SUBROUTINE header !------------------------------------------------------------------------------! ! Current revisions: ! ----------------- ! initializing_actions='read_data_for_recycling' renamed to 'cyclic_fill' ! Coupling with independent precursor runs. ! Output of messages replaced by message handling routine. ! Output of cluster_size ! +canyon_height, canyon_width_x, canyon_width_y, canyon_wall_left, ! canyon_wall_south, conserve_volume_flow_mode, dp_external, dp_level_b, ! dp_smooth, dpdxy, u_bulk, v_bulk ! topography_grid_convention moved from user_header ! small bugfix concerning 3d 64bit netcdf output format ! ! Former revisions: ! ----------------- ! $Id: header.f90 328 2009-05-28 12:13:56Z raasch $ ! ! 206 2008-10-13 14:59:11Z raasch ! Bugfix: error in zu index in case of section_xy = -1 ! ! 198 2008-09-17 08:55:28Z raasch ! Format adjustments allowing output of larger revision numbers ! ! 197 2008-09-16 15:29:03Z raasch ! allow 100 spectra levels instead of 10 for consistency with ! define_netcdf_header, ! bugfix in the output of the characteristic levels of potential temperature, ! geostrophic wind, scalar concentration, humidity and leaf area density, ! output of turbulence recycling informations ! ! 138 2007-11-28 10:03:58Z letzel ! Allow new case bc_uv_t = 'dirichlet_0' for channel flow. ! Allow two instead of one digit to specify isosurface and slicer variables. ! Output of sorting frequency of particles ! ! 108 2007-08-24 15:10:38Z letzel ! Output of informations for coupled model runs (boundary conditions etc.) ! + output of momentumfluxes at the top boundary ! Rayleigh damping for ocean, e_init ! ! 97 2007-06-21 08:23:15Z raasch ! Adjustments for the ocean version. ! use_pt_reference renamed use_reference ! ! 87 2007-05-22 15:46:47Z raasch ! Bugfix: output of use_upstream_for_tke ! ! 82 2007-04-16 15:40:52Z raasch ! Preprocessor strings for different linux clusters changed to "lc", ! routine local_flush is used for buffer flushing ! ! 76 2007-03-29 00:58:32Z raasch ! Output of netcdf_64bit_3d, particles-package is now part of the default code, ! output of the loop optimization method, moisture renamed humidity, ! output of subversion revision number ! ! 19 2007-02-23 04:53:48Z raasch ! Output of scalar flux applied at top boundary ! ! RCS Log replace by Id keyword, revision history cleaned up ! ! Revision 1.63 2006/08/22 13:53:13 raasch ! Output of dz_max ! ! Revision 1.1 1997/08/11 06:17:20 raasch ! Initial revision ! ! ! Description: ! ------------ ! Writing a header with all important informations about the actual run. ! This subroutine is called three times, two times at the beginning ! (writing information on files RUN_CONTROL and HEADER) and one time at the ! end of the run, then writing additional information about CPU-usage on file ! header. !------------------------------------------------------------------------------! USE arrays_3d USE control_parameters USE cloud_parameters USE cpulog USE dvrp_variables USE grid_variables USE indices USE model_1d USE particle_attributes USE pegrid USE spectrum IMPLICIT NONE CHARACTER (LEN=1) :: prec CHARACTER (LEN=2) :: do2d_mode CHARACTER (LEN=5) :: section_chr CHARACTER (LEN=9) :: time_to_string CHARACTER (LEN=10) :: coor_chr, host_chr CHARACTER (LEN=16) :: begin_chr CHARACTER (LEN=23) :: ver_rev CHARACTER (LEN=40) :: output_format CHARACTER (LEN=70) :: char1, char2, dopr_chr, & do2d_xy, do2d_xz, do2d_yz, do3d_chr, & run_classification CHARACTER (LEN=86) :: coordinates, gradients, learde, slices, & temperatures, ugcomponent, vgcomponent CHARACTER (LEN=85) :: roben, runten INTEGER :: av, bh, blx, bly, bxl, bxr, byn, bys, ch, cwx, cwy, cxl, cxr, & cyn, cys, i, ihost, io, j, l, ll, mpi_type REAL :: cpuseconds_per_simulated_second ! !-- Open the output file. At the end of the simulation, output is directed !-- to unit 19. IF ( ( runnr == 0 .OR. force_print_header ) .AND. & .NOT. simulated_time_at_begin /= simulated_time ) THEN io = 15 ! header output on file RUN_CONTROL ELSE io = 19 ! header output on file HEADER ENDIF CALL check_open( io ) ! !-- At the end of the run, output file (HEADER) will be rewritten with !-- new informations IF ( io == 19 .AND. simulated_time_at_begin /= simulated_time ) REWIND( 19 ) ! !-- Determine kind of model run IF ( TRIM( initializing_actions ) == 'read_restart_data' ) THEN run_classification = '3D - restart run' ELSEIF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN run_classification = '3D - run with cyclic fill of 3D - prerun data' ELSEIF ( INDEX( initializing_actions, 'set_constant_profiles' ) /= 0 ) THEN run_classification = '3D - run without 1D - prerun' ELSEIF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN run_classification = '3D - run with 1D - prerun' ELSEIF ( INDEX( initializing_actions, 'by_user' ) /=0 ) THEN run_classification = '3D - run initialized by user' ELSE message_string = ' unknown action(s): ' // TRIM( initializing_actions ) CALL message( 'header', 'PA0191', 0, 0, 0, 6, 0 ) ENDIF IF ( ocean ) THEN run_classification = 'ocean - ' // run_classification ELSE run_classification = 'atmosphere - ' // run_classification ENDIF ! !-- Run-identification, date, time, host host_chr = host(1:10) ver_rev = TRIM( version ) // ' ' // TRIM( revision ) WRITE ( io, 100 ) ver_rev, TRIM( run_classification ) IF ( TRIM( coupling_mode ) /= 'uncoupled' ) THEN #if defined( __mpi2 ) mpi_type = 2 #else mpi_type = 1 #endif WRITE ( io, 101 ) mpi_type, coupling_mode ENDIF WRITE ( io, 102 ) run_date, run_identifier, run_time, runnr, & ADJUSTR( host_chr ) #if defined( __parallel ) IF ( npex == -1 .AND. pdims(2) /= 1 ) THEN char1 = 'calculated' ELSEIF ( ( host(1:3) == 'ibm' .OR. host(1:3) == 'nec' .OR. & host(1:2) == 'lc' ) .AND. & npex == -1 .AND. pdims(2) == 1 ) THEN char1 = 'forced' ELSE char1 = 'predefined' ENDIF IF ( threads_per_task == 1 ) THEN WRITE ( io, 103 ) numprocs, pdims(1), pdims(2), TRIM( char1 ) ELSE WRITE ( io, 104 ) numprocs*threads_per_task, numprocs, & threads_per_task, pdims(1), pdims(2), TRIM( char1 ) ENDIF IF ( ( host(1:3) == 'ibm' .OR. host(1:3) == 'nec' .OR. & host(1:2) == 'lc' .OR. host(1:3) == 'dec' ) .AND. & npex == -1 .AND. pdims(2) == 1 ) & THEN WRITE ( io, 106 ) ELSEIF ( pdims(2) == 1 ) THEN WRITE ( io, 107 ) 'x' ELSEIF ( pdims(1) == 1 ) THEN WRITE ( io, 107 ) 'y' ENDIF IF ( use_seperate_pe_for_dvrp_output ) WRITE ( io, 105 ) #endif WRITE ( io, 99 ) ! !