!> @file flow_statistics.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2018 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: flow_statistics.f90 3294 2018-10-01 02:37:10Z raasch $ ! ocean renamed ocean_mode ! ! 3274 2018-09-24 15:42:55Z knoop ! Modularization of all bulk cloud physics code components ! ! 3241 2018-09-12 15:02:00Z raasch ! unused variables removed ! ! 3042 2018-05-25 10:44:37Z schwenkel ! Changed the name specific humidity to mixing ratio ! ! 3040 2018-05-25 10:22:08Z schwenkel ! Comments related to the calculation of the inversion height expanded ! ! 3003 2018-04-23 10:22:58Z Giersch ! The inversion height will not be calcuated before the first timestep in ! case of restarts. ! ! 2968 2018-04-13 11:52:24Z suehring ! Bugfix in output of timeseries quantities in case of elevated model surfaces. ! ! 2817 2018-02-19 16:32:21Z knoop ! Preliminary gust module interface implemented ! ! 2773 2018-01-30 14:12:54Z suehring ! Timeseries output of surface temperature. ! ! 2753 2018-01-16 14:16:49Z suehring ! Tile approach for spectral albedo implemented. ! ! 2718 2018-01-02 08:49:38Z maronga ! Corrected "Former revisions" section ! ! 2696 2017-12-14 17:12:51Z kanani ! Change in file header (GPL part) ! Bugfix in evaluation of surface quantities in case different surface types ! are used (MS) ! ! 2674 2017-12-07 11:49:21Z suehring ! Bugfix in output conversion of resolved-scale momentum fluxes in case of ! PW advections scheme. ! ! 2320 2017-07-21 12:47:43Z suehring ! Modularize large-scale forcing and nudging ! ! 2296 2017-06-28 07:53:56Z maronga ! Enabled output of radiation quantities for radiation_scheme = 'constant' ! ! 2292 2017-06-20 09:51:42Z schwenkel ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' ! includes two more prognostic equations for cloud drop concentration (nc) ! and cloud water content (qc). ! ! 2270 2017-06-09 12:18:47Z maronga ! Revised numbering (removed 2 timeseries) ! ! 2252 2017-06-07 09:35:37Z knoop ! perturbation pressure now depending on flux_output_mode ! ! 2233 2017-05-30 18:08:54Z suehring ! ! 2232 2017-05-30 17:47:52Z suehring ! Adjustments to new topography and surface concept ! ! 2118 2017-01-17 16:38:49Z raasch ! OpenACC version of subroutine removed ! ! 2073 2016-11-30 14:34:05Z raasch ! openmp bugfix: large scale forcing calculations cannot be executed thread ! parallel ! ! 2037 2016-10-26 11:15:40Z knoop ! Anelastic approximation implemented ! ! 2031 2016-10-21 15:11:58Z knoop ! renamed variable rho to rho_ocean ! ! 2026 2016-10-18 10:27:02Z suehring ! Bugfix, enable output of s*2. ! Change, calculation of domain-averaged perturbation energy. ! Some formatting adjustments. ! ! 2000 2016-08-20 18:09:15Z knoop ! Forced header and separation lines into 80 columns ! ! 1976 2016-07-27 13:28:04Z maronga ! Removed some unneeded __rrtmg preprocessor directives ! ! 1960 2016-07-12 16:34:24Z suehring ! Separate humidity and passive scalar ! ! 1918 2016-05-27 14:35:57Z raasch ! in case of Wicker-Skamarock scheme, calculate disturbance kinetic energy here, ! if flow_statistics is called before the first initial time step ! ! 1853 2016-04-11 09:00:35Z maronga ! Adjusted for use with radiation_scheme = constant ! ! 1849 2016-04-08 11:33:18Z hoffmann ! prr moved to arrays_3d ! ! 1822 2016-04-07 07:49:42Z hoffmann ! Output of bulk microphysics simplified. ! ! 1815 2016-04-06 13:49:59Z raasch ! cpp-directives for intel openmp bug removed ! ! 1783 2016-03-06 18:36:17Z raasch ! +module netcdf_interface ! ! 1747 2016-02-08 12:25:53Z raasch ! small bugfixes for accelerator version ! ! 1738 2015-12-18 13:56:05Z raasch ! bugfixes for calculations in statistical regions which do not contain grid ! points in the lowest vertical levels, mean surface level height considered ! in the calculation of the characteristic vertical velocity, ! old upstream parts removed ! ! 1709 2015-11-04 14:47:01Z maronga ! Updated output of Obukhov length ! ! 1691 2015-10-26 16:17:44Z maronga ! Revised calculation of Obukhov length. Added output of radiative heating > ! rates for RRTMG. ! ! 1682 2015-10-07 23:56:08Z knoop ! Code annotations made doxygen readable ! ! 1658 2015-09-18 10:52:53Z raasch ! bugfix: temporary reduction variables in the openacc branch are now ! initialized to zero ! ! 1654 2015-09-17 09:20:17Z raasch ! FORTRAN bugfix of r1652 ! ! 1652 2015-09-17 08:12:24Z raasch ! bugfix in calculation of energy production by turbulent transport of TKE ! ! 1593 2015-05-16 13:58:02Z raasch ! FORTRAN errors removed from openacc branch ! ! 1585 2015-04-30 07:05:52Z maronga ! Added output of timeseries and profiles for RRTMG ! ! 1571 2015-03-12 16:12:49Z maronga ! Bugfix: output of rad_net and rad_sw_in ! ! 1567 2015-03-10 17:57:55Z suehring ! Reverse modifications made for monotonic limiter. ! ! 1557 2015-03-05 16:43:04Z suehring ! Adjustments for monotonic limiter ! ! 1555 2015-03-04 17:44:27Z maronga ! Added output of r_a and r_s. ! ! 1551 2015-03-03 14:18:16Z maronga ! Added suppport for land surface model and radiation model output. ! ! 1498 2014-12-03 14:09:51Z suehring ! Comments added ! ! 1482 2014-10-18 12:34:45Z raasch ! missing ngp_sums_ls added in accelerator version ! ! 1450 2014-08-21 07:31:51Z heinze ! bugfix: calculate fac only for simulated_time >= 0.0 ! ! 1396 2014-05-06 13:37:41Z raasch ! bugfix: "copyin" replaced by "update device" in openacc-branch ! ! 1386 2014-05-05 13:55:30Z boeske ! bugfix: simulated time before the last timestep is needed for the correct ! calculation of the profiles of large scale forcing tendencies ! ! 1382 2014-04-30 12:15:41Z boeske ! Renamed variables which store large scale forcing tendencies ! pt_lsa -> td_lsa_lpt, pt_subs -> td_sub_lpt, ! q_lsa -> td_lsa_q, q_subs -> td_sub_q, ! added Neumann boundary conditions for profile data output of large scale ! advection and subsidence terms at nzt+1 ! ! 1374 2014-04-25 12:55:07Z raasch ! bugfix: syntax errors removed from openacc-branch ! missing variables added to ONLY-lists ! ! 1365 2014-04-22 15:03:56Z boeske ! Output of large scale advection, large scale subsidence and nudging tendencies ! +sums_ls_l, ngp_sums_ls, use_subsidence_tendencies ! ! 1353 2014-04-08 15:21:23Z heinze ! REAL constants provided with KIND-attribute ! ! 1322 2014-03-20 16:38:49Z raasch ! REAL constants defined as wp-kind ! ! 1320 2014-03-20 08:40:49Z raasch ! ONLY-attribute added to USE-statements, ! kind-parameters added to all INTEGER and REAL declaration statements, ! kinds are defined in new module kinds, ! revision history before 2012 removed, ! comment fields (!:) to be used for variable explanations added to ! all variable declaration statements ! ! 1299 2014-03-06 13:15:21Z heinze ! Output of large scale vertical velocity w_subs ! ! 1257 2013-11-08 15:18:40Z raasch ! openacc "end parallel" replaced by "end parallel loop" ! ! 1241 2013-10-30 11:36:58Z heinze ! Output of ug and vg ! ! 1221 2013-09-10 08:59:13Z raasch ! ported for openACC in separate #else branch ! ! 1179 2013-06-14 05:57:58Z raasch ! comment for profile 77 added ! ! 1115 2013-03-26 18:16:16Z hoffmann ! ql is calculated by calc_liquid_water_content ! ! 1111 2013-03-08 23:54:10Z raasch ! openACC directive added ! ! 1053 2012-11-13 17:11:03Z hoffmann ! additions for two-moment cloud physics scheme: ! +nr, qr, qc, prr ! ! 1036 2012-10-22 13:43:42Z raasch ! code put under GPL (PALM 3.9) ! ! 1007 2012-09-19 14:30:36Z franke ! Calculation of buoyancy flux for humidity in case of WS-scheme is now using ! turbulent fluxes of WS-scheme ! Bugfix: Calculation of subgridscale buoyancy flux for humidity and cloud ! droplets at nzb and nzt added ! ! 801 2012-01-10 17:30:36Z suehring ! Calculation of turbulent fluxes in advec_ws is now thread-safe. ! ! Revision 1.1 1997/08/11 06:15:17 raasch ! Initial revision ! ! ! Description: ! ------------ !> Compute average profiles and further average flow quantities for the different !> user-defined (sub-)regions. The region indexed 0 is the total model domain. !> !> @note For simplicity, nzb_s_inner and nzb_diff_s_inner are being used as a !> lower vertical index for k-loops for all variables, although strictly !