!> @file flow_statistics.f90 !--------------------------------------------------------------------------------! ! This file is part of PALM. ! ! PALM is free software: you can redistribute it and/or modify it under the terms ! of the GNU General Public License as published by the Free Software Foundation, ! either version 3 of the License, or (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2016 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: flow_statistics.f90 1961 2016-07-12 16:37:58Z maronga $ ! ! 1960 2016-07-12 16:34:24Z suehring ! Separate humidity and passive scalar ! ! 1918 2016-05-27 14:35:57Z raasch ! in case of Wicker-Skamarock scheme, calculate disturbance kinetic energy here, ! if flow_statistics is called before the first initial time step ! ! 1853 2016-04-11 09:00:35Z maronga ! Adjusted for use with radiation_scheme = constant ! ! 1849 2016-04-08 11:33:18Z hoffmann ! prr moved to arrays_3d ! ! 1822 2016-04-07 07:49:42Z hoffmann ! Output of bulk microphysics simplified. ! ! 1815 2016-04-06 13:49:59Z raasch ! cpp-directives for intel openmp bug removed ! ! 1783 2016-03-06 18:36:17Z raasch ! +module netcdf_interface ! ! 1747 2016-02-08 12:25:53Z raasch ! small bugfixes for accelerator version ! ! 1738 2015-12-18 13:56:05Z raasch ! bugfixes for calculations in statistical regions which do not contain grid ! points in the lowest vertical levels, mean surface level height considered ! in the calculation of the characteristic vertical velocity, ! old upstream parts removed ! ! 1709 2015-11-04 14:47:01Z maronga ! Updated output of Obukhov length ! ! 1691 2015-10-26 16:17:44Z maronga ! Revised calculation of Obukhov length. Added output of radiative heating > ! rates for RRTMG. ! ! 1682 2015-10-07 23:56:08Z knoop ! Code annotations made doxygen readable ! ! 1658 2015-09-18 10:52:53Z raasch ! bugfix: temporary reduction variables in the openacc branch are now ! initialized to zero ! ! 1654 2015-09-17 09:20:17Z raasch ! FORTRAN bugfix of r1652 ! ! 1652 2015-09-17 08:12:24Z raasch ! bugfix in calculation of energy production by turbulent transport of TKE ! ! 1593 2015-05-16 13:58:02Z raasch ! FORTRAN errors removed from openacc branch ! ! 1585 2015-04-30 07:05:52Z maronga ! Added output of timeseries and profiles for RRTMG ! ! 1571 2015-03-12 16:12:49Z maronga ! Bugfix: output of rad_net and rad_sw_in ! ! 1567 2015-03-10 17:57:55Z suehring ! Reverse modifications made for monotonic limiter. ! ! 1557 2015-03-05 16:43:04Z suehring ! Adjustments for monotonic limiter ! ! 1555 2015-03-04 17:44:27Z maronga ! Added output of r_a and r_s. ! ! 1551 2015-03-03 14:18:16Z maronga ! Added suppport for land surface model and radiation model output. ! ! 1498 2014-12-03 14:09:51Z suehring ! Comments added ! ! 1482 2014-10-18 12:34:45Z raasch ! missing ngp_sums_ls added in accelerator version ! ! 1450 2014-08-21 07:31:51Z heinze ! bugfix: calculate fac only for simulated_time >= 0.0 ! ! 1396 2014-05-06 13:37:41Z raasch ! bugfix: "copyin" replaced by "update device" in openacc-branch ! ! 1386 2014-05-05 13:55:30Z boeske ! bugfix: simulated time before the last timestep is needed for the correct ! calculation of the profiles of large scale forcing tendencies ! ! 1382 2014-04-30 12:15:41Z boeske ! Renamed variables which store large scale forcing tendencies ! pt_lsa -> td_lsa_lpt, pt_subs -> td_sub_lpt, ! q_lsa -> td_lsa_q, q_subs -> td_sub_q, ! added Neumann boundary conditions for profile data output of large scale ! advection and subsidence terms at nzt+1 ! ! 1374 2014-04-25 12:55:07Z raasch ! bugfix: syntax errors removed from openacc-branch ! missing variables added to ONLY-lists ! ! 1365 2014-04-22 15:03:56Z boeske ! Output of large scale advection, large scale subsidence and nudging tendencies ! +sums_ls_l, ngp_sums_ls, use_subsidence_tendencies ! ! 1353 2014-04-08 15:21:23Z heinze ! REAL constants provided with KIND-attribute ! ! 1322 2014-03-20 16:38:49Z raasch ! REAL constants defined as wp-kind ! ! 1320 2014-03-20 08:40:49Z raasch ! ONLY-attribute added to USE-statements, ! kind-parameters added to all INTEGER and REAL declaration statements, ! kinds are defined in new module kinds, ! revision history before 2012 removed, ! comment fields (!:) to be used for variable explanations added to ! all variable declaration statements ! ! 1299 2014-03-06 13:15:21Z heinze ! Output of large scale vertical velocity w_subs ! ! 1257 2013-11-08 15:18:40Z raasch ! openacc "end parallel" replaced by "end parallel loop" ! ! 1241 2013-10-30 11:36:58Z heinze ! Output of ug and vg ! ! 1221 2013-09-10 08:59:13Z raasch ! ported for openACC in separate #else branch ! ! 1179 2013-06-14 05:57:58Z raasch ! comment for profile 77 added ! ! 1115 2013-03-26 18:16:16Z hoffmann ! ql is calculated by calc_liquid_water_content ! ! 1111 2013-03-08 23:54:10Z raasch ! openACC directive added ! ! 1053 2012-11-13 17:11:03Z hoffmann ! additions for two-moment cloud physics scheme: ! +nr, qr, qc, prr ! ! 1036 2012-10-22 13:43:42Z raasch ! code put under GPL (PALM 3.9) ! ! 1007 2012-09-19 14:30:36Z franke ! Calculation of buoyancy flux for humidity in case of WS-scheme is now using ! turbulent fluxes of WS-scheme ! Bugfix: Calculation of subgridscale buoyancy flux for humidity and cloud ! droplets at nzb and nzt added ! ! 801 2012-01-10 17:30:36Z suehring ! Calculation of turbulent fluxes in advec_ws is now thread-safe. ! ! Revision 1.1 1997/08/11 06:15:17 raasch ! Initial revision ! ! ! Description: ! ------------ !> Compute average profiles and further average flow quantities for the different !> user-defined (sub-)regions. The region indexed 0 is the total model domain. !> !> @note For simplicity, nzb_s_inner and nzb_diff_s_inner are being used as a !> lower vertical index for k-loops for all variables, although strictly !> speaking the k-loops would have to be split up according to the staggered !> grid. However, this implies no error since staggered velocity components !> are zero at the walls and inside buildings. !------------------------------------------------------------------------------! #if ! defined( __openacc ) SUBROUTINE flow_statistics USE arrays_3d, & ONLY: ddzu, ddzw, e, hyp, km, kh, nr, ol, p, prho, prr, pt, q, qc, ql,& qr, qs, qsws, qswst, rho, s, sa, ss, ssws, sswst, saswsb, & saswst, shf, td_lsa_lpt, td_lsa_q, td_sub_lpt, td_sub_q, & time_vert, ts, tswst, u, ug, us, usws, uswst, vsws, v, vg, vpt, & vswst, w, w_subs, zw USE cloud_parameters, & ONLY: l_d_cp, pt_d_t USE control_parameters, & ONLY: average_count_pr, cloud_droplets, cloud_physics, do_sum, & dt_3d, g, humidity, kappa, large_scale_forcing, & large_scale_subsidence, max_pr_user, message_string, neutral, & microphysics_seifert, ocean, passive_scalar, simulated_time, & use_subsidence_tendencies, use_surface_fluxes, use_top_fluxes, & ws_scheme_mom, ws_scheme_sca USE cpulog, & ONLY: cpu_log, log_point USE grid_variables, & ONLY: ddx, ddy USE indices, & ONLY: ngp_2dh, ngp_2dh_s_inner, ngp_3d, ngp_3d_inner, ngp_sums, & ngp_sums_ls, nxl, nxr, nyn, nys, nzb, nzb_diff_s_inner, & nzb_s_inner, nzt, nzt_diff USE kinds USE land_surface_model_mod, & ONLY: ghf_eb, land_surface, m_soil, nzb_soil, nzt_soil, & qsws_eb, qsws_liq_eb, qsws_soil_eb, qsws_veg_eb, r_a, r_s, & shf_eb, t_soil USE netcdf_interface, & ONLY: dots_rad, dots_soil USE pegrid USE radiation_model_mod, & ONLY: radiation, radiation_scheme, rad_net, & rad_lw_in, rad_lw_out, rad_lw_cs_hr, rad_lw_hr, & rad_sw_in, rad_sw_out, rad_sw_cs_hr, rad_sw_hr #if defined ( __rrtmg ) USE radiation_model_mod, & ONLY: rrtm_aldif, rrtm_aldir, rrtm_asdif, rrtm_asdir #endif USE statistics IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< INTEGER(iwp) :: k_surface_level !< INTEGER(iwp) :: nt !< INTEGER(iwp) :: omp_get_thread_num !< INTEGER(iwp) :: sr !< INTEGER(iwp) :: tn !< LOGICAL :: first !< REAL(wp) :: dptdz_threshold !< REAL(wp) :: fac !< REAL(wp) :: height !< REAL(wp) :: pts !< REAL(wp) :: sums_l_eper !< REAL(wp) :: sums_l_etot !< REAL(wp) :: ust !< REAL(wp) :: ust2 !< REAL(wp) :: u2 !< REAL(wp) :: vst !< REAL(wp) :: vst2 !< REAL(wp) :: v2 !< REAL(wp) :: w2 !< REAL(wp) :: z_i(2) !< REAL(wp) :: dptdz(nzb+1:nzt+1) !< REAL(wp) :: sums_ll(nzb:nzt+1,2) !< CALL cpu_log( log_point(10), 'flow_statistics', 'start' ) !$acc update host( km, kh, e, ol, pt, qs, qsws, shf, ts, u, usws, v, vsws, w ) ! !-- To be on the safe side, check whether flow_statistics has already been !-- called once after the current time step IF ( flow_statistics_called ) THEN message_string = 'flow_statistics is called two times within one ' // & 'timestep' CALL message( 'flow_statistics', 'PA0190', 1, 2, 0, 6, 0 ) ENDIF ! !-- Compute statistics for each (sub-)region DO sr = 0, statistic_regions ! !-- Initialize (local) summation array sums_l = 0.0_wp ! !-- Store sums that have been computed in other subroutines in summation !-- array sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities !-- WARNING: next line still has to be adjusted for OpenMP sums_l(:,21,0) = sums_wsts_bc_l(:,sr) ! heat flux from advec_s_bc sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres ! !-- When calcuating horizontally-averaged total (resolved- plus subgrid- !-- scale) vertical fluxes and velocity variances by using commonly- !-- applied Reynolds-based methods ( e.g. = (w-)*(pt-) ) !-- in combination with the 5th order advection scheme, pronounced !-- artificial kinks could be observed in the vertical profiles near the !-- surface. Please note: these kinks were not related to the model truth, !-- i.e. these kinks are just related to an evaluation problem. !-- In order avoid these kinks, vertical fluxes and horizontal as well !-- vertical velocity variances are calculated directly within the advection !-- routines, according to the numerical discretization, to evaluate the !-- statistical quantities as they will appear within the prognostic !-- equations. !-- Copy the turbulent quantities, evaluated in the advection routines to !-- the local array sums_l() for further computations. IF ( ws_scheme_mom .AND. sr == 0 ) THEN ! !-- According to the Neumann bc for the horizontal velocity components, !-- the corresponding fluxes has to satisfiy the same bc. IF ( ocean ) THEN sums_us2_ws_l(nzt+1,:) = sums_us2_ws_l(nzt,:) sums_vs2_ws_l(nzt+1,:) = sums_vs2_ws_l(nzt,:) ENDIF DO i = 0, threads_per_task-1 ! !-- Swap the turbulent quantities evaluated in advec_ws. sums_l(:,13,i) = sums_wsus_ws_l(:,i) ! w*u* sums_l(:,15,i) = sums_wsvs_ws_l(:,i) ! w*v* sums_l(:,30,i) = sums_us2_ws_l(:,i) ! u*2 sums_l(:,31,i) = sums_vs2_ws_l(:,i) ! v*2 sums_l(:,32,i) = sums_ws2_ws_l(:,i) ! w*2 sums_l(:,34,i) = sums_l(:,34,i) + 0.5_wp * & ( sums_us2_ws_l(:,i) + sums_vs2_ws_l(:,i) + & sums_ws2_ws_l(:,i) ) ! e* DO k = nzb, nzt sums_l(nzb+5,pr_palm,i) = sums_l(nzb+5,pr_palm,i) + 0.5_wp * ( & sums_us2_ws_l(k,i) + & sums_vs2_ws_l(k,i) + & sums_ws2_ws_l(k,i) ) ENDDO ENDDO ENDIF IF ( ws_scheme_sca .AND. sr == 0 ) THEN DO i = 0, threads_per_task-1 sums_l(:,17,i) = sums_wspts_ws_l(:,i) ! w*pt* IF ( ocean ) sums_l(:,66,i) = sums_wssas_ws_l(:,i) ! w*sa* IF ( humidity ) sums_l(:,49,i) = sums_wsqs_ws_l(:,i) ! w*q* IF ( passive_scalar ) sums_l(:,116,i) = sums_wsss_ws_l(:,i) ! w*s* ENDDO ENDIF ! !-- Horizontally averaged profiles of horizontal velocities and temperature. !-- They must have been computed before, because they are already required !-- for other horizontal averages. tn = 0 !$OMP PARALLEL PRIVATE( i, j, k, tn ) !$ tn = omp_get_thread_num() !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i), nzt+1 sums_l(k,1,tn) = sums_l(k,1,tn) + u(k,j,i) * rmask(j,i,sr) sums_l(k,2,tn) = sums_l(k,2,tn) + v(k,j,i) * rmask(j,i,sr) sums_l(k,4,tn) = sums_l(k,4,tn) + pt(k,j,i) * rmask(j,i,sr) ENDDO ENDDO ENDDO ! !-- Horizontally averaged profile of salinity IF ( ocean ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i), nzt+1 sums_l(k,23,tn) = sums_l(k,23,tn) + & sa(k,j,i) * rmask(j,i,sr) ENDDO ENDDO ENDDO ENDIF ! !-- Horizontally averaged profiles of virtual potential temperature, !-- total water content, specific humidity and liquid water potential !