-- Numerical schemes WRITE ( io, 110 ) IF ( psolver(1:7) == 'poisfft' ) THEN WRITE ( io, 111 ) TRIM( fft_method ) IF ( psolver == 'poisfft_hybrid' ) WRITE ( io, 138 ) ELSEIF ( psolver == 'sor' ) THEN WRITE ( io, 112 ) nsor_ini, nsor, omega_sor ELSEIF ( psolver == 'multigrid' ) THEN WRITE ( io, 135 ) cycle_mg, maximum_grid_level, ngsrb IF ( mg_cycles == -1 ) THEN WRITE ( io, 140 ) residual_limit ELSE WRITE ( io, 141 ) mg_cycles ENDIF IF ( mg_switch_to_pe0_level == 0 ) THEN WRITE ( io, 136 ) nxr_mg(1)-nxl_mg(1)+1, nyn_mg(1)-nys_mg(1)+1, & nzt_mg(1) ELSEIF ( mg_switch_to_pe0_level /= -1 ) THEN WRITE ( io, 137 ) mg_switch_to_pe0_level, & mg_loc_ind(2,0)-mg_loc_ind(1,0)+1, & mg_loc_ind(4,0)-mg_loc_ind(3,0)+1, & nzt_mg(mg_switch_to_pe0_level), & nxr_mg(1)-nxl_mg(1)+1, nyn_mg(1)-nys_mg(1)+1, & nzt_mg(1) ENDIF ENDIF IF ( call_psolver_at_all_substeps .AND. timestep_scheme(1:5) == 'runge' ) & THEN WRITE ( io, 142 ) ENDIF IF ( momentum_advec == 'pw-scheme' ) THEN WRITE ( io, 113 ) ELSE WRITE ( io, 114 ) IF ( cut_spline_overshoot ) WRITE ( io, 124 ) IF ( overshoot_limit_u /= 0.0 .OR. overshoot_limit_v /= 0.0 .OR. & overshoot_limit_w /= 0.0 ) THEN WRITE ( io, 127 ) overshoot_limit_u, overshoot_limit_v, & overshoot_limit_w ENDIF IF ( ups_limit_u /= 0.0 .OR. ups_limit_v /= 0.0 .OR. & ups_limit_w /= 0.0 ) & THEN WRITE ( io, 125 ) ups_limit_u, ups_limit_v, ups_limit_w ENDIF IF ( long_filter_factor /= 0.0 ) WRITE ( io, 115 ) long_filter_factor ENDIF IF ( scalar_advec == 'pw-scheme' ) THEN WRITE ( io, 116 ) ELSEIF ( scalar_advec == 'ups-scheme' ) THEN WRITE ( io, 117 ) IF ( cut_spline_overshoot ) WRITE ( io, 124 ) IF ( overshoot_limit_e /= 0.0 .OR. overshoot_limit_pt /= 0.0 ) THEN WRITE ( io, 128 ) overshoot_limit_e, overshoot_limit_pt ENDIF IF ( ups_limit_e /= 0.0 .OR. ups_limit_pt /= 0.0 ) THEN WRITE ( io, 126 ) ups_limit_e, ups_limit_pt ENDIF ELSE WRITE ( io, 118 ) ENDIF WRITE ( io, 139 ) TRIM( loop_optimization ) IF ( galilei_transformation ) THEN IF ( use_ug_for_galilei_tr ) THEN char1 = 'geostrophic wind' ELSE char1 = 'mean wind in model domain' ENDIF IF ( simulated_time_at_begin == simulated_time ) THEN char2 = 'at the start of the run' ELSE char2 = 'at the end of the run' ENDIF WRITE ( io, 119 ) TRIM( char1 ), TRIM( char2 ), & advected_distance_x/1000.0, advected_distance_y/1000.0 ENDIF IF ( timestep_scheme == 'leapfrog' ) THEN WRITE ( io, 120 ) ELSEIF ( timestep_scheme == 'leapfrog+euler' ) THEN WRITE ( io, 121 ) ELSE WRITE ( io, 122 ) timestep_scheme ENDIF IF ( use_upstream_for_tke ) WRITE ( io, 143 ) IF ( rayleigh_damping_factor /= 0.0 ) THEN IF ( .NOT. ocean ) THEN WRITE ( io, 123 ) 'above', rayleigh_damping_height, & rayleigh_damping_factor ELSE WRITE ( io, 123 ) 'below', rayleigh_damping_height, & rayleigh_damping_factor ENDIF ENDIF IF ( humidity ) THEN IF ( .NOT. cloud_physics ) THEN WRITE ( io, 129 ) ELSE WRITE ( io, 130 ) WRITE ( io, 131 ) IF ( radiation ) WRITE ( io, 132 ) IF ( precipitation ) WRITE ( io, 133 ) ENDIF ENDIF IF ( passive_scalar ) WRITE ( io, 134 ) IF ( conserve_volume_flow ) THEN WRITE ( io, 150 ) conserve_volume_flow_mode IF ( TRIM( conserve_volume_flow_mode ) == 'bulk_velocity' ) THEN WRITE ( io, 151 ) u_bulk, v_bulk ENDIF ELSEIF ( dp_external ) THEN IF ( dp_smooth ) THEN WRITE ( io, 152 ) dpdxy, dp_level_b, ', vertically smoothed.' ELSE WRITE ( io, 152 ) dpdxy, dp_level_b, '.' ENDIF ENDIF WRITE ( io, 99 ) ! !-- Runtime and timestep informations WRITE ( io, 200 ) IF ( .NOT. dt_fixed ) THEN WRITE ( io, 201 ) dt_max, cfl_factor ELSE WRITE ( io, 202 ) dt ENDIF WRITE ( io, 203 ) simulated_time_at_begin, end_time IF ( time_restart /= 9999999.9 .AND. & simulated_time_at_begin == simulated_time ) THEN IF ( dt_restart == 9999999.9 ) THEN WRITE ( io, 204 ) ' Restart at: ',time_restart ELSE WRITE ( io, 205 ) ' Restart at: ',time_restart, dt_restart ENDIF ENDIF IF ( simulated_time_at_begin /= simulated_time ) THEN i = MAX ( log_point_s(10)%counts, 1 ) IF ( ( simulated_time - simulated_time_at_begin ) == 0.0 ) THEN cpuseconds_per_simulated_second = 0.0 ELSE cpuseconds_per_simulated_second = log_point_s(10)%sum / & ( simulated_time - & simulated_time_at_begin ) ENDIF WRITE ( io, 206 ) simulated_time, log_point_s(10)%sum, & log_point_s(10)%sum / REAL( i ), & cpuseconds_per_simulated_second IF ( time_restart /= 9999999.9 .AND. time_restart < end_time ) THEN IF ( dt_restart == 9999999.9 ) THEN WRITE ( io, 204 ) ' Next restart at: ',time_restart ELSE WRITE ( io, 205 ) ' Next restart at: ',time_restart, dt_restart ENDIF ENDIF ENDIF ! !-- Start time for coupled runs, if independent precursor runs for atmosphere !-- and ocean are used. In this case, coupling_start_time defines the time !-- when the coupling is switched on. IF ( coupling_start_time /= 0.0 ) THEN IF ( coupling_start_time >= simulated_time_at_begin ) THEN char1 = 'Precursor run for a coupled atmosphere-ocean run' ELSE char1 = 'Coupled atmosphere-ocean run following independent ' // & 'precursor runs' ENDIF WRITE ( io, 207 ) char1, coupling_start_time ENDIF ! !-- Computational grid IF ( .NOT. ocean ) THEN WRITE ( io, 250 ) dx, dy, dz, (nx+1)*dx, (ny+1)*dy, zu(nzt+1) IF ( dz_stretch_level_index < nzt+1 ) THEN WRITE ( io, 252 ) dz_stretch_level, dz_stretch_level_index, & dz_stretch_factor, dz_max ENDIF ELSE WRITE ( io, 250 ) dx, dy, dz, (nx+1)*dx, (ny+1)*dy, zu(0) IF ( dz_stretch_level_index > 0 ) THEN WRITE ( io, 252 ) dz_stretch_level, dz_stretch_level_index, & dz_stretch_factor, dz_max ENDIF ENDIF WRITE ( io, 254 ) nx, ny, nzt+1, MIN( nnx, nx+1 ), MIN( nny, ny+1 ), & MIN( nnz+2, nzt+2 ) IF ( numprocs > 1 ) THEN IF ( nxa == nx .AND. nya == ny .AND. nza == nz ) THEN WRITE ( io, 255 ) ELSE WRITE ( io, 256 ) nnx-(nxa-nx), nny-(nya-ny), nzt+2 ENDIF ENDIF IF ( sloping_surface ) WRITE ( io, 260 ) alpha_surface ! !-- Topography WRITE ( io, 270 ) topography SELECT CASE ( TRIM( topography ) ) CASE ( 'flat' ) ! no actions necessary CASE ( 'single_building' ) blx = INT( building_length_x / dx ) bly = INT( building_length_y / dy ) bh = INT( building_height / dz ) IF ( building_wall_left == 9999999.9 ) THEN building_wall_left = ( nx + 1 - blx ) / 2 * dx ENDIF bxl = INT ( building_wall_left / dx + 0.5 ) bxr = bxl + blx IF ( building_wall_south == 9999999.9 ) THEN building_wall_south = ( ny + 1 - bly ) / 2 * dy ENDIF bys = INT ( building_wall_south / dy + 0.5 ) byn = bys + bly WRITE ( io, 271 ) building_length_x, building_length_y, & building_height, bxl, bxr, bys, byn CASE ( 'single_street_canyon' ) ch = NINT( canyon_height / dz ) IF ( canyon_width_x /= 9999999.9 ) THEN ! !