> speaking the k-loops would have to be split up according to the staggered !> grid. However, this implies no error since staggered velocity components !> are zero at the walls and inside buildings. !------------------------------------------------------------------------------! SUBROUTINE flow_statistics USE arrays_3d, & ONLY: ddzu, ddzw, e, heatflux_output_conversion, hyp, km, kh, & momentumflux_output_conversion, nc, nr, p, prho, prr, pt, q, & qc, ql, qr, rho_air, rho_air_zw, rho_ocean, s, & sa, u, ug, v, vg, vpt, w, w_subs, waterflux_output_conversion, & zw, d_exner USE basic_constants_and_equations_mod, & ONLY: g, lv_d_cp USE control_parameters, & ONLY: average_count_pr, cloud_droplets, do_sum, & dt_3d, humidity, initializing_actions, land_surface, & large_scale_forcing, large_scale_subsidence, max_pr_user, & message_string, neutral, ocean_mode, passive_scalar, & simulated_time, simulated_time_at_begin, & use_subsidence_tendencies, use_surface_fluxes, use_top_fluxes, & ws_scheme_mom, ws_scheme_sca USE cpulog, & ONLY: cpu_log, log_point USE grid_variables, & ONLY: ddx, ddy USE gust_mod, & ONLY: gust_module_enabled, gust_statistics USE indices, & ONLY: ngp_2dh, ngp_2dh_s_inner, ngp_3d, ngp_3d_inner, ngp_sums, & ngp_sums_ls, nxl, nxr, nyn, nys, nzb, nzt, topo_min_level, & wall_flags_0 USE kinds USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model, microphysics_morrison, microphysics_seifert USE land_surface_model_mod, & ONLY: m_soil_h, nzb_soil, nzt_soil, t_soil_h USE lsf_nudging_mod, & ONLY: td_lsa_lpt, td_lsa_q, td_sub_lpt, td_sub_q, time_vert USE netcdf_interface, & ONLY: dots_rad, dots_soil, dots_max USE pegrid USE radiation_model_mod, & ONLY: radiation, radiation_scheme, & rad_lw_in, rad_lw_out, rad_lw_cs_hr, rad_lw_hr, & rad_sw_in, rad_sw_out, rad_sw_cs_hr, rad_sw_hr #if defined ( __rrtmg ) USE radiation_model_mod, & ONLY: rrtm_aldif, rrtm_aldir, rrtm_asdif, rrtm_asdir #endif USE statistics USE surface_mod, & ONLY : surf_def_h, surf_lsm_h, surf_usm_h IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< INTEGER(iwp) :: ki !< INTEGER(iwp) :: k_surface_level !< INTEGER(iwp) :: m !< loop variable over all horizontal wall elements INTEGER(iwp) :: l !< loop variable over surface facing -- up- or downward-facing INTEGER(iwp) :: nt !< !$ INTEGER(iwp) :: omp_get_thread_num !< INTEGER(iwp) :: sr !< INTEGER(iwp) :: tn !< LOGICAL :: first !< REAL(wp) :: dptdz_threshold !< REAL(wp) :: fac !< REAL(wp) :: flag !< REAL(wp) :: height !< REAL(wp) :: pts !< REAL(wp) :: sums_l_etot !< REAL(wp) :: ust !< REAL(wp) :: ust2 !< REAL(wp) :: u2 !< REAL(wp) :: vst !< REAL(wp) :: vst2 !< REAL(wp) :: v2 !< REAL(wp) :: w2 !< REAL(wp) :: dptdz(nzb+1:nzt+1) !< REAL(wp) :: sums_ll(nzb:nzt+1,2) !< CALL cpu_log( log_point(10), 'flow_statistics', 'start' ) ! !-- To be on the safe side, check whether flow_statistics has already been !-- called once after the current time step IF ( flow_statistics_called ) THEN message_string = 'flow_statistics is called two times within one ' // & 'timestep' CALL message( 'flow_statistics', 'PA0190', 1, 2, 0, 6, 0 ) ENDIF ! !-- Compute statistics for each (sub-)region DO sr = 0, statistic_regions ! !-- Initialize (local) summation array sums_l = 0.0_wp ! !-- Store sums that have been computed in other subroutines in summation !-- array sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities !-- WARNING: next line still has to be adjusted for OpenMP sums_l(:,21,0) = sums_wsts_bc_l(:,sr) * & heatflux_output_conversion ! heat flux from advec_s_bc sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres ! !-- When calcuating horizontally-averaged total (resolved- plus subgrid- !-- scale) vertical fluxes and velocity variances by using commonly- !-- applied Reynolds-based methods ( e.g. = (w-)*(pt-) ) !-- in combination with the 5th order advection scheme, pronounced !-- artificial kinks could be observed in the vertical profiles near the !-- surface. Please note: these kinks were not related to the model truth, !-- i.e. these kinks are just related to an evaluation problem. !-- In order avoid these kinks, vertical fluxes and horizontal as well !-- vertical velocity variances are calculated directly within the advection !-- routines, according to the numerical discretization, to evaluate the !-- statistical quantities as they will appear within the prognostic !-- equations. !-- Copy the turbulent quantities, evaluated in the advection routines to !-- the local array sums_l() for further computations. IF ( ws_scheme_mom .AND. sr == 0 ) THEN ! !-- According to the Neumann bc for the horizontal velocity components, !-- the corresponding fluxes has to satisfiy the same bc. IF ( ocean_mode ) THEN sums_us2_ws_l(nzt+1,:) = sums_us2_ws_l(nzt,:) sums_vs2_ws_l(nzt+1,:) = sums_vs2_ws_l(nzt,:) ENDIF DO i = 0, threads_per_task-1 ! !-- Swap the turbulent quantities evaluated in advec_ws. sums_l(:,13,i) = sums_wsus_ws_l(:,i) & * momentumflux_output_conversion ! w*u* sums_l(:,15,i) = sums_wsvs_ws_l(:,i) & * momentumflux_output_conversion ! w*v* sums_l(:,30,i) = sums_us2_ws_l(:,i) ! u*2 sums_l(:,31,i) = sums_vs2_ws_l(:,i) ! v*2 sums_l(:,32,i) = sums_ws2_ws_l(:,i) ! w*2 sums_l(:,34,i) = sums_l(:,34,i) + 0.5_wp * & ( sums_us2_ws_l(:,i) + sums_vs2_ws_l(:,i) + & sums_ws2_ws_l(:,i) ) ! e* ENDDO ENDIF IF ( ws_scheme_sca .AND. sr == 0 ) THEN DO i = 0, threads_per_task-1 sums_l(:,17,i) = sums_wspts_ws_l(:,i) & * heatflux_output_conversion ! w*pt* IF ( ocean_mode ) sums_l(:,66,i) = sums_wssas_ws_l(:,i) ! w*sa* IF ( humidity ) sums_l(:,49,i) = sums_wsqs_ws_l(:,i) & * waterflux_output_conversion ! w*q* IF ( passive_scalar ) sums_l(:,114,i) = sums_wsss_ws_l(:,i) ! w*s* ENDDO ENDIF ! !-- Horizontally averaged profiles of horizontal velocities and temperature. !-- They must have been computed before, because they are already required !-- for other horizontal averages. tn = 0 !$OMP PARALLEL PRIVATE( i, j, k, tn, flag ) !$ tn = omp_get_thread_num() !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 22 ) ) sums_l(k,1,tn) = sums_l(k,1,tn) + u(k,j,i) * rmask(j,i,sr) & * flag sums_l(k,2,tn) = sums_l(k,2,tn) + v(k,j,i) * rmask(j,i,sr) & * flag sums_l(k,4,tn) = sums_l(k,4,tn) + pt(k,j,i) * rmask(j,i,sr) & * flag ENDDO ENDDO ENDDO ! !-- Horizontally averaged profile of salinity IF ( ocean_mode ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 sums_l(k,23,tn) = sums_l(k,23,tn) + sa(k,j,i) & * rmask(j,i,sr) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 22 ) ) ENDDO ENDDO ENDDO ENDIF ! !-- Horizontally averaged profiles of virtual potential temperature, !-- total water content, water vapor mixing ratio and liquid water potential !-- temperature IF ( humidity ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 22 ) ) sums_l(k,44,tn) = sums_l(k,44,tn) + & vpt(k,j,i) * rmask(j,i,sr) * flag sums_l(k,41,tn) = sums_l(k,41,tn) + & q(k,j,i) * rmask(j,i,sr) * flag ENDDO ENDDO ENDDO IF ( bulk_cloud_model ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 22 ) ) sums_l(k,42,tn) = sums_l(k,42,tn) + & ( q(k,j,i) - ql(k,j,i) ) * rmask(j,i,sr) & * flag sums_l(k,43,tn) = sums_l(k,43,tn) + ( & pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) & ) * rmask(j,i,sr) & * flag ENDDO ENDDO ENDDO ENDIF ENDIF ! !-- Horizontally averaged profiles of passive scalar IF ( passive_scalar ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 sums_l(k,115,tn) = sums_l(k,115,tn) + s(k,j,i) & * rmask(j,i,sr) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 22 ) ) ENDDO ENDDO ENDDO ENDIF !$OMP END PARALLEL ! !-- Summation of thread sums IF ( threads_per_task > 1 ) THEN DO i = 1, threads_per_task-1 sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i) sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i) sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i) IF ( ocean_mode ) THEN sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i) ENDIF IF ( humidity ) THEN sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i) IF ( bulk_cloud_model ) THEN sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i) sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i) ENDIF ENDIF IF ( passive_scalar ) THEN sums_l(:,115,0) = sums_l(:,115,0) + sums_l(:,115,i) ENDIF ENDDO ENDIF #if defined( __parallel ) ! !