!> @file flow_statistics.f90
!--------------------------------------------------------------------------------!
! This file is part of PALM.
!
! PALM is free software: you can redistribute it and/or modify it under the terms
! of the GNU General Public License as published by the Free Software Foundation,
! either version 3 of the License, or (at your option) any later version.
!
! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
! A PARTICULAR PURPOSE. See the GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along with
! PALM. If not, see .
!
! Copyright 1997-2015 Leibniz Universitaet Hannover
!--------------------------------------------------------------------------------!
!
! Current revisions:
! -----------------
!
!
! Former revisions:
! -----------------
! $Id: flow_statistics.f90 1784 2016-03-06 19:14:40Z knoop $
!
! 1783 2016-03-06 18:36:17Z raasch
! +module netcdf_interface
!
! 1747 2016-02-08 12:25:53Z raasch
! small bugfixes for accelerator version
!
! 1738 2015-12-18 13:56:05Z raasch
! bugfixes for calculations in statistical regions which do not contain grid
! points in the lowest vertical levels, mean surface level height considered
! in the calculation of the characteristic vertical velocity,
! old upstream parts removed
!
! 1709 2015-11-04 14:47:01Z maronga
! Updated output of Obukhov length
!
! 1691 2015-10-26 16:17:44Z maronga
! Revised calculation of Obukhov length. Added output of radiative heating >
! rates for RRTMG.
!
! 1682 2015-10-07 23:56:08Z knoop
! Code annotations made doxygen readable
!
! 1658 2015-09-18 10:52:53Z raasch
! bugfix: temporary reduction variables in the openacc branch are now
! initialized to zero
!
! 1654 2015-09-17 09:20:17Z raasch
! FORTRAN bugfix of r1652
!
! 1652 2015-09-17 08:12:24Z raasch
! bugfix in calculation of energy production by turbulent transport of TKE
!
! 1593 2015-05-16 13:58:02Z raasch
! FORTRAN errors removed from openacc branch
!
! 1585 2015-04-30 07:05:52Z maronga
! Added output of timeseries and profiles for RRTMG
!
! 1571 2015-03-12 16:12:49Z maronga
! Bugfix: output of rad_net and rad_sw_in
!
! 1567 2015-03-10 17:57:55Z suehring
! Reverse modifications made for monotonic limiter.
!
! 1557 2015-03-05 16:43:04Z suehring
! Adjustments for monotonic limiter
!
! 1555 2015-03-04 17:44:27Z maronga
! Added output of r_a and r_s.
!
! 1551 2015-03-03 14:18:16Z maronga
! Added suppport for land surface model and radiation model output.
!
! 1498 2014-12-03 14:09:51Z suehring
! Comments added
!
! 1482 2014-10-18 12:34:45Z raasch
! missing ngp_sums_ls added in accelerator version
!
! 1450 2014-08-21 07:31:51Z heinze
! bugfix: calculate fac only for simulated_time >= 0.0
!
! 1396 2014-05-06 13:37:41Z raasch
! bugfix: "copyin" replaced by "update device" in openacc-branch
!
! 1386 2014-05-05 13:55:30Z boeske
! bugfix: simulated time before the last timestep is needed for the correct
! calculation of the profiles of large scale forcing tendencies
!
! 1382 2014-04-30 12:15:41Z boeske
! Renamed variables which store large scale forcing tendencies
! pt_lsa -> td_lsa_lpt, pt_subs -> td_sub_lpt,
! q_lsa -> td_lsa_q, q_subs -> td_sub_q,
! added Neumann boundary conditions for profile data output of large scale
! advection and subsidence terms at nzt+1
!
! 1374 2014-04-25 12:55:07Z raasch
! bugfix: syntax errors removed from openacc-branch
! missing variables added to ONLY-lists
!
! 1365 2014-04-22 15:03:56Z boeske
! Output of large scale advection, large scale subsidence and nudging tendencies
! +sums_ls_l, ngp_sums_ls, use_subsidence_tendencies
!
! 1353 2014-04-08 15:21:23Z heinze
! REAL constants provided with KIND-attribute
!
! 1322 2014-03-20 16:38:49Z raasch
! REAL constants defined as wp-kind
!
! 1320 2014-03-20 08:40:49Z raasch
! ONLY-attribute added to USE-statements,
! kind-parameters added to all INTEGER and REAL declaration statements,
! kinds are defined in new module kinds,
! revision history before 2012 removed,
! comment fields (!:) to be used for variable explanations added to
! all variable declaration statements
!
! 1299 2014-03-06 13:15:21Z heinze
! Output of large scale vertical velocity w_subs
!
! 1257 2013-11-08 15:18:40Z raasch
! openacc "end parallel" replaced by "end parallel loop"
!
! 1241 2013-10-30 11:36:58Z heinze
! Output of ug and vg
!
! 1221 2013-09-10 08:59:13Z raasch
! ported for openACC in separate #else branch
!
! 1179 2013-06-14 05:57:58Z raasch
! comment for profile 77 added
!
! 1115 2013-03-26 18:16:16Z hoffmann
! ql is calculated by calc_liquid_water_content
!
! 1111 2013-03-08 23:54:10Z raasch
! openACC directive added
!