-- Street canyon in y direction cwx = NINT( canyon_width_x / dx ) IF ( canyon_wall_left == 9999999.9 ) THEN canyon_wall_left = ( nx + 1 - cwx ) / 2 * dx ENDIF cxl = NINT( canyon_wall_left / dx ) cxr = cxl + cwx WRITE ( io, 272 ) 'y', canyon_height, ch, 'u', cxl, cxr ELSEIF ( canyon_width_y /= 9999999.9 ) THEN ! !-- Street canyon in x direction cwy = NINT( canyon_width_y / dy ) IF ( canyon_wall_south == 9999999.9 ) THEN canyon_wall_south = ( ny + 1 - cwy ) / 2 * dy ENDIF cys = NINT( canyon_wall_south / dy ) cyn = cys + cwy WRITE ( io, 272 ) 'x', canyon_height, ch, 'v', cys, cyn ENDIF END SELECT IF ( TRIM( topography ) /= 'flat' ) THEN IF ( TRIM( topography_grid_convention ) == ' ' ) THEN IF ( TRIM( topography ) == 'single_building' .OR. & TRIM( topography ) == 'single_street_canyon' ) THEN WRITE ( io, 278 ) ELSEIF ( TRIM( topography ) == 'read_from_file' ) THEN WRITE ( io, 279 ) ENDIF ELSEIF ( TRIM( topography_grid_convention ) == 'cell_edge' ) THEN WRITE ( io, 278 ) ELSEIF ( TRIM( topography_grid_convention ) == 'cell_center' ) THEN WRITE ( io, 279 ) ENDIF ENDIF IF ( plant_canopy ) THEN WRITE ( io, 280 ) canopy_mode, pch_index, drag_coefficient IF ( passive_scalar ) THEN WRITE ( io, 281 ) scalar_exchange_coefficient, & leaf_surface_concentration ENDIF ! !-- Heat flux at the top of vegetation WRITE ( io, 282 ) cthf ! !-- Leaf area density profile !-- Building output strings, starting with surface value WRITE ( learde, '(F6.2)' ) lad_surface gradients = '------' slices = ' 0' coordinates = ' 0.0' i = 1 DO WHILE ( lad_vertical_gradient_level_ind(i) /= -9999 ) WRITE (coor_chr,'(F7.2)') lad(lad_vertical_gradient_level_ind(i)) learde = TRIM( learde ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(F7.2)') lad_vertical_gradient(i) gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(I7)') lad_vertical_gradient_level_ind(i) slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(F7.1)') lad_vertical_gradient_level(i) coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) i = i + 1 ENDDO WRITE ( io, 283 ) TRIM( coordinates ), TRIM( learde ), & TRIM( gradients ), TRIM( slices ) ENDIF ! !-- Boundary conditions IF ( ibc_p_b == 0 ) THEN runten = 'p(0) = 0 |' ELSEIF ( ibc_p_b == 1 ) THEN runten = 'p(0) = p(1) |' ELSE runten = 'p(0) = p(1) +R|' ENDIF IF ( ibc_p_t == 0 ) THEN roben = 'p(nzt+1) = 0 |' ELSE roben = 'p(nzt+1) = p(nzt) |' ENDIF IF ( ibc_uv_b == 0 ) THEN runten = TRIM( runten ) // ' uv(0) = -uv(1) |' ELSE runten = TRIM( runten ) // ' uv(0) = uv(1) |' ENDIF IF ( TRIM( bc_uv_t ) == 'dirichlet_0' ) THEN roben = TRIM( roben ) // ' uv(nzt+1) = 0 |' ELSEIF ( ibc_uv_t == 0 ) THEN roben = TRIM( roben ) // ' uv(nzt+1) = ug(nzt+1), vg(nzt+1) |' ELSE roben = TRIM( roben ) // ' uv(nzt+1) = uv(nzt) |' ENDIF IF ( ibc_pt_b == 0 ) THEN runten = TRIM( runten ) // ' pt(0) = pt_surface' ELSEIF ( ibc_pt_b == 1 ) THEN runten = TRIM( runten ) // ' pt(0) = pt(1)' ELSEIF ( ibc_pt_b == 2 ) THEN runten = TRIM( runten ) // ' pt(0) = from coupled model' ENDIF IF ( ibc_pt_t == 0 ) THEN roben = TRIM( roben ) // ' pt(nzt+1) = pt_top' ELSEIF( ibc_pt_t == 1 ) THEN roben = TRIM( roben ) // ' pt(nzt+1) = pt(nzt)' ELSEIF( ibc_pt_t == 2 ) THEN roben = TRIM( roben ) // ' pt(nzt+1) = pt(nzt) + dpt/dz_ini' ENDIF WRITE ( io, 300 ) runten, roben IF ( .NOT. constant_diffusion ) THEN IF ( ibc_e_b == 1 ) THEN runten = 'e(0) = e(1)' ELSE runten = 'e(0) = e(1) = (u*/0.1)**2' ENDIF roben = 'e(nzt+1) = e(nzt) = e(nzt-1)' WRITE ( io, 301 ) 'e', runten, roben ENDIF IF ( ocean ) THEN runten = 'sa(0) = sa(1)' IF ( ibc_sa_t == 0 ) THEN roben = 'sa(nzt+1) = sa_surface' ELSE roben = 'sa(nzt+1) = sa(nzt)' ENDIF WRITE ( io, 301 ) 'sa', runten, roben ENDIF IF ( humidity ) THEN IF ( ibc_q_b == 0 ) THEN runten = 'q(0) = q_surface' ELSE runten = 'q(0) = q(1)' ENDIF IF ( ibc_q_t == 0 ) THEN roben = 'q(nzt) = q_top' ELSE roben = 'q(nzt) = q(nzt-1) + dq/dz' ENDIF WRITE ( io, 301 ) 'q', runten, roben ENDIF IF ( passive_scalar ) THEN IF ( ibc_q_b == 0 ) THEN runten = 's(0) = s_surface' ELSE runten = 's(0) = s(1)' ENDIF IF ( ibc_q_t == 0 ) THEN roben = 's(nzt) = s_top' ELSE roben = 's(nzt) = s(nzt-1) + ds/dz' ENDIF WRITE ( io, 301 ) 's', runten, roben ENDIF IF ( use_surface_fluxes ) THEN WRITE ( io, 303 ) IF ( constant_heatflux ) THEN WRITE ( io, 306 ) surface_heatflux IF ( random_heatflux ) WRITE ( io, 307 ) ENDIF IF ( humidity .AND. constant_waterflux ) THEN WRITE ( io, 311 ) surface_waterflux ENDIF IF ( passive_scalar .AND. constant_waterflux ) THEN WRITE ( io, 313 ) surface_waterflux ENDIF ENDIF IF ( use_top_fluxes ) THEN WRITE ( io, 304 ) IF ( coupling_mode == 'uncoupled' ) THEN WRITE ( io, 320 ) top_momentumflux_u, top_momentumflux_v IF ( constant_top_heatflux ) THEN WRITE ( io, 306 ) top_heatflux ENDIF ELSEIF ( coupling_mode == 'ocean_to_atmosphere' ) THEN WRITE ( io, 316 ) ENDIF IF ( ocean .AND. constant_top_salinityflux ) THEN WRITE ( io, 309 ) top_salinityflux ENDIF IF ( humidity .OR. passive_scalar ) THEN WRITE ( io, 315 ) ENDIF ENDIF IF ( prandtl_layer ) THEN WRITE ( io, 305 ) 0.5 * (zu(1)-zu(0)), roughness_length, kappa, & rif_min, rif_max IF ( .NOT. constant_heatflux ) WRITE ( io, 308 ) IF ( humidity .AND. .NOT. constant_waterflux ) THEN WRITE ( io, 312 ) ENDIF IF ( passive_scalar .AND. .NOT. constant_waterflux ) THEN WRITE ( io, 314 ) ENDIF ELSE IF ( INDEX(initializing_actions, 'set_1d-model_profiles') /= 0 ) THEN WRITE ( io, 310 ) rif_min, rif_max ENDIF ENDIF WRITE ( io, 317 ) bc_lr, bc_ns IF ( bc_lr /= 'cyclic' .OR. bc_ns /= 'cyclic' ) THEN WRITE ( io, 318 ) outflow_damping_width, km_damp_max IF ( turbulent_inflow ) THEN WRITE ( io, 319 ) recycling_width, recycling_plane, & inflow_damping_height, inflow_damping_width ENDIF ENDIF ! !-- Listing of 1D-profiles WRITE ( io, 325 ) dt_dopr_listing IF ( averaging_interval_pr /= 0.0 ) THEN WRITE ( io, 326 ) averaging_interval_pr, dt_averaging_input_pr ENDIF ! !-- DATA output WRITE ( io, 330 ) IF ( averaging_interval_pr /= 0.0 ) THEN WRITE ( io, 326 ) averaging_interval_pr, dt_averaging_input_pr ENDIF ! !-- 1D-profiles dopr_chr = 'Pofile:' IF ( dopr_n /= 0 ) THEN WRITE ( io, 331 ) output_format = '' IF ( netcdf_output ) THEN IF ( netcdf_64bit ) THEN output_format = 'netcdf (64 bit offset)' ELSE output_format = 'netcdf' ENDIF ENDIF IF ( profil_output ) THEN IF ( netcdf_output ) THEN output_format = TRIM( output_format ) // ' and profil' ELSE output_format = 'profil' ENDIF ENDIF WRITE ( io, 344 ) output_format DO i = 1, dopr_n dopr_chr = TRIM( dopr_chr ) // ' ' // TRIM( data_output_pr(i) ) // ',' IF ( LEN_TRIM( dopr_chr ) >= 60 ) THEN WRITE ( io, 332 ) dopr_chr dopr_chr = ' :' ENDIF ENDDO IF ( dopr_chr /= '' ) THEN WRITE ( io, 332 ) dopr_chr ENDIF WRITE ( io, 333 ) dt_dopr, averaging_interval_pr, dt_averaging_input_pr IF ( skip_time_dopr /= 0.0 ) WRITE ( io, 339 ) skip_time_dopr ENDIF ! !