDIF output_format = '' output_format = netcdf_data_format_string IF ( netcdf_deflate == 0 ) THEN WRITE ( io, 344 ) output_format ELSE WRITE ( io, 354 ) TRIM( output_format ), netcdf_deflate ENDIF IF ( do2d_xy /= '' .AND. section(1,1) /= -9999 ) THEN i = 1 slices = '/' coordinates = '/' ! !-- Building strings with index and coordinate information of the slices DO WHILE ( section(i,1) /= -9999 ) WRITE (section_chr,'(I5)') section(i,1) section_chr = ADJUSTL( section_chr ) slices = TRIM( slices ) // TRIM( section_chr ) // '/' IF ( section(i,1) == -1 ) THEN WRITE ( coor_chr, '(F10.1)' ) -1.0_wp ELSE WRITE ( coor_chr, '(F10.1)' ) zu(section(i,1)) ENDIF coor_chr = ADJUSTL( coor_chr ) coordinates = TRIM( coordinates ) // TRIM( coor_chr ) // '/' i = i + 1 ENDDO IF ( av == 0 ) THEN WRITE ( io, 335 ) 'XY', do2d_xy, dt_do2d_xy, TRIM( begin_chr ), 'k', & TRIM( slices ), TRIM( coordinates ) IF ( skip_time_do2d_xy /= 0.0_wp ) THEN WRITE ( io, 339 ) skip_time_do2d_xy ENDIF ELSE WRITE ( io, 342 ) 'XY', do2d_xy, dt_data_output_av, TRIM( begin_chr ), & averaging_interval, dt_averaging_input, 'k', TRIM( slices ), & TRIM( coordinates ) IF ( skip_time_data_output_av /= 0.0_wp ) THEN WRITE ( io, 339 ) skip_time_data_output_av ENDIF ENDIF IF ( netcdf_data_format > 4 ) THEN WRITE ( io, 352 ) ntdim_2d_xy(av) ELSE WRITE ( io, 353 ) ENDIF ENDIF IF ( do2d_xz /= '' .AND. section(1,2) /= -9999 ) THEN i = 1 slices = '/' coordinates = '/' ! !-- Building strings with index and coordinate information of the slices DO WHILE ( section(i,2) /= -9999 ) WRITE (section_chr,'(I5)') section(i,2) section_chr = ADJUSTL( section_chr ) slices = TRIM( slices ) // TRIM( section_chr ) // '/' WRITE (coor_chr,'(F10.1)') section(i,2) * dy coor_chr = ADJUSTL( coor_chr ) coordinates = TRIM( coordinates ) // TRIM( coor_chr ) // '/' i = i + 1 ENDDO IF ( av == 0 ) THEN WRITE ( io, 335 ) 'XZ', do2d_xz, dt_do2d_xz, TRIM( begin_chr ), 'j', & TRIM( slices ), TRIM( coordinates ) IF ( skip_time_do2d_xz /= 0.0_wp ) THEN WRITE ( io, 339 ) skip_time_do2d_xz ENDIF ELSE WRITE ( io, 342 ) 'XZ', do2d_xz, dt_data_output_av, TRIM( begin_chr ), & averaging_interval, dt_averaging_input, 'j', TRIM( slices ), & TRIM( coordinates ) IF ( skip_time_data_output_av /= 0.0_wp ) THEN WRITE ( io, 339 ) skip_time_data_output_av ENDIF ENDIF IF ( netcdf_data_format > 4 ) THEN WRITE ( io, 352 ) ntdim_2d_xz(av) ELSE WRITE ( io, 353 ) ENDIF ENDIF IF ( do2d_yz /= '' .AND. section(1,3) /= -9999 ) THEN i = 1 slices = '/' coordinates = '/' ! !-- Building strings with index and coordinate information of the slices DO WHILE ( section(i,3) /= -9999 ) WRITE (section_chr,'(I5)') section(i,3) section_chr = ADJUSTL( section_chr ) slices = TRIM( slices ) // TRIM( section_chr ) // '/' WRITE (coor_chr,'(F10.1)') section(i,3) * dx coor_chr = ADJUSTL( coor_chr ) coordinates = TRIM( coordinates ) // TRIM( coor_chr ) // '/' i = i + 1 ENDDO IF ( av == 0 ) THEN WRITE ( io, 335 ) 'YZ', do2d_yz, dt_do2d_yz, TRIM( begin_chr ), 'i', & TRIM( slices ), TRIM( coordinates ) IF ( skip_time_do2d_yz /= 0.0_wp ) THEN WRITE ( io, 339 ) skip_time_do2d_yz ENDIF ELSE WRITE ( io, 342 ) 'YZ', do2d_yz, dt_data_output_av, TRIM( begin_chr ), & averaging_interval, dt_averaging_input, 'i', TRIM( slices ), & TRIM( coordinates ) IF ( skip_time_data_output_av /= 0.0_wp ) THEN WRITE ( io, 339 ) skip_time_data_output_av ENDIF ENDIF IF ( netcdf_data_format > 4 ) THEN WRITE ( io, 352 ) ntdim_2d_yz(av) ELSE WRITE ( io, 353 ) ENDIF ENDIF ENDIF ENDDO ! !