-- temperature IF ( humidity ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i), nzt+1 sums_l(k,44,tn) = sums_l(k,44,tn) + & vpt(k,j,i) * rmask(j,i,sr) sums_l(k,41,tn) = sums_l(k,41,tn) + & q(k,j,i) * rmask(j,i,sr) ENDDO ENDDO ENDDO IF ( cloud_physics ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i), nzt+1 sums_l(k,42,tn) = sums_l(k,42,tn) + & ( q(k,j,i) - ql(k,j,i) ) * rmask(j,i,sr) sums_l(k,43,tn) = sums_l(k,43,tn) + ( & pt(k,j,i) + l_d_cp*pt_d_t(k) * ql(k,j,i) & ) * rmask(j,i,sr) ENDDO ENDDO ENDDO ENDIF ENDIF ! !-- Horizontally averaged profiles of passive scalar IF ( passive_scalar ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i), nzt+1 sums_l(k,117,tn) = sums_l(k,117,tn) + s(k,j,i) * rmask(j,i,sr) ENDDO ENDDO ENDDO ENDIF !$OMP END PARALLEL ! !-- Summation of thread sums IF ( threads_per_task > 1 ) THEN DO i = 1, threads_per_task-1 sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i) sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i) sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i) IF ( ocean ) THEN sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i) ENDIF IF ( humidity ) THEN sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i) IF ( cloud_physics ) THEN sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i) sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i) ENDIF ENDIF IF ( passive_scalar ) THEN sums_l(:,117,0) = sums_l(:,117,0) + sums_l(:,117,i) ENDIF ENDDO ENDIF #if defined( __parallel ) ! !-- Compute total sum from local sums IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, & MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, & MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, & MPI_SUM, comm2d, ierr ) IF ( ocean ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) ENDIF IF ( humidity ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) IF ( cloud_physics ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) ENDIF ENDIF IF ( passive_scalar ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,117,0), sums(nzb,117), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) ENDIF #else sums(:,1) = sums_l(:,1,0) sums(:,2) = sums_l(:,2,0) sums(:,4) = sums_l(:,4,0) IF ( ocean ) sums(:,23) = sums_l(:,23,0) IF ( humidity ) THEN sums(:,44) = sums_l(:,44,0) sums(:,41) = sums_l(:,41,0) IF ( cloud_physics ) THEN sums(:,42) = sums_l(:,42,0) sums(:,43) = sums_l(:,43,0) ENDIF ENDIF IF ( passive_scalar ) sums(:,117) = sums_l(:,117,0) #endif ! !-- Final values are obtained by division by the total number of grid points !-- used for summation. After that store profiles. sums(:,1) = sums(:,1) / ngp_2dh(sr) sums(:,2) = sums(:,2) / ngp_2dh(sr) sums(:,4) = sums(:,4) / ngp_2dh_s_inner(:,sr) hom(:,1,1,sr) = sums(:,1) ! u hom(:,1,2,sr) = sums(:,2) ! v hom(:,1,4,sr) = sums(:,4) ! pt ! !-- Salinity IF ( ocean ) THEN sums(:,23) = sums(:,23) / ngp_2dh_s_inner(:,sr) hom(:,1,23,sr) = sums(:,23) ! sa ENDIF ! !-- Humidity and cloud parameters IF ( humidity ) THEN sums(:,44) = sums(:,44) / ngp_2dh_s_inner(:,sr) sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr) hom(:,1,44,sr) = sums(:,44) ! vpt hom(:,1,41,sr) = sums(:,41) ! qv (q) IF ( cloud_physics ) THEN sums(:,42) = sums(:,42) / ngp_2dh_s_inner(:,sr) sums(:,43) = sums(:,43) / ngp_2dh_s_inner(:,sr) hom(:,1,42,sr) = sums(:,42) ! qv hom(:,1,43,sr) = sums(:,43) ! pt ENDIF ENDIF ! !-- Passive scalar IF ( passive_scalar ) hom(:,1,117,sr) = sums(:,117) / & ngp_2dh_s_inner(:,sr) ! s ! !-- Horizontally averaged profiles of the remaining prognostic variables, !-- variances, the total and the perturbation energy (single values in last !-- column of sums_l) and some diagnostic quantities. !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly !-- ---- speaking the following k-loop would have to be split up and !-- rearranged according to the staggered grid. !-- However, this implies no error since staggered velocity components !-- are zero at the walls and inside buildings. tn = 0 !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, & !$OMP sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, & !$OMP w2 ) !$ tn = omp_get_thread_num() !$OMP DO DO i = nxl, nxr DO j = nys, nyn sums_l_etot = 0.0_wp DO k = nzb_s_inner(j,i), nzt+1 ! !-- Prognostic and diagnostic variables sums_l(k,3,tn) = sums_l(k,3,tn) + w(k,j,i) * rmask(j,i,sr) sums_l(k,8,tn) = sums_l(k,8,tn) + e(k,j,i) * rmask(j,i,sr) sums_l(k,9,tn) = sums_l(k,9,tn) + km(k,j,i) * rmask(j,i,sr) sums_l(k,10,tn) = sums_l(k,10,tn) + kh(k,j,i) * rmask(j,i,sr) sums_l(k,40,tn) = sums_l(k,40,tn) + p(k,j,i) sums_l(k,33,tn) = sums_l(k,33,tn) + & ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr) IF ( humidity ) THEN sums_l(k,70,tn) = sums_l(k,70,tn) + & ( q(k,j,i)-hom(k,1,41,sr) )**2 * rmask(j,i,sr) ENDIF IF ( passive_scalar ) THEN sums_l(k,118,tn) = sums_l(k,118,tn) + & ( s(k,j,i)-hom(k,1,117,sr) )**2 * rmask(j,i,sr) ENDIF ! !-- Higher moments !-- (Computation of the skewness of w further below) sums_l(k,38,tn) = sums_l(k,38,tn) + w(k,j,i)**3 * rmask(j,i,sr) sums_l_etot = sums_l_etot + & 0.5_wp * ( u(k,j,i)**2 + v(k,j,i)**2 + & w(k,j,i)**2 ) * rmask(j,i,sr) ENDDO ! !-- Total and perturbation energy for the total domain (being !-- collected in the last column of sums_l). Summation of these !-- quantities is seperated from the previous loop in order to !-- allow vectorization of that loop. sums_l(nzb+4,pr_palm,tn) = sums_l(nzb+4,pr_palm,tn) + sums_l_etot ! !-- 2D-arrays (being collected in the last column of sums_l) sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & us(j,i) * rmask(j,i,sr) sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & usws(j,i) * rmask(j,i,sr) sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & vsws(j,i) * rmask(j,i,sr) sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & ts(j,i) * rmask(j,i,sr) IF ( humidity ) THEN sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + & qs(j,i) * rmask(j,i,sr) ENDIF IF ( passive_scalar ) THEN sums_l(nzb+13,pr_palm,tn) = sums_l(nzb+13,pr_palm,tn) + & ss(j,i) * rmask(j,i,sr) ENDIF ENDDO ENDDO ! !-- Computation of statistics when ws-scheme is not used. Else these !-- quantities are evaluated in the advection routines. IF ( .NOT. ws_scheme_mom .OR. sr /= 0 .OR. simulated_time == 0.0_wp ) & THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn sums_l_eper = 0.0_wp DO k = nzb_s_inner(j,i), nzt+1 u2 = u(k,j,i)**2 v2 = v(k,j,i)**2 w2 = w(k,j,i)**2 ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 sums_l(k,30,tn) = sums_l(k,30,tn) + ust2 * rmask(j,i,sr) sums_l(k,31,tn) = sums_l(k,31,tn) + vst2 * rmask(j,i,sr) sums_l(k,32,tn) = sums_l(k,32,tn) + w2 * rmask(j,i,sr) ! !-- Perturbation energy sums_l(k,34,tn) = sums_l(k,34,tn) + 0.5_wp * & ( ust2 + vst2 + w2 ) * rmask(j,i,sr) sums_l_eper = sums_l_eper + & 0.5_wp * ( ust2+vst2+w2 ) * rmask(j,i,sr) ENDDO sums_l(nzb+5,pr_palm,tn) = sums_l(nzb+5,pr_palm,tn) & + sums_l_eper ENDDO ENDDO ENDIF ! !-- Horizontally averaged profiles of the vertical fluxes !$OMP DO DO i = nxl, nxr DO j = nys, nyn ! !-- Subgridscale fluxes (without Prandtl layer from k=nzb, !-- oterwise from k=nzb+1) !-- NOTE: for simplicity, nzb_diff_s_inner is used below, although !-- ---- strictly speaking the following k-loop would have to be !-- split up according to the staggered grid. !-- However, this implies no error since staggered velocity !-- components are zero at the walls and inside buildings. DO k = nzb_diff_s_inner(j,i)-1, nzt_diff ! !-- Momentum flux w"u" sums_l(k,12,tn) = sums_l(k,12,tn) - 0.25_wp * ( & km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) & ) * ( & ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & + ( w(k,j,i) - w(k,j,i-1) ) * ddx & ) * rmask(j,i,sr) ! !-- Momentum flux w"v" sums_l(k,14,tn) = sums_l(k,14,tn) - 0.25_wp * ( & km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) & ) * ( & ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & + ( w(k,j,i) - w(k,j-1,i) ) * ddy & ) * rmask(j,i,sr) ! !-- Heat flux w"pt" sums_l(k,16,tn) = sums_l(k,16,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& * ( pt(k+1,j,i) - pt(k,j,i) ) & * ddzu(k+1) * rmask(j,i,sr) ! !-- Salinity flux w"sa" IF ( ocean ) THEN sums_l(k,65,tn) = sums_l(k,65,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& * ( sa(k+1,j,i) - sa(k,j,i) ) & * ddzu(k+1) * rmask(j,i,sr) ENDIF ! !-- Buoyancy flux, water flux (humidity flux) w"q" IF ( humidity ) THEN sums_l(k,45,tn) = sums_l(k,45,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& * ( vpt(k+1,j,i) - vpt(k,j,i) ) & * ddzu(k+1) * rmask(j,i,sr) sums_l(k,48,tn) = sums_l(k,48,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& * ( q(k+1,j,i) - q(k,j,i) ) & * ddzu(k+1) * rmask(j,i,sr) IF ( cloud_physics ) THEN sums_l(k,51,tn) = sums_l(k,51,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& * ( ( q(k+1,j,i) - ql(k+1,j,i) )& - ( q(k,j,i) - ql(k,j,i) ) ) & * ddzu(k+1) * rmask(j,i,sr) ENDIF ENDIF ! !-- Passive scalar flux IF ( passive_scalar ) THEN sums_l(k,119,tn) = sums_l(k,119,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& * ( s(k+1,j,i) - s(k,j,i) ) & * ddzu(k+1) * rmask(j,i,sr) ENDIF ENDDO ! !-- Subgridscale fluxes in the Prandtl layer IF ( use_surface_fluxes ) THEN sums_l(nzb,12,tn) = sums_l(nzb,12,tn) + & usws(j,i) * rmask(j,i,sr) ! w"u" sums_l(nzb,14,tn) = sums_l(nzb,14,tn) + & vsws(j,i) * rmask(j,i,sr) ! w"v" sums_l(nzb,16,tn) = sums_l(nzb,16,tn) + & shf(j,i) * rmask(j,i,sr) ! w"pt" sums_l(nzb,58,tn) = sums_l(nzb,58,tn) + & 0.0_wp * rmask(j,i,sr) ! u"pt" sums_l(nzb,61,tn) = sums_l(nzb,61,tn) + & 0.0_wp * rmask(j,i,sr) ! v"pt" IF ( ocean ) THEN sums_l(nzb,65,tn) = sums_l(nzb,65,tn) + & saswsb(j,i) * rmask(j,i,sr) ! w"sa" ENDIF IF ( humidity ) THEN sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(nzb,j,i) ) * & shf(j,i) + 0.61_wp * pt(nzb,j,i) * & qsws(j,i) ) IF ( cloud_droplets ) THEN sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(nzb,j,i) - & ql(nzb,j,i) ) * shf(j,i) + & 0.61_wp * pt(nzb,j,i) * qsws(j,i) ) ENDIF IF ( cloud_physics ) THEN ! !-- Formula does not work if ql(nzb) /= 0.0 sums_l(nzb,51,tn) = sums_l(nzb,51,tn) + & qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") ENDIF ENDIF IF ( passive_scalar ) THEN sums_l(nzb,119,tn) = sums_l(nzb,119,tn) + & ssws(j,i) * rmask(j,i,sr) ! w"s" ENDIF ENDIF IF ( .NOT. neutral ) THEN sums_l(nzb,114,tn) = sums_l(nzb,114,tn) + & ol(j,i) * rmask(j,i,sr) ! L ENDIF IF ( land_surface ) THEN sums_l(nzb,93,tn) = sums_l(nzb,93,tn) + ghf_eb(j,i) sums_l(nzb,94,tn) = sums_l(nzb,94,tn) + shf_eb(j,i) sums_l(nzb,95,tn) = sums_l(nzb,95,tn) + qsws_eb(j,i) sums_l(nzb,96,tn) = sums_l(nzb,96,tn) + qsws_liq_eb(j,i) sums_l(nzb,97,tn) = sums_l(nzb,97,tn) + qsws_soil_eb(j,i) sums_l(nzb,98,tn) = sums_l(nzb,98,tn) + qsws_veg_eb(j,i) sums_l(nzb,99,tn) = sums_l(nzb,99,tn) + r_a(j,i) sums_l(nzb,100,tn) = sums_l(nzb,100,tn)+ r_s(j,i) ENDIF IF ( radiation .AND. radiation_scheme /= 'constant' ) THEN sums_l(nzb,101,tn) = sums_l(nzb,101,tn) + rad_net(j,i) sums_l(nzb,102,tn) = sums_l(nzb,102,tn) + rad_lw_in(nzb,j,i) sums_l(nzb,103,tn) = sums_l(nzb,103,tn) + rad_lw_out(nzb,j,i) sums_l(nzb,104,tn) = sums_l(nzb,104,tn) + rad_sw_in(nzb,j,i) sums_l(nzb,105,tn) = sums_l(nzb,105,tn) + rad_sw_out(nzb,j,i) #if defined ( __rrtmg ) IF ( radiation_scheme == 'rrtmg' ) THEN sums_l(nzb,110,tn) = sums_l(nzb,110,tn) + rrtm_aldif(0,j,i) sums_l(nzb,111,tn) = sums_l(nzb,111,tn) + rrtm_aldir(0,j,i) sums_l(nzb,112,tn) = sums_l(nzb,112,tn) + rrtm_asdif(0,j,i) sums_l(nzb,113,tn) = sums_l(nzb,113,tn) + rrtm_asdir(0,j,i) ENDIF #endif ENDIF ! !-- Subgridscale fluxes at the top surface IF ( use_top_fluxes ) THEN sums_l(nzt:nzt+1,12,tn) = sums_l(nzt:nzt+1,12,tn) + & uswst(j,i) * rmask(j,i,sr) ! w"u" sums_l(nzt:nzt+1,14,tn) = sums_l(nzt:nzt+1,14,tn) + & vswst(j,i) * rmask(j,i,sr) ! w"v" sums_l(nzt:nzt+1,16,tn) = sums_l(nzt:nzt+1,16,tn) + & tswst(j,i) * rmask(j,i,sr) ! w"pt" sums_l(nzt:nzt+1,58,tn) = sums_l(nzt:nzt+1,58,tn) + & 0.0_wp * rmask(j,i,sr) ! u"pt" sums_l(nzt:nzt+1,61,tn) = sums_l(nzt:nzt+1,61,tn) + & 0.0_wp * rmask(j,i,sr) ! v"pt" IF ( ocean ) THEN sums_l(nzt,65,tn) = sums_l(nzt,65,tn) + & saswst(j,i) * rmask(j,i,sr) ! w"sa" ENDIF IF ( humidity ) THEN sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(nzt,j,i) ) * & tswst(j,i) + 0.61_wp * pt(nzt,j,i) * & qswst(j,i) ) IF ( cloud_droplets ) THEN sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(nzt,j,i) - & ql(nzt,j,i) ) * tswst(j,i) + & 0.61_wp * pt(nzt,j,i) * qswst(j,i) ) ENDIF IF ( cloud_physics ) THEN ! !-- Formula does not work if ql(nzb) /= 0.0 sums_l(nzt,51,tn) = sums_l(nzt,51,tn) + & ! w"q" (w"qv") qswst(j,i) * rmask(j,i,sr) ENDIF ENDIF IF ( passive_scalar ) THEN sums_l(nzt,119,tn) = sums_l(nzt,119,tn) + & sswst(j,i) * rmask(j,i,sr) ! w"s" ENDIF ENDIF ! !