-- 2D-arrays DO av = 0, 1 i = 1 do2d_xy = '' do2d_xz = '' do2d_yz = '' DO WHILE ( do2d(av,i) /= ' ' ) l = MAX( 2, LEN_TRIM( do2d(av,i) ) ) do2d_mode = do2d(av,i)(l-1:l) SELECT CASE ( do2d_mode ) CASE ( 'xy' ) ll = LEN_TRIM( do2d_xy ) do2d_xy = do2d_xy(1:ll) // ' ' // do2d(av,i)(1:l-3) // ',' CASE ( 'xz' ) ll = LEN_TRIM( do2d_xz ) do2d_xz = do2d_xz(1:ll) // ' ' // do2d(av,i)(1:l-3) // ',' CASE ( 'yz' ) ll = LEN_TRIM( do2d_yz ) do2d_yz = do2d_yz(1:ll) // ' ' // do2d(av,i)(1:l-3) // ',' END SELECT i = i + 1 ENDDO IF ( ( ( do2d_xy /= '' .AND. section(1,1) /= -9999 ) .OR. & ( do2d_xz /= '' .AND. section(1,2) /= -9999 ) .OR. & ( do2d_yz /= '' .AND. section(1,3) /= -9999 ) ) .AND. & ( netcdf_output .OR. iso2d_output ) ) THEN IF ( av == 0 ) THEN WRITE ( io, 334 ) '' ELSE WRITE ( io, 334 ) '(time-averaged)' ENDIF IF ( do2d_at_begin ) THEN begin_chr = 'and at the start' ELSE begin_chr = '' ENDIF output_format = '' IF ( netcdf_output ) THEN IF ( netcdf_64bit ) THEN output_format = 'netcdf (64 bit offset)' ELSE output_format = 'netcdf' ENDIF ENDIF IF ( iso2d_output ) THEN IF ( netcdf_output ) THEN output_format = TRIM( output_format ) // ' and iso2d' ELSE output_format = 'iso2d' ENDIF ENDIF WRITE ( io, 344 ) output_format IF ( do2d_xy /= '' .AND. section(1,1) /= -9999 ) THEN i = 1 slices = '/' coordinates = '/' ! !-- Building strings with index and coordinate informations of the !-- slices DO WHILE ( section(i,1) /= -9999 ) WRITE (section_chr,'(I5)') section(i,1) section_chr = ADJUSTL( section_chr ) slices = TRIM( slices ) // TRIM( section_chr ) // '/' IF ( section(i,1) == -1 ) THEN WRITE (coor_chr,'(F10.1)') -1.0 ELSE WRITE (coor_chr,'(F10.1)') zu(section(i,1)) ENDIF coor_chr = ADJUSTL( coor_chr ) coordinates = TRIM( coordinates ) // TRIM( coor_chr ) // '/' i = i + 1 ENDDO IF ( av == 0 ) THEN WRITE ( io, 335 ) 'XY', do2d_xy, dt_do2d_xy, & TRIM( begin_chr ), 'k', TRIM( slices ), & TRIM( coordinates ) IF ( skip_time_do2d_xy /= 0.0 ) THEN WRITE ( io, 339 ) skip_time_do2d_xy ENDIF ELSE WRITE ( io, 342 ) 'XY', do2d_xy, dt_data_output_av, & TRIM( begin_chr ), averaging_interval, & dt_averaging_input, 'k', TRIM( slices ), & TRIM( coordinates ) IF ( skip_time_data_output_av /= 0.0 ) THEN WRITE ( io, 339 ) skip_time_data_output_av ENDIF ENDIF ENDIF IF ( do2d_xz /= '' .AND. section(1,2) /= -9999 ) THEN i = 1 slices = '/' coordinates = '/' ! !-- Building strings with index and coordinate informations of the !-- slices DO WHILE ( section(i,2) /= -9999 ) WRITE (section_chr,'(I5)') section(i,2) section_chr = ADJUSTL( section_chr ) slices = TRIM( slices ) // TRIM( section_chr ) // '/' WRITE (coor_chr,'(F10.1)') section(i,2) * dy coor_chr = ADJUSTL( coor_chr ) coordinates = TRIM( coordinates ) // TRIM( coor_chr ) // '/' i = i + 1 ENDDO IF ( av == 0 ) THEN WRITE ( io, 335 ) 'XZ', do2d_xz, dt_do2d_xz, & TRIM( begin_chr ), 'j', TRIM( slices ), & TRIM( coordinates ) IF ( skip_time_do2d_xz /= 0.0 ) THEN WRITE ( io, 339 ) skip_time_do2d_xz ENDIF ELSE WRITE ( io, 342 ) 'XZ', do2d_xz, dt_data_output_av, & TRIM( begin_chr ), averaging_interval, & dt_averaging_input, 'j', TRIM( slices ), & TRIM( coordinates ) IF ( skip_time_data_output_av /= 0.0 ) THEN WRITE ( io, 339 ) skip_time_data_output_av ENDIF ENDIF ENDIF IF ( do2d_yz /= '' .AND. section(1,3) /= -9999 ) THEN i = 1 slices = '/' coordinates = '/' ! !-- Building strings with index and coordinate informations of the !-- slices DO WHILE ( section(i,3) /= -9999 ) WRITE (section_chr,'(I5)') section(i,3) section_chr = ADJUSTL( section_chr ) slices = TRIM( slices ) // TRIM( section_chr ) // '/' WRITE (coor_chr,'(F10.1)') section(i,3) * dx coor_chr = ADJUSTL( coor_chr ) coordinates = TRIM( coordinates ) // TRIM( coor_chr ) // '/' i = i + 1 ENDDO IF ( av == 0 ) THEN WRITE ( io, 335 ) 'YZ', do2d_yz, dt_do2d_yz, & TRIM( begin_chr ), 'i', TRIM( slices ), & TRIM( coordinates ) IF ( skip_time_do2d_yz /= 0.0 ) THEN WRITE ( io, 339 ) skip_time_do2d_yz ENDIF ELSE WRITE ( io, 342 ) 'YZ', do2d_yz, dt_data_output_av, & TRIM( begin_chr ), averaging_interval, & dt_averaging_input, 'i', TRIM( slices ), & TRIM( coordinates ) IF ( skip_time_data_output_av /= 0.0 ) THEN WRITE ( io, 339 ) skip_time_data_output_av ENDIF ENDIF ENDIF ENDIF ENDDO ! !-- 3d-arrays DO av = 0, 1 i = 1 do3d_chr = '' DO WHILE ( do3d(av,i) /= ' ' ) do3d_chr = TRIM( do3d_chr ) // ' ' // TRIM( do3d(av,i) ) // ',' i = i + 1 ENDDO IF ( do3d_chr /= '' ) THEN IF ( av == 0 ) THEN WRITE ( io, 336 ) '' ELSE WRITE ( io, 336 ) '(time-averaged)' ENDIF output_format = '' IF ( netcdf_output ) THEN IF ( netcdf_64bit_3d ) THEN output_format = 'netcdf (64 bit offset)' ELSE output_format = 'netcdf' ENDIF ENDIF IF ( avs_output ) THEN IF ( netcdf_output ) THEN output_format = TRIM( output_format ) // ' and avs' ELSE output_format = 'avs' ENDIF ENDIF WRITE ( io, 344 ) output_format IF ( do3d_at_begin ) THEN begin_chr = 'and at the start' ELSE begin_chr = '' ENDIF IF ( av == 0 ) THEN WRITE ( io, 337 ) do3d_chr, dt_do3d, TRIM( begin_chr ), & zu(nz_do3d), nz_do3d ELSE WRITE ( io, 343 ) do3d_chr, dt_data_output_av, & TRIM( begin_chr ), averaging_interval, & dt_averaging_input, zu(nz_do3d), nz_do3d ENDIF IF ( do3d_compress ) THEN do3d_chr = '' i = 1 DO WHILE ( do3d(av,i) /= ' ' ) SELECT CASE ( do3d(av,i) ) CASE ( 'u' ) j = 1 CASE ( 'v' ) j = 2 CASE ( 'w' ) j = 3 CASE ( 'p' ) j = 4 CASE ( 'pt' ) j = 5 END SELECT WRITE ( prec, '(I1)' ) plot_3d_precision(j)%precision do3d_chr = TRIM( do3d_chr ) // ' ' // TRIM( do3d(av,i) ) // & ':' // prec // ',' i = i + 1 ENDDO WRITE ( io, 338 ) do3d_chr ENDIF IF ( av == 0 ) THEN IF ( skip_time_do3d /= 0.0 ) THEN WRITE ( io, 339 ) skip_time_do3d ENDIF ELSE IF ( skip_time_data_output_av /= 0.0 ) THEN WRITE ( io, 339 ) skip_time_data_output_av ENDIF ENDIF ENDIF ENDDO ! !-- Timeseries IF ( dt_dots /= 9999999.9 ) THEN WRITE ( io, 340 ) output_format = '' IF ( netcdf_output ) THEN IF ( netcdf_64bit ) THEN output_format = 'netcdf (64 bit offset)' ELSE output_format = 'netcdf' ENDIF ENDIF IF ( profil_output ) THEN IF ( netcdf_output ) THEN output_format = TRIM( output_format ) // ' and profil' ELSE output_format = 'profil' ENDIF ENDIF WRITE ( io, 344 ) output_format WRITE ( io, 341 ) dt_dots ENDIF #if defined( __dvrp_graphics ) ! !