-- Compute total sum from local sums IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, & MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, & MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, & MPI_SUM, comm2d, ierr ) IF ( ocean_mode ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) ENDIF IF ( humidity ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) IF ( bulk_cloud_model ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) ENDIF ENDIF IF ( passive_scalar ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,115,0), sums(nzb,115), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) ENDIF #else sums(:,1) = sums_l(:,1,0) sums(:,2) = sums_l(:,2,0) sums(:,4) = sums_l(:,4,0) IF ( ocean_mode ) sums(:,23) = sums_l(:,23,0) IF ( humidity ) THEN sums(:,44) = sums_l(:,44,0) sums(:,41) = sums_l(:,41,0) IF ( bulk_cloud_model ) THEN sums(:,42) = sums_l(:,42,0) sums(:,43) = sums_l(:,43,0) ENDIF ENDIF IF ( passive_scalar ) sums(:,115) = sums_l(:,115,0) #endif ! !-- Final values are obtained by division by the total number of grid points !-- used for summation. After that store profiles. sums(:,1) = sums(:,1) / ngp_2dh(sr) sums(:,2) = sums(:,2) / ngp_2dh(sr) sums(:,4) = sums(:,4) / ngp_2dh_s_inner(:,sr) hom(:,1,1,sr) = sums(:,1) ! u hom(:,1,2,sr) = sums(:,2) ! v hom(:,1,4,sr) = sums(:,4) ! pt ! !-- Salinity IF ( ocean_mode ) THEN sums(:,23) = sums(:,23) / ngp_2dh_s_inner(:,sr) hom(:,1,23,sr) = sums(:,23) ! sa ENDIF ! !-- Humidity and cloud parameters IF ( humidity ) THEN sums(:,44) = sums(:,44) / ngp_2dh_s_inner(:,sr) sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr) hom(:,1,44,sr) = sums(:,44) ! vpt hom(:,1,41,sr) = sums(:,41) ! qv (q) IF ( bulk_cloud_model ) THEN sums(:,42) = sums(:,42) / ngp_2dh_s_inner(:,sr) sums(:,43) = sums(:,43) / ngp_2dh_s_inner(:,sr) hom(:,1,42,sr) = sums(:,42) ! qv hom(:,1,43,sr) = sums(:,43) ! pt ENDIF ENDIF ! !-- Passive scalar IF ( passive_scalar ) hom(:,1,115,sr) = sums(:,115) / & ngp_2dh_s_inner(:,sr) ! s ! !-- Horizontally averaged profiles of the remaining prognostic variables, !-- variances, the total and the perturbation energy (single values in last !-- column of sums_l) and some diagnostic quantities. !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly !-- ---- speaking the following k-loop would have to be split up and !-- rearranged according to the staggered grid. !-- However, this implies no error since staggered velocity components !-- are zero at the walls and inside buildings. tn = 0 !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, & !$OMP sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, & !$OMP w2, flag, m, ki, l ) !$ tn = omp_get_thread_num() !$OMP DO DO i = nxl, nxr DO j = nys, nyn sums_l_etot = 0.0_wp DO k = nzb, nzt+1 flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 22 ) ) ! !-- Prognostic and diagnostic variables sums_l(k,3,tn) = sums_l(k,3,tn) + w(k,j,i) * rmask(j,i,sr) & * flag sums_l(k,8,tn) = sums_l(k,8,tn) + e(k,j,i) * rmask(j,i,sr) & * flag sums_l(k,9,tn) = sums_l(k,9,tn) + km(k,j,i) * rmask(j,i,sr) & * flag sums_l(k,10,tn) = sums_l(k,10,tn) + kh(k,j,i) * rmask(j,i,sr) & * flag sums_l(k,40,tn) = sums_l(k,40,tn) + ( p(k,j,i) & / momentumflux_output_conversion(k) ) & * flag sums_l(k,33,tn) = sums_l(k,33,tn) + & ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr)& * flag IF ( humidity ) THEN sums_l(k,70,tn) = sums_l(k,70,tn) + & ( q(k,j,i)-hom(k,1,41,sr) )**2 * rmask(j,i,sr)& * flag ENDIF IF ( passive_scalar ) THEN sums_l(k,116,tn) = sums_l(k,116,tn) + & ( s(k,j,i)-hom(k,1,115,sr) )**2 * rmask(j,i,sr)& * flag ENDIF ! !-- Higher moments !-- (Computation of the skewness of w further below) sums_l(k,38,tn) = sums_l(k,38,tn) + w(k,j,i)**3 * rmask(j,i,sr) & * flag sums_l_etot = sums_l_etot + & 0.5_wp * ( u(k,j,i)**2 + v(k,j,i)**2 + & w(k,j,i)**2 ) * rmask(j,i,sr)& * flag ENDDO ! !-- Total and perturbation energy for the total domain (being !-- collected in the last column of sums_l). Summation of these !-- quantities is seperated from the previous loop in order to !-- allow vectorization of that loop. sums_l(nzb+4,pr_palm,tn) = sums_l(nzb+4,pr_palm,tn) + sums_l_etot ! !-- 2D-arrays (being collected in the last column of sums_l) IF ( surf_def_h(0)%end_index(j,i) >= & surf_def_h(0)%start_index(j,i) ) THEN m = surf_def_h(0)%start_index(j,i) sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & surf_def_h(0)%us(m) * rmask(j,i,sr) sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & surf_def_h(0)%usws(m) * rmask(j,i,sr) sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & surf_def_h(0)%vsws(m) * rmask(j,i,sr) sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & surf_def_h(0)%ts(m) * rmask(j,i,sr) IF ( humidity ) THEN sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + & surf_def_h(0)%qs(m) * rmask(j,i,sr) ENDIF IF ( passive_scalar ) THEN sums_l(nzb+13,pr_palm,tn) = sums_l(nzb+13,pr_palm,tn) + & surf_def_h(0)%ss(m) * rmask(j,i,sr) ENDIF ! !-- Summation of surface temperature. sums_l(nzb+14,pr_palm,tn) = sums_l(nzb+14,pr_palm,tn) + & surf_def_h(0)%pt_surface(m) * & rmask(j,i,sr) ENDIF IF ( surf_lsm_h%end_index(j,i) >= surf_lsm_h%start_index(j,i) ) THEN m = surf_lsm_h%start_index(j,i) sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & surf_lsm_h%us(m) * rmask(j,i,sr) sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & surf_lsm_h%usws(m) * rmask(j,i,sr) sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & surf_lsm_h%vsws(m) * rmask(j,i,sr) sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & surf_lsm_h%ts(m) * rmask(j,i,sr) IF ( humidity ) THEN sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + & surf_lsm_h%qs(m) * rmask(j,i,sr) ENDIF IF ( passive_scalar ) THEN sums_l(nzb+13,pr_palm,tn) = sums_l(nzb+13,pr_palm,tn) + & surf_lsm_h%ss(m) * rmask(j,i,sr) ENDIF ! !-- Summation of surface temperature. sums_l(nzb+14,pr_palm,tn) = sums_l(nzb+14,pr_palm,tn) + & surf_lsm_h%pt_surface(m) * & rmask(j,i,sr) ENDIF IF ( surf_usm_h%end_index(j,i) >= surf_usm_h%start_index(j,i) ) THEN m = surf_usm_h%start_index(j,i) sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & surf_usm_h%us(m) * rmask(j,i,sr) sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & surf_usm_h%usws(m) * rmask(j,i,sr) sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & surf_usm_h%vsws(m) * rmask(j,i,sr) sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & surf_usm_h%ts(m) * rmask(j,i,sr) IF ( humidity ) THEN sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + & surf_usm_h%qs(m) * rmask(j,i,sr) ENDIF IF ( passive_scalar ) THEN sums_l(nzb+13,pr_palm,tn) = sums_l(nzb+13,pr_palm,tn) + & surf_usm_h%ss(m) * rmask(j,i,sr) ENDIF ! !-- Summation of surface temperature. sums_l(nzb+14,pr_palm,tn) = sums_l(nzb+14,pr_palm,tn) + & surf_usm_h%pt_surface(m) * & rmask(j,i,sr) ENDIF ENDDO ENDDO ! !-- Computation of statistics when ws-scheme is not used. Else these !-- quantities are evaluated in the advection routines. IF ( .NOT. ws_scheme_mom .OR. sr /= 0 .OR. simulated_time == 0.0_wp ) & THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 22 ) ) u2 = u(k,j,i)**2 v2 = v(k,j,i)**2 w2 = w(k,j,i)**2 ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 sums_l(k,30,tn) = sums_l(k,30,tn) + ust2 * rmask(j,i,sr) & * flag sums_l(k,31,tn) = sums_l(k,31,tn) + vst2 * rmask(j,i,sr) & * flag sums_l(k,32,tn) = sums_l(k,32,tn) + w2 * rmask(j,i,sr) & * flag ! !-- Perturbation energy sums_l(k,34,tn) = sums_l(k,34,tn) + 0.5_wp * & ( ust2 + vst2 + w2 ) * rmask(j,i,sr) & * flag ENDDO ENDDO ENDDO ENDIF ! !-- Computaion of domain-averaged perturbation energy. Please note, !-- to prevent that perturbation energy is larger (even if only slightly) !-- than the total kinetic energy, calculation is based on deviations from !-- the horizontal mean, instead of spatial descretization of the advection !-- term. !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 22 ) ) w2 = w(k,j,i)**2 ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 w2 = w(k,j,i)**2 sums_l(nzb+5,pr_palm,tn) = sums_l(nzb+5,pr_palm,tn) & + 0.5_wp * ( ust2 + vst2 + w2 ) & * rmask(j,i,sr) & * flag ENDDO ENDDO ENDDO ! !