-- 3d-arrays DO av = 0, 1 i = 1 do3d_chr = '' DO WHILE ( do3d(av,i) /= ' ' ) do3d_chr = TRIM( do3d_chr ) // ' ' // TRIM( do3d(av,i) ) // ',' i = i + 1 ENDDO IF ( do3d_chr /= '' ) THEN IF ( av == 0 ) THEN WRITE ( io, 336 ) '' ELSE WRITE ( io, 336 ) '(time-averaged)' ENDIF output_format = netcdf_data_format_string IF ( netcdf_deflate == 0 ) THEN WRITE ( io, 344 ) output_format ELSE WRITE ( io, 354 ) TRIM( output_format ), netcdf_deflate ENDIF IF ( do3d_at_begin ) THEN begin_chr = 'and at the start' ELSE begin_chr = '' ENDIF IF ( av == 0 ) THEN WRITE ( io, 337 ) do3d_chr, dt_do3d, TRIM( begin_chr ), zu(nz_do3d), nz_do3d ELSE WRITE ( io, 343 ) do3d_chr, dt_data_output_av, TRIM( begin_chr ), averaging_interval,& dt_averaging_input, zu(nz_do3d), nz_do3d ENDIF IF ( netcdf_data_format > 4 ) THEN WRITE ( io, 352 ) ntdim_3d(av) ELSE WRITE ( io, 353 ) ENDIF IF ( av == 0 ) THEN IF ( skip_time_do3d /= 0.0_wp ) THEN WRITE ( io, 339 ) skip_time_do3d ENDIF ELSE IF ( skip_time_data_output_av /= 0.0_wp ) THEN WRITE ( io, 339 ) skip_time_data_output_av ENDIF ENDIF ENDIF ENDDO ! !-- Masked arrays IF ( masks > 0 ) WRITE ( io, 345 ) mask_scale_x, mask_scale_y, mask_scale_z DO mid = 1, masks DO av = 0, 1 i = 1 domask_chr = '' DO WHILE ( domask(mid,av,i) /= ' ' ) domask_chr = TRIM( domask_chr ) // ' ' // TRIM( domask(mid,av,i) ) // ',' i = i + 1 ENDDO IF ( domask_chr /= '' ) THEN IF ( av == 0 ) THEN WRITE ( io, 346 ) '', mid ELSE WRITE ( io, 346 ) ' (time-averaged)', mid ENDIF output_format = netcdf_data_format_string ! !-- Parallel output not implemented for mask data, hence output_format must be adjusted. IF ( netcdf_data_format == 5 ) output_format = 'netCDF4/HDF5' IF ( netcdf_data_format == 6 ) output_format = 'netCDF4/HDF5 classic' IF ( netcdf_deflate == 0 ) THEN WRITE ( io, 344 ) output_format ELSE WRITE ( io, 354 ) TRIM( output_format ), netcdf_deflate ENDIF IF ( av == 0 ) THEN WRITE ( io, 347 ) domask_chr, dt_domask(mid) ELSE WRITE ( io, 348 ) domask_chr, dt_data_output_av, averaging_interval, & dt_averaging_input ENDIF IF ( av == 0 ) THEN IF ( skip_time_domask(mid) /= 0.0_wp ) THEN WRITE ( io, 339 ) skip_time_domask(mid) ENDIF ELSE IF ( skip_time_data_output_av /= 0.0_wp ) THEN WRITE ( io, 339 ) skip_time_data_output_av ENDIF ENDIF ! !-- Output locations DO dim = 1, 3 IF ( mask(mid,dim,1) >= 0.0_wp ) THEN count = 0 DO WHILE ( mask(mid,dim,count+1) >= 0.0_wp ) count = count + 1 ENDDO WRITE ( io, 349 ) dir(dim), dir(dim), mid, dir(dim), mask(mid,dim,:count) ELSEIF ( mask_loop(mid,dim,1) < 0.0_wp .AND. & mask_loop(mid,dim,2) < 0.0_wp .AND. & mask_loop(mid,dim,3) == 0.0_wp ) THEN WRITE ( io, 350 ) dir(dim), dir(dim) ELSEIF ( mask_loop(mid,dim,3) == 0.0_wp ) THEN WRITE ( io, 351 ) dir(dim), dir(dim), mid, dir(dim), mask_loop(mid,dim,1:2) ELSE WRITE ( io, 351 ) dir(dim), dir(dim), mid, dir(dim), mask_loop(mid,dim,1:3) ENDIF ENDDO ENDIF ENDDO ENDDO ! !