-- Resolved fluxes (can be computed for all horizontal points) !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly !-- ---- speaking the following k-loop would have to be split up and !-- rearranged according to the staggered grid. DO k = nzb_s_inner(j,i), nzt ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + & u(k+1,j,i) - hom(k+1,1,1,sr) ) vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + & v(k+1,j,i) - hom(k+1,1,2,sr) ) pts = 0.5_wp * ( pt(k,j,i) - hom(k,1,4,sr) + & pt(k+1,j,i) - hom(k+1,1,4,sr) ) !-- Higher moments sums_l(k,35,tn) = sums_l(k,35,tn) + pts * w(k,j,i)**2 * & rmask(j,i,sr) sums_l(k,36,tn) = sums_l(k,36,tn) + pts**2 * w(k,j,i) * & rmask(j,i,sr) ! !-- Salinity flux and density (density does not belong to here, !-- but so far there is no other suitable place to calculate) IF ( ocean ) THEN IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN pts = 0.5_wp * ( sa(k,j,i) - hom(k,1,23,sr) + & sa(k+1,j,i) - hom(k+1,1,23,sr) ) sums_l(k,66,tn) = sums_l(k,66,tn) + pts * w(k,j,i) * & rmask(j,i,sr) ENDIF sums_l(k,64,tn) = sums_l(k,64,tn) + rho(k,j,i) * & rmask(j,i,sr) sums_l(k,71,tn) = sums_l(k,71,tn) + prho(k,j,i) * & rmask(j,i,sr) ENDIF ! !-- Buoyancy flux, water flux, humidity flux, liquid water !-- content, rain drop concentration and rain water content IF ( humidity ) THEN IF ( cloud_physics .OR. cloud_droplets ) THEN pts = 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + & vpt(k+1,j,i) - hom(k+1,1,44,sr) ) sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & rmask(j,i,sr) sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * rmask(j,i,sr) IF ( .NOT. cloud_droplets ) THEN pts = 0.5_wp * & ( ( q(k,j,i) - ql(k,j,i) ) - & hom(k,1,42,sr) + & ( q(k+1,j,i) - ql(k+1,j,i) ) - & hom(k+1,1,42,sr) ) sums_l(k,52,tn) = sums_l(k,52,tn) + pts * w(k,j,i) * & rmask(j,i,sr) sums_l(k,75,tn) = sums_l(k,75,tn) + qc(k,j,i) * & rmask(j,i,sr) sums_l(k,76,tn) = sums_l(k,76,tn) + prr(k,j,i) * & rmask(j,i,sr) IF ( microphysics_seifert ) THEN sums_l(k,73,tn) = sums_l(k,73,tn) + nr(k,j,i) * & rmask(j,i,sr) sums_l(k,74,tn) = sums_l(k,74,tn) + qr(k,j,i) * & rmask(j,i,sr) ENDIF ENDIF ELSE IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN pts = 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + & vpt(k+1,j,i) - hom(k+1,1,44,sr) ) sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & rmask(j,i,sr) ELSE IF ( ws_scheme_sca .AND. sr == 0 ) THEN sums_l(k,46,tn) = ( 1.0_wp + 0.61_wp * & hom(k,1,41,sr) ) * & sums_l(k,17,tn) + & 0.61_wp * hom(k,1,4,sr) * & sums_l(k,49,tn) END IF END IF ENDIF ! !-- Passive scalar flux IF ( passive_scalar .AND. ( .NOT. ws_scheme_sca & .OR. sr /= 0 ) ) THEN pts = 0.5_wp * ( s(k,j,i) - hom(k,1,117,sr) + & s(k+1,j,i) - hom(k+1,1,117,sr) ) sums_l(k,116,tn) = sums_l(k,116,tn) + pts * w(k,j,i) * & rmask(j,i,sr) ENDIF ! !-- Energy flux w*e* !-- has to be adjusted sums_l(k,37,tn) = sums_l(k,37,tn) + w(k,j,i) * 0.5_wp * & ( ust**2 + vst**2 + w(k,j,i)**2 ) & * rmask(j,i,sr) ENDDO ENDDO ENDDO ! !-- For speed optimization fluxes which have been computed in part directly !-- inside the WS advection routines are treated seperatly !-- Momentum fluxes first: IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb_diff_s_inner(j,i)-1, nzt_diff ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + & u(k+1,j,i) - hom(k+1,1,1,sr) ) vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + & v(k+1,j,i) - hom(k+1,1,2,sr) ) ! !-- Momentum flux w*u* sums_l(k,13,tn) = sums_l(k,13,tn) + 0.5_wp * & ( w(k,j,i-1) + w(k,j,i) ) & * ust * rmask(j,i,sr) ! !-- Momentum flux w*v* sums_l(k,15,tn) = sums_l(k,15,tn) + 0.5_wp * & ( w(k,j-1,i) + w(k,j,i) ) & * vst * rmask(j,i,sr) ENDDO ENDDO ENDDO ENDIF IF ( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb_diff_s_inner(j,i)-1, nzt_diff ! !-- Vertical heat flux sums_l(k,17,tn) = sums_l(k,17,tn) + 0.5_wp * & ( pt(k,j,i) - hom(k,1,4,sr) + & pt(k+1,j,i) - hom(k+1,1,4,sr) ) & * w(k,j,i) * rmask(j,i,sr) IF ( humidity ) THEN pts = 0.5_wp * ( q(k,j,i) - hom(k,1,41,sr) + & q(k+1,j,i) - hom(k+1,1,41,sr) ) sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & rmask(j,i,sr) ENDIF IF ( passive_scalar ) THEN pts = 0.5_wp * ( s(k,j,i) - hom(k,1,117,sr) + & s(k+1,j,i) - hom(k+1,1,117,sr) ) sums_l(k,116,tn) = sums_l(k,116,tn) + pts * w(k,j,i) * & rmask(j,i,sr) ENDIF ENDDO ENDDO ENDDO ENDIF ! !-- Density at top follows Neumann condition IF ( ocean ) THEN sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn) sums_l(nzt+1,71,tn) = sums_l(nzt,71,tn) ENDIF ! !-- Divergence of vertical flux of resolved scale energy and pressure !-- fluctuations as well as flux of pressure fluctuation itself (68). !-- First calculate the products, then the divergence. !-- Calculation is time consuming. Do it only, if profiles shall be plotted. IF ( hom(nzb+1,2,55,0) /= 0.0_wp .OR. hom(nzb+1,2,68,0) /= 0.0_wp ) & THEN sums_ll = 0.0_wp ! local array !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt sums_ll(k,1) = sums_ll(k,1) + 0.5_wp * w(k,j,i) * ( & ( 0.25_wp * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) ) & - 0.5_wp * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) )**2& + ( 0.25_wp * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) ) & - 0.5_wp * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) )**2& + w(k,j,i)**2 ) sums_ll(k,2) = sums_ll(k,2) + 0.5_wp * w(k,j,i) & * ( p(k,j,i) + p(k+1,j,i) ) ENDDO ENDDO ENDDO sums_ll(0,1) = 0.0_wp ! because w is zero at the bottom sums_ll(nzt+1,1) = 0.0_wp sums_ll(0,2) = 0.0_wp sums_ll(nzt+1,2) = 0.0_wp DO k = nzb+1, nzt sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k) sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k) sums_l(k,68,tn) = sums_ll(k,2) ENDDO sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn) sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn) sums_l(nzb,68,tn) = 0.0_wp ! because w* = 0 at nzb ENDIF ! !-- Divergence of vertical flux of SGS TKE and the flux itself (69) IF ( hom(nzb+1,2,57,0) /= 0.0_wp .OR. hom(nzb+1,2,69,0) /= 0.0_wp ) & THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5_wp * ( & (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & - (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) & ) * ddzw(k) sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5_wp * ( & (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & ) ENDDO ENDDO ENDDO sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn) sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn) ENDIF ! !-- Horizontal heat fluxes (subgrid, resolved, total). !-- Do it only, if profiles shall be plotted. IF ( hom(nzb+1,2,58,0) /= 0.0_wp ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt ! !-- Subgrid horizontal heat fluxes u"pt", v"pt" sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5_wp * & ( kh(k,j,i) + kh(k,j,i-1) ) & * ( pt(k,j,i-1) - pt(k,j,i) ) & * ddx * rmask(j,i,sr) sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5_wp * & ( kh(k,j,i) + kh(k,j-1,i) ) & * ( pt(k,j-1,i) - pt(k,j,i) ) & * ddy * rmask(j,i,sr) ! !-- Resolved horizontal heat fluxes u*pt*, v*pt* sums_l(k,59,tn) = sums_l(k,59,tn) + & ( u(k,j,i) - hom(k,1,1,sr) ) & * 0.5_wp * ( pt(k,j,i-1) - hom(k,1,4,sr) + & pt(k,j,i) - hom(k,1,4,sr) ) pts = 0.5_wp * ( pt(k,j-1,i) - hom(k,1,4,sr) + & pt(k,j,i) - hom(k,1,4,sr) ) sums_l(k,62,tn) = sums_l(k,62,tn) + & ( v(k,j,i) - hom(k,1,2,sr) ) & * 0.5_wp * ( pt(k,j-1,i) - hom(k,1,4,sr) + & pt(k,j,i) - hom(k,1,4,sr) ) ENDDO ENDDO ENDDO ! !-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer) sums_l(nzb,58,tn) = 0.0_wp sums_l(nzb,59,tn) = 0.0_wp sums_l(nzb,60,tn) = 0.0_wp sums_l(nzb,61,tn) = 0.0_wp sums_l(nzb,62,tn) = 0.0_wp sums_l(nzb,63,tn) = 0.0_wp ENDIF ! !-- Collect current large scale advection and subsidence tendencies for !-- data output IF ( large_scale_forcing .AND. ( simulated_time > 0.0_wp ) ) THEN ! !-- Interpolation in time of LSF_DATA nt = 1 DO WHILE ( simulated_time - dt_3d > time_vert(nt) ) nt = nt + 1 ENDDO IF ( simulated_time - dt_3d /= time_vert(nt) ) THEN nt = nt - 1 ENDIF fac = ( simulated_time - dt_3d - time_vert(nt) ) & / ( time_vert(nt+1)-time_vert(nt) ) DO k = nzb, nzt sums_ls_l(k,0) = td_lsa_lpt(k,nt) & + fac * ( td_lsa_lpt(k,nt+1) - td_lsa_lpt(k,nt) ) sums_ls_l(k,1) = td_lsa_q(k,nt) & + fac * ( td_lsa_q(k,nt+1) - td_lsa_q(k,nt) ) ENDDO sums_ls_l(nzt+1,0) = sums_ls_l(nzt,0) sums_ls_l(nzt+1,1) = sums_ls_l(nzt,1) IF ( large_scale_subsidence .AND. use_subsidence_tendencies ) THEN DO k = nzb, nzt sums_ls_l(k,2) = td_sub_lpt(k,nt) + fac * & ( td_sub_lpt(k,nt+1) - td_sub_lpt(k,nt) ) sums_ls_l(k,3) = td_sub_q(k,nt) + fac * & ( td_sub_q(k,nt+1) - td_sub_q(k,nt) ) ENDDO sums_ls_l(nzt+1,2) = sums_ls_l(nzt,2) sums_ls_l(nzt+1,3) = sums_ls_l(nzt,3) ENDIF ENDIF IF ( land_surface ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb_soil, nzt_soil sums_l(k,89,tn) = sums_l(k,89,tn) + t_soil(k,j,i) & * rmask(j,i,sr) sums_l(k,91,tn) = sums_l(k,91,tn) + m_soil(k,j,i) & * rmask(j,i,sr) ENDDO ENDDO ENDDO ENDIF IF ( radiation .AND. radiation_scheme == 'rrtmg' ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt+1 sums_l(k,102,tn) = sums_l(k,102,tn) + rad_lw_in(k,j,i) & * rmask(j,i,sr) sums_l(k,103,tn) = sums_l(k,103,tn) + rad_lw_out(k,j,i) & * rmask(j,i,sr) sums_l(k,104,tn) = sums_l(k,104,tn) + rad_sw_in(k,j,i) & * rmask(j,i,sr) sums_l(k,105,tn) = sums_l(k,105,tn) + rad_sw_out(k,j,i) & * rmask(j,i,sr) sums_l(k,106,tn) = sums_l(k,106,tn) + rad_lw_cs_hr(k,j,i) & * rmask(j,i,sr) sums_l(k,107,tn) = sums_l(k,107,tn) + rad_lw_hr(k,j,i) & * rmask(j,i,sr) sums_l(k,108,tn) = sums_l(k,108,tn) + rad_sw_cs_hr(k,j,i) & * rmask(j,i,sr) sums_l(k,109,tn) = sums_l(k,109,tn) + rad_sw_hr(k,j,i) & * rmask(j,i,sr) ENDDO ENDDO ENDDO ENDIF ! !-- Calculate the user-defined profiles CALL user_statistics( 'profiles', sr, tn ) !$OMP END PARALLEL ! !-- Summation of thread sums IF ( threads_per_task > 1 ) THEN DO i = 1, threads_per_task-1 sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i) sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i) sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + & sums_l(:,45:pr_palm,i) IF ( max_pr_user > 0 ) THEN sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = & sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + & sums_l(:,pr_palm+1:pr_palm+max_pr_user,i) ENDIF ENDDO ENDIF #if defined( __parallel ) ! !-- Compute total sum from local sums IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, & MPI_SUM, comm2d, ierr ) IF ( large_scale_forcing ) THEN CALL MPI_ALLREDUCE( sums_ls_l(nzb,2), sums(nzb,83), ngp_sums_ls, & MPI_REAL, MPI_SUM, comm2d, ierr ) ENDIF #else sums = sums_l(:,:,0) IF ( large_scale_forcing ) THEN sums(:,81:88) = sums_ls_l ENDIF #endif ! !-- Final values are obtained by division by the total number of grid points !-- used for summation. After that store profiles. !-- Check, if statistical regions do contain at least one grid point at the !-- respective k-level, otherwise division by zero will lead to undefined !-- values, which may cause e.g. problems with NetCDF output !-- Profiles: DO k = nzb, nzt+1 sums(k,3) = sums(k,3) / ngp_2dh(sr) sums(k,12:22) = sums(k,12:22) / ngp_2dh(sr) sums(k,30:32) = sums(k,30:32) / ngp_2dh(sr) sums(k,35:39) = sums(k,35:39) / ngp_2dh(sr) sums(k,45:53) = sums(k,45:53) / ngp_2dh(sr) sums(k,55:63) = sums(k,55:63) / ngp_2dh(sr) sums(k,81:88) = sums(k,81:88) / ngp_2dh(sr) sums(k,89:114) = sums(k,89:114) / ngp_2dh(sr) sums(k,116) = sums(k,116) / ngp_2dh(sr) sums(k,119) = sums(k,119) / ngp_2dh(sr) IF ( ngp_2dh_s_inner(k,sr) /= 0 ) THEN sums(k,8:11) = sums(k,8:11) / ngp_2dh_s_inner(k,sr) sums(k,23:29) = sums(k,23:29) / ngp_2dh_s_inner(k,sr) sums(k,33:34) = sums(k,33:34) / ngp_2dh_s_inner(k,sr) sums(k,40) = sums(k,40) / ngp_2dh_s_inner(k,sr) sums(k,54) = sums(k,54) / ngp_2dh_s_inner(k,sr) sums(k,64) = sums(k,64) / ngp_2dh_s_inner(k,sr) sums(k,70:80) = sums(k,70:80) / ngp_2dh_s_inner(k,sr) sums(k,118) = sums(k,118) / ngp_2dh_s_inner(k,sr) sums(k,120:pr_palm-2) = sums(k,120:pr_palm-2) / ngp_2dh_s_inner(k,sr) ENDIF ENDDO !-- u* and so on !-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose !-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer !-- above the topography, they are being divided by ngp_2dh(sr) sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / & ngp_2dh(sr) sums(nzb+12,pr_palm) = sums(nzb+12,pr_palm) / & ! qs ngp_2dh(sr) sums(nzb+13,pr_palm) = sums(nzb+13,pr_palm) / & ! ss ngp_2dh(sr) !