-- Horizontally averaged profiles of the vertical fluxes !$OMP DO DO i = nxl, nxr DO j = nys, nyn ! !-- Subgridscale fluxes (without Prandtl layer from k=nzb, !-- oterwise from k=nzb+1) !-- NOTE: for simplicity, nzb_diff_s_inner is used below, although !-- ---- strictly speaking the following k-loop would have to be !-- split up according to the staggered grid. !-- However, this implies no error since staggered velocity !-- components are zero at the walls and inside buildings. !-- Flag 23 is used to mask surface fluxes as well as model-top fluxes, !-- which are added further below. DO k = nzb, nzt flag = MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 23 ) ) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 9 ) ) ! !-- Momentum flux w"u" sums_l(k,12,tn) = sums_l(k,12,tn) - 0.25_wp * ( & km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) & ) * ( & ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & + ( w(k,j,i) - w(k,j,i-1) ) * ddx & ) * rmask(j,i,sr) & * rho_air_zw(k) & * momentumflux_output_conversion(k) & * flag ! !-- Momentum flux w"v" sums_l(k,14,tn) = sums_l(k,14,tn) - 0.25_wp * ( & km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) & ) * ( & ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & + ( w(k,j,i) - w(k,j-1,i) ) * ddy & ) * rmask(j,i,sr) & * rho_air_zw(k) & * momentumflux_output_conversion(k) & * flag ! !-- Heat flux w"pt" sums_l(k,16,tn) = sums_l(k,16,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& * ( pt(k+1,j,i) - pt(k,j,i) ) & * rho_air_zw(k) & * heatflux_output_conversion(k) & * ddzu(k+1) * rmask(j,i,sr) & * flag ! !-- Salinity flux w"sa" IF ( ocean_mode ) THEN sums_l(k,65,tn) = sums_l(k,65,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& * ( sa(k+1,j,i) - sa(k,j,i) ) & * ddzu(k+1) * rmask(j,i,sr) & * flag ENDIF ! !-- Buoyancy flux, water flux (humidity flux) w"q" IF ( humidity ) THEN sums_l(k,45,tn) = sums_l(k,45,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& * ( vpt(k+1,j,i) - vpt(k,j,i) ) & * rho_air_zw(k) & * heatflux_output_conversion(k) & * ddzu(k+1) * rmask(j,i,sr) * flag sums_l(k,48,tn) = sums_l(k,48,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& * ( q(k+1,j,i) - q(k,j,i) ) & * rho_air_zw(k) & * waterflux_output_conversion(k)& * ddzu(k+1) * rmask(j,i,sr) * flag IF ( bulk_cloud_model ) THEN sums_l(k,51,tn) = sums_l(k,51,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& * ( ( q(k+1,j,i) - ql(k+1,j,i) )& - ( q(k,j,i) - ql(k,j,i) ) ) & * rho_air_zw(k) & * waterflux_output_conversion(k)& * ddzu(k+1) * rmask(j,i,sr) * flag ENDIF ENDIF ! !-- Passive scalar flux IF ( passive_scalar ) THEN sums_l(k,117,tn) = sums_l(k,117,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& * ( s(k+1,j,i) - s(k,j,i) ) & * ddzu(k+1) * rmask(j,i,sr) & * flag ENDIF ENDDO ! !-- Subgridscale fluxes in the Prandtl layer IF ( use_surface_fluxes ) THEN DO l = 0, 1 ki = MERGE( -1, 0, l == 0 ) IF ( surf_def_h(l)%ns >= 1 ) THEN DO m = surf_def_h(l)%start_index(j,i), & surf_def_h(l)%end_index(j,i) k = surf_def_h(l)%k(m) sums_l(k+ki,12,tn) = sums_l(k+ki,12,tn) + & momentumflux_output_conversion(k+ki) * & surf_def_h(l)%usws(m) * rmask(j,i,sr) ! w"u" sums_l(k+ki,14,tn) = sums_l(k+ki,14,tn) + & momentumflux_output_conversion(k+ki) * & surf_def_h(l)%vsws(m) * rmask(j,i,sr) ! w"v" sums_l(k+ki,16,tn) = sums_l(k+ki,16,tn) + & heatflux_output_conversion(k+ki) * & surf_def_h(l)%shf(m) * rmask(j,i,sr) ! w"pt" sums_l(k+ki,58,tn) = sums_l(k+ki,58,tn) + & 0.0_wp * rmask(j,i,sr) ! u"pt" sums_l(k+ki,61,tn) = sums_l(k+ki,61,tn) + & 0.0_wp * rmask(j,i,sr) ! v"pt" IF ( ocean_mode ) THEN sums_l(k+ki,65,tn) = sums_l(k+ki,65,tn) + & surf_def_h(l)%sasws(m) * rmask(j,i,sr) ! w"sa" ENDIF IF ( humidity ) THEN sums_l(k+ki,48,tn) = sums_l(k+ki,48,tn) + & waterflux_output_conversion(k+ki) * & surf_def_h(l)%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") sums_l(k+ki,45,tn) = sums_l(k+ki,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(k+ki,j,i) ) * & surf_def_h(l)%shf(m) + 0.61_wp * pt(k+ki,j,i) * & surf_def_h(l)%qsws(m) ) & * heatflux_output_conversion(k+ki) IF ( cloud_droplets ) THEN sums_l(k+ki,45,tn) = sums_l(k+ki,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(k+ki,j,i) - & ql(k+ki,j,i) ) * surf_def_h(l)%shf(m) + & 0.61_wp * pt(k+ki,j,i) * surf_def_h(l)%qsws(m) ) & * heatflux_output_conversion(k+ki) ENDIF IF ( bulk_cloud_model ) THEN ! !-- Formula does not work if ql(k+ki) /= 0.0 sums_l(k+ki,51,tn) = sums_l(k+ki,51,tn) + & waterflux_output_conversion(k+ki) * & surf_def_h(l)%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") ENDIF ENDIF IF ( passive_scalar ) THEN sums_l(k+ki,117,tn) = sums_l(k+ki,117,tn) + & surf_def_h(l)%ssws(m) * rmask(j,i,sr) ! w"s" ENDIF ENDDO ENDIF ENDDO IF ( surf_lsm_h%end_index(j,i) >= & surf_lsm_h%start_index(j,i) ) THEN m = surf_lsm_h%start_index(j,i) sums_l(nzb,12,tn) = sums_l(nzb,12,tn) + & momentumflux_output_conversion(nzb) * & surf_lsm_h%usws(m) * rmask(j,i,sr) ! w"u" sums_l(nzb,14,tn) = sums_l(nzb,14,tn) + & momentumflux_output_conversion(nzb) * & surf_lsm_h%vsws(m) * rmask(j,i,sr) ! w"v" sums_l(nzb,16,tn) = sums_l(nzb,16,tn) + & heatflux_output_conversion(nzb) * & surf_lsm_h%shf(m) * rmask(j,i,sr) ! w"pt" sums_l(nzb,58,tn) = sums_l(nzb,58,tn) + & 0.0_wp * rmask(j,i,sr) ! u"pt" sums_l(nzb,61,tn) = sums_l(nzb,61,tn) + & 0.0_wp * rmask(j,i,sr) ! v"pt" IF ( ocean_mode ) THEN sums_l(nzb,65,tn) = sums_l(nzb,65,tn) + & surf_lsm_h%sasws(m) * rmask(j,i,sr) ! w"sa" ENDIF IF ( humidity ) THEN sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & waterflux_output_conversion(nzb) * & surf_lsm_h%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(nzb,j,i) ) * & surf_lsm_h%shf(m) + 0.61_wp * pt(nzb,j,i) * & surf_lsm_h%qsws(m) ) & * heatflux_output_conversion(nzb) IF ( cloud_droplets ) THEN sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(nzb,j,i) - & ql(nzb,j,i) ) * surf_lsm_h%shf(m) + & 0.61_wp * pt(nzb,j,i) * surf_lsm_h%qsws(m) ) & * heatflux_output_conversion(nzb) ENDIF IF ( bulk_cloud_model ) THEN ! !-- Formula does not work if ql(nzb) /= 0.0 sums_l(nzb,51,tn) = sums_l(nzb,51,tn) + & waterflux_output_conversion(nzb) * & surf_lsm_h%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") ENDIF ENDIF IF ( passive_scalar ) THEN sums_l(nzb,117,tn) = sums_l(nzb,117,tn) + & surf_lsm_h%ssws(m) * rmask(j,i,sr) ! w"s" ENDIF ENDIF IF ( surf_usm_h%end_index(j,i) >= & surf_usm_h%start_index(j,i) ) THEN m = surf_usm_h%start_index(j,i) sums_l(nzb,12,tn) = sums_l(nzb,12,tn) + & momentumflux_output_conversion(nzb) * & surf_usm_h%usws(m) * rmask(j,i,sr) ! w"u" sums_l(nzb,14,tn) = sums_l(nzb,14,tn) + & momentumflux_output_conversion(nzb) * & surf_usm_h%vsws(m) * rmask(j,i,sr) ! w"v" sums_l(nzb,16,tn) = sums_l(nzb,16,tn) + & heatflux_output_conversion(nzb) * & surf_usm_h%shf(m) * rmask(j,i,sr) ! w"pt" sums_l(nzb,58,tn) = sums_l(nzb,58,tn) + & 0.0_wp * rmask(j,i,sr) ! u"pt" sums_l(nzb,61,tn) = sums_l(nzb,61,tn) + & 0.0_wp * rmask(j,i,sr) ! v"pt" IF ( ocean_mode ) THEN sums_l(nzb,65,tn) = sums_l(nzb,65,tn) + & surf_usm_h%sasws(m) * rmask(j,i,sr) ! w"sa" ENDIF IF ( humidity ) THEN sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & waterflux_output_conversion(nzb) * & surf_usm_h%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(nzb,j,i) ) * & surf_usm_h%shf(m) + 0.61_wp * pt(nzb,j,i) * & surf_usm_h%qsws(m) ) & * heatflux_output_conversion(nzb) IF ( cloud_droplets ) THEN sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(nzb,j,i) - & ql(nzb,j,i) ) * surf_usm_h%shf(m) + & 0.61_wp * pt(nzb,j,i) * surf_usm_h%qsws(m) ) & * heatflux_output_conversion(nzb) ENDIF IF ( bulk_cloud_model ) THEN ! !