-- Dvrp-output IF ( dt_dvrp /= 9999999.9 ) THEN WRITE ( io, 360 ) dt_dvrp, TRIM( dvrp_output ), TRIM( dvrp_host ), & TRIM( dvrp_username ), TRIM( dvrp_directory ) i = 1 l = 0 DO WHILE ( mode_dvrp(i) /= ' ' ) IF ( mode_dvrp(i)(1:10) == 'isosurface' ) THEN READ ( mode_dvrp(i), '(10X,I2)' ) j l = l + 1 IF ( do3d(0,j) /= ' ' ) THEN WRITE ( io, 361 ) TRIM( do3d(0,j) ), threshold(l) ENDIF ELSEIF ( mode_dvrp(i)(1:6) == 'slicer' ) THEN READ ( mode_dvrp(i), '(6X,I2)' ) j IF ( do2d(0,j) /= ' ' ) WRITE ( io, 362 ) TRIM( do2d(0,j) ) ELSEIF ( mode_dvrp(i)(1:9) == 'particles' ) THEN WRITE ( io, 363 ) ENDIF i = i + 1 ENDDO IF ( TRIM( topography ) /= 'flat' .AND. cluster_size > 1 ) THEN WRITE ( io, 364 ) cluster_size ENDIF ENDIF #endif #if defined( __spectra ) ! !-- Spectra output IF ( dt_dosp /= 9999999.9 ) THEN WRITE ( io, 370 ) output_format = '' IF ( netcdf_output ) THEN IF ( netcdf_64bit ) THEN output_format = 'netcdf (64 bit offset)' ELSE output_format = 'netcdf' ENDIF ENDIF IF ( profil_output ) THEN IF ( netcdf_output ) THEN output_format = TRIM( output_format ) // ' and profil' ELSE output_format = 'profil' ENDIF ENDIF WRITE ( io, 344 ) output_format WRITE ( io, 371 ) dt_dosp IF ( skip_time_dosp /= 0.0 ) WRITE ( io, 339 ) skip_time_dosp WRITE ( io, 372 ) ( data_output_sp(i), i = 1,10 ), & ( spectra_direction(i), i = 1,10 ), & ( comp_spectra_level(i), i = 1,100 ), & ( plot_spectra_level(i), i = 1,100 ), & averaging_interval_sp, dt_averaging_input_pr ENDIF #endif WRITE ( io, 99 ) ! !-- Physical quantities WRITE ( io, 400 ) ! !-- Geostrophic parameters WRITE ( io, 410 ) omega, phi, f, fs ! !-- Other quantities WRITE ( io, 411 ) g IF ( use_reference ) THEN IF ( ocean ) THEN WRITE ( io, 412 ) prho_reference ELSE WRITE ( io, 413 ) pt_reference ENDIF ENDIF ! !-- Cloud physics parameters IF ( cloud_physics ) THEN WRITE ( io, 415 ) WRITE ( io, 416 ) surface_pressure, r_d, rho_surface, cp, l_v ENDIF !-- Profile of the geostrophic wind (component ug) !-- Building output strings WRITE ( ugcomponent, '(F6.2)' ) ug_surface gradients = '------' slices = ' 0' coordinates = ' 0.0' i = 1 DO WHILE ( ug_vertical_gradient_level_ind(i) /= -9999 ) WRITE (coor_chr,'(F6.2,1X)') ug(ug_vertical_gradient_level_ind(i)) ugcomponent = TRIM( ugcomponent ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(F6.2,1X)') ug_vertical_gradient(i) gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(I6,1X)') ug_vertical_gradient_level_ind(i) slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(F6.1,1X)') ug_vertical_gradient_level(i) coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) i = i + 1 ENDDO WRITE ( io, 423 ) TRIM( coordinates ), TRIM( ugcomponent ), & TRIM( gradients ), TRIM( slices ) !-- Profile of the geostrophic wind (component vg) !-- Building output strings WRITE ( vgcomponent, '(F6.2)' ) vg_surface gradients = '------' slices = ' 0' coordinates = ' 0.0' i = 1 DO WHILE ( vg_vertical_gradient_level_ind(i) /= -9999 ) WRITE (coor_chr,'(F6.2,1X)') vg(vg_vertical_gradient_level_ind(i)) vgcomponent = TRIM( vgcomponent ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(F6.2,1X)') vg_vertical_gradient(i) gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(I6,1X)') vg_vertical_gradient_level_ind(i) slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(F6.1,1X)') vg_vertical_gradient_level(i) coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) i = i + 1 ENDDO WRITE ( io, 424 ) TRIM( coordinates ), TRIM( vgcomponent ), & TRIM( gradients ), TRIM( slices ) ! !-- Initial temperature profile !-- Building output strings, starting with surface temperature WRITE ( temperatures, '(F6.2)' ) pt_surface gradients = '------' slices = ' 0' coordinates = ' 0.0' i = 1 DO WHILE ( pt_vertical_gradient_level_ind(i) /= -9999 ) WRITE (coor_chr,'(F7.2)') pt_init(pt_vertical_gradient_level_ind(i)) temperatures = TRIM( temperatures ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(F7.2)') pt_vertical_gradient(i) gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(I7)') pt_vertical_gradient_level_ind(i) slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(F7.1)') pt_vertical_gradient_level(i) coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) i = i + 1 ENDDO WRITE ( io, 420 ) TRIM( coordinates ), TRIM( temperatures ), & TRIM( gradients ), TRIM( slices ) ! !-- Initial humidity profile !-- Building output strings, starting with surface humidity IF ( humidity .OR. passive_scalar ) THEN WRITE ( temperatures, '(E8.1)' ) q_surface gradients = '--------' slices = ' 0' coordinates = ' 0.0' i = 1 DO WHILE ( q_vertical_gradient_level_ind(i) /= -9999 ) WRITE (coor_chr,'(E8.1,4X)') q_init(q_vertical_gradient_level_ind(i)) temperatures = TRIM( temperatures ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(E8.1,4X)') q_vertical_gradient(i) gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(I8,4X)') q_vertical_gradient_level_ind(i) slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(F8.1,4X)') q_vertical_gradient_level(i) coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) i = i + 1 ENDDO IF ( humidity ) THEN WRITE ( io, 421 ) TRIM( coordinates ), TRIM( temperatures ), & TRIM( gradients ), TRIM( slices ) ELSE WRITE ( io, 422 ) TRIM( coordinates ), TRIM( temperatures ), & TRIM( gradients ), TRIM( slices ) ENDIF ENDIF ! !-- Initial salinity profile !-- Building output strings, starting with surface salinity IF ( ocean ) THEN WRITE ( temperatures, '(F6.2)' ) sa_surface gradients = '------' slices = ' 0' coordinates = ' 0.0' i = 1 DO WHILE ( sa_vertical_gradient_level_ind(i) /= -9999 ) WRITE (coor_chr,'(F7.2)') sa_init(sa_vertical_gradient_level_ind(i)) temperatures = TRIM( temperatures ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(F7.2)') sa_vertical_gradient(i) gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(I7)') sa_vertical_gradient_level_ind(i) slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(F7.1)') sa_vertical_gradient_level(i) coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) i = i + 1 ENDDO WRITE ( io, 425 ) TRIM( coordinates ), TRIM( temperatures ), & TRIM( gradients ), TRIM( slices ) ENDIF ! !-- LES / turbulence parameters WRITE ( io, 450 ) !-- ! ... LES-constants used must still be added here !-- IF ( constant_diffusion ) THEN WRITE ( io, 451 ) km_constant, km_constant/prandtl_number, & prandtl_number ENDIF IF ( .NOT. constant_diffusion) THEN IF ( e_init > 0.0 ) WRITE ( io, 455 ) e_init IF ( e_min > 0.0 ) WRITE ( io, 454 ) e_min IF ( wall_adjustment ) WRITE ( io, 453 ) wall_adjustment_factor IF ( adjust_mixing_length .AND. prandtl_layer ) WRITE ( io, 452 ) ENDIF ! !