-- eges, e* sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / & ngp_3d(sr) !-- Old and new divergence sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / & ngp_3d_inner(sr) !-- User-defined profiles IF ( max_pr_user > 0 ) THEN DO k = nzb, nzt+1 sums(k,pr_palm+1:pr_palm+max_pr_user) = & sums(k,pr_palm+1:pr_palm+max_pr_user) / & ngp_2dh_s_inner(k,sr) ENDDO ENDIF ! !-- Collect horizontal average in hom. !-- Compute deduced averages (e.g. total heat flux) hom(:,1,3,sr) = sums(:,3) ! w hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles hom(:,1,9,sr) = sums(:,9) ! km hom(:,1,10,sr) = sums(:,10) ! kh hom(:,1,11,sr) = sums(:,11) ! l hom(:,1,12,sr) = sums(:,12) ! w"u" hom(:,1,13,sr) = sums(:,13) ! w*u* hom(:,1,14,sr) = sums(:,14) ! w"v" hom(:,1,15,sr) = sums(:,15) ! w*v* hom(:,1,16,sr) = sums(:,16) ! w"pt" hom(:,1,17,sr) = sums(:,17) ! w*pt* hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv hom(:,1,21,sr) = sums(:,21) ! w*pt*BC hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC ! profile 24 is initial profile (sa) ! profiles 25-29 left empty for initial ! profiles hom(:,1,30,sr) = sums(:,30) ! u*2 hom(:,1,31,sr) = sums(:,31) ! v*2 hom(:,1,32,sr) = sums(:,32) ! w*2 hom(:,1,33,sr) = sums(:,33) ! pt*2 hom(:,1,34,sr) = sums(:,34) ! e* hom(:,1,35,sr) = sums(:,35) ! w*2pt* hom(:,1,36,sr) = sums(:,36) ! w*pt*2 hom(:,1,37,sr) = sums(:,37) ! w*e* hom(:,1,38,sr) = sums(:,38) ! w*3 hom(:,1,39,sr) = sums(:,38) / ( abs( sums(:,32) ) + 1E-20_wp )**1.5_wp ! Sw hom(:,1,40,sr) = sums(:,40) ! p hom(:,1,45,sr) = sums(:,45) ! w"vpt" hom(:,1,46,sr) = sums(:,46) ! w*vpt* hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv") hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*) hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv) hom(:,1,51,sr) = sums(:,51) ! w"qv" hom(:,1,52,sr) = sums(:,52) ! w*qv* hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv) hom(:,1,54,sr) = sums(:,54) ! ql hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz hom(:,1,56,sr) = sums(:,56) ! w*p*/dz hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho )/dz hom(:,1,58,sr) = sums(:,58) ! u"pt" hom(:,1,59,sr) = sums(:,59) ! u*pt* hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t hom(:,1,61,sr) = sums(:,61) ! v"pt" hom(:,1,62,sr) = sums(:,62) ! v*pt* hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t hom(:,1,64,sr) = sums(:,64) ! rho hom(:,1,65,sr) = sums(:,65) ! w"sa" hom(:,1,66,sr) = sums(:,66) ! w*sa* hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa hom(:,1,68,sr) = sums(:,68) ! w*p* hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho hom(:,1,70,sr) = sums(:,70) ! q*2 hom(:,1,71,sr) = sums(:,71) ! prho hom(:,1,72,sr) = hyp * 1E-4_wp ! hyp in dbar hom(:,1,73,sr) = sums(:,73) ! nr hom(:,1,74,sr) = sums(:,74) ! qr hom(:,1,75,sr) = sums(:,75) ! qc hom(:,1,76,sr) = sums(:,76) ! prr (precipitation rate) ! 77 is initial density profile hom(:,1,78,sr) = ug ! ug hom(:,1,79,sr) = vg ! vg hom(:,1,80,sr) = w_subs ! w_subs IF ( large_scale_forcing ) THEN hom(:,1,81,sr) = sums_ls_l(:,0) ! td_lsa_lpt hom(:,1,82,sr) = sums_ls_l(:,1) ! td_lsa_q IF ( use_subsidence_tendencies ) THEN hom(:,1,83,sr) = sums_ls_l(:,2) ! td_sub_lpt hom(:,1,84,sr) = sums_ls_l(:,3) ! td_sub_q ELSE hom(:,1,83,sr) = sums(:,83) ! td_sub_lpt hom(:,1,84,sr) = sums(:,84) ! td_sub_q ENDIF hom(:,1,85,sr) = sums(:,85) ! td_nud_lpt hom(:,1,86,sr) = sums(:,86) ! td_nud_q hom(:,1,87,sr) = sums(:,87) ! td_nud_u hom(:,1,88,sr) = sums(:,88) ! td_nud_v ENDIF IF ( land_surface ) THEN hom(:,1,89,sr) = sums(:,89) ! t_soil ! 90 is initial t_soil profile hom(:,1,91,sr) = sums(:,91) ! m_soil ! 92 is initial m_soil profile hom(:,1,93,sr) = sums(:,93) ! ghf_eb hom(:,1,94,sr) = sums(:,94) ! shf_eb hom(:,1,95,sr) = sums(:,95) ! qsws_eb hom(:,1,96,sr) = sums(:,96) ! qsws_liq_eb hom(:,1,97,sr) = sums(:,97) ! qsws_soil_eb hom(:,1,98,sr) = sums(:,98) ! qsws_veg_eb hom(:,1,99,sr) = sums(:,99) ! r_a hom(:,1,100,sr) = sums(:,100) ! r_s ENDIF IF ( radiation ) THEN hom(:,1,101,sr) = sums(:,101) ! rad_net hom(:,1,102,sr) = sums(:,102) ! rad_lw_in hom(:,1,103,sr) = sums(:,103) ! rad_lw_out hom(:,1,104,sr) = sums(:,104) ! rad_sw_in hom(:,1,105,sr) = sums(:,105) ! rad_sw_out IF ( radiation_scheme == 'rrtmg' ) THEN #if defined ( __rrtmg ) hom(:,1,106,sr) = sums(:,106) ! rad_lw_cs_hr hom(:,1,107,sr) = sums(:,107) ! rad_lw_hr hom(:,1,108,sr) = sums(:,108) ! rad_sw_cs_hr hom(:,1,109,sr) = sums(:,109) ! rad_sw_hr hom(:,1,110,sr) = sums(:,110) ! rrtm_aldif hom(:,1,111,sr) = sums(:,111) ! rrtm_aldir hom(:,1,112,sr) = sums(:,112) ! rrtm_asdif hom(:,1,113,sr) = sums(:,113) ! rrtm_asdir #endif ENDIF ENDIF hom(:,1,114,sr) = sums(:,114) !: L IF ( passive_scalar ) THEN hom(:,1,119,sr) = sums(:,119) ! w"s" hom(:,1,116,sr) = sums(:,116) ! w*s* hom(:,1,120,sr) = sums(:,119) + sums(:,116) ! ws ENDIF hom(:,1,pr_palm,sr) = sums(:,pr_palm) ! u*, w'u', w'v', t* (in last profile) IF ( max_pr_user > 0 ) THEN ! user-defined profiles hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = & sums(:,pr_palm+1:pr_palm+max_pr_user) ENDIF ! !-- Determine the boundary layer height using two different schemes. !-- First scheme: Starting from the Earth's (Ocean's) surface, look for the !-- first relative minimum (maximum) of the total heat flux. !-- The corresponding height is assumed as the boundary layer height, if it !-- is less than 1.5 times the height where the heat flux becomes negative !-- (positive) for the first time. z_i(1) = 0.0_wp first = .TRUE. IF ( ocean ) THEN DO k = nzt, nzb+1, -1 IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN first = .FALSE. height = zw(k) ENDIF IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. & hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN IF ( zw(k) < 1.5_wp * height ) THEN z_i(1) = zw(k) ELSE z_i(1) = height ENDIF EXIT ENDIF ENDDO ELSE DO k = nzb, nzt-1 IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN first = .FALSE. height = zw(k) ENDIF IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. & hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN IF ( zw(k) < 1.5_wp * height ) THEN z_i(1) = zw(k) ELSE z_i(1) = height ENDIF EXIT ENDIF ENDDO ENDIF ! !-- Second scheme: Gradient scheme from Sullivan et al. (1998), modified !-- by Uhlenbrock(2006). The boundary layer height is the height with the !-- maximal local temperature gradient: starting from the second (the last !-- but one) vertical gridpoint, the local gradient must be at least !-- 0.2K/100m and greater than the next four gradients. !-- WARNING: The threshold value of 0.2K/100m must be adjusted for the !-- ocean case! z_i(2) = 0.0_wp DO k = nzb+1, nzt+1 dptdz(k) = ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) * ddzu(k) ENDDO dptdz_threshold = 0.2_wp / 100.0_wp IF ( ocean ) THEN DO k = nzt+1, nzb+5, -1 IF ( dptdz(k) > dptdz_threshold .AND. & dptdz(k) > dptdz(k-1) .AND. dptdz(k) > dptdz(k-2) .AND. & dptdz(k) > dptdz(k-3) .AND. dptdz(k) > dptdz(k-4) ) THEN z_i(2) = zw(k-1) EXIT ENDIF ENDDO ELSE DO k = nzb+1, nzt-3 IF ( dptdz(k) > dptdz_threshold .AND. & dptdz(k) > dptdz(k+1) .AND. dptdz(k) > dptdz(k+2) .AND. & dptdz(k) > dptdz(k+3) .AND. dptdz(k) > dptdz(k+4) ) THEN z_i(2) = zw(k-1) EXIT ENDIF ENDDO ENDIF hom(nzb+6,1,pr_palm,sr) = z_i(1) hom(nzb+7,1,pr_palm,sr) = z_i(2) ! !-- Determine vertical index which is nearest to the mean surface level !-- height of the respective statistic region DO k = nzb, nzt IF ( zw(k) >= mean_surface_level_height(sr) ) THEN k_surface_level = k EXIT ENDIF ENDDO ! !-- Computation of both the characteristic vertical velocity and !-- the characteristic convective boundary layer temperature. !-- The inversion height entering into the equation is defined with respect !-- to the mean surface level height of the respective statistic region. !-- The horizontal average at surface level index + 1 is input for the !-- average temperature. IF ( hom(k_surface_level,1,18,sr) > 1.0E-8_wp .AND. z_i(1) /= 0.0_wp )& THEN hom(nzb+8,1,pr_palm,sr) = & ( g / hom(k_surface_level+1,1,4,sr) * hom(k_surface_level,1,18,sr)& * ABS( z_i(1) - mean_surface_level_height(sr) ) )**0.333333333_wp ELSE hom(nzb+8,1,pr_palm,sr) = 0.0_wp ENDIF ! !-- Collect the time series quantities ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E* ts_value(3,sr) = dt_3d ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u* ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th* ts_value(6,sr) = u_max ts_value(7,sr) = v_max ts_value(8,sr) = w_max ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1) ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2) ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w* ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0 ts_value(15,sr) = hom(nzb+1,1,16,sr) ! w'pt' at k=1 ts_value(16,sr) = hom(nzb+1,1,18,sr) ! wpt at k=1 ts_value(17,sr) = hom(nzb,1,4,sr) ! pt(0) ts_value(18,sr) = hom(nzb+1,1,4,sr) ! pt(zp) ts_value(19,sr) = hom(nzb+1,1,pr_palm,sr) ! u'w' at k=0 ts_value(20,sr) = hom(nzb+2,1,pr_palm,sr) ! v'w' at k=0 ts_value(21,sr) = hom(nzb,1,48,sr) ! w"q" at k=0 IF ( .NOT. neutral ) THEN ts_value(22,sr) = hom(nzb,1,114,sr) ! L ELSE ts_value(22,sr) = 1.0E10_wp ENDIF ts_value(23,sr) = hom(nzb+12,1,pr_palm,sr) ! q* IF ( passive_scalar ) THEN ts_value(24,sr) = hom(nzb+13,1,119,sr) ! w"s" ( to do ! ) ts_value(25,sr) = hom(nzb+13,1,pr_palm,sr) ! s* ENDIF ! !-- Collect land surface model timeseries IF ( land_surface ) THEN ts_value(dots_soil ,sr) = hom(nzb,1,93,sr) ! ghf_eb ts_value(dots_soil+1,sr) = hom(nzb,1,94,sr) ! shf_eb ts_value(dots_soil+2,sr) = hom(nzb,1,95,sr) ! qsws_eb ts_value(dots_soil+3,sr) = hom(nzb,1,96,sr) ! qsws_liq_eb ts_value(dots_soil+4,sr) = hom(nzb,1,97,sr) ! qsws_soil_eb ts_value(dots_soil+5,sr) = hom(nzb,1,98,sr) ! qsws_veg_eb ts_value(dots_soil+6,sr) = hom(nzb,1,99,sr) ! r_a ts_value(dots_soil+7,sr) = hom(nzb,1,100,sr) ! r_s ENDIF ! !-- Collect radiation model timeseries IF ( radiation ) THEN ts_value(dots_rad,sr) = hom(nzb,1,101,sr) ! rad_net ts_value(dots_rad+1,sr) = hom(nzb,1,102,sr) ! rad_lw_in ts_value(dots_rad+2,sr) = hom(nzb,1,103,sr) ! rad_lw_out ts_value(dots_rad+3,sr) = hom(nzb,1,104,sr) ! rad_sw_in ts_value(dots_rad+4,sr) = hom(nzb,1,105,sr) ! rad_sw_out #if defined ( __rrtmg ) IF ( radiation_scheme == 'rrtmg' ) THEN ts_value(dots_rad+5,sr) = hom(nzb,1,110,sr) ! rrtm_aldif ts_value(dots_rad+6,sr) = hom(nzb,1,111,sr) ! rrtm_aldir ts_value(dots_rad+7,sr) = hom(nzb,1,112,sr) ! rrtm_asdif ts_value(dots_rad+8,sr) = hom(nzb,1,113,sr) ! rrtm_asdir ENDIF #endif ENDIF ! !-- Calculate additional statistics provided by the user interface CALL user_statistics( 'time_series', sr, 0 ) ENDDO ! loop of the subregions ! !-- If required, sum up horizontal averages for subsequent time averaging. !-- Do not sum, if flow statistics is called before the first initial time step. IF ( do_sum .AND. simulated_time /= 0.0_wp ) THEN IF ( average_count_pr == 0 ) hom_sum = 0.0_wp hom_sum = hom_sum + hom(:,1,:,:) average_count_pr = average_count_pr + 1 do_sum = .FALSE. ENDIF ! !-- Set flag for other UPs (e.g. output routines, but also buoyancy). !-- This flag is reset after each time step in time_integration. flow_statistics_called = .TRUE. CALL cpu_log( log_point(10), 'flow_statistics', 'stop' ) END SUBROUTINE flow_statistics #else !------------------------------------------------------------------------------! ! Description: ! ------------ !> flow statistics - accelerator version !------------------------------------------------------------------------------! SUBROUTINE flow_statistics USE arrays_3d, & ONLY: ddzu, ddzw, e, hyp, km, kh, nr, p, prho, pt, q, qc, ql, qr, qs, & qsws, qswst, rho, s, sa, saswsb, saswst, shf, ss, ssws, sswst, & td_lsa_lpt, td_lsa_q, td_sub_lpt, td_sub_q, time_vert, ts, & tswst, u, ug, us, usws, uswst, vsws, v, vg, vpt, vswst, w, & w_subs, zw USE cloud_parameters, & ONLY: l_d_cp, prr, pt_d_t USE control_parameters, & ONLY : average_count_pr, cloud_droplets, cloud_physics, do_sum, & dt_3d, g, humidity, kappa, large_scale_forcing, & large_scale_subsidence, max_pr_user, message_string, & microphysics_seifert, neutral, ocean, passive_scalar, & simulated_time, use_subsidence_tendencies, use_surface_fluxes, & use_top_fluxes, ws_scheme_mom, ws_scheme_sca USE cpulog, & ONLY: cpu_log, log_point USE grid_variables, & ONLY: ddx, ddy USE indices, & ONLY: ngp_2dh, ngp_2dh_s_inner, ngp_3d, ngp_3d_inner, ngp_sums, & ngp_sums_ls, nxl, nxr, nyn, nys, nzb, nzb_diff_s_inner, & nzb_s_inner, nzt, nzt_diff, rflags_invers USE kinds USE land_surface_model_mod, & ONLY: ghf_eb, land_surface, m_soil, nzb_soil, nzt_soil, & qsws_eb, qsws_liq_eb, qsws_soil_eb, qsws_veg_eb, r_a, r_s, & shf_eb, t_soil USE netcdf_interface, & ONLY: dots_rad, dots_soil USE pegrid USE radiation_model_mod, & ONLY: radiation, radiation_scheme, rad_net, & rad_lw_in, rad_lw_out, rad_sw_in, rad_sw_out #if defined ( __rrtmg ) USE radiation_model_mod, & ONLY: rrtm_aldif, rrtm_aldir, rrtm_asdif, rrtm_asdir, rad_lw_cs_hr, & rad_lw_hr, rad_sw_cs_hr, rad_sw_hr #endif USE statistics IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< INTEGER(iwp) :: k_surface_level !