-- Formula does not work if ql(nzb) /= 0.0 sums_l(nzb,51,tn) = sums_l(nzb,51,tn) + & waterflux_output_conversion(nzb) * & surf_usm_h%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") ENDIF ENDIF IF ( passive_scalar ) THEN sums_l(nzb,117,tn) = sums_l(nzb,117,tn) + & surf_usm_h%ssws(m) * rmask(j,i,sr) ! w"s" ENDIF ENDIF ENDIF IF ( .NOT. neutral ) THEN IF ( surf_def_h(0)%end_index(j,i) >= & surf_def_h(0)%start_index(j,i) ) THEN m = surf_def_h(0)%start_index(j,i) sums_l(nzb,112,tn) = sums_l(nzb,112,tn) + & surf_def_h(0)%ol(m) * rmask(j,i,sr) ! L ENDIF IF ( surf_lsm_h%end_index(j,i) >= & surf_lsm_h%start_index(j,i) ) THEN m = surf_lsm_h%start_index(j,i) sums_l(nzb,112,tn) = sums_l(nzb,112,tn) + & surf_lsm_h%ol(m) * rmask(j,i,sr) ! L ENDIF IF ( surf_usm_h%end_index(j,i) >= & surf_usm_h%start_index(j,i) ) THEN m = surf_usm_h%start_index(j,i) sums_l(nzb,112,tn) = sums_l(nzb,112,tn) + & surf_usm_h%ol(m) * rmask(j,i,sr) ! L ENDIF ENDIF IF ( radiation ) THEN IF ( surf_def_h(0)%end_index(j,i) >= & surf_def_h(0)%start_index(j,i) ) THEN m = surf_def_h(0)%start_index(j,i) sums_l(nzb,99,tn) = sums_l(nzb,99,tn) + & surf_def_h(0)%rad_net(m) * rmask(j,i,sr) sums_l(nzb,100,tn) = sums_l(nzb,100,tn) + & surf_def_h(0)%rad_lw_in(m) * rmask(j,i,sr) sums_l(nzb,101,tn) = sums_l(nzb,101,tn) + & surf_def_h(0)%rad_lw_out(m) * rmask(j,i,sr) sums_l(nzb,102,tn) = sums_l(nzb,102,tn) + & surf_def_h(0)%rad_sw_in(m) * rmask(j,i,sr) sums_l(nzb,103,tn) = sums_l(nzb,103,tn) + & surf_def_h(0)%rad_sw_out(m) * rmask(j,i,sr) ENDIF IF ( surf_lsm_h%end_index(j,i) >= & surf_lsm_h%start_index(j,i) ) THEN m = surf_lsm_h%start_index(j,i) sums_l(nzb,99,tn) = sums_l(nzb,99,tn) + & surf_lsm_h%rad_net(m) * rmask(j,i,sr) sums_l(nzb,100,tn) = sums_l(nzb,100,tn) + & surf_lsm_h%rad_lw_in(m) * rmask(j,i,sr) sums_l(nzb,101,tn) = sums_l(nzb,101,tn) + & surf_lsm_h%rad_lw_out(m) * rmask(j,i,sr) sums_l(nzb,102,tn) = sums_l(nzb,102,tn) + & surf_lsm_h%rad_sw_in(m) * rmask(j,i,sr) sums_l(nzb,103,tn) = sums_l(nzb,103,tn) + & surf_lsm_h%rad_sw_out(m) * rmask(j,i,sr) ENDIF IF ( surf_usm_h%end_index(j,i) >= & surf_usm_h%start_index(j,i) ) THEN m = surf_usm_h%start_index(j,i) sums_l(nzb,99,tn) = sums_l(nzb,99,tn) + & surf_usm_h%rad_net(m) * rmask(j,i,sr) sums_l(nzb,100,tn) = sums_l(nzb,100,tn) + & surf_usm_h%rad_lw_in(m) * rmask(j,i,sr) sums_l(nzb,101,tn) = sums_l(nzb,101,tn) + & surf_usm_h%rad_lw_out(m) * rmask(j,i,sr) sums_l(nzb,102,tn) = sums_l(nzb,102,tn) + & surf_usm_h%rad_sw_in(m) * rmask(j,i,sr) sums_l(nzb,103,tn) = sums_l(nzb,103,tn) + & surf_usm_h%rad_sw_out(m) * rmask(j,i,sr) ENDIF #if defined ( __rrtmg ) IF ( radiation_scheme == 'rrtmg' ) THEN IF ( surf_def_h(0)%end_index(j,i) >= & surf_def_h(0)%start_index(j,i) ) THEN m = surf_def_h(0)%start_index(j,i) sums_l(nzb,108,tn) = sums_l(nzb,108,tn) + & surf_def_h(0)%rrtm_aldif(0,m) * rmask(j,i,sr) sums_l(nzb,109,tn) = sums_l(nzb,109,tn) + & surf_def_h(0)%rrtm_aldir(0,m) * rmask(j,i,sr) sums_l(nzb,110,tn) = sums_l(nzb,110,tn) + & surf_def_h(0)%rrtm_asdif(0,m) * rmask(j,i,sr) sums_l(nzb,111,tn) = sums_l(nzb,111,tn) + & surf_def_h(0)%rrtm_asdir(0,m) * rmask(j,i,sr) ENDIF IF ( surf_lsm_h%end_index(j,i) >= & surf_lsm_h%start_index(j,i) ) THEN m = surf_lsm_h%start_index(j,i) sums_l(nzb,108,tn) = sums_l(nzb,108,tn) + & SUM( surf_lsm_h%frac(:,m) * & surf_lsm_h%rrtm_aldif(:,m) ) * rmask(j,i,sr) sums_l(nzb,109,tn) = sums_l(nzb,109,tn) + & SUM( surf_lsm_h%frac(:,m) * & surf_lsm_h%rrtm_aldir(:,m) ) * rmask(j,i,sr) sums_l(nzb,110,tn) = sums_l(nzb,110,tn) + & SUM( surf_lsm_h%frac(:,m) * & surf_lsm_h%rrtm_asdif(:,m) ) * rmask(j,i,sr) sums_l(nzb,111,tn) = sums_l(nzb,111,tn) + & SUM( surf_lsm_h%frac(:,m) * & surf_lsm_h%rrtm_asdir(:,m) ) * rmask(j,i,sr) ENDIF IF ( surf_usm_h%end_index(j,i) >= & surf_usm_h%start_index(j,i) ) THEN m = surf_usm_h%start_index(j,i) sums_l(nzb,108,tn) = sums_l(nzb,108,tn) + & SUM( surf_usm_h%frac(:,m) * & surf_usm_h%rrtm_aldif(:,m) ) * rmask(j,i,sr) sums_l(nzb,109,tn) = sums_l(nzb,109,tn) + & SUM( surf_usm_h%frac(:,m) * & surf_usm_h%rrtm_aldir(:,m) ) * rmask(j,i,sr) sums_l(nzb,110,tn) = sums_l(nzb,110,tn) + & SUM( surf_usm_h%frac(:,m) * & surf_usm_h%rrtm_asdif(:,m) ) * rmask(j,i,sr) sums_l(nzb,111,tn) = sums_l(nzb,111,tn) + & SUM( surf_usm_h%frac(:,m) * & surf_usm_h%rrtm_asdir(:,m) ) * rmask(j,i,sr) ENDIF ENDIF #endif ENDIF ! !-- Subgridscale fluxes at the top surface IF ( use_top_fluxes ) THEN m = surf_def_h(2)%start_index(j,i) sums_l(nzt:nzt+1,12,tn) = sums_l(nzt:nzt+1,12,tn) + & momentumflux_output_conversion(nzt:nzt+1) * & surf_def_h(2)%usws(m) * rmask(j,i,sr) ! w"u" sums_l(nzt:nzt+1,14,tn) = sums_l(nzt:nzt+1,14,tn) + & momentumflux_output_conversion(nzt:nzt+1) * & surf_def_h(2)%vsws(m) * rmask(j,i,sr) ! w"v" sums_l(nzt:nzt+1,16,tn) = sums_l(nzt:nzt+1,16,tn) + & heatflux_output_conversion(nzt:nzt+1) * & surf_def_h(2)%shf(m) * rmask(j,i,sr) ! w"pt" sums_l(nzt:nzt+1,58,tn) = sums_l(nzt:nzt+1,58,tn) + & 0.0_wp * rmask(j,i,sr) ! u"pt" sums_l(nzt:nzt+1,61,tn) = sums_l(nzt:nzt+1,61,tn) + & 0.0_wp * rmask(j,i,sr) ! v"pt" IF ( ocean_mode ) THEN sums_l(nzt,65,tn) = sums_l(nzt,65,tn) + & surf_def_h(2)%sasws(m) * rmask(j,i,sr) ! w"sa" ENDIF IF ( humidity ) THEN sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & waterflux_output_conversion(nzt) * & surf_def_h(2)%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(nzt,j,i) ) * & surf_def_h(2)%shf(m) + & 0.61_wp * pt(nzt,j,i) * & surf_def_h(2)%qsws(m) ) & * heatflux_output_conversion(nzt) IF ( cloud_droplets ) THEN sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(nzt,j,i) - & ql(nzt,j,i) ) * & surf_def_h(2)%shf(m) + & 0.61_wp * pt(nzt,j,i) * & surf_def_h(2)%qsws(m) )& * heatflux_output_conversion(nzt) ENDIF IF ( bulk_cloud_model ) THEN ! !-- Formula does not work if ql(nzb) /= 0.0 sums_l(nzt,51,tn) = sums_l(nzt,51,tn) + & ! w"q" (w"qv") waterflux_output_conversion(nzt) * & surf_def_h(2)%qsws(m) * rmask(j,i,sr) ENDIF ENDIF IF ( passive_scalar ) THEN sums_l(nzt,117,tn) = sums_l(nzt,117,tn) + & surf_def_h(2)%ssws(m) * rmask(j,i,sr) ! w"s" ENDIF ENDIF ! !-- Resolved fluxes (can be computed for all horizontal points) !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly !-- ---- speaking the following k-loop would have to be split up and !-- rearranged according to the staggered grid. DO k = nzb, nzt flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 22 ) ) ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + & u(k+1,j,i) - hom(k+1,1,1,sr) ) vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + & v(k+1,j,i) - hom(k+1,1,2,sr) ) pts = 0.5_wp * ( pt(k,j,i) - hom(k,1,4,sr) + & pt(k+1,j,i) - hom(k+1,1,4,sr) ) !-- Higher moments sums_l(k,35,tn) = sums_l(k,35,tn) + pts * w(k,j,i)**2 * & rmask(j,i,sr) * flag sums_l(k,36,tn) = sums_l(k,36,tn) + pts**2 * w(k,j,i) * & rmask(j,i,sr) * flag ! !-- Salinity flux and density (density does not belong to here, !-- but so far there is no other suitable place to calculate) IF ( ocean_mode ) THEN IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN pts = 0.5_wp * ( sa(k,j,i) - hom(k,1,23,sr) + & sa(k+1,j,i) - hom(k+1,1,23,sr) ) sums_l(k,66,tn) = sums_l(k,66,tn) + pts * w(k,j,i) * & rmask(j,i,sr) * flag ENDIF sums_l(k,64,tn) = sums_l(k,64,tn) + rho_ocean(k,j,i) * & rmask(j,i,sr) * flag sums_l(k,71,tn) = sums_l(k,71,tn) + prho(k,j,i) * & rmask(j,i,sr) * flag ENDIF ! !-- Buoyancy flux, water flux, humidity flux, liquid water !-- content, rain drop concentration and rain water content IF ( humidity ) THEN IF ( bulk_cloud_model .OR. cloud_droplets ) THEN pts = 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + & vpt(k+1,j,i) - hom(k+1,1,44,sr) ) sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & heatflux_output_conversion(k) * & rmask(j,i,sr) * flag sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * rmask(j,i,sr) & * flag IF ( .NOT. cloud_droplets ) THEN pts = 0.5_wp * & ( ( q(k,j,i) - ql(k,j,i) ) - & hom(k,1,42,sr) + & ( q(k+1,j,i) - ql(k+1,j,i) ) - & hom(k+1,1,42,sr) ) sums_l(k,52,tn) = sums_l(k,52,tn) + pts * w(k,j,i) * & waterflux_output_conversion(k) * & rmask(j,i,sr) * & flag sums_l(k,75,tn) = sums_l(k,75,tn) + qc(k,j,i) * & rmask(j,i,sr) * & flag sums_l(k,76,tn) = sums_l(k,76,tn) + prr(k,j,i) * & rmask(j,i,sr) * & flag IF ( microphysics_morrison ) THEN sums_l(k,123,tn) = sums_l(k,123,tn) + nc(k,j,i) * & rmask(j,i,sr) *& flag ENDIF IF ( microphysics_seifert ) THEN sums_l(k,73,tn) = sums_l(k,73,tn) + nr(k,j,i) * & rmask(j,i,sr) *& flag sums_l(k,74,tn) = sums_l(k,74,tn) + qr(k,j,i) * & rmask(j,i,sr) *& flag ENDIF ENDIF ELSE IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN pts = 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + & vpt(k+1,j,i) - hom(k+1,1,44,sr) ) sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & heatflux_output_conversion(k) * & rmask(j,i,sr) * & flag ELSE IF ( ws_scheme_sca .AND. sr == 0 ) THEN sums_l(k,46,tn) = ( ( 1.0_wp + 0.61_wp * & hom(k,1,41,sr) ) * & sums_l(k,17,tn) + & 0.61_wp * hom(k,1,4,sr) * & sums_l(k,49,tn) & ) * heatflux_output_conversion(k) * & flag END IF END IF ENDIF ! !