-- Special actions during the run WRITE ( io, 470 ) IF ( create_disturbances ) THEN WRITE ( io, 471 ) dt_disturb, disturbance_amplitude, & zu(disturbance_level_ind_b), disturbance_level_ind_b,& zu(disturbance_level_ind_t), disturbance_level_ind_t IF ( bc_lr /= 'cyclic' .OR. bc_ns /= 'cyclic' ) THEN WRITE ( io, 472 ) inflow_disturbance_begin, inflow_disturbance_end ELSE WRITE ( io, 473 ) disturbance_energy_limit ENDIF WRITE ( io, 474 ) TRIM( random_generator ) ENDIF IF ( pt_surface_initial_change /= 0.0 ) THEN WRITE ( io, 475 ) pt_surface_initial_change ENDIF IF ( humidity .AND. q_surface_initial_change /= 0.0 ) THEN WRITE ( io, 476 ) q_surface_initial_change ENDIF IF ( passive_scalar .AND. q_surface_initial_change /= 0.0 ) THEN WRITE ( io, 477 ) q_surface_initial_change ENDIF IF ( particle_advection ) THEN ! !-- Particle attributes WRITE ( io, 480 ) particle_advection_start, dt_prel, bc_par_lr, & bc_par_ns, bc_par_b, bc_par_t, particle_maximum_age, & end_time_prel, dt_sort_particles IF ( use_sgs_for_particles ) WRITE ( io, 488 ) dt_min_part IF ( random_start_position ) WRITE ( io, 481 ) IF ( particles_per_point > 1 ) WRITE ( io, 489 ) particles_per_point WRITE ( io, 495 ) total_number_of_particles IF ( .NOT. vertical_particle_advection ) WRITE ( io, 482 ) IF ( maximum_number_of_tailpoints /= 0 ) THEN WRITE ( io, 483 ) maximum_number_of_tailpoints IF ( minimum_tailpoint_distance /= 0 ) THEN WRITE ( io, 484 ) total_number_of_tails, & minimum_tailpoint_distance, & maximum_tailpoint_age ENDIF ENDIF IF ( dt_write_particle_data /= 9999999.9 ) THEN WRITE ( io, 485 ) dt_write_particle_data output_format = '' IF ( netcdf_output ) THEN IF ( netcdf_64bit ) THEN output_format = 'netcdf (64 bit offset) and binary' ELSE output_format = 'netcdf and binary' ENDIF ELSE output_format = 'binary' ENDIF WRITE ( io, 344 ) output_format ENDIF IF ( dt_dopts /= 9999999.9 ) WRITE ( io, 494 ) dt_dopts IF ( write_particle_statistics ) WRITE ( io, 486 ) WRITE ( io, 487 ) number_of_particle_groups DO i = 1, number_of_particle_groups IF ( i == 1 .AND. density_ratio(i) == 9999999.9 ) THEN WRITE ( io, 490 ) i, 0.0 WRITE ( io, 492 ) ELSE WRITE ( io, 490 ) i, radius(i) IF ( density_ratio(i) /= 0.0 ) THEN WRITE ( io, 491 ) density_ratio(i) ELSE WRITE ( io, 492 ) ENDIF ENDIF WRITE ( io, 493 ) psl(i), psr(i), pss(i), psn(i), psb(i), pst(i), & pdx(i), pdy(i), pdz(i) ENDDO ENDIF ! !-- Parameters of 1D-model IF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN WRITE ( io, 500 ) end_time_1d, dt_run_control_1d, dt_pr_1d, & mixing_length_1d, dissipation_1d IF ( damp_level_ind_1d /= nzt+1 ) THEN WRITE ( io, 502 ) zu(damp_level_ind_1d), damp_level_ind_1d ENDIF ENDIF ! !-- User-defined informations CALL user_header( io ) WRITE ( io, 99 ) ! !-- Write buffer contents to disc immediately CALL local_flush( io ) ! !-- Here the FORMATs start 99 FORMAT (1X,78('-')) 100 FORMAT (/1X,'***************************',9X,42('-')/ & 1X,'* ',A,' *',9X,A/ & 1X,'***************************',9X,42('-')) 101 FORMAT (37X,'coupled run using MPI-',I1,': ',A/ & 37X,42('-')) 102 FORMAT (/' Date: ',A8,9X,'Run: ',A20/ & ' Time: ',A8,9X,'Run-No.: ',I2.2/ & ' Run on host: ',A10) #if defined( __parallel ) 103 FORMAT (' Number of PEs:',8X,I5,9X,'Processor grid (x,y): (',I3,',',I3, & ')',1X,A) 104 FORMAT (' Number of PEs:',8X,I5,9X,'Tasks:',I4,' threads per task:',I4/ & 37X,'Processor grid (x,y): (',I3,',',I3,')',1X,A) 105 FORMAT (37X,'One additional PE is used to handle'/37X,'the dvrp output!') 106 FORMAT (37X,'A 1d-decomposition along x is forced'/ & 37X,'because the job is running on an SMP-cluster') 107 FORMAT (37X,'A 1d-decomposition along ',A,' is used') #endif 110 FORMAT (/' Numerical Schemes:'/ & ' -----------------'/) 111 FORMAT (' --> Solve perturbation pressure via FFT using ',A,' routines') 112 FORMAT (' --> Solve perturbation pressure via SOR-Red/Black-Schema'/ & ' Iterations (initial/other): ',I3,'/',I3,' omega = ',F5.3) 113 FORMAT (' --> Momentum advection via Piascek-Williams-Scheme (Form C3)', & ' or Upstream') 114 FORMAT (' --> Momentum advection via Upstream-Spline-Scheme') 115 FORMAT (' Tendencies are smoothed via Long-Filter with factor ',F5.3) 116 FORMAT (' --> Scalar advection via Piascek-Williams-Scheme (Form C3)', & ' or Upstream') 117 FORMAT (' --> Scalar advection via Upstream-Spline-Scheme') 118 FORMAT (' --> Scalar advection via Bott-Chlond-Scheme') 119 FORMAT (' --> Galilei-Transform applied to horizontal advection', & ' Translation velocity = ',A/ & ' distance advected ',A,': ',F8.3,' km(x) ',F8.3,' km(y)') 120 FORMAT (' --> Time differencing scheme: leapfrog only (no euler in case', & ' of timestep changes)') 121 FORMAT (' --> Time differencing scheme: leapfrog + euler in case of', & ' timestep changes') 122 FORMAT (' --> Time differencing scheme: ',A) 123 FORMAT (' --> Rayleigh-Damping active, starts ',A,' z = ',F8.2,' m'/ & ' maximum damping coefficient: ',F5.3, ' 1/s') 124 FORMAT (' Spline-overshoots are being suppressed') 125 FORMAT (' Upstream-Scheme is used if Upstream-differences fall short', & ' of'/ & ' delta_u = ',F6.4,4X,'delta_v = ',F6.4,4X,'delta_w = ',F6.4) 126 FORMAT (' Upstream-Scheme is used if Upstream-differences fall short', & ' of'/ & ' delta_e = ',F6.4,4X,'delta_pt = ',F6.4) 127 FORMAT (' The following absolute overshoot differences are tolerated:'/& ' delta_u = ',F6.4,4X,'delta_v = ',F6.4,4X,'delta_w = ',F6.4) 128 FORMAT (' The following absolute overshoot differences are tolerated:'/& ' delta_e = ',F6.4,4X,'delta_pt = ',F6.4) 129 FORMAT (' --> Additional prognostic equation for the specific humidity') 130 FORMAT (' --> Additional prognostic equation for the total water content') 131 FORMAT (' --> Parameterization of condensation processes via (0%-or100%)') 132 FORMAT (' --> Parameterization of long-wave radiation processes via'/ & ' effective emissivity scheme') 133 FORMAT (' --> Precipitation parameterization via Kessler-Scheme') 134 FORMAT (' --> Additional prognostic equation for a passive scalar') 135 FORMAT (' --> Solve perturbation pressure via multigrid method (', & A,'-cycle)'/ & ' number of grid levels: ',I2/ & ' Gauss-Seidel red/black iterations: ',I2) 136 FORMAT (' gridpoints of coarsest subdomain (x,y,z): (',I3,',',I3,',', & I3,')') 137 FORMAT (' level data gathered on PE0 at level: ',I2/ & ' gridpoints of coarsest subdomain (x,y,z): (',I3,',',I3,',', & I3,')'/ & ' gridpoints of coarsest domain (x,y,z): (',I3,',',I3,',', & I3,')') 138 FORMAT (' Using hybrid version for 1d-domain-decomposition') 139 FORMAT (' --> Loop optimization method: ',A) 140 FORMAT (' maximum residual allowed: ',E10.3) 141 FORMAT (' fixed number of multigrid cycles: ',I4) 142 FORMAT (' perturbation pressure is calculated at every Runge-Kutta ', & 'step') 143 FORMAT (' Euler/upstream scheme is used for the SGS turbulent ', & 'kinetic energy') 150 FORMAT (' --> Volume flow at the right and north boundary will be ', & 'conserved'/ & ' using the ',A,' mode') 151 FORMAT (' with u_bulk = ',F7.3,' m/s and v_bulk = ',F7.3,' m/s') 152 FORMAT (' --> External pressure gradient directly prescribed by the user:',& /' ',2(1X,E12.5),'Pa/m in x/y direction', & /' starting from dp_level_b =', F8.3, 'm', A /) 200 FORMAT (//' Run time and time step information:'/ & ' ----------------------------------'/) 201 FORMAT ( ' Timestep: variable maximum value: ',F6.3,' s', & ' CFL-factor: ',F4.2) 202 FORMAT ( ' Timestep: dt = ',F6.3,' s'/) 203 FORMAT ( ' Start time: ',F9.3,' s'/ & ' End time: ',F9.3,' s') 204 FORMAT ( A,F9.3,' s') 205 FORMAT ( A,F9.3,' s',5X,'restart every',17X,F9.3,' s') 206 FORMAT (/' Time reached: ',F9.3,' s'/ & ' CPU-time used: ',F9.3,' s per timestep: ', & ' ',F9.3,' s'/ & ' per second of simulated tim', & 'e: ',F9.3,' s') 207 FORMAT ( A/' Coupling start time:',F9.3,' s') 250 FORMAT (//' Computational grid and domain size:'/ & ' ----------------------------------'// & ' Grid length: dx = ',F7.3,' m dy = ',F7.3, & ' m dz = ',F7.3,' m'/ & ' Domain size: x = ',F10.3,' m y = ',F10.3, & ' m z(u) = ',F10.3,' m'/) 252 FORMAT (' dz constant up to ',F10.3,' m (k=',I4,'), then stretched by', & ' factor: ',F5.3/ & ' maximum dz not to be exceeded is dz_max = ',F10.3,' m'/) 254 FORMAT (' Number of gridpoints (x,y,z): (0:',I4,', 0:',I4,', 0:',I4,')'/ & ' Subdomain size (x,y,z): ( ',I4,', ',I4,', ',I4,')'/) 255 FORMAT (' Subdomains have equal size') 256 FORMAT (' Subdomains at the upper edges of the virtual processor grid ', & 'have smaller sizes'/ & ' Size of smallest subdomain: ( ',I4,', ',I4,', ',I4,')') 260 FORMAT (/' The model has a slope in x-direction. Inclination angle: ',F6.2,& ' degrees') 270 FORMAT (//' Topography informations:'/ & ' -----------------------'// & 1X,'Topography: ',A) 271 FORMAT ( ' Building size (x/y/z) in m: ',F5.1,' / ',F5.1,' / ',F5.1/ & ' Horizontal index bounds (l/r/s/n): ',I4,' / ',I4,' / ',I4, & ' / ',I4) 272 FORMAT ( ' Single quasi-2D street canyon of infinite length in ',A, & ' direction' / & ' Canyon height: ', F6.2, 'm, ch = ', I4, '.' / & ' Canyon position (',A,'-walls): cxl = ', I4,', cxr = ', I4, '.') 278 FORMAT (' Topography grid definition convention:'/ & ' cell edge (staggered grid points'/ & ' (u in x-direction, v in y-direction))' /) 279 FORMAT (' Topography grid definition convention:'/ & ' cell center (scalar grid points)' /) 280 FORMAT (//' Vegetation canopy (drag) model:'/ & ' ------------------------------'// & ' Canopy mode: ', A / & ' Canopy top: ',I4 / & ' Leaf drag coefficient: ',F6.2 /) 281 FORMAT (/ ' Scalar_exchange_coefficient: ',F6.2 / & ' Scalar concentration at leaf surfaces in kg/m**3: ',F6.2 /) 282 FORMAT (' Predefined constant heatflux at the top of the vegetation: ',F6.2,' K m/s') 283 FORMAT (/ ' Characteristic levels of the leaf area density:'// & ' Height: ',A,' m'/ & ' Leaf area density: ',A,' m**2/m**3'/ & ' Gradient: ',A,' m**2/m**4'/ & ' Gridpoint: ',A) 300 FORMAT (//' Boundary conditions:'/ & ' -------------------'// & ' p uv ', & ' pt'// & ' B. bound.: ',A/ & ' T. bound.: ',A) 301 FORMAT (/' ',A// & ' B. bound.: ',A/ & ' T. bound.: ',A) 303 FORMAT (/' Bottom surface fluxes are used in diffusion terms at k=1') 304 FORMAT (/' Top surface fluxes are used in diffusion terms at k=nzt') 305 FORMAT (//' Prandtl-Layer between bottom surface and first ', & 'computational u,v-level:'// & ' zp = ',F6.2,' m z0 = ',F6.4,' m kappa = ',F4.2/ & ' Rif value range: ',F6.2,' <= rif <=',F6.2) 306 FORMAT (' Predefined constant heatflux: ',F9.6,' K m/s') 307 FORMAT (' Heatflux has a random normal distribution') 308 FORMAT (' Predefined surface temperature') 309 FORMAT (' Predefined constant salinityflux: ',F9.6,' psu m/s') 310 FORMAT (//' 1D-Model:'// & ' Rif value range: ',F6.2,' <= rif <=',F6.2) 311 FORMAT (' Predefined constant humidity flux: ',E10.3,' m/s') 312 FORMAT (' Predefined surface humidity') 313 FORMAT (' Predefined constant scalar flux: ',E10.3,' kg/(m**2 s)') 314 FORMAT (' Predefined scalar value at the surface') 315 FORMAT (' Humidity / scalar flux at top surface is 0.0') 316 FORMAT (' Sensible heatflux and momentum flux from coupled ', & 'atmosphere model') 317 FORMAT (//' Lateral boundaries:'/ & ' left/right: ',A/ & ' north/south: ',A) 318 FORMAT (/' outflow damping layer width: ',I3,' gridpoints with km_', & 'max =',F5.1,' m**2/s') 319 FORMAT (' turbulence recycling at inflow switched on'/ & ' width of recycling domain: ',F7.1,' m grid index: ',I4/ & ' inflow damping height: ',F6.1,' m width: ',F6.1,' m') 320 FORMAT (' Predefined constant momentumflux: u: ',F9.6,' m**2/s**2'/ & ' v: ',F9.6,' m**2/s**2') 325 FORMAT (//' List output:'/ & ' -----------'// & ' 1D-Profiles:'/ & ' Output every ',F8.2,' s') 326 FORMAT (' Time averaged over ',F8.2,' s'/ & ' Averaging input every ',F8.2,' s') 330 FORMAT (//' Data output:'/ & ' -----------'/) 331 FORMAT (/' 1D-Profiles:') 332 FORMAT (/' ',A) 333 FORMAT (' Output every ',F8.2,' s',/ & ' Time averaged over ',F8.2,' s'/ & ' Averaging input every ',F8.2,' s') 334 FORMAT (/' 2D-Arrays',A,':') 335 FORMAT (/' ',A2,'-cross-section Arrays: ',A/ & ' Output every ',F8.2,' s ',A/ & ' Cross sections at ',A1,' = ',A/ & ' scalar-coordinates: ',A,' m'/) 336 FORMAT (/' 3D-Arrays',A,':') 337 FORMAT (/' Arrays: ',A/ & ' Output every ',F8.2,' s ',A/ & ' Upper output limit at ',F8.2,' m (GP ',I4,')'/) 338 FORMAT (' Compressed data output'/ & ' Decimal precision: ',A/) 339 FORMAT (' No output during initial ',F8.2,' s') 340 FORMAT (/' Time series:') 341 FORMAT (' Output every ',F8.2,' s'/) 342 FORMAT (/' ',A2,'-cross-section Arrays: ',A/ & ' Output every ',F8.2,' s ',A/ & ' Time averaged over ',F8.2,' s'/ & ' Averaging input every ',F8.2,' s'/ & ' Cross sections at ',A1,' = ',A/ & ' scalar-coordinates: ',A,' m'/) 343 FORMAT (/' Arrays: ',A/ & ' Output every ',F8.2,' s ',A/ & ' Time averaged over ',F8.2,' s'/ & ' Averaging input every ',F8.2,' s'/ & ' Upper output limit at ',F8.2,' m (GP ',I4,')'/) 344 FORMAT (' Output format: ',A/) #if defined( __dvrp_graphics ) 360 FORMAT (' Plot-Sequence with dvrp-software:'/ & ' Output every ',F7.1,' s'/ & ' Output mode: ',A/ & ' Host / User: ',A,' / ',A/ & ' Directory: ',A// & ' The sequence contains:') 361 FORMAT (' Isosurface of ',A,' Threshold value: ', E12.3) 362 FORMAT (' Sectional plane ',A) 363 FORMAT (' Particles') 364 FORMAT (/' Polygon reduction for topography: cluster_size = ', I1) #endif #if defined( __spectra ) 370 FORMAT (' Spectra:') 371 FORMAT (' Output every ',F7.1,' s'/) 372 FORMAT (' Arrays: ', 10(A5,',')/ & ' Directions: ', 10(A5,',')/ & ' height levels k = ', 20(I3,',')/ & ' ', 20(I3,',')/ & ' ', 20(I3,',')/ & ' ', 20(I3,',')/ & ' ', 19(I3,','),I3,'.'