-- Timeseries IF ( dt_dots /= 9999999.9_wp ) THEN WRITE ( io, 340 ) output_format = netcdf_data_format_string IF ( netcdf_deflate == 0 ) THEN WRITE ( io, 344 ) output_format ELSE WRITE ( io, 354 ) TRIM( output_format ), netcdf_deflate ENDIF WRITE ( io, 341 ) dt_dots ENDIF ! !-- Restart data formats IF ( TRIM( initializing_actions ) == 'read_restart_data' .OR. write_binary ) THEN WRITE ( io, 355 ) IF ( TRIM( initializing_actions ) == 'read_restart_data' ) THEN WRITE ( io, 356 ) TRIM( restart_data_format_input ) ENDIF IF ( write_binary ) THEN WRITE ( io, 357 ) TRIM( restart_data_format_output ) ENDIF ENDIF WRITE ( io, 99 ) ! !-- Physical quantities WRITE ( io, 400 ) ! !-- Geostrophic parameters WRITE ( io, 410 ) latitude, longitude, rotation_angle, omega, f, fs ! !-- Day and time during model start CALL get_date_time( 0.0_wp, date_time_str=date_time_str ) WRITE ( io, 456 ) TRIM( date_time_str ) ! !-- Other quantities WRITE ( io, 411 ) g WRITE ( io, 412 ) TRIM( reference_state ) IF ( use_single_reference_value ) THEN IF ( ocean_mode ) THEN WRITE ( io, 413 ) prho_reference ELSE WRITE ( io, 414 ) pt_reference ENDIF ENDIF ! !-- Cloud physics parameters / quantities / numerical methods WRITE ( io, 430 ) IF ( humidity .AND. .NOT. bulk_cloud_model .AND. .NOT. cloud_droplets) THEN WRITE ( io, 431 ) ENDIF ! !-- LES / turbulence parameters WRITE ( io, 450 ) !-- ! ... LES-constants used must still be added here !-- IF ( constant_diffusion ) THEN WRITE ( io, 451 ) km_constant, km_constant/prandtl_number, prandtl_number ENDIF IF ( .NOT. constant_diffusion) THEN IF ( e_init > 0.0_wp ) WRITE ( io, 455 ) e_init IF ( e_min > 0.0_wp ) WRITE ( io, 454 ) e_min IF ( wall_adjustment ) WRITE ( io, 453 ) ENDIF IF ( rans_mode ) THEN WRITE ( io, 457 ) rans_const_c, rans_const_sigma ENDIF ! !-- Special actions during the run WRITE ( io, 470 ) IF ( create_disturbances ) THEN WRITE ( io, 471 ) dt_disturb, disturbance_amplitude, & zu(disturbance_level_ind_b), disturbance_level_ind_b, & zu(disturbance_level_ind_t), disturbance_level_ind_t IF ( .NOT. bc_lr_cyc .OR. .NOT. bc_ns_cyc ) THEN WRITE ( io, 472 ) inflow_disturbance_begin, inflow_disturbance_end ELSE WRITE ( io, 473 ) disturbance_energy_limit ENDIF WRITE ( io, 474 ) TRIM( random_generator ) ENDIF IF ( pt_surface_initial_change /= 0.0_wp ) THEN WRITE ( io, 475 ) pt_surface_initial_change ENDIF IF ( pt_surface_heating_rate /= 0.0_wp ) THEN WRITE ( io, 476 ) pt_surface_heating_rate ENDIF IF ( humidity .AND. q_surface_initial_change /= 0.0_wp ) THEN WRITE ( io, 477 ) q_surface_initial_change ENDIF IF ( passive_scalar .AND. q_surface_initial_change /= 0.0_wp ) THEN WRITE ( io, 478 ) q_surface_initial_change ENDIF ! !-- Parameters of 1D-model IF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN WRITE ( io, 500 ) end_time_1d, dt_run_control_1d, dt_pr_1d, mixing_length_1d, dissipation_1d IF ( damp_level_ind_1d /= nzt+1 ) THEN WRITE ( io, 502 ) zu(damp_level_ind_1d), damp_level_ind_1d ENDIF ENDIF ! !