< INTEGER(iwp) :: nt !< INTEGER(iwp) :: omp_get_thread_num !< INTEGER(iwp) :: sr !< INTEGER(iwp) :: tn !< LOGICAL :: first !< REAL(wp) :: dptdz_threshold !< REAL(wp) :: fac !< REAL(wp) :: height !< REAL(wp) :: pts !< REAL(wp) :: sums_l_eper !< REAL(wp) :: sums_l_etot !< REAL(wp) :: s1 !< REAL(wp) :: s2 !< REAL(wp) :: s3 !< REAL(wp) :: s4 !< REAL(wp) :: s5 !< REAL(wp) :: s6 !< REAL(wp) :: s7 !< REAL(wp) :: ust !< REAL(wp) :: ust2 !< REAL(wp) :: u2 !< REAL(wp) :: vst !< REAL(wp) :: vst2 !< REAL(wp) :: v2 !< REAL(wp) :: w2 !< REAL(wp) :: z_i(2) !< REAL(wp) :: dptdz(nzb+1:nzt+1) !< REAL(wp) :: sums_ll(nzb:nzt+1,2) !< CALL cpu_log( log_point(10), 'flow_statistics', 'start' ) ! !-- To be on the safe side, check whether flow_statistics has already been !-- called once after the current time step IF ( flow_statistics_called ) THEN message_string = 'flow_statistics is called two times within one ' // & 'timestep' CALL message( 'flow_statistics', 'PA0190', 1, 2, 0, 6, 0 ) ENDIF !$acc data create( sums, sums_l ) !$acc update device( hom ) ! !-- Compute statistics for each (sub-)region DO sr = 0, statistic_regions ! !-- Initialize (local) summation array sums_l = 0.0_wp ! !-- Store sums that have been computed in other subroutines in summation !-- array sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities !-- WARNING: next line still has to be adjusted for OpenMP sums_l(:,21,0) = sums_wsts_bc_l(:,sr) ! heat flux from advec_s_bc sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres ! !-- When calcuating horizontally-averaged total (resolved- plus subgrid- !-- scale) vertical fluxes and velocity variances by using commonly- !-- applied Reynolds-based methods ( e.g. = (w-)*(pt-) ) !-- in combination with the 5th order advection scheme, pronounced !-- artificial kinks could be observed in the vertical profiles near the !-- surface. Please note: these kinks were not related to the model truth, !-- i.e. these kinks are just related to an evaluation problem. !-- In order avoid these kinks, vertical fluxes and horizontal as well !-- vertical velocity variances are calculated directly within the advection !-- routines, according to the numerical discretization, to evaluate the !-- statistical quantities as they will appear within the prognostic !-- equations. !-- Copy the turbulent quantities, evaluated in the advection routines to !-- the local array sums_l() for further computations. IF ( ws_scheme_mom .AND. sr == 0 ) THEN ! !-- According to the Neumann bc for the horizontal velocity components, !-- the corresponding fluxes has to satisfiy the same bc. IF ( ocean ) THEN sums_us2_ws_l(nzt+1,:) = sums_us2_ws_l(nzt,:) sums_vs2_ws_l(nzt+1,:) = sums_vs2_ws_l(nzt,:) ENDIF DO i = 0, threads_per_task-1 ! !-- Swap the turbulent quantities evaluated in advec_ws. sums_l(:,13,i) = sums_wsus_ws_l(:,i) ! w*u* sums_l(:,15,i) = sums_wsvs_ws_l(:,i) ! w*v* sums_l(:,30,i) = sums_us2_ws_l(:,i) ! u*2 sums_l(:,31,i) = sums_vs2_ws_l(:,i) ! v*2 sums_l(:,32,i) = sums_ws2_ws_l(:,i) ! w*2 sums_l(:,34,i) = sums_l(:,34,i) + 0.5_wp * & ( sums_us2_ws_l(:,i) + sums_vs2_ws_l(:,i) + & sums_ws2_ws_l(:,i) ) ! e* DO k = nzb, nzt sums_l(nzb+5,pr_palm,i) = sums_l(nzb+5,pr_palm,i) + 0.5_wp * ( & sums_us2_ws_l(k,i) + & sums_vs2_ws_l(k,i) + & sums_ws2_ws_l(k,i) ) ENDDO ENDDO ENDIF IF ( ws_scheme_sca .AND. sr == 0 ) THEN DO i = 0, threads_per_task-1 sums_l(:,17,i) = sums_wspts_ws_l(:,i) ! w*pt* from advec_s_ws IF ( ocean ) sums_l(:,66,i) = sums_wssas_ws_l(:,i) ! w*sa* IF ( humidity ) sums_l(:,49,i) = sums_wsqs_ws_l(:,i) !w*q* IF ( passive_scalar ) sums_l(:,116,i) = sums_wsss_ws_l(:,i) !w*s* ENDDO ENDIF ! !-- Horizontally averaged profiles of horizontal velocities and temperature. !-- They must have been computed before, because they are already required !-- for other horizontal averages. tn = 0 !$OMP PARALLEL PRIVATE( i, j, k, tn ) !$ tn = omp_get_thread_num() !$acc update device( sums_l ) !$OMP DO !$acc parallel loop gang present( pt, rflags_invers, rmask, sums_l, u, v ) create( s1, s2, s3 ) DO k = nzb, nzt+1 s1 = 0 s2 = 0 s3 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 ) DO i = nxl, nxr DO j = nys, nyn ! !-- k+1 is used in rflags since rflags is set 0 at surface points s1 = s1 + u(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) s2 = s2 + v(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) s3 = s3 + pt(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,1,tn) = s1 sums_l(k,2,tn) = s2 sums_l(k,4,tn) = s3 ENDDO !$acc end parallel loop ! !-- Horizontally averaged profile of salinity IF ( ocean ) THEN !$OMP DO !$acc parallel loop gang present( rflags_invers, rmask, sums_l, sa ) create( s1 ) DO k = nzb, nzt+1 s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + sa(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,23,tn) = s1 ENDDO !$acc end parallel loop ENDIF ! !-- Horizontally averaged profiles of virtual potential temperature, !-- total water content, specific humidity and liquid water potential !-- temperature IF ( humidity ) THEN !$OMP DO !$acc parallel loop gang present( q, rflags_invers, rmask, sums_l, vpt ) create( s1, s2 ) DO k = nzb, nzt+1 s1 = 0 s2 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + q(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) s2 = s2 + vpt(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,41,tn) = s1 sums_l(k,44,tn) = s2 ENDDO !$acc end parallel loop IF ( cloud_physics ) THEN !$OMP DO !$acc parallel loop gang present( pt, q, ql, rflags_invers, rmask, sums_l ) create( s1, s2 ) DO k = nzb, nzt+1 s1 = 0 s2 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + ( q(k,j,i) - ql(k,j,i) ) * & rmask(j,i,sr) * rflags_invers(j,i,k+1) s2 = s2 + ( pt(k,j,i) + l_d_cp*pt_d_t(k) * ql(k,j,i) ) * & rmask(j,i,sr) * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,42,tn) = s1 sums_l(k,43,tn) = s2 ENDDO !$acc end parallel loop ENDIF ENDIF ! !-- Horizontally averaged profiles of passive scalar IF ( passive_scalar ) THEN !$OMP DO !$acc parallel loop gang present( s, rflags_invers, rmask, sums_l ) create( s1 ) DO k = nzb, nzt+1 s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + s(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,117,tn) = s1 ENDDO !$acc end parallel loop ENDIF !$OMP END PARALLEL ! !-- Summation of thread sums IF ( threads_per_task > 1 ) THEN DO i = 1, threads_per_task-1 !$acc parallel present( sums_l ) sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i) sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i) sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i) !$acc end parallel IF ( ocean ) THEN !$acc parallel present( sums_l ) sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i) !$acc end parallel ENDIF IF ( humidity ) THEN !$acc parallel present( sums_l ) sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i) !$acc end parallel IF ( cloud_physics ) THEN !$acc parallel present( sums_l ) sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i) sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i) !$acc end parallel ENDIF ENDIF IF ( passive_scalar ) THEN !$acc parallel present( sums_l ) sums_l(:,117,0) = sums_l(:,117,0) + sums_l(:,117,i) !$acc end parallel ENDIF ENDDO ENDIF #if defined( __parallel ) ! !-- Compute total sum from local sums !$acc update host( sums_l ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, & MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, & MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, & MPI_SUM, comm2d, ierr ) IF ( ocean ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) ENDIF IF ( humidity ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) IF ( cloud_physics ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) ENDIF ENDIF IF ( passive_scalar ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,117,0), sums(nzb,117), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) ENDIF !$acc update device( sums ) #else !$acc parallel present( sums, sums_l ) sums(:,1) = sums_l(:,1,0) sums(:,2) = sums_l(:,2,0) sums(:,4) = sums_l(:,4,0) !$acc end parallel IF ( ocean ) THEN !$acc parallel present( sums, sums_l ) sums(:,23) = sums_l(:,23,0) !$acc end parallel ENDIF IF ( humidity ) THEN !$acc parallel present( sums, sums_l ) sums(:,44) = sums_l(:,44,0) sums(:,41) = sums_l(:,41,0) !$acc end parallel IF ( cloud_physics ) THEN !$acc parallel present( sums, sums_l ) sums(:,42) = sums_l(:,42,0) sums(:,43) = sums_l(:,43,0) !$acc end parallel ENDIF ENDIF IF ( passive_scalar ) THEN !$acc parallel present( sums, sums_l ) sums(:,117) = sums_l(:,117,0) !$acc end parallel ENDIF #endif ! !-- Final values are obtained by division by the total number of grid points !-- used for summation. After that store profiles. !$acc parallel present( hom, ngp_2dh, ngp_2dh_s_inner, sums ) sums(:,1) = sums(:,1) / ngp_2dh(sr) sums(:,2) = sums(:,2) / ngp_2dh(sr) sums(:,4) = sums(:,4) / ngp_2dh_s_inner(:,sr) hom(:,1,1,sr) = sums(:,1) ! u hom(:,1,2,sr) = sums(:,2) ! v hom(:,1,4,sr) = sums(:,4) ! pt !$acc end parallel ! !-- Salinity IF ( ocean ) THEN !$acc parallel present( hom, ngp_2dh_s_inner, sums ) sums(:,23) = sums(:,23) / ngp_2dh_s_inner(:,sr) hom(:,1,23,sr) = sums(:,23) ! sa !$acc end parallel ENDIF ! !-- Humidity and cloud parameters IF ( humidity ) THEN !$acc parallel present( hom, ngp_2dh_s_inner, sums ) sums(:,44) = sums(:,44) / ngp_2dh_s_inner(:,sr) sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr) hom(:,1,44,sr) = sums(:,44) ! vpt hom(:,1,41,sr) = sums(:,41) ! qv (q) !$acc end parallel IF ( cloud_physics ) THEN !$acc parallel present( hom, ngp_2dh_s_inner, sums ) sums(:,42) = sums(:,42) / ngp_2dh_s_inner(:,sr) sums(:,43) = sums(:,43) / ngp_2dh_s_inner(:,sr) hom(:,1,42,sr) = sums(:,42) ! qv hom(:,1,43,sr) = sums(:,43) ! pt !$acc end parallel ENDIF ENDIF ! !-- Passive scalar IF ( passive_scalar ) THEN !$acc parallel present( hom, ngp_2dh_s_inner, sums ) sums(:,117) = sums(:,117) / ngp_2dh_s_inner(:,sr) hom(:,1,117,sr) = sums(:,117) ! s !$acc end parallel ENDIF ! !-- Horizontally averaged profiles of the remaining prognostic variables, !-- variances, the total and the perturbation energy (single values in last !-- column of sums_l) and some diagnostic quantities. !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly !-- ---- speaking the following k-loop would have to be split up and !-- rearranged according to the staggered grid. !-- However, this implies no error since staggered velocity components !-- are zero at the walls and inside buildings. tn = 0 !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, & !$OMP sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, & !$OMP w2 ) !$ tn = omp_get_thread_num() !$OMP DO !$acc parallel loop gang present( e, hom, kh, km, p, pt, w, rflags_invers, rmask, sums_l ) create( s1, s2, s3, s4, s5, s6, s7 ) DO k = nzb, nzt+1 s1 = 0 s2 = 0 s3 = 0 s4 = 0 s5 = 0 s6 = 0 s7 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4, s5, s6, s7 ) DO i = nxl, nxr DO j = nys, nyn ! !-- Prognostic and diagnostic variables s1 = s1 + w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) s2 = s2 + e(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) s3 = s3 + km(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) s4 = s4 + kh(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) s5 = s5 + p(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) s6 = s6 + ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr) * & rflags_invers(j,i,k+1) ! !-- Higher moments !