-- Passive scalar flux IF ( passive_scalar .AND. ( .NOT. ws_scheme_sca & .OR. sr /= 0 ) ) THEN pts = 0.5_wp * ( s(k,j,i) - hom(k,1,115,sr) + & s(k+1,j,i) - hom(k+1,1,115,sr) ) sums_l(k,114,tn) = sums_l(k,114,tn) + pts * w(k,j,i) * & rmask(j,i,sr) * flag ENDIF ! !-- Energy flux w*e* !-- has to be adjusted sums_l(k,37,tn) = sums_l(k,37,tn) + w(k,j,i) * 0.5_wp * & ( ust**2 + vst**2 + w(k,j,i)**2 ) & * rho_air_zw(k) & * momentumflux_output_conversion(k) & * rmask(j,i,sr) * flag ENDDO ENDDO ENDDO !$OMP END PARALLEL ! !-- Treat land-surface quantities according to new wall model structure. IF ( land_surface ) THEN tn = 0 !$OMP PARALLEL PRIVATE( i, j, m, tn ) !$ tn = omp_get_thread_num() !$OMP DO DO m = 1, surf_lsm_h%ns i = surf_lsm_h%i(m) j = surf_lsm_h%j(m) IF ( i >= nxl .AND. i <= nxr .AND. & j >= nys .AND. j <= nyn ) THEN sums_l(nzb,93,tn) = sums_l(nzb,93,tn) + surf_lsm_h%ghf(m) sums_l(nzb,94,tn) = sums_l(nzb,94,tn) + surf_lsm_h%qsws_liq(m) sums_l(nzb,95,tn) = sums_l(nzb,95,tn) + surf_lsm_h%qsws_soil(m) sums_l(nzb,96,tn) = sums_l(nzb,96,tn) + surf_lsm_h%qsws_veg(m) sums_l(nzb,97,tn) = sums_l(nzb,97,tn) + surf_lsm_h%r_a(m) sums_l(nzb,98,tn) = sums_l(nzb,98,tn)+ surf_lsm_h%r_s(m) ENDIF ENDDO !$OMP END PARALLEL tn = 0 !$OMP PARALLEL PRIVATE( i, j, k, m, tn ) !$ tn = omp_get_thread_num() !$OMP DO DO m = 1, surf_lsm_h%ns i = surf_lsm_h%i(m) j = surf_lsm_h%j(m) IF ( i >= nxl .AND. i <= nxr .AND. & j >= nys .AND. j <= nyn ) THEN DO k = nzb_soil, nzt_soil sums_l(k,89,tn) = sums_l(k,89,tn) + t_soil_h%var_2d(k,m) & * rmask(j,i,sr) sums_l(k,91,tn) = sums_l(k,91,tn) + m_soil_h%var_2d(k,m) & * rmask(j,i,sr) ENDDO ENDIF ENDDO !$OMP END PARALLEL ENDIF ! !-- For speed optimization fluxes which have been computed in part directly !-- inside the WS advection routines are treated seperatly !-- Momentum fluxes first: tn = 0 !$OMP PARALLEL PRIVATE( i, j, k, tn, flag ) !$ tn = omp_get_thread_num() IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt ! !-- Flag 23 is used to mask surface fluxes as well as model-top !-- fluxes, which are added further below. flag = MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 23 ) ) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 9 ) ) ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + & u(k+1,j,i) - hom(k+1,1,1,sr) ) vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + & v(k+1,j,i) - hom(k+1,1,2,sr) ) ! !-- Momentum flux w*u* sums_l(k,13,tn) = sums_l(k,13,tn) + 0.5_wp * & ( w(k,j,i-1) + w(k,j,i) ) & * rho_air_zw(k) & * momentumflux_output_conversion(k) & * ust * rmask(j,i,sr) & * flag ! !-- Momentum flux w*v* sums_l(k,15,tn) = sums_l(k,15,tn) + 0.5_wp * & ( w(k,j-1,i) + w(k,j,i) ) & * rho_air_zw(k) & * momentumflux_output_conversion(k) & * vst * rmask(j,i,sr) & * flag ENDDO ENDDO ENDDO ENDIF IF ( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt flag = MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 23 ) ) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 9 ) ) ! !-- Vertical heat flux sums_l(k,17,tn) = sums_l(k,17,tn) + 0.5_wp * & ( pt(k,j,i) - hom(k,1,4,sr) + & pt(k+1,j,i) - hom(k+1,1,4,sr) ) & * heatflux_output_conversion(k) & * w(k,j,i) * rmask(j,i,sr) * flag IF ( humidity ) THEN pts = 0.5_wp * ( q(k,j,i) - hom(k,1,41,sr) + & q(k+1,j,i) - hom(k+1,1,41,sr) ) sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & waterflux_output_conversion(k) * & rmask(j,i,sr) * flag ENDIF IF ( passive_scalar ) THEN pts = 0.5_wp * ( s(k,j,i) - hom(k,1,115,sr) + & s(k+1,j,i) - hom(k+1,1,115,sr) ) sums_l(k,114,tn) = sums_l(k,114,tn) + pts * w(k,j,i) * & rmask(j,i,sr) * flag ENDIF ENDDO ENDDO ENDDO ENDIF ! !-- Density at top follows Neumann condition IF ( ocean_mode ) THEN sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn) sums_l(nzt+1,71,tn) = sums_l(nzt,71,tn) ENDIF ! !-- Divergence of vertical flux of resolved scale energy and pressure !-- fluctuations as well as flux of pressure fluctuation itself (68). !-- First calculate the products, then the divergence. !-- Calculation is time consuming. Do it only, if profiles shall be plotted. IF ( hom(nzb+1,2,55,0) /= 0.0_wp .OR. hom(nzb+1,2,68,0) /= 0.0_wp ) & THEN sums_ll = 0.0_wp ! local array !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) sums_ll(k,1) = sums_ll(k,1) + 0.5_wp * w(k,j,i) * ( & ( 0.25_wp * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) ) & - 0.5_wp * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) )**2& + ( 0.25_wp * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) ) & - 0.5_wp * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) )**2& + w(k,j,i)**2 ) * flag sums_ll(k,2) = sums_ll(k,2) + 0.5_wp * w(k,j,i) & * ( ( p(k,j,i) + p(k+1,j,i) ) & / momentumflux_output_conversion(k) ) & * flag ENDDO ENDDO ENDDO sums_ll(0,1) = 0.0_wp ! because w is zero at the bottom sums_ll(nzt+1,1) = 0.0_wp sums_ll(0,2) = 0.0_wp sums_ll(nzt+1,2) = 0.0_wp DO k = nzb+1, nzt sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k) sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k) sums_l(k,68,tn) = sums_ll(k,2) ENDDO sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn) sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn) sums_l(nzb,68,tn) = 0.0_wp ! because w* = 0 at nzb ENDIF ! !-- Divergence of vertical flux of SGS TKE and the flux itself (69) IF ( hom(nzb+1,2,57,0) /= 0.0_wp .OR. hom(nzb+1,2,69,0) /= 0.0_wp ) & THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5_wp * ( & (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & - (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) & ) * ddzw(k) & * flag sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5_wp * ( & (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & ) * flag ENDDO ENDDO ENDDO sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn) sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn) ENDIF ! !-- Horizontal heat fluxes (subgrid, resolved, total). !-- Do it only, if profiles shall be plotted. IF ( hom(nzb+1,2,58,0) /= 0.0_wp ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) ! !-- Subgrid horizontal heat fluxes u"pt", v"pt" sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5_wp * & ( kh(k,j,i) + kh(k,j,i-1) ) & * ( pt(k,j,i-1) - pt(k,j,i) ) & * rho_air_zw(k) & * heatflux_output_conversion(k) & * ddx * rmask(j,i,sr) * flag sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5_wp * & ( kh(k,j,i) + kh(k,j-1,i) ) & * ( pt(k,j-1,i) - pt(k,j,i) ) & * rho_air_zw(k) & * heatflux_output_conversion(k) & * ddy * rmask(j,i,sr) * flag ! !-- Resolved horizontal heat fluxes u*pt*, v*pt* sums_l(k,59,tn) = sums_l(k,59,tn) + & ( u(k,j,i) - hom(k,1,1,sr) ) & * 0.5_wp * ( pt(k,j,i-1) - hom(k,1,4,sr) + & pt(k,j,i) - hom(k,1,4,sr) ) & * heatflux_output_conversion(k) & * flag pts = 0.5_wp * ( pt(k,j-1,i) - hom(k,1,4,sr) + & pt(k,j,i) - hom(k,1,4,sr) ) sums_l(k,62,tn) = sums_l(k,62,tn) + & ( v(k,j,i) - hom(k,1,2,sr) ) & * 0.5_wp * ( pt(k,j-1,i) - hom(k,1,4,sr) + & pt(k,j,i) - hom(k,1,4,sr) ) & * heatflux_output_conversion(k) & * flag ENDDO ENDDO ENDDO ! !-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer) sums_l(nzb,58,tn) = 0.0_wp sums_l(nzb,59,tn) = 0.0_wp sums_l(nzb,60,tn) = 0.0_wp sums_l(nzb,61,tn) = 0.0_wp sums_l(nzb,62,tn) = 0.0_wp sums_l(nzb,63,tn) = 0.0_wp ENDIF !$OMP END PARALLEL ! !-- Collect current large scale advection and subsidence tendencies for !-- data output IF ( large_scale_forcing .AND. ( simulated_time > 0.0_wp ) ) THEN ! !-- Interpolation in time of LSF_DATA nt = 1 DO WHILE ( simulated_time - dt_3d > time_vert(nt) ) nt = nt + 1 ENDDO IF ( simulated_time - dt_3d /= time_vert(nt) ) THEN nt = nt - 1 ENDIF fac = ( simulated_time - dt_3d - time_vert(nt) ) & / ( time_vert(nt+1)-time_vert(nt) ) DO k = nzb, nzt sums_ls_l(k,0) = td_lsa_lpt(k,nt) & + fac * ( td_lsa_lpt(k,nt+1) - td_lsa_lpt(k,nt) ) sums_ls_l(k,1) = td_lsa_q(k,nt) & + fac * ( td_lsa_q(k,nt+1) - td_lsa_q(k,nt) ) ENDDO sums_ls_l(nzt+1,0) = sums_ls_l(nzt,0) sums_ls_l(nzt+1,1) = sums_ls_l(nzt,1) IF ( large_scale_subsidence .AND. use_subsidence_tendencies ) THEN DO k = nzb, nzt sums_ls_l(k,2) = td_sub_lpt(k,nt) + fac * & ( td_sub_lpt(k,nt+1) - td_sub_lpt(k,nt) ) sums_ls_l(k,3) = td_sub_q(k,nt) + fac * & ( td_sub_q(k,nt+1) - td_sub_q(k,nt) ) ENDDO sums_ls_l(nzt+1,2) = sums_ls_l(nzt,2) sums_ls_l(nzt+1,3) = sums_ls_l(nzt,3) ENDIF ENDIF tn = 0 !