-- Header information from other modules CALL module_interface_header( io ) WRITE ( io, 99 ) ! !-- Write buffer contents to disc immediately FLUSH( io ) ! !-- Here the FORMATs start 99 FORMAT (1X,78('-')) 100 FORMAT (/1X,'******************************',4X,44('-')/ & 1X,'* ',A,' *',4X,A/ & 1X,'******************************',4X,44('-')) 101 FORMAT (35X,'coupled run: ',A/ & 35X,42('-')) 102 FORMAT (/' Date: ',A10,4X,'Run: ',A34/ & ' Time: ',A8,4X,'Run-No.: ',I2.2/ & ' Run on host: ',A10) #if defined( __parallel ) 103 FORMAT (' Number of PEs:',10X,I6,4X,'Processor grid (x,y): (',I4,',',I4,')',1X,A) 104 FORMAT (' Number of PEs:',10X,I6,4X,'Tasks:',I4,' threads per task:',I4/ & 35X,'Processor grid (x,y): (',I4,',',I4,')',1X,A) 107 FORMAT (35X,'A 1d-decomposition along ',A,' is used') 108 FORMAT (35X,'Max. # of parallel I/O streams is ',I5) 109 FORMAT (35X,'Precursor run for coupled atmos-ocean run'/ & 35X,42('-')) 114 FORMAT (35X,'Coupled atmosphere-ocean run following'/ & 35X,'independent precursor runs'/ & 35X,42('-')) #endif 110 FORMAT (/' Numerical Schemes:'/ & ' -----------------'/) 124 FORMAT (' --> Use the ',A,' turbulence closure (',A,' mode).') 121 FORMAT (' --> Use the ',A,' approximation for the model equations.') 111 FORMAT (' --> Solve perturbation pressure via FFT using ',A,' routines') 112 FORMAT (' --> Solve perturbation pressure via SOR-Red/Black-Schema'/ & ' Iterations (initial/other): ',I3,'/',I3,' omega =',F6.3) 113 FORMAT (' --> Momentum advection via Piascek-Williams-Scheme (Form C3)',' or Upstream') 115 FORMAT (' FFT and transpositions are overlapping') 116 FORMAT (' --> Scalar advection via Piascek-Williams-Scheme (Form C3)',' or Upstream') 118 FORMAT (' --> Scalar advection via Bott-Chlond-Scheme') 119 FORMAT (' --> Galilei-Transform applied to horizontal advection:'/ & ' translation velocity = ',A/ & ' distance advected ',A,': ',F8.3,' km(x) ',F8.3,' km(y)') 122 FORMAT (' --> Time differencing scheme: ',A) 123 FORMAT (' --> Rayleigh-Damping active, starts ',A,' z = ',F8.2,' m'/ & ' maximum damping coefficient:',F6.3, ' 1/s') 129 FORMAT (' --> Additional prognostic equation for the specific humidity') 130 FORMAT (' --> Additional prognostic equation for the total water content') 131 FORMAT (' --> No pt-equation solved. Neutral stratification with pt = ',F6.2,' K assumed') 134 FORMAT (' --> Additional prognostic equation for a passive scalar') 135 FORMAT (' --> Solve perturbation pressure via ',A,' method (',A,'-cycle)'/ & ' number of grid levels: ',I2/ & ' Gauss-Seidel red/black iterations: ',I2) 136 FORMAT (' gridpoints of coarsest subdomain (x,y,z): (',I3,',',I3,',', I3,')') 137 FORMAT (' level data gathered on PE0 at level: ',I2/ & ' gridpoints of coarsest subdomain (x,y,z): (',I3,',',I3,',', I3,')'/ & ' gridpoints of coarsest domain (x,y,z): (',I3,',',I3,',', I3,')') 139 FORMAT (' --> Loop optimization method: ',A) 140 FORMAT (' maximum residual allowed: ',E10.3) 141 FORMAT (' fixed number of multigrid cycles: ',I4) 142 FORMAT (' perturbation pressure is calculated at every Runge-Kutta ','step') 143 FORMAT (' Euler/upstream scheme is