-- (Computation of the skewness of w further below) s7 = s7 + w(k,j,i)**3 * rmask(j,i,sr) * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,3,tn) = s1 sums_l(k,8,tn) = s2 sums_l(k,9,tn) = s3 sums_l(k,10,tn) = s4 sums_l(k,40,tn) = s5 sums_l(k,33,tn) = s6 sums_l(k,38,tn) = s7 ENDDO !$acc end parallel loop IF ( humidity ) THEN !$OMP DO !$acc parallel loop gang present( hom, q, rflags_invers, rmask, sums_l ) create( s1 ) DO k = nzb, nzt+1 s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + ( q(k,j,i)-hom(k,1,41,sr) )**2 * rmask(j,i,sr) * & rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,70,tn) = s1 ENDDO !$acc end parallel loop ENDIF ! !-- Total and perturbation energy for the total domain (being !-- collected in the last column of sums_l). s1 = 0 !$OMP DO !$acc parallel loop collapse(3) present( rflags_invers, rmask, u, v, w ) reduction(+:s1) DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 s1 = s1 + 0.5_wp * & ( u(k,j,i)**2 + v(k,j,i)**2 + w(k,j,i)**2 ) * & rmask(j,i,sr) * rflags_invers(j,i,k+1) ENDDO ENDDO ENDDO !$acc end parallel loop !$acc parallel present( sums_l ) sums_l(nzb+4,pr_palm,tn) = s1 !$acc end parallel !$OMP DO !$acc parallel present( rmask, sums_l, us, usws, vsws, ts ) create( s1, s2, s3, s4 ) s1 = 0 s2 = 0 s3 = 0 s4 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4 ) DO i = nxl, nxr DO j = nys, nyn ! !-- 2D-arrays (being collected in the last column of sums_l) s1 = s1 + us(j,i) * rmask(j,i,sr) s2 = s2 + usws(j,i) * rmask(j,i,sr) s3 = s3 + vsws(j,i) * rmask(j,i,sr) s4 = s4 + ts(j,i) * rmask(j,i,sr) ENDDO ENDDO sums_l(nzb,pr_palm,tn) = s1 sums_l(nzb+1,pr_palm,tn) = s2 sums_l(nzb+2,pr_palm,tn) = s3 sums_l(nzb+3,pr_palm,tn) = s4 !$acc end parallel IF ( humidity ) THEN !$acc parallel present( qs, rmask, sums_l ) create( s1 ) s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + qs(j,i) * rmask(j,i,sr) ENDDO ENDDO sums_l(nzb+12,pr_palm,tn) = s1 !$acc end parallel ENDIF IF ( passive_scalar ) THEN !$acc parallel present( ss, rmask, sums_l ) create( s1 ) s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + ss(j,i) * rmask(j,i,sr) ENDDO ENDDO sums_l(nzb+13,pr_palm,tn) = s1 !$acc end parallel ENDIF ! !-- Computation of statistics when ws-scheme is not used. Else these !-- quantities are evaluated in the advection routines. IF ( .NOT. ws_scheme_mom .OR. sr /= 0 .OR. simulated_time == 0.0_wp ) & THEN !$OMP DO !$acc parallel loop gang present( u, v, w, rflags_invers, rmask, sums_l ) create( s1, s2, s3, s4, ust2, vst2, w2 ) DO k = nzb, nzt+1 s1 = 0 s2 = 0 s3 = 0 s4 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4 ) DO i = nxl, nxr DO j = nys, nyn ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 w2 = w(k,j,i)**2 s1 = s1 + ust2 * rmask(j,i,sr) * rflags_invers(j,i,k+1) s2 = s2 + vst2 * rmask(j,i,sr) * rflags_invers(j,i,k+1) s3 = s3 + w2 * rmask(j,i,sr) * rflags_invers(j,i,k+1) ! !-- Perturbation energy s4 = s4 + 0.5_wp * ( ust2 + vst2 + w2 ) * rmask(j,i,sr) * & rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,30,tn) = s1 sums_l(k,31,tn) = s2 sums_l(k,32,tn) = s3 sums_l(k,34,tn) = s4 ENDDO !$acc end parallel loop ! !-- Total perturbation TKE !$OMP DO !$acc parallel present( sums_l ) create( s1 ) s1 = 0 !$acc loop reduction( +: s1 ) DO k = nzb, nzt+1 s1 = s1 + sums_l(k,34,tn) ENDDO sums_l(nzb+5,pr_palm,tn) = s1 !$acc end parallel ENDIF ! !-- Horizontally averaged profiles of the vertical fluxes ! !-- Subgridscale fluxes. !-- WARNING: If a Prandtl-layer is used (k=nzb for flat terrain), the fluxes !-- ------- should be calculated there in a different way. This is done !-- in the next loop further below, where results from this loop are !-- overwritten. However, THIS WORKS IN CASE OF FLAT TERRAIN ONLY! !-- The non-flat case still has to be handled. !-- NOTE: for simplicity, nzb_s_inner is used below, although !-- ---- strictly speaking the following k-loop would have to be !-- split up according to the staggered grid. !-- However, this implies no error since staggered velocity !-- components are zero at the walls and inside buildings. !$OMP DO !$acc parallel loop gang present( ddzu, kh, km, pt, u, v, w, rflags_invers, rmask, sums_l ) create( s1, s2, s3 ) DO k = nzb, nzt_diff s1 = 0 s2 = 0 s3 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 ) DO i = nxl, nxr DO j = nys, nyn ! !-- Momentum flux w"u" s1 = s1 - 0.25_wp * ( & km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) & ) * ( & ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & + ( w(k,j,i) - w(k,j,i-1) ) * ddx & ) & * rmask(j,i,sr) * rflags_invers(j,i,k+1) ! !-- Momentum flux w"v" s2 = s2 - 0.25_wp * ( & km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) & ) * ( & ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & + ( w(k,j,i) - w(k,j-1,i) ) * ddy & ) & * rmask(j,i,sr) * rflags_invers(j,i,k+1) ! !-- Heat flux w"pt" s3 = s3 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & * ( pt(k+1,j,i) - pt(k,j,i) ) & * ddzu(k+1) * rmask(j,i,sr) & * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,12,tn) = s1 sums_l(k,14,tn) = s2 sums_l(k,16,tn) = s3 ENDDO !$acc end parallel loop ! !-- Salinity flux w"sa" IF ( ocean ) THEN !$acc parallel loop gang present( ddzu, kh, sa, rflags_invers, rmask, sums_l ) create( s1 ) DO k = nzb, nzt_diff s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & * ( sa(k+1,j,i) - sa(k,j,i) ) & * ddzu(k+1) * rmask(j,i,sr) & * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,65,tn) = s1 ENDDO !$acc end parallel loop ENDIF ! !-- Buoyancy flux, water flux (humidity flux) w"q" IF ( humidity ) THEN !$acc parallel loop gang present( ddzu, kh, q, vpt, rflags_invers, rmask, sums_l ) create( s1, s2 ) DO k = nzb, nzt_diff s1 = 0 s2 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & * ( vpt(k+1,j,i) - vpt(k,j,i) ) & * ddzu(k+1) * rmask(j,i,sr) & * rflags_invers(j,i,k+1) s2 = s2 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & * ( q(k+1,j,i) - q(k,j,i) ) & * ddzu(k+1) * rmask(j,i,sr) & * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,45,tn) = s1 sums_l(k,48,tn) = s2 ENDDO !$acc end parallel loop IF ( cloud_physics ) THEN !$acc parallel loop gang present( ddzu, kh, q, ql, rflags_invers, rmask, sums_l ) create( s1 ) DO k = nzb, nzt_diff s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & * ( ( q(k+1,j,i) - ql(k+1,j,i) ) & - ( q(k,j,i) - ql(k,j,i) ) ) & * ddzu(k+1) * rmask(j,i,sr) & * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,51,tn) = s1 ENDDO !$acc end parallel loop ENDIF ENDIF ! !-- Passive scalar flux IF ( passive_scalar ) THEN !$acc parallel loop gang present( ddzu, kh, s, rflags_invers, rmask, sums_l ) create( s1 ) DO k = nzb, nzt_diff s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & * ( s(k+1,j,i) - s(k,j,i) ) & * ddzu(k+1) * rmask(j,i,sr) & * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,119,tn) = s1 ENDDO !$acc end parallel loop ENDIF IF ( use_surface_fluxes ) THEN !$OMP DO !$acc parallel present( rmask, shf, sums_l, usws, vsws ) create( s1, s2, s3, s4, s5 ) s1 = 0 s2 = 0 s3 = 0 s4 = 0 s5 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4, s5 ) DO i = nxl, nxr DO j = nys, nyn ! !-- Subgridscale fluxes in the Prandtl layer s1 = s1 + usws(j,i) * rmask(j,i,sr) ! w"u" s2 = s2 + vsws(j,i) * rmask(j,i,sr) ! w"v" s3 = s3 + shf(j,i) * rmask(j,i,sr) ! w"pt" s4 = s4 + 0.0_wp * rmask(j,i,sr) ! u"pt" s5 = s5 + 0.0_wp * rmask(j,i,sr) ! v"pt" ENDDO ENDDO sums_l(nzb,12,tn) = s1 sums_l(nzb,14,tn) = s2 sums_l(nzb,16,tn) = s3 sums_l(nzb,58,tn) = s4 sums_l(nzb,61,tn) = s5 !$acc end parallel IF ( ocean ) THEN !$OMP DO !$acc parallel present( rmask, saswsb, sums_l ) create( s1 ) s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + saswsb(j,i) * rmask(j,i,sr) ! w"sa" ENDDO ENDDO sums_l(nzb,65,tn) = s1 !$acc end parallel ENDIF IF ( humidity ) THEN !$OMP DO !$acc parallel present( pt, q, qsws, rmask, shf, sums_l ) create( s1, s2 ) s1 = 0 s2 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") s2 = s2 + ( ( 1.0_wp + 0.61_wp * q(nzb,j,i) ) * shf(j,i) & + 0.61_wp * pt(nzb,j,i) * qsws(j,i) ) ENDDO ENDDO sums_l(nzb,48,tn) = s1 sums_l(nzb,45,tn) = s2 !$acc end parallel IF ( cloud_droplets ) THEN !$OMP DO !$acc parallel present( pt, q, ql, qsws, rmask, shf, sums_l ) create( s1 ) s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + ( ( 1.0_wp + & 0.61_wp * q(nzb,j,i) - ql(nzb,j,i) ) * & shf(j,i) + 0.61_wp * pt(nzb,j,i) * qsws(j,i) ) ENDDO ENDDO sums_l(nzb,45,tn) = s1 !$acc end parallel ENDIF IF ( cloud_physics ) THEN !$OMP DO !$acc parallel present( qsws, rmask, sums_l ) create( s1 ) s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn ! !-- Formula does not work if ql(nzb) /= 0.0 s1 = s1 + qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") ENDDO ENDDO sums_l(nzb,51,tn) = s1 !$acc end parallel ENDIF ENDIF IF ( passive_scalar ) THEN !$OMP DO !$acc parallel present( ssws, rmask, sums_l ) create( s1 ) s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + ssws(j,i) * rmask(j,i,sr) ! w"s" ENDDO ENDDO sums_l(nzb,119,tn) = s1 !$acc end parallel ENDIF ENDIF ! !-- Subgridscale fluxes at the top surface IF ( use_top_fluxes ) THEN !$OMP DO !$acc parallel present( rmask, sums_l, tswst, uswst, vswst ) create( s1, s2, s3, s4, s5 ) s1 = 0 s2 = 0 s3 = 0 s4 = 0 s5 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4, s5 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + uswst(j,i) * rmask(j,i,sr) ! w"u" s2 = s2 + vswst(j,i) * rmask(j,i,sr) ! w"v" s3 = s3 + tswst(j,i) * rmask(j,i,sr) ! w"pt" s4 = s4 + 0.0_wp * rmask(j,i,sr) ! u"pt" s5 = s5 + 0.0_wp * rmask(j,i,sr) ! v"pt" ENDDO ENDDO sums_l(nzt:nzt+1,12,tn) = s1 sums_l(nzt:nzt+1,14,tn) = s2 sums_l(nzt:nzt+1,16,tn) = s3 sums_l(nzt:nzt+1,58,tn) = s4 sums_l(nzt:nzt+1,61,tn) = s5 !$acc end parallel IF ( ocean ) THEN !$OMP DO !$acc parallel present( rmask, saswst, sums_l ) create( s1 ) s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + saswst(j,i) * rmask(j,i,sr) ! w"sa" ENDDO ENDDO sums_l(nzt,65,tn) = s1 !$acc end parallel ENDIF IF ( humidity ) THEN !$OMP DO !$acc parallel present( pt, q, qswst, rmask, tswst, sums_l ) create( s1, s2 ) s1 = 0 s2 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") s2 = s2 + ( ( 1.0_wp + 0.61_wp * q(nzt,j,i) ) * tswst(j,i) +& 0.61_wp * pt(nzt,j,i) * qswst(j,i) ) ENDDO ENDDO sums_l(nzt,48,tn) = s1 sums_l(nzt,45,tn) = s2 !$acc end parallel IF ( cloud_droplets ) THEN !$OMP DO !$acc parallel present( pt, q, ql, qswst, rmask, tswst, sums_l ) create( s1 ) s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + ( ( 1.0_wp + & 0.61_wp * q(nzt,j,i) - ql(nzt,j,i) ) * & tswst(j,i) + & 0.61_wp * pt(nzt,j,i) * qswst(j,i) ) ENDDO ENDDO sums_l(nzt,45,tn) = s1 !$acc end parallel ENDIF IF ( cloud_physics ) THEN !$OMP DO !$acc parallel present( qswst, rmask, sums_l ) create( s1 ) s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn ! !-- Formula does not work if ql(nzb) /= 0.0 s1 = s1 + qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") ENDDO ENDDO sums_l(nzt,51,tn) = s1 !$acc end parallel ENDIF ENDIF IF ( passive_scalar ) THEN !$OMP DO !$acc parallel present( sswst, rmask, sums_l ) create( s1 ) s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + sswst(j,i) * rmask(j,i,sr) ! w"s" ENDDO ENDDO sums_l(nzt,119,tn) = s1 !$acc end parallel ENDIF ENDIF ! !-- Resolved fluxes (can be computed for all horizontal points) !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly !-- ---- speaking the following k-loop would have to be split up and !-- rearranged according to the staggered grid. !$acc parallel loop gang present( hom, pt, rflags_invers, rmask, sums_l, u, v, w ) create( s1, s2, s3 ) DO k = nzb, nzt_diff s1 = 0 s2 = 0 s3 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 ) DO i = nxl, nxr DO j = nys, nyn ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + & u(k+1,j,i) - hom(k+1,1,1,sr) ) vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + & v(k+1,j,i) - hom(k+1,1,2,sr) ) pts = 0.5_wp * ( pt(k,j,i) - hom(k,1,4,sr) + & pt(k+1,j,i) - hom(k+1,1,4,sr) ) ! !-- Higher moments s1 = s1 + pts * w(k,j,i)**2 * rmask(j,i,sr) * rflags_invers(j,i,k+1) s2 = s2 + pts**2 * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) ! !-- Energy flux w*e* (has to be adjusted?) s3 = s3 + w(k,j,i) * 0.5_wp * ( ust**2 + vst**2 + w(k,j,i)**2 )& * rmask(j,i,sr) * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,35,tn) = s1 sums_l(k,36,tn) = s2 sums_l(k,37,tn) = s3 ENDDO !$acc end parallel loop ! !-- Salinity flux and density (density does not belong to here, !