/ & ' height levels selected for standard plot:'/ & ' k = ', 20(I3,',')/ & ' ', 20(I3,',')/ & ' ', 20(I3,',')/ & ' ', 20(I3,',')/ & ' ', 19(I3,','),I3,'.'/ & ' Time averaged over ', F7.1, ' s,' / & ' Profiles for the time averaging are taken every ', & F6.1,' s') #endif 400 FORMAT (//' Physical quantities:'/ & ' -------------------'/) 410 FORMAT (' Angular velocity : omega = ',E9.3,' rad/s'/ & ' Geograph. latitude : phi = ',F4.1,' degr'/ & ' Coriolis parameter : f = ',F9.6,' 1/s'/ & ' f* = ',F9.6,' 1/s') 411 FORMAT (/' Gravity : g = ',F4.1,' m/s**2') 412 FORMAT (/' Reference density in buoyancy terms: ',F8.3,' kg/m**3') 413 FORMAT (/' Reference temperature in buoyancy terms: ',F8.4,' K') 415 FORMAT (/' Cloud physics parameters:'/ & ' ------------------------'/) 416 FORMAT (' Surface pressure : p_0 = ',F7.2,' hPa'/ & ' Gas constant : R = ',F5.1,' J/(kg K)'/ & ' Density of air : rho_0 = ',F5.3,' kg/m**3'/ & ' Specific heat cap. : c_p = ',F6.1,' J/(kg K)'/ & ' Vapourization heat : L_v = ',E8.2,' J/kg') 420 FORMAT (/' Characteristic levels of the initial temperature profile:'// & ' Height: ',A,' m'/ & ' Temperature: ',A,' K'/ & ' Gradient: ',A,' K/100m'/ & ' Gridpoint: ',A) 421 FORMAT (/' Characteristic levels of the initial humidity profile:'// & ' Height: ',A,' m'/ & ' Humidity: ',A,' kg/kg'/ & ' Gradient: ',A,' (kg/kg)/100m'/ & ' Gridpoint: ',A) 422 FORMAT (/' Characteristic levels of the initial scalar profile:'// & ' Height: ',A,' m'/ & ' Scalar concentration: ',A,' kg/m**3'/ & ' Gradient: ',A,' (kg/m**3)/100m'/ & ' Gridpoint: ',A) 423 FORMAT (/' Characteristic levels of the geo. wind component ug:'// & ' Height: ',A,' m'/ & ' ug: ',A,' m/s'/ & ' Gradient: ',A,' 1/100s'/ & ' Gridpoint: ',A) 424 FORMAT (/' Characteristic levels of the geo. wind component vg:'// & ' Height: ',A,' m'/ & ' vg: ',A,' m/s'/ & ' Gradient: ',A,' 1/100s'/ & ' Gridpoint: ',A) 425 FORMAT (/' Characteristic levels of the initial salinity profile:'// & ' Height: ',A,' m'/ & ' Salinity: ',A,' psu'/ & ' Gradient: ',A,' psu/100m'/ & ' Gridpoint: ',A) 450 FORMAT (//' LES / Turbulence quantities:'/ & ' ---------------------------'/) 451 FORMAT (' Diffusion coefficients are constant:'/ & ' Km = ',F6.2,' m**2/s Kh = ',F6.2,' m**2/s Pr = ',F5.2) 452 FORMAT (' Mixing length is limited to the Prandtl mixing lenth.') 453 FORMAT (' Mixing length is limited to ',F4.2,' * z') 454 FORMAT (' TKE is not allowed to fall below ',E9.2,' (m/s)**2') 455 FORMAT (' initial TKE is prescribed as ',E9.2,' (m/s)**2') 470 FORMAT (//' Actions during the simulation:'/ & ' -----------------------------'/) 471 FORMAT (' Disturbance impulse (u,v) every : ',F6.2,' s'/ & ' Disturbance amplitude : ',F4.2, ' m/s'/ & ' Lower disturbance level : ',F8.2,' m (GP ',I4,')'/ & ' Upper disturbance level : ',F8.2,' m (GP ',I4,')') 472 FORMAT (' Disturbances continued during the run from i/j =',I4, & ' to i/j =',I4) 473 FORMAT (' Disturbances cease as soon as the disturbance energy exceeds',& 1X,F5.3, ' m**2/s**2') 474 FORMAT (' Random number generator used : ',A/) 475 FORMAT (' The surface temperature is increased (or decreased, ', & 'respectively, if'/ & ' the value is negative) by ',F5.2,' K at the beginning of the',& ' 3D-simulation'/) 476 FORMAT (' The surface humidity is increased (or decreased, ',& 'respectively, if the'/ & ' value is negative) by ',E8.1,' kg/kg at the beginning of', & ' the 3D-simulation'/) 477 FORMAT (' The scalar value is increased at the surface (or decreased, ',& 'respectively, if the'/ & ' value is negative) by ',E8.1,' kg/m**3 at the beginning of', & ' the 3D-simulation'/) 480 FORMAT (' Particles:'/ & ' ---------'// & ' Particle advection is active (switched on at t = ', F7.1, & ' s)'/ & ' Start of new particle generations every ',F6.1,' s'/ & ' Boundary conditions: left/right: ', A, ' north/south: ', A/& ' bottom: ', A, ' top: ', A/& ' Maximum particle age: ',F9.1,' s'/ & ' Advection stopped at t = ',F9.1,' s'/ & ' Particles are sorted every ',F9.1,' s'/) 481 FORMAT (' Particles have random start positions'/) 482 FORMAT (' Particles are advected only horizontally'/) 483 FORMAT (' Particles have tails with a maximum of ',I3,' points') 484 FORMAT (' Number of tails of the total domain: ',I10/ & ' Minimum distance between tailpoints: ',F8.2,' m'/ & ' Maximum age of the end of the tail: ',F8.2,' s') 485 FORMAT (' Particle data are written on file every ', F9.1, ' s') 486 FORMAT (' Particle statistics are written on file'/) 487 FORMAT (' Number of particle groups: ',I2/) 488 FORMAT (' SGS velocity components are used for particle advection'/ & ' minimum timestep for advection: ', F7.5/) 489 FORMAT (' Number of particles simultaneously released at each ', & 'point: ', I5/) 490 FORMAT (' Particle group ',I2,':'/ & ' Particle radius: ',E10.3, 'm') 491 FORMAT (' Particle inertia is activated'/ & ' density_ratio (rho_fluid/rho_particle) = ',F5.3/) 492 FORMAT (' Particles are advected only passively (no inertia)'/) 493 FORMAT (' Boundaries of particle source: x:',F8.1,' - ',F8.1,' m'/& ' y:',F8.1,' - ',F8.1,' m'/& ' z:',F8.1,' - ',F8.1,' m'/& ' Particle distances: dx = ',F8.1,' m dy = ',F8.1, & ' m dz = ',F8.1,' m'/) 494 FORMAT (' Output of particle time series in NetCDF format every ', & F8.2,' s'/) 495 FORMAT (' Number of particles in total domain: ',I10/) 500 FORMAT (//' 1D-Model parameters:'/ & ' -------------------'// & ' Simulation time: ',F8.1,' s'/ & ' Run-controll output every: ',F8.1,' s'/ & ' Vertical profile output every: ',F8.1,' s'/ & ' Mixing length calculation: ',A/ & ' Dissipation calculation: ',A/) 502 FORMAT (' Damping layer starts from ',F7.1,' m (GP ',I4,')'/) END SUBROUTINE header