used for the SGS turbulent ','kinetic energy') 144 FORMAT (' masking method is used') 150 FORMAT (' --> Volume flow at the right and north boundary will be ','conserved'/ & ' using the ',A,' mode') 151 FORMAT (' with u_bulk = ',F7.3,' m/s and v_bulk = ',F7.3,' m/s') 152 FORMAT (' --> External pressure gradient directly prescribed by the user:', & /' ',2(1X,E12.5),'Pa/m in x/y direction', & /' starting from dp_level_b =',F8.3,'m',A/) 200 FORMAT (//' Run time and time step information:'/ & ' ----------------------------------'/) 201 FORMAT (' Timestep: variable maximum value: ',F6.3,' s', & ' CFL-factor:',F5.2) 202 FORMAT (' Timestep: dt = ',F6.3,' s'/) 203 FORMAT (' Start time: ',F11.3,' s'/ & ' End time: ',F11.3,' s') 204 FORMAT (A,F11.3,' s') 205 FORMAT (A,F11.3,' s',5X,'restart every',17X,F11.3,' s') 206 FORMAT (/' Time reached: ',F11.3,' s'/ & ' CPU-time used: ',F9.3,' s per timestep: ',F9.3,' s'/ & ' per second of simulated time: ',F9.3,' s') 207 FORMAT (' Spinup time: ',F11.3,' s') 250 FORMAT (//' Computational grid and domain size:'/ & ' ----------------------------------'// & ' Grid length: dx = ',F8.3,' m dy = ',F8.3,' m') 251 FORMAT (/' Domain size: x = ',F10.3,' m y = ',F10.3,' m z(u) = ',F10.3,' m'/) 253 FORMAT (' dz(',I1,') = ', F8.3, ' m') 254 FORMAT (//' Number of gridpoints (x,y,z): (0:',I4,', 0:',I4,', 0:',I4,')'/ & ' Subdomain size (x,y,z): ( ',I4,', ',I4,', ',I4,')'/) 260 FORMAT (/' The model has a slope in x-direction. Inclination angle: ',F6.2,' degrees') 270 FORMAT (//' Topography information:'/ & ' ----------------------'// & 1X,'Topography: ',A) 271 FORMAT (' Building size (x/y/z) in m: ',F5.1,' / ',F5.1,' / ',F5.1/ & ' Horizontal index bounds (l/r/s/n): ',I4,' / ',I4,' / ',I4,' / ',I4) 272 FORMAT (' Single quasi-2D street canyon of infinite length in ',A,' direction' / & ' Canyon height: ', F6.2, 'm, ch = ', I4, '.' / & ' Canyon position (',A,'-walls): cxl = ', I4,', cxr = ', I4, '.') 273 FORMAT (' Tunnel of infinite length in ',A, & ' direction' / & ' Tunnel height: ', F6.2, / & ' Tunnel-wall depth: ', F6.2 / & ' Tunnel width: ', F6.2 ) 274 FORMAT (' Tunnel in ', A, ' direction.' / & ' Tunnel height: ', F6.2, / & ' Tunnel-wall depth: ', F6.2 / & ' Tunnel width: ', F6.2, / & ' Tunnel length: ', F6.2 ) 278 FORMAT (' Topography grid definition convention:'/ & ' cell edge (staggered grid points'/ & ' (u in x-direction, v in y-direction))' /) 279 FORMAT (' Topography grid definition convention:'/ & ' cell center (scalar grid points)' /) 280 FORMAT (' Complex terrain simulation is activated.') 281 FORMAT (' --> Mean inflow profiles are adjusted.' / & ' --> Elevation of inflow boundary: ', F7.1, ' m' ) 282 FORMAT (' --> Initial data from 3D-precursor run is shifted' / & ' vertically depending on local surface height.') 