$OMP PARALLEL PRIVATE( i, j, k, tn ) !$ tn = omp_get_thread_num() IF ( radiation .AND. radiation_scheme == 'rrtmg' ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt+1 flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) sums_l(k,100,tn) = sums_l(k,100,tn) + rad_lw_in(k,j,i) & * rmask(j,i,sr) * flag sums_l(k,101,tn) = sums_l(k,101,tn) + rad_lw_out(k,j,i) & * rmask(j,i,sr) * flag sums_l(k,102,tn) = sums_l(k,102,tn) + rad_sw_in(k,j,i) & * rmask(j,i,sr) * flag sums_l(k,103,tn) = sums_l(k,103,tn) + rad_sw_out(k,j,i) & * rmask(j,i,sr) * flag sums_l(k,104,tn) = sums_l(k,104,tn) + rad_lw_cs_hr(k,j,i) & * rmask(j,i,sr) * flag sums_l(k,105,tn) = sums_l(k,105,tn) + rad_lw_hr(k,j,i) & * rmask(j,i,sr) * flag sums_l(k,106,tn) = sums_l(k,106,tn) + rad_sw_cs_hr(k,j,i) & * rmask(j,i,sr) * flag sums_l(k,107,tn) = sums_l(k,107,tn) + rad_sw_hr(k,j,i) & * rmask(j,i,sr) * flag ENDDO ENDDO ENDDO ENDIF ! !-- Calculate the gust module profiles IF ( gust_module_enabled ) THEN CALL gust_statistics( 'profiles', sr, tn, dots_max ) ENDIF ! !-- Calculate the user-defined profiles CALL user_statistics( 'profiles', sr, tn ) !$OMP END PARALLEL ! !-- Summation of thread sums IF ( threads_per_task > 1 ) THEN DO i = 1, threads_per_task-1 sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i) sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i) sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + & sums_l(:,45:pr_palm,i) IF ( max_pr_user > 0 ) THEN sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = & sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + & sums_l(:,pr_palm+1:pr_palm+max_pr_user,i) ENDIF ENDDO ENDIF #if defined( __parallel ) ! !-- Compute total sum from local sums IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, & MPI_SUM, comm2d, ierr ) IF ( large_scale_forcing ) THEN CALL MPI_ALLREDUCE( sums_ls_l(nzb,2), sums(nzb,83), ngp_sums_ls, & MPI_REAL, MPI_SUM, comm2d, ierr ) ENDIF #else sums = sums_l(:,:,0) IF ( large_scale_forcing ) THEN sums(:,81:88) = sums_ls_l ENDIF #endif ! !-- Final values are obtained by division by the total number of grid points !-- used for summation. After that store profiles. !-- Check, if statistical regions do contain at least one grid point at the !-- respective k-level, otherwise division by zero will lead to undefined !-- values, which may cause e.g. problems with NetCDF output !-- Profiles: DO k = nzb, nzt+1 sums(k,3) = sums(k,3) / ngp_2dh(sr) sums(k,12:22) = sums(k,12:22) / ngp_2dh(sr) sums(k,30:32) = sums(k,30:32) / ngp_2dh(sr) sums(k,35:39) = sums(k,35:39) / ngp_2dh(sr) sums(k,45:53) = sums(k,45:53) / ngp_2dh(sr) sums(k,55:63) = sums(k,55:63) / ngp_2dh(sr) sums(k,81:88) = sums(k,81:88) / ngp_2dh(sr) sums(k,89:112) = sums(k,89:112) / ngp_2dh(sr) sums(k,114) = sums(k,114) / ngp_2dh(sr) sums(k,117) = sums(k,117) / ngp_2dh(sr) IF ( ngp_2dh_s_inner(k,sr) /= 0 ) THEN sums(k,8:11) = sums(k,8:11) / ngp_2dh_s_inner(k,sr) sums(k,23:29) = sums(k,23:29) / ngp_2dh_s_inner(k,sr) sums(k,33:34) = sums(k,33:34) / ngp_2dh_s_inner(k,sr) sums(k,40) = sums(k,40) / ngp_2dh_s_inner(k,sr) sums(k,54) = sums(k,54) / ngp_2dh_s_inner(k,sr) sums(k,64) = sums(k,64) / ngp_2dh_s_inner(k,sr) sums(k,70:80) = sums(k,70:80) / ngp_2dh_s_inner(k,sr) sums(k,116) = sums(k,116) / ngp_2dh_s_inner(k,sr) sums(k,118:pr_palm-2) = sums(k,118:pr_palm-2) / ngp_2dh_s_inner(k,sr) ENDIF ENDDO !-- u* and so on !-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose !-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer !-- above the topography, they are being divided by ngp_2dh(sr) sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / & ngp_2dh(sr) sums(nzb+12,pr_palm) = sums(nzb+12,pr_palm) / & ! qs ngp_2dh(sr) sums(nzb+13,pr_palm) = sums(nzb+13,pr_palm) / & ! ss ngp_2dh(sr) sums(nzb+14,pr_palm) = sums(nzb+14,pr_palm) / & ! surface temperature ngp_2dh(sr) !-- eges, e* sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / & ngp_3d(sr) !-- Old and new divergence sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / & ngp_3d_inner(sr) !-- User-defined profiles IF ( max_pr_user > 0 ) THEN DO k = nzb, nzt+1 sums(k,pr_palm+1:pr_palm+max_pr_user) = & sums(k,pr_palm+1:pr_palm+max_pr_user) / & ngp_2dh_s_inner(k,sr) ENDDO ENDIF ! !-- Collect horizontal average in hom. !-- Compute deduced averages (e.g. total heat flux) hom(:,1,3,sr) = sums(:,3) ! w hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles hom(:,1,9,sr) = sums(:,9) ! km hom(:,1,10,sr) = sums(:,10) ! kh hom(:,1,11,sr) = sums(:,11) ! l hom(:,1,12,sr) = sums(:,12) ! w"u" hom(:,1,13,sr) = sums(:,13) ! w*u* hom(:,1,14,sr) = sums(:,14) ! w"v" hom(:,1,15,sr) = sums(:,15) ! w*v* hom(:,1,16,sr) = sums(:,16) ! w"pt" hom(:,1,17,sr) = sums(:,17) ! w*pt* hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv hom(:,1,21,sr) = sums(:,21) ! w*pt*BC hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC ! profile 24 is initial profile (sa) ! profiles 25-29 left empty for initial ! profiles hom(:,1,30,sr) = sums(:,30) ! u*2 hom(:,1,31,sr) = sums(:,31) ! v*2 hom(:,1,32,sr) = sums(:,32) ! w*2 hom(:,1,33,sr) = sums(:,33) ! pt*2 hom(:,1,34,sr) = sums(:,34) ! e* hom(:,1,35,sr) = sums(:,35) ! w*2pt* hom(:,1,36,sr) = sums(:,36) ! w*pt*2 hom(:,1,37,sr) = sums(:,37) ! w*e* hom(:,1,38,sr) = sums(:,38) ! w*3 hom(:,1,39,sr) = sums(:,38) / ( abs( sums(:,32) ) + 1E-20_wp )**1.5_wp ! Sw hom(:,1,40,sr) = sums(:,40) ! p hom(:,1,45,sr) = sums(:,45) ! w"vpt" hom(:,1,46,sr) = sums(:,46) ! w*vpt* hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv") hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*) hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv) hom(:,1,51,sr) = sums(:,51) ! w"qv" hom(:,1,52,sr) = sums(:,52) ! w*qv* hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv) hom(:,1,54,sr) = sums(:,54) ! ql hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz hom(:,1,56,sr) = sums(:,56) ! w*p*/dz hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho_ocean )/dz hom(:,1,58,sr) = sums(:,58) ! u"pt" hom(:,1,59,sr) = sums(:,59) ! u*pt* hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t hom(:,1,61,sr) = sums(:,61) ! v"pt" hom(:,1,62,sr) = sums(:,62) ! v*pt* hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t hom(:,1,64,sr) = sums(:,64) ! rho_ocean hom(:,1,65,sr) = sums(:,65) ! w"sa" hom(:,1,66,sr) = sums(:,66) ! w*sa* hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa hom(:,1,68,sr) = sums(:,68) ! w*p* hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho_ocean hom(:,1,70,sr) = sums(:,70) ! q*2 hom(:,1,71,sr) = sums(:,71) ! prho hom(:,1,72,sr) = hyp * 1E-2_wp ! hyp in hPa hom(:,1,123,sr) = sums(:,123) ! nc hom(:,1,73,sr) = sums(:,73) ! nr hom(:,1,74,sr) = sums(:,74) ! qr hom(:,1,75,sr) = sums(:,75) ! qc hom(:,1,76,sr) = sums(:,76) ! prr (precipitation rate) ! 77 is initial density profile hom(:,1,78,sr) = ug ! ug hom(:,1,79,sr) = vg ! vg hom(:,1,80,sr) = w_subs ! w_subs IF ( large_scale_forcing ) THEN hom(:,1,81,sr) = sums_ls_l(:,0) ! td_lsa_lpt hom(:,1,82,sr) = sums_ls_l(:,1) ! td_lsa_q IF ( use_subsidence_tendencies ) THEN hom(:,1,83,sr) = sums_ls_l(:,2) ! td_sub_lpt hom(:,1,84,sr) = sums_ls_l(:,3) ! td_sub_q ELSE hom(:,1,83,sr) = sums(:,83) ! td_sub_lpt hom(:,1,84,sr) = sums(:,84) ! td_sub_q ENDIF hom(:,1,85,sr) = sums(:,85) ! td_nud_lpt hom(:,1,86,sr) = sums(:,86) ! td_nud_q hom(:,1,87,sr) = sums(:,87) ! td_nud_u hom(:,1,88,sr) = sums(:,88) ! td_nud_v ENDIF IF ( land_surface ) THEN hom(:,1,89,sr) = sums(:,89) ! t_soil ! 90 is initial t_soil profile hom(:,1,91,sr) = sums(:,91) ! m_soil ! 