-- but so far there is no other suitable place to calculate) IF ( ocean ) THEN IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN !$acc parallel loop gang present( hom, rflags_invers, rmask, sa, sums_l, w ) create( s1 ) DO k = nzb, nzt_diff s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + 0.5_wp * ( sa(k,j,i) - hom(k,1,23,sr) + & sa(k+1,j,i) - hom(k+1,1,23,sr) ) & * w(k,j,i) * rmask(j,i,sr) & * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,66,tn) = s1 ENDDO !$acc end parallel loop ENDIF !$acc parallel loop gang present( rflags_invers, rho, prho, rmask, sums_l ) create( s1, s2 ) DO k = nzb, nzt_diff s1 = 0 s2 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + rho(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) s2 = s2 + prho(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,64,tn) = s1 sums_l(k,71,tn) = s2 ENDDO !$acc end parallel loop ENDIF ! !-- Buoyancy flux, water flux, humidity flux, liquid water !-- content, rain drop concentration and rain water content IF ( humidity ) THEN IF ( cloud_physics .OR. cloud_droplets ) THEN !$acc parallel loop gang present( hom, rflags_invers, rmask, sums_l, vpt, w ) create( s1 ) DO k = nzb, nzt_diff s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + & vpt(k+1,j,i) - hom(k+1,1,44,sr) ) * & w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,46,tn) = s1 ENDDO !$acc end parallel loop IF ( .NOT. cloud_droplets ) THEN !$acc parallel loop gang present( hom, q, ql, rflags_invers, rmask, sums_l, w ) create( s1 ) DO k = nzb, nzt_diff s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + 0.5_wp * ( ( q(k,j,i) - ql(k,j,i) ) - hom(k,1,42,sr) + & ( q(k+1,j,i) - ql(k+1,j,i) ) - hom(k+1,1,42,sr) ) & * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,52,tn) = s1 ENDDO !$acc end parallel loop IF ( microphysics_seifert ) THEN !$acc parallel loop gang present( qc, ql, rflags_invers, rmask, sums_l ) create( s1, s2 ) DO k = nzb, nzt_diff s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + ql(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) s2 = s2 + qc(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,54,tn) = s1 sums_l(k,75,tn) = s2 ENDDO !$acc end parallel loop !$acc parallel loop gang present( nr, qr, prr, rflags_invers, rmask, sums_l ) create( s1, s2, s3 ) DO k = nzb, nzt_diff s1 = 0 s2 = 0 s3 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + nr(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) s2 = s2 + qr(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) s3 = s3 + prr(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,73,tn) = s1 sums_l(k,74,tn) = s2 sums_l(k,76,tn) = s3 ENDDO !$acc end parallel loop ELSE !$acc parallel loop gang present( ql, rflags_invers, rmask, sums_l ) create( s1 ) DO k = nzb, nzt_diff s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + ql(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,54,tn) = s1 ENDDO !$acc end parallel loop ENDIF ELSE !$acc parallel loop gang present( ql, rflags_invers, rmask, sums_l ) create( s1 ) DO k = nzb, nzt_diff s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + ql(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,54,tn) = s1 ENDDO !$acc end parallel loop ENDIF ELSE IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN !$acc parallel loop gang present( hom, rflags_invers, rmask, sums_l, vpt, w ) create( s1 ) DO k = nzb, nzt_diff s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + & vpt(k+1,j,i) - hom(k+1,1,44,sr) ) & * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,46,tn) = s1 ENDDO !$acc end parallel loop ELSEIF ( ws_scheme_sca .AND. sr == 0 ) THEN !$acc parallel loop present( hom, sums_l ) DO k = nzb, nzt_diff sums_l(k,46,tn) = ( 1.0_wp + 0.61_wp * hom(k,1,41,sr) ) * sums_l(k,17,tn) + & 0.61_wp * hom(k,1,4,sr) * sums_l(k,49,tn) ENDDO !$acc end parallel loop ENDIF ENDIF ENDIF ! !-- Passive scalar flux IF ( passive_scalar .AND. ( .NOT. ws_scheme_sca .OR. sr /= 0 ) ) THEN !$acc parallel loop gang present( hom, s, rflags_invers, rmask, sums_l, w ) create( s1 ) DO k = nzb, nzt_diff s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + 0.5_wp * ( s(k,j,i) - hom(k,1,117,sr) + & s(k+1,j,i) - hom(k+1,1,117,sr) ) & * w(k,j,i) * rmask(j,i,sr) & * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,49,tn) = s1 ENDDO !$acc end parallel loop ENDIF ! !-- For speed optimization fluxes which have been computed in part directly !-- inside the WS advection routines are treated seperatly !-- Momentum fluxes first: IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN !$OMP DO !$acc parallel loop gang present( hom, rflags_invers, rmask, sums_l, u, v, w ) create( s1, s2 ) DO k = nzb, nzt_diff s1 = 0 s2 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) DO i = nxl, nxr DO j = nys, nyn ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + & u(k+1,j,i) - hom(k+1,1,1,sr) ) vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + & v(k+1,j,i) - hom(k+1,1,2,sr) ) ! !-- Momentum flux w*u* s1 = s1 + 0.5_wp * ( w(k,j,i-1) + w(k,j,i) ) & * ust * rmask(j,i,sr) & * rflags_invers(j,i,k+1) ! !-- Momentum flux w*v* s2 = s2 + 0.5_wp * ( w(k,j-1,i) + w(k,j,i) ) & * vst * rmask(j,i,sr) & * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,13,tn) = s1 sums_l(k,15,tn) = s1 ENDDO !$acc end parallel loop ENDIF IF ( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN !$OMP DO !$acc parallel loop gang present( hom, pt, rflags_invers, rmask, sums_l, w ) create( s1 ) DO k = nzb, nzt_diff s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn ! !-- Vertical heat flux s1 = s1 + 0.5_wp * ( pt(k,j,i) - hom(k,1,4,sr) + & pt(k+1,j,i) - hom(k+1,1,4,sr) ) & * w(k,j,i) * rmask(j,i,sr) & * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,17,tn) = s1 ENDDO !$acc end parallel loop IF ( humidity ) THEN !$acc parallel loop gang present( hom, q, rflags_invers, rmask, sums_l, w ) create( s1 ) DO k = nzb, nzt_diff s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + 0.5_wp * ( q(k,j,i) - hom(k,1,41,sr) + & q(k+1,j,i) - hom(k+1,1,41,sr) ) & * w(k,j,i) * rmask(j,i,sr) & * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,49,tn) = s1 ENDDO !$acc end parallel loop ENDIF IF ( passive_scalar ) THEN !$acc parallel loop gang present( hom, s, rflags_invers, rmask, sums_l, w ) create( s1 ) DO k = nzb, nzt_diff s1 = 0 !$acc loop vector collapse( 2 ) reduction( +: s1 ) DO i = nxl, nxr DO j = nys, nyn s1 = s1 + 0.5_wp * ( s(k,j,i) - hom(k,1,117,sr) + & s(k+1,j,i) - hom(k+1,1,117,sr) ) & * w(k,j,i) * rmask(j,i,sr) & * rflags_invers(j,i,k+1) ENDDO ENDDO sums_l(k,116,tn) = s1 ENDDO !$acc end parallel loop ENDIF ENDIF ! !-- Density at top follows Neumann condition IF ( ocean ) THEN !$acc parallel present( sums_l ) sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn) sums_l(nzt+1,71,tn) = sums_l(nzt,71,tn) !$acc end parallel ENDIF ! !-- Divergence of vertical flux of resolved scale energy and pressure !-- fluctuations as well as flux of pressure fluctuation itself (68). !-- First calculate the products, then the divergence. !-- Calculation is time consuming. Do it only, if profiles shall be plotted. IF ( hom(nzb+1,2,55,0) /= 0.0_wp .OR. hom(nzb+1,2,68,0) /= 0.0_wp ) THEN STOP '+++ openACC porting for vertical flux div of resolved scale TKE in flow_statistics is still missing' sums_ll = 0.0_wp ! local array !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt sums_ll(k,1) = sums_ll(k,1) + 0.5_wp * w(k,j,i) * ( & ( 0.25_wp * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) ) & - 0.5_wp * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) )**2& + ( 0.25_wp * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) ) & - 0.5_wp * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) )**2& + w(k,j,i)**2 ) sums_ll(k,2) = sums_ll(k,2) + 0.5_wp * w(k,j,i) & * ( p(k,j,i) + p(k+1,j,i) ) ENDDO ENDDO ENDDO sums_ll(0,1) = 0.0_wp ! because w is zero at the bottom sums_ll(nzt+1,1) = 0.0_wp sums_ll(0,2) = 0.0_wp sums_ll(nzt+1,2) = 0.0_wp DO k = nzb+1, nzt sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k) sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k) sums_l(k,68,tn) = sums_ll(k,2) ENDDO sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn) sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn) sums_l(nzb,68,tn) = 0.0_wp ! because w* = 0 at nzb ENDIF ! !-- Divergence of vertical flux of SGS TKE and the flux itself (69) IF ( hom(nzb+1,2,57,0) /= 0.0_wp .OR. hom(nzb+1,2,69,0) /= 0.0_wp ) THEN STOP '+++ openACC porting for vertical flux div of SGS TKE in flow_statistics is still missing' !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5_wp * ( & (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & - (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) & ) * ddzw(k) sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5_wp * ( & (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & ) ENDDO ENDDO ENDDO sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn) sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn) ENDIF ! !-- Horizontal heat fluxes (subgrid, resolved, total). !-- Do it only, if profiles shall be plotted. IF ( hom(nzb+1,2,58,0) /= 0.0_wp ) THEN STOP '+++ openACC porting for horizontal flux calculation in flow_statistics is still missing' !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt ! !-- Subgrid horizontal heat fluxes u"pt", v"pt" sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5_wp * & ( kh(k,j,i) + kh(k,j,i-1) ) & * ( pt(k,j,i-1) - pt(k,j,i) ) & * ddx * rmask(j,i,sr) sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5_wp * & ( kh(k,j,i) + kh(k,j-1,i) ) & * ( pt(k,j-1,i) - pt(k,j,i) ) & * ddy * rmask(j,i,sr) ! !-- Resolved horizontal heat fluxes u*pt*, v*pt* sums_l(k,59,tn) = sums_l(k,59,tn) + & ( u(k,j,i) - hom(k,1,1,sr) ) * 0.5_wp * & ( pt(k,j,i-1) - hom(k,1,4,sr) + & pt(k,j,i) - hom(k,1,4,sr) ) pts = 0.5_wp * ( pt(k,j-1,i) - hom(k,1,4,sr) + & pt(k,j,i) - hom(k,1,4,sr) ) sums_l(k,62,tn) = sums_l(k,62,tn) + & ( v(k,j,i) - hom(k,1,2,sr) ) * 0.5_wp * & ( pt(k,j-1,i) - hom(k,1,4,sr) + & pt(k,j,i) - hom(k,1,4,sr) ) ENDDO ENDDO ENDDO ! !-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer) sums_l(nzb,58,tn) = 0.0_wp sums_l(nzb,59,tn) = 0.0_wp sums_l(nzb,60,tn) = 0.0_wp sums_l(nzb,61,tn) = 0.0_wp sums_l(nzb,62,tn) = 0.0_wp sums_l(nzb,63,tn) = 0.0_wp ENDIF ! !-- Collect current large scale advection and subsidence tendencies for !-- data output IF ( large_scale_forcing .AND. ( simulated_time > 0.0_wp ) ) THEN ! !-- Interpolation in time of LSF_DATA nt = 1 DO WHILE ( simulated_time - dt_3d > time_vert(nt) ) nt = nt + 1 ENDDO IF ( simulated_time - dt_3d /= time_vert(nt) ) THEN nt = nt - 1 ENDIF fac = ( simulated_time - dt_3d - time_vert(nt) ) & / ( time_vert(nt+1)-time_vert(nt) ) DO k = nzb, nzt sums_ls_l(k,0) = td_lsa_lpt(k,nt) & + fac * ( td_lsa_lpt(k,nt+1) - td_lsa_lpt(k,nt) ) sums_ls_l(k,1) = td_lsa_q(k,nt) & + fac * ( td_lsa_q(k,nt+1) - td_lsa_q(k,nt) ) ENDDO sums_ls_l(nzt+1,0) = sums_ls_l(nzt,0) sums_ls_l(nzt+1,1) = sums_ls_l(nzt,1) IF ( large_scale_subsidence .AND. use_subsidence_tendencies ) THEN DO k = nzb, nzt sums_ls_l(k,2) = td_sub_lpt(k,nt) + fac * & ( td_sub_lpt(k,nt+1) - td_sub_lpt(k,nt) ) sums_ls_l(k,3) = td_sub_q(k,nt) + fac * & ( td_sub_q(k,nt+1) - td_sub_q(k,nt) ) ENDDO sums_ls_l(nzt+1,2) = sums_ls_l(nzt,2) sums_ls_l(nzt+1,3) = sums_ls_l(nzt,3) ENDIF ENDIF IF ( land_surface ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb_soil, nzt_soil sums_l(k,89,tn) = sums_l(k,89,tn) + t_soil(k,j,i) & * rmask(j,i,sr) sums_l(k,91,tn) = sums_l(k,91,tn) + m_soil(k,j,i) & * rmask(j,i,sr) ENDDO ENDDO ENDDO ENDIF IF ( radiation .AND. radiation_scheme == 'rrtmg' ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt+1 sums_l(k,102,tn) = sums_l(k,102,tn) + rad_lw_in(k,j,i) & * rmask(j,i,sr) sums_l(k,103,tn) = sums_l(k,103,tn) + rad_lw_out(k,j,i) & * rmask(j,i,sr) sums_l(k,104,tn) = sums_l(k,104,tn) + rad_sw_in(k,j,i) & * rmask(j,i,sr) sums_l(k,105,tn) = sums_l(k,105,tn) + rad_sw_out(k,j,i) & * rmask(j,i,sr) #if defined ( __rrtmg ) sums_l(k,106,tn) = sums_l(k,106,tn) + rad_lw_cs_hr(k,j,i) & * rmask(j,i,sr) sums_l(k,107,tn) = sums_l(k,107,tn) + rad_lw_hr(k,j,i) & * rmask(j,i,sr) sums_l(k,108,tn) = sums_l(k,108,tn) + rad_sw_cs_hr(k,j,i) & * rmask(j,i,sr) sums_l(k,109,tn) = sums_l(k,109,tn) + rad_sw_hr(k,j,i) & * rmask(j,i,sr) #endif ENDDO ENDDO ENDDO ENDIF ! !-- Calculate the user-defined profiles CALL user_statistics( 'profiles', sr, tn ) !$OMP END PARALLEL ! !