300 FORMAT (//' Boundary conditions:'/ & ' -------------------'// & ' p uv ', & ' pt'// & ' B. bound.: ',A/ & ' T. bound.: ',A) 301 FORMAT (/' ',A// & ' B. bound.: ',A/ & ' T. bound.: ',A) 303 FORMAT (/' Bottom surface fluxes are used in diffusion terms at k=1') 304 FORMAT (/' Top surface fluxes are used in diffusion terms at k=nzt') 305 FORMAT (//' Constant flux layer between bottom surface and first ', & 'computational u,v-level:'// & ' z_mo = ',F6.2,' m z0 =',F7.4,' m z0h =',F8.5,' m kappa =',F5.2/ & ' zeta value range: ',F8.2,' <= zeta <=',F6.2) 306 FORMAT (' Predefined constant heatflux: ',F9.6,' K m/s') 307 FORMAT (' Heatflux has a random normal distribution') 308 FORMAT (' Predefined surface temperature') 309 FORMAT (' Predefined constant salinityflux: ',F9.6,' psu m/s') 310 FORMAT (//' 1D-Model:'// & ' Ri value range: ',F6.2,' <= Ri <=',F6.2) 311 FORMAT (' Predefined constant humidity flux: ',E10.3,' kg/kg m/s') 312 FORMAT (' Predefined surface humidity') 313 FORMAT (' Predefined constant scalar flux: ',E10.3,' kg/(m**2 s)') 314 FORMAT (' Predefined scalar value at the surface') 302 FORMAT (' Predefined constant scalarflux: ',F9.6,' kg/(m**2 s)') 315 FORMAT (' Humidity flux at top surface is 0.0') 316 FORMAT (' Sensible heatflux and momentum flux from coupled ', 'atmosphere model') 317 FORMAT (//' Lateral boundaries:'/ & ' left/right: ',A/ & ' north/south: ',A) 318 FORMAT (/' use_cmax: ',L1 / & ' pt damping layer width = ',F8.2,' m, pt ','damping factor =',F7.4) 319 FORMAT (' turbulence recycling at inflow switched on'/ & ' width of recycling domain: ',F7.1,' m grid index: ',I4/ & ' inflow damping height: ',F6.1,' m width: ',F6.1,' m') 320 FORMAT (' Predefined constant momentumflux: u: ',F9.6,' m**2/s**2'/ & ' v: ',F9.6,' m**2/s**2') 321 FORMAT (//' Initial profiles:'/ & ' ----------------') 322 FORMAT (' turbulence recycling at inflow switched on'/ & ' y-shift of the recycled inflow turbulence is',I3,' PE'/ & ' width of recycling domain: ',F7.1,' m grid index: ',I4/ & ' inflow damping height: ',F6.1,' m width: ',F6.1,' m'/) 323 FORMAT (' turbulent outflow conditon switched on'/ & ' position of outflow source plane: ',F7.1,' m ','grid index: ', I4) 325 FORMAT (//' List output:'/ & ' -----------'// & ' 1D-Profiles:'/ & ' Output every ',F10.2,' s') 326 FORMAT (' Time averaged over ',F8.2,' s'/ & ' Averaging input every ',F8.2,' s') 330 FORMAT (//' Data output:'/ & ' -----------'/) 331 FORMAT (/' 1D-Profiles:') 332 FORMAT (/' ',A) 333 FORMAT (' Output every ',F8.2,' s',/ & ' Time averaged over ',F8.2,' s'/ & ' Averaging input every ',F8.2,' s') 334 FORMAT (/' 2D-Arrays',A,':') 335 FORMAT (/' ',A2,'-cross-section Arrays: ',A/ & ' Output every ',F8.2,' s ',A/ & ' Cross sections at ',A1,' = ',A/ & ' scalar-coordinates: ',A,' m'/) 336 FORMAT (/' 3D-Arrays',A,':') 337 FORMAT (/' Arrays: ',A/ & ' Output every ',F8.2,' s ',A/ & ' Upper output limit at ',F8.2,' m (GP ',I4,')'/) 339 FORMAT (' No output during initial ',F8.2,' s') 340 FORMAT (/' Time series:') 341 FORMAT (' Output every ',F8.2,' s'/) 342 FORMAT (/' ',A2,'-cross-section Arrays: ',A/ & ' Output every ',F8.2,' s ',A/ & ' Time averaged over ',F8.2,' s'/ & ' Averaging input every ',F8.2,' s'/ & ' Cross sections at ',A1,' = ',A/ & ' scalar-coordinates: ',A,' m'/) 343 FORMAT (/' Arrays: ',A/ & ' Output every ',F8.2,' s ',A/ & ' Time averaged over ',F8.2,' s'/ & ' Averaging input every ',F8.2,' s'/ & ' Upper output limit