92 is initial m_soil profile hom(:,1,93,sr) = sums(:,93) ! ghf hom(:,1,94,sr) = sums(:,94) ! qsws_liq hom(:,1,95,sr) = sums(:,95) ! qsws_soil hom(:,1,96,sr) = sums(:,96) ! qsws_veg hom(:,1,97,sr) = sums(:,97) ! r_a hom(:,1,98,sr) = sums(:,98) ! r_s ENDIF IF ( radiation ) THEN hom(:,1,99,sr) = sums(:,99) ! rad_net hom(:,1,100,sr) = sums(:,100) ! rad_lw_in hom(:,1,101,sr) = sums(:,101) ! rad_lw_out hom(:,1,102,sr) = sums(:,102) ! rad_sw_in hom(:,1,103,sr) = sums(:,103) ! rad_sw_out IF ( radiation_scheme == 'rrtmg' ) THEN hom(:,1,104,sr) = sums(:,104) ! rad_lw_cs_hr hom(:,1,105,sr) = sums(:,105) ! rad_lw_hr hom(:,1,106,sr) = sums(:,106) ! rad_sw_cs_hr hom(:,1,107,sr) = sums(:,107) ! rad_sw_hr hom(:,1,108,sr) = sums(:,108) ! rrtm_aldif hom(:,1,109,sr) = sums(:,109) ! rrtm_aldir hom(:,1,110,sr) = sums(:,110) ! rrtm_asdif hom(:,1,111,sr) = sums(:,111) ! rrtm_asdir ENDIF ENDIF hom(:,1,112,sr) = sums(:,112) !: L IF ( passive_scalar ) THEN hom(:,1,117,sr) = sums(:,117) ! w"s" hom(:,1,114,sr) = sums(:,114) ! w*s* hom(:,1,118,sr) = sums(:,117) + sums(:,114) ! ws hom(:,1,116,sr) = sums(:,116) ! s*2 ENDIF hom(:,1,119,sr) = rho_air ! rho_air in Kg/m^3 hom(:,1,120,sr) = rho_air_zw ! rho_air_zw in Kg/m^3 hom(:,1,pr_palm,sr) = sums(:,pr_palm) ! u*, w'u', w'v', t* (in last profile) IF ( max_pr_user > 0 ) THEN ! user-defined profiles hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = & sums(:,pr_palm+1:pr_palm+max_pr_user) ENDIF ! !-- Determine the boundary layer height using two different schemes. !-- First scheme: Starting from the Earth's (Ocean's) surface, look for the !-- first relative minimum (maximum) of the total heat flux. !-- The corresponding height is assumed as the boundary layer height, if it !-- is less than 1.5 times the height where the heat flux becomes negative !-- (positive) for the first time. Attention: the resolved vertical sensible !-- heat flux (hom(:,1,17,sr) = w*pt*) is not known at the beginning because !-- the calculation happens in advec_s_ws which is called after !-- flow_statistics. Therefore z_i is directly taken from restart data at !-- the beginning of restart runs. IF ( TRIM( initializing_actions ) /= 'read_restart_data' .OR. & simulated_time_at_begin /= simulated_time ) THEN z_i(1) = 0.0_wp first = .TRUE. IF ( ocean_mode ) THEN DO k = nzt, nzb+1, -1 IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN first = .FALSE. height = zw(k) ENDIF IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. & hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN IF ( zw(k) < 1.5_wp * height ) THEN z_i(1) = zw(k) ELSE z_i(1) = height ENDIF EXIT ENDIF ENDDO ELSE DO k = nzb, nzt-1 IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN first = .FALSE. height = zw(k) ENDIF IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. & hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN IF ( zw(k) < 1.5_wp * height ) THEN z_i(1) = zw(k) ELSE z_i(1) = height ENDIF EXIT ENDIF ENDDO ENDIF ! !-- Second scheme: Gradient scheme from Sullivan et al. (1998), modified !-- by Uhlenbrock(2006). The boundary layer height is the height with the !-- maximal local temperature gradient: starting from the second (the !-- last but one) vertical gridpoint, the local gradient must be at least !-- 0.2K/100m and greater than the next four gradients. !-- WARNING: The threshold value of 0.2K/100m must be adjusted for the !-- ocean case! z_i(2) = 0.0_wp DO k = nzb+1, nzt+1 dptdz(k) = ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) * ddzu(k) ENDDO dptdz_threshold = 0.2_wp / 100.0_wp IF ( ocean_mode ) THEN DO k = nzt+1, nzb+5, -1 IF ( dptdz(k) > dptdz_threshold .AND. & dptdz(k) > dptdz(k-1) .AND. dptdz(k) > dptdz(k-2) .AND.& dptdz(k) > dptdz(k-3) .AND. dptdz(k) > dptdz(k-4) ) THEN z_i(2) = zw(k-1) EXIT ENDIF ENDDO ELSE DO k = nzb+1, nzt-3 IF ( dptdz(k) > dptdz_threshold .AND. & dptdz(k) > dptdz(k+1) .AND. dptdz(k) > dptdz(k+2) .AND.& dptdz(k) > dptdz(k+3) .AND. dptdz(k) > dptdz(k+4) ) THEN z_i(2) = zw(k-1) EXIT ENDIF ENDDO ENDIF ENDIF hom(nzb+6,1,pr_palm,sr) = z_i(1) hom(nzb+7,1,pr_palm,sr) = z_i(2) ! !-- Determine vertical index which is nearest to the mean surface level !-- height of the respective statistic region DO k = nzb, nzt IF ( zw(k) >= mean_surface_level_height(sr) ) THEN k_surface_level = k EXIT ENDIF ENDDO ! !-- Computation of both the characteristic vertical velocity and !-- the characteristic convective boundary layer temperature. !-- The inversion height entering into the equation is defined with respect !-- to the mean surface level height of the respective statistic region. !-- The horizontal average at surface level index + 1 is input for the !-- average temperature. IF ( hom(k_surface_level,1,18,sr) > 1.0E-8_wp .AND. z_i(1) /= 0.0_wp )& THEN hom(nzb+8,1,pr_palm,sr) = & ( g / hom(k_surface_level+1,1,4,sr) * & ( hom(k_surface_level,1,18,sr) / & ( heatflux_output_conversion(nzb) * rho_air(nzb) ) ) & * ABS( z_i(1) - mean_surface_level_height(sr) ) )**0.333333333_wp ELSE hom(nzb+8,1,pr_palm,sr) = 0.0_wp ENDIF ! !-- Collect the time series quantities. Please note, timeseries quantities !-- which are collected from horizontally averaged profiles, e.g. wpt !-- or pt(zp), are treated specially. In case of elevated model surfaces, !-- index nzb+1 might be within topography and data will be zero. Therefore, !-- take value for the first atmosphere index, which is topo_min_level+1. ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E* ts_value(3,sr) = dt_3d ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u* ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th* ts_value(6,sr) = u_max ts_value(7,sr) = v_max ts_value(8,sr) = w_max ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1) ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2) ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w* ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0 ts_value(15,sr) = hom(topo_min_level+1,1,16,sr) ! w'pt' at k=1 ts_value(16,sr) = hom(topo_min_level+1,1,18,sr) ! wpt at k=1 ts_value(17,sr) = hom(nzb+14,1,pr_palm,sr) ! pt(0) ts_value(18,sr) = hom(topo_min_level+1,1,4,sr) ! pt(zp) ts_value(19,sr) = hom(nzb+1,1,pr_palm,sr) ! u'w' at k=0 ts_value(20,sr) = hom(nzb+2,1,pr_palm,sr) ! v'w' at k=0 ts_value(21,sr) = hom(nzb,1,48,sr) ! w"q" at k=0 IF ( .NOT. neutral ) THEN ts_value(22,sr) = hom(nzb,1,112,sr) ! L ELSE ts_value(22,sr) = 1.0E10_wp ENDIF ts_value(23,sr) = hom(nzb+12,1,pr_palm,sr) ! q* IF ( passive_scalar ) THEN ts_value(24,sr) = hom(nzb+13,1,117,sr) ! w"s" ( to do ! ) ts_value(25,sr) = hom(nzb+13,1,pr_palm,sr) ! s* ENDIF ! !-- Collect land surface model timeseries IF ( land_surface ) THEN ts_value(dots_soil ,sr) = hom(nzb,1,93,sr) ! ghf ts_value(dots_soil+1,sr) = hom(nzb,1,94,sr) ! qsws_liq ts_value(dots_soil+2,sr) = hom(nzb,1,95,sr) ! qsws_soil ts_value(dots_soil+3,sr) = hom(nzb,1,96,sr) ! qsws_veg ts_value(dots_soil+4,sr) = hom(nzb,1,97,sr) ! r_a ts_value(dots_soil+5,sr) = hom(nzb,1,98,sr) ! r_s ENDIF ! !-- Collect radiation model timeseries IF ( radiation ) THEN ts_value(dots_rad,sr) = hom(nzb,1,99,sr) ! rad_net ts_value(dots_rad+1,sr) = hom(nzb,1,100,sr) ! rad_lw_in ts_value(dots_rad+2,sr) = hom(nzb,1,101,sr) ! rad_lw_out ts_value(dots_rad+3,sr) = hom(nzb,1,102,sr) ! rad_sw_in ts_value(dots_rad+4,sr) = hom(nzb,1,103,sr) ! rad_sw_out IF ( radiation_scheme == 'rrtmg' ) THEN ts_value(dots_rad+5,sr) = hom(nzb,1,108,sr) ! rrtm_aldif ts_value(dots_rad+6,sr) = hom(nzb,1,109,sr) ! rrtm_aldir ts_value(dots_rad+7,sr) = hom(nzb,1,110,sr) ! rrtm_asdif ts_value(dots_rad+8,sr) = hom(nzb,1,111,sr) ! rrtm_asdir ENDIF ENDIF ! !-- Calculate additional statistics provided by the gust module IF ( gust_module_enabled ) THEN CALL gust_statistics( 'time_series', sr, 0, dots_max ) ENDIF ! !-- Calculate additional statistics provided by the user interface CALL user_statistics( 'time_series', sr, 0 ) ENDDO ! loop of the subregions ! !-- If required, sum up horizontal averages for subsequent time averaging. !-- Do not sum, if flow statistics is called before the first initial time step. IF ( do_sum .AND. simulated_time /= 0.0_wp ) THEN IF ( average_count_pr == 0 ) hom_sum = 0.0_wp hom_sum = hom_sum + hom(:,1,:,:) average_count_pr = average_count_pr + 1 do_sum = .FALSE. ENDIF ! !-- Set flag for other UPs (e.g. output routines, but also buoyancy). !-- This flag is reset after each time step in time_integration. flow_statistics_called = .TRUE. CALL cpu_log( log_point(10), 'flow_statistics', 'stop' ) END SUBROUTINE flow_statistics