-- Summation of thread sums IF ( threads_per_task > 1 ) THEN STOP '+++ openACC porting for threads_per_task > 1 in flow_statistics is still missing' DO i = 1, threads_per_task-1 sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i) sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i) sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + & sums_l(:,45:pr_palm,i) IF ( max_pr_user > 0 ) THEN sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = & sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + & sums_l(:,pr_palm+1:pr_palm+max_pr_user,i) ENDIF ENDDO ENDIF !$acc update host( hom, sums, sums_l ) #if defined( __parallel ) ! !-- Compute total sum from local sums IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, & MPI_SUM, comm2d, ierr ) IF ( large_scale_forcing ) THEN CALL MPI_ALLREDUCE( sums_ls_l(nzb,2), sums(nzb,83), ngp_sums_ls, & MPI_REAL, MPI_SUM, comm2d, ierr ) ENDIF #else sums = sums_l(:,:,0) IF ( large_scale_forcing ) THEN sums(:,81:88) = sums_ls_l ENDIF #endif ! !-- Final values are obtained by division by the total number of grid points !-- used for summation. After that store profiles. !-- Check, if statistical regions do contain at least one grid point at the !-- respective k-level, otherwise division by zero will lead to undefined !-- values, which may cause e.g. problems with NetCDF output !-- Profiles: DO k = nzb, nzt+1 sums(k,3) = sums(k,3) / ngp_2dh(sr) sums(k,12:22) = sums(k,12:22) / ngp_2dh(sr) sums(k,30:32) = sums(k,30:32) / ngp_2dh(sr) sums(k,35:39) = sums(k,35:39) / ngp_2dh(sr) sums(k,45:53) = sums(k,45:53) / ngp_2dh(sr) sums(k,55:63) = sums(k,55:63) / ngp_2dh(sr) sums(k,81:88) = sums(k,81:88) / ngp_2dh(sr) sums(k,89:114) = sums(k,89:114) / ngp_2dh(sr) IF ( ngp_2dh_s_inner(k,sr) /= 0 ) THEN sums(k,8:11) = sums(k,8:11) / ngp_2dh_s_inner(k,sr) sums(k,23:29) = sums(k,23:29) / ngp_2dh_s_inner(k,sr) sums(k,33:34) = sums(k,33:34) / ngp_2dh_s_inner(k,sr) sums(k,40) = sums(k,40) / ngp_2dh_s_inner(k,sr) sums(k,54) = sums(k,54) / ngp_2dh_s_inner(k,sr) sums(k,64) = sums(k,64) / ngp_2dh_s_inner(k,sr) sums(k,70:80) = sums(k,70:80) / ngp_2dh_s_inner(k,sr) sums(k,115:pr_palm-2) = sums(k,115:pr_palm-2) / ngp_2dh_s_inner(k,sr) ENDIF ENDDO !-- u* and so on !-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose !-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer !-- above the topography, they are being divided by ngp_2dh(sr) sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / & ngp_2dh(sr) sums(nzb+12,pr_palm) = sums(nzb+12,pr_palm) / & ! qs ngp_2dh(sr) !-- eges, e* sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / & ngp_3d(sr) !-- Old and new divergence sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / & ngp_3d_inner(sr) !-- User-defined profiles IF ( max_pr_user > 0 ) THEN DO k = nzb, nzt+1 IF ( ngp_2dh_s_inner(k,sr) /= 0 ) THEN sums(k,pr_palm+1:pr_palm+max_pr_user) = & sums(k,pr_palm+1:pr_palm+max_pr_user) / & ngp_2dh_s_inner(k,sr) ENDIF ENDDO ENDIF ! !-- Collect horizontal average in hom. !-- Compute deduced averages (e.g. total heat flux) hom(:,1,3,sr) = sums(:,3) ! w hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles hom(:,1,9,sr) = sums(:,9) ! km hom(:,1,10,sr) = sums(:,10) ! kh hom(:,1,11,sr) = sums(:,11) ! l hom(:,1,12,sr) = sums(:,12) ! w"u" hom(:,1,13,sr) = sums(:,13) ! w*u* hom(:,1,14,sr) = sums(:,14) ! w"v" hom(:,1,15,sr) = sums(:,15) ! w*v* hom(:,1,16,sr) = sums(:,16) ! w"pt" hom(:,1,17,sr) = sums(:,17) ! w*pt* hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv hom(:,1,21,sr) = sums(:,21) ! w*pt*BC hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC ! profile 24 is initial profile (sa) ! profiles 25-29 left empty for initial ! profiles hom(:,1,30,sr) = sums(:,30) ! u*2 hom(:,1,31,sr) = sums(:,31) ! v*2 hom(:,1,32,sr) = sums(:,32) ! w*2 hom(:,1,33,sr) = sums(:,33) ! pt*2 hom(:,1,34,sr) = sums(:,34) ! e* hom(:,1,35,sr) = sums(:,35) ! w*2pt* hom(:,1,36,sr) = sums(:,36) ! w*pt*2 hom(:,1,37,sr) = sums(:,37) ! w*e* hom(:,1,38,sr) = sums(:,38) ! w*3 hom(:,1,39,sr) = sums(:,38) / ( abs( sums(:,32) ) + 1E-20_wp )**1.5_wp ! Sw hom(:,1,40,sr) = sums(:,40) ! p hom(:,1,45,sr) = sums(:,45) ! w"vpt" hom(:,1,46,sr) = sums(:,46) ! w*vpt* hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv") hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*) hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv) hom(:,1,51,sr) = sums(:,51) ! w"qv" hom(:,1,52,sr) = sums(:,52) ! w*qv* hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv) hom(:,1,54,sr) = sums(:,54) ! ql hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz hom(:,1,56,sr) = sums(:,56) ! w*p*/dz hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho )/dz hom(:,1,58,sr) = sums(:,58) ! u"pt" hom(:,1,59,sr) = sums(:,59) ! u*pt* hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t hom(:,1,61,sr) = sums(:,61) ! v"pt" hom(:,1,62,sr) = sums(:,62) ! v*pt* hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t hom(:,1,64,sr) = sums(:,64) ! rho hom(:,1,65,sr) = sums(:,65) ! w"sa" hom(:,1,66,sr) = sums(:,66) ! w*sa* hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa hom(:,1,68,sr) = sums(:,68) ! w*p* hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho hom(:,1,70,sr) = sums(:,70) ! q*2 hom(:,1,71,sr) = sums(:,71) ! prho hom(:,1,72,sr) = hyp * 1E-4_wp ! hyp in dbar hom(:,1,73,sr) = sums(:,73) ! nr hom(:,1,74,sr) = sums(:,74) ! qr hom(:,1,75,sr) = sums(:,75) ! qc hom(:,1,76,sr) = sums(:,76) ! prr (precipitation rate) ! 77 is initial density profile hom(:,1,78,sr) = ug ! ug hom(:,1,79,sr) = vg ! vg hom(:,1,80,sr) = w_subs ! w_subs IF ( large_scale_forcing ) THEN hom(:,1,81,sr) = sums_ls_l(:,0) ! td_lsa_lpt hom(:,1,82,sr) = sums_ls_l(:,1) ! td_lsa_q IF ( use_subsidence_tendencies ) THEN hom(:,1,83,sr) = sums_ls_l(:,2) ! td_sub_lpt hom(:,1,84,sr) = sums_ls_l(:,3) ! td_sub_q ELSE hom(:,1,83,sr) = sums(:,83) ! td_sub_lpt hom(:,1,84,sr) = sums(:,84) ! td_sub_q ENDIF hom(:,1,85,sr) = sums(:,85) ! td_nud_lpt hom(:,1,86,sr) = sums(:,86) ! td_nud_q hom(:,1,87,sr) = sums(:,87) ! td_nud_u hom(:,1,88,sr) = sums(:,88) ! td_nud_v END IF hom(:,1,pr_palm,sr) = sums(:,pr_palm) ! u*, w'u', w'v', t* (in last profile) IF ( max_pr_user > 0 ) THEN ! user-defined profiles hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = & sums(:,pr_palm+1:pr_palm+max_pr_user) ENDIF ! !-- Determine the boundary layer height using two different schemes. !-- First scheme: Starting from the Earth's (Ocean's) surface, look for the !-- first relative minimum (maximum) of the total heat flux. !-- The corresponding height is assumed as the boundary layer height, if it !-- is less than 1.5 times the height where the heat flux becomes negative !-- (positive) for the first time. z_i(1) = 0.0_wp first = .TRUE. IF ( ocean ) THEN DO k = nzt, nzb+1, -1 IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN first = .FALSE. height = zw(k) ENDIF IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. & hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN IF ( zw(k) < 1.5_wp * height ) THEN z_i(1) = zw(k) ELSE z_i(1) = height ENDIF EXIT ENDIF ENDDO ELSE DO k = nzb, nzt-1 IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN first = .FALSE. height = zw(k) ENDIF IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. & hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN IF ( zw(k) < 1.5_wp * height ) THEN z_i(1) = zw(k) ELSE z_i(1) = height ENDIF EXIT ENDIF ENDDO ENDIF ! !-- Second scheme: Gradient scheme from Sullivan et al. (1998), modified !-- by Uhlenbrock(2006). The boundary layer height is the height with the !-- maximal local temperature gradient: starting from the second (the last !-- but one) vertical gridpoint, the local gradient must be at least !-- 0.2K/100m and greater than the next four gradients. !-- WARNING: The threshold value of 0.2K/100m must be adjusted for the !-- ocean case! z_i(2) = 0.0_wp DO k = nzb+1, nzt+1 dptdz(k) = ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) * ddzu(k) ENDDO dptdz_threshold = 0.2_wp / 100.0_wp IF ( ocean ) THEN DO k = nzt+1, nzb+5, -1 IF ( dptdz(k) > dptdz_threshold .AND. & dptdz(k) > dptdz(k-1) .AND. dptdz(k) > dptdz(k-2) .AND. & dptdz(k) > dptdz(k-3) .AND. dptdz(k) > dptdz(k-4) ) THEN z_i(2) = zw(k-1) EXIT ENDIF ENDDO ELSE DO k = nzb+1, nzt-3 IF ( dptdz(k) > dptdz_threshold .AND. & dptdz(k) > dptdz(k+1) .AND. dptdz(k) > dptdz(k+2) .AND. & dptdz(k) > dptdz(k+3) .AND. dptdz(k) > dptdz(k+4) ) THEN z_i(2) = zw(k-1) EXIT ENDIF ENDDO ENDIF hom(nzb+6,1,pr_palm,sr) = z_i(1) hom(nzb+7,1,pr_palm,sr) = z_i(2) ! !-- Determine vertical index which is nearest to the mean surface level !-- height of the respective statistic region DO k = nzb, nzt IF ( zw(k) >= mean_surface_level_height(sr) ) THEN k_surface_level = k EXIT ENDIF ENDDO ! !-- Computation of both the characteristic vertical velocity and !-- the characteristic convective boundary layer temperature. !-- The inversion height entering into the equation is defined with respect !-- to the mean surface level height of the respective statistic region. !-- The horizontal average at surface level index + 1 is input for the !-- average temperature. IF ( hom(nzb,1,18,sr) > 1.0E-8_wp .AND. z_i(1) /= 0.0_wp ) THEN hom(nzb+8,1,pr_palm,sr) = & ( g / hom(k_surface_level+1,1,4,sr) * hom(k_surface_level,1,18,sr)& * ABS( z_i(1) - mean_surface_level_height(sr) ) )**0.333333333_wp ELSE hom(nzb+8,1,pr_palm,sr) = 0.0_wp ENDIF ! !-- Collect the time series quantities ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E* ts_value(3,sr) = dt_3d ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u* ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th* ts_value(6,sr) = u_max ts_value(7,sr) = v_max ts_value(8,sr) = w_max ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1) ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2) ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w* ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0 ts_value(15,sr) = hom(nzb+1,1,16,sr) ! w'pt' at k=1 ts_value(16,sr) = hom(nzb+1,1,18,sr) ! wpt at k=1 ts_value(17,sr) = hom(nzb,1,4,sr) ! pt(0) ts_value(18,sr) = hom(nzb+1,1,4,sr) ! pt(zp) ts_value(19,sr) = hom(nzb+1,1,pr_palm,sr) ! u'w' at k=0 ts_value(20,sr) = hom(nzb+2,1,pr_palm,sr) ! v'w' at k=0 ts_value(21,sr) = hom(nzb,1,48,sr) ! w"q" at k=0 IF ( .NOT. neutral ) THEN ts_value(22,sr) = hom(nzb,1,114,sr) ! L ELSE ts_value(22,sr) = 1.0E10_wp ENDIF ts_value(23,sr) = hom(nzb+12,1,pr_palm,sr) ! q* ! !-- Collect land surface model timeseries IF ( land_surface ) THEN ts_value(dots_soil ,sr) = hom(nzb,1,93,sr) ! ghf_eb ts_value(dots_soil+1,sr) = hom(nzb,1,94,sr) ! shf_eb ts_value(dots_soil+2,sr) = hom(nzb,1,95,sr) ! qsws_eb ts_value(dots_soil+3,sr) = hom(nzb,1,96,sr) ! qsws_liq_eb ts_value(dots_soil+4,sr) = hom(nzb,1,97,sr) ! qsws_soil_eb ts_value(dots_soil+5,sr) = hom(nzb,1,98,sr) ! qsws_veg_eb ts_value(dots_soil+6,sr) = hom(nzb,1,99,sr) ! r_a ts_value(dots_soil+7,sr) = hom(nzb,1,100,sr) ! r_s ENDIF ! !-- Collect radiation model timeseries IF ( radiation ) THEN ts_value(dots_rad,sr) = hom(nzb,1,101,sr) ! rad_net ts_value(dots_rad+1,sr) = hom(nzb,1,102,sr) ! rad_lw_in ts_value(dots_rad+2,sr) = hom(nzb,1,103,sr) ! rad_lw_out ts_value(dots_rad+3,sr) = hom(nzb,1,104,sr) ! rad_sw_in ts_value(dots_rad+4,sr) = hom(nzb,1,105,sr) ! rad_sw_out #if defined ( __rrtmg ) IF ( radiation_scheme == 'rrtmg' ) THEN ts_value(dots_rad+5,sr) = hom(nzb,1,106,sr) ! rrtm_aldif ts_value(dots_rad+6,sr) = hom(nzb,1,107,sr) ! rrtm_aldir ts_value(dots_rad+7,sr) = hom(nzb,1,108,sr) ! rrtm_asdif ts_value(dots_rad+8,sr) = hom(nzb,1,109,sr) ! rrtm_asdir ENDIF #endif ENDIF ! !-- Calculate additional statistics provided by the user interface CALL user_statistics( 'time_series', sr, 0 ) ENDDO ! loop of the subregions !$acc end data ! !-- If required, sum up horizontal averages for subsequent time averaging !-- Do not sum, if flow statistics is called before the first initial time step. IF ( do_sum .AND. simulated_time /= 0.0_wp ) THEN IF ( average_count_pr == 0 ) hom_sum = 0.0_wp hom_sum = hom_sum + hom(:,1,:,:) average_count_pr = average_count_pr + 1 do_sum = .FALSE. ENDIF ! !-- Set flag for other UPs (e.g. output routines, but also buoyancy). !-- This flag is reset after each time step in time_integration. flow_statistics_called = .TRUE. CALL cpu_log( log_point(10), 'flow_statistics', 'stop' ) END SUBROUTINE flow_statistics #endif