at ',F8.2,' m (GP ',I4,')'/) 344 FORMAT (' Output format: ',A/) 345 FORMAT (/' Scaling lengths for output locations of all subsequent mask IDs:',/ & ' mask_scale_x (in x-direction): ',F9.3, ' m',/ & ' mask_scale_y (in y-direction): ',F9.3, ' m',/ & ' mask_scale_z (in z-direction): ',F9.3, ' m' ) 346 FORMAT (/' Masked data output',A,' for mask ID ',I2, ':') 347 FORMAT (' Variables: ',A/ & ' Output every ',F8.2,' s') 348 FORMAT (' Variables: ',A/ & ' Output every ',F8.2,' s'/ & ' Time averaged over ',F8.2,' s'/ & ' Averaging input every ',F8.2,' s') 349 FORMAT (/' Output locations in ',A,'-direction in multiples of ', & 'mask_scale_',A,' predefined by array mask_',I2.2,'_',A,':'/ & 13(' ',8(F8.2,',')/) ) 350 FORMAT (/' Output locations in ',A,'-direction: ', & 'all gridpoints along ',A,'-direction (default).' ) 351 FORMAT (/' Output locations in ',A,'-direction in multiples of ', & 'mask_scale_',A,' constructed from array mask_',I2.2,'_',A,'_loop:'/ & ' loop begin:',F8.2,', end:',F8.2,', stride:',F8.2 ) 352 FORMAT (/' Number of output time levels allowed: ',I3 /) 353 FORMAT (/' Number of output time levels allowed: unlimited'/) 354 FORMAT (' Output format: ',A, ' compressed with level: ',I1/) 355 FORMAT (/' Restart data format(s):') 356 FORMAT (' Input format: ',A) 357 FORMAT (' Output format: ',A) 400 FORMAT (//' Physical quantities:'/ & ' -------------------'/) 410 FORMAT (' Geograph. latitude : latitude = ',F5.1,' degr'/ & ' Geograph. longitude : longitude = ',F5.1,' degr'/ & ' Rotation angle : rotation_angle = ',F5.1,' degr'/ & ' Angular velocity : omega =',E10.3,' rad/s'/ & ' Coriolis parameter : f = ',F9.6,' 1/s'/ & ' f* = ',F9.6,' 1/s') 411 FORMAT (/' Gravity : g = ',F4.1,' m/s**2') 412 FORMAT (/' Reference state used in buoyancy terms: ',A) 413 FORMAT (' Reference density in buoyancy terms: ',F8.3,' kg/m**3') 414 FORMAT (' Reference temperature in buoyancy terms: ',F8.4,' K') 420 FORMAT (/' Characteristic levels of the initial temperature profile:'// & ' Height: ',A,' m'/ & ' Temperature: ',A,' K'/ & ' Gradient: ',A,' K/100m'/ & ' Gridpoint: ',A) 421 FORMAT (/' Characteristic levels of the initial humidity profile:'// & ' Height: ',A,' m'/ & ' Humidity: ',A,' kg/kg'/ & ' Gradient: ',A,' (kg/kg)/100m'/ & ' Gridpoint: ',A) 422 FORMAT (/' Characteristic levels of the initial scalar profile:'// & ' Height: ',A,' m'/ & ' Scalar concentration: ',A,' kg/m**3'/ & ' Gradient: ',A,' (kg/m**3)/100m'/ & ' Gridpoint: ',A) 423 FORMAT (/' Characteristic levels of the geo. wind component ug:'// & ' Height: ',A,' m'/ & ' ug: ',A,' m/s'/ & ' Gradient: ',A,' 1/100s'/ & ' Gridpoint: ',A) 424 FORMAT (/' Characteristic levels of the geo. wind component vg:'// & ' Height: ',A,' m'/ & ' vg: ',A,' m/s'/ & ' Gradient: ',A,' 1/100s'/ & ' Gridpoint: ',A) 425 FORMAT (/' Characteristic levels of the initial salinity profile:'// & ' Height: ',A,' m'/ & ' Salinity: ',A,' psu'/ & ' Gradient: ',A,' psu/100m'/ & ' Gridpoint: ',A) 426 FORMAT (/' Characteristic levels of the subsidence/ascent profile:'// & ' Height: ',A,' m'/ & ' w_subs: ',A,' m/s'/ & ' Gradient: ',A,' (m/s)/100m'/ & ' Gridpoint: ',A) 427 FORMAT (/' Initial wind profiles (u,v) are interpolated from given'// & ' profiles') 428 FORMAT (/' Initial profiles (u, v, pt, q) are taken from file '/ & ' NUDGING_DATA') 430 FORMAT (//' Cloud physics quantities / methods:'/ & ' ----------------------------------'/) 431 FORMAT (' Humidity is considered, bu no condensation') 450 FORMAT (//' LES / Turbulence quantities:'/ & ' ---------------------------'/) 451 FORMAT (' Diffusion coefficients are constant:'/ & ' Km = ',F6.2,' m**2/s Kh = ',F6.2,' m**2/s Pr = ',F5.2) 453 FORMAT (' Mixing length is limited close to surfaces') 454 FORMAT (' TKE is not allowed to fall below ',E9.2,' (m/s)**2') 455 FORMAT (' initial TKE is prescribed as ',E9.2,' (m/s)**2') 456 FORMAT (/' Date and time at model start : ',A) 457 FORMAT (' RANS-mode constants: c_0 = ',F9.5/ & ' c_1 = ',F9.5/ & ' c_2 = ',F9.5/ & ' c_3 = ',F9.5/ & ' c_4 = ',F9.5/ & ' sigma_e = ',F9.5/ & ' sigma_diss = ',F9.5) 470 FORMAT (//' Actions during the simulation:'/ & ' -----------------------------'/) 471 FORMAT (' Disturbance impulse (u,v) every : ',F6.2,' s'/ & ' Disturbance amplitude : ',F5.2, ' m/s'/ & ' Lower disturbance level : ',F8.2,' m (GP ',I4,')'/ & ' Upper disturbance level : ',F8.2,' m (GP ',I4,')') 472 FORMAT (' Disturbances continued during the run from i/j =',I4,' to i/j =',I4) 473 FORMAT (' Disturbances cease as soon as the disturbance energy exceeds',F6.3, ' m**2/s**2') 474 FORMAT (' Random number generator used : ',A/) 475 FORMAT (' The surface temperature is increased (or decreased, ','respectively, if'/ & ' the value is negative) by ',F5.2,' K at the beginning of the',' 3D-simulation'/) 476 FORMAT (' The surface temperature increases (or decreases, ','respectively, if'/ & ' the value is negative) by ',F8.4,' K/h during the',' 3D-simulation'/) 477 FORMAT (' The surface humidity is increased (or decreased, ','respectively, if the'/ & ' value is negative) by ',E8.1,' kg/kg at the beginning of',' the 3D-simulation'/) 478 FORMAT (' The scalar value is increased at the surface (or decreased, ', & 'respectively, if the'/ & ' value is negative) by ',E8.1,' kg/m**3 at the beginning of',' the 3D-simulation'/) 500 FORMAT (//' 1D-Model parameters:'/ & ' -------------------'// & ' Simulation time: ',F8.1,' s'/ & ' Run-controll output every: ',F8.1,' s'/ & ' Vertical profile output every: ',F8.1,' s'/ & ' Mixing length calculation: ',A/ & ' Dissipation calculation: ',A/) 502 FORMAT (' Damping layer starts from ',F7.1,' m (GP ',I4,')'/) 503 FORMAT (' --> Momentum advection via Wicker-Skamarock-Scheme 5th order') 504 FORMAT (' --> Scalar advection via Wicker-Skamarock-Scheme 5th order') 512 FORMAT (/' Date: ',A10,6X,'Run: ',A34/ & ' Time: ',A8,6X,'Run-No.: ',I2.2/ & ' Run on host: ',A10,6X,'En-No.: ',I2.2) #if defined( __parallel ) 600 FORMAT (/' Nesting informations:'/ & ' --------------------'/ & ' Nesting mode: ',A/ & ' Nesting-datatransfer mode: ',A// & ' Nest id parent number lower left coordinates name'/ & ' (*=me) id of PEs x (m) y (m)') 601 FORMAT (2X,A1,1X,I2.2,6X,I2.2,5X,I5,5X,F8.2,2X,F8.2,5X,A) #endif END SUBROUTINE header