! 1053 2012-11-13 17:11:03Z hoffmann
! additions for two-moment cloud physics scheme:
! +nr, qr, qc, prr
!
! 1036 2012-10-22 13:43:42Z raasch
! code put under GPL (PALM 3.9)
!
! 1007 2012-09-19 14:30:36Z franke
! Calculation of buoyancy flux for humidity in case of WS-scheme is now using
! turbulent fluxes of WS-scheme
! Bugfix: Calculation of subgridscale buoyancy flux for humidity and cloud
! droplets at nzb and nzt added
!
! 801 2012-01-10 17:30:36Z suehring
! Calculation of turbulent fluxes in advec_ws is now thread-safe.
!
! Revision 1.1 1997/08/11 06:15:17 raasch
! Initial revision
!
!
! Description:
! ------------
!> Compute average profiles and further average flow quantities for the different
!> user-defined (sub-)regions. The region indexed 0 is the total model domain.
!>
!> @note For simplicity, nzb_s_inner and nzb_diff_s_inner are being used as a
!> lower vertical index for k-loops for all variables, although strictly
!> speaking the k-loops would have to be split up according to the staggered
!> grid. However, this implies no error since staggered velocity components
!> are zero at the walls and inside buildings.
!------------------------------------------------------------------------------!
#if ! defined( __openacc )
SUBROUTINE flow_statistics
USE arrays_3d, &
ONLY: ddzu, ddzw, e, hyp, km, kh, nr, ol, p, prho, pt, q, qc, ql, qr, &
qs, qsws, qswst, rho, sa, saswsb, saswst, shf, td_lsa_lpt, &
td_lsa_q, td_sub_lpt, td_sub_q, time_vert, ts, tswst, u, ug, us,&
usws, uswst, vsws, v, vg, vpt, vswst, w, w_subs, zw
USE cloud_parameters, &
ONLY: l_d_cp, prr, pt_d_t
USE control_parameters, &
ONLY: average_count_pr, cloud_droplets, cloud_physics, do_sum, &
dt_3d, g, humidity, icloud_scheme, kappa, large_scale_forcing, &
large_scale_subsidence, max_pr_user, message_string, neutral, &
ocean, passive_scalar, precipitation, simulated_time, &
use_subsidence_tendencies, use_surface_fluxes, use_top_fluxes, &
ws_scheme_mom, ws_scheme_sca
USE cpulog, &
ONLY: cpu_log, log_point
USE grid_variables, &
ONLY: ddx, ddy
USE indices, &
ONLY: ngp_2dh, ngp_2dh_s_inner, ngp_3d, ngp_3d_inner, ngp_sums, &
ngp_sums_ls, nxl, nxr, nyn, nys, nzb, nzb_diff_s_inner, &
nzb_s_inner, nzt, nzt_diff
USE kinds
USE land_surface_model_mod, &
ONLY: ghf_eb, land_surface, m_soil, nzb_soil, nzt_soil, &
qsws_eb, qsws_liq_eb, qsws_soil_eb, qsws_veg_eb, r_a, r_s, &
shf_eb, t_soil
USE netcdf_interface, &
ONLY: dots_rad, dots_soil
USE pegrid
USE radiation_model_mod, &
ONLY: radiation, radiation_scheme, rad_net, &
rad_lw_in, rad_lw_out, rad_lw_cs_hr, rad_lw_hr, &
rad_sw_in, rad_sw_out, rad_sw_cs_hr, rad_sw_hr
#if defined ( __rrtmg )
USE radiation_model_mod, &
ONLY: rrtm_aldif, rrtm_aldir, rrtm_asdif, rrtm_asdir
#endif
USE statistics
IMPLICIT NONE
INTEGER(iwp) :: i !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: k !<
INTEGER(iwp) :: k_surface_level !<
INTEGER(iwp) :: nt !<
INTEGER(iwp) :: omp_get_thread_num !<
INTEGER(iwp) :: sr !<
INTEGER(iwp) :: tn !<
LOGICAL :: first !<
REAL(wp) :: dptdz_threshold !<
REAL(wp) :: fac !<
REAL(wp) :: height !<
REAL(wp) :: pts !<
REAL(wp) :: sums_l_eper !<
REAL(wp) :: sums_l_etot !<
REAL(wp) :: ust !<
REAL(wp) :: ust2 !<
REAL(wp) :: u2 !<
REAL(wp) :: vst !<
REAL(wp) :: vst2 !<
REAL(wp) :: v2 !<
REAL(wp) :: w2 !<
REAL(wp) :: z_i(2) !<
REAL(wp) :: dptdz(nzb+1:nzt+1) !<
REAL(wp) :: sums_ll(nzb:nzt+1,2) !<
CALL cpu_log( log_point(10), 'flow_statistics', 'start' )
!$acc update host( km, kh, e, ol, pt, qs, qsws, shf, ts, u, usws, v, vsws, w )
!
!-- To be on the safe side, check whether flow_statistics has already been
!-- called once after the current time step
IF ( flow_statistics_called ) THEN
message_string = 'flow_statistics is called two times within one ' // &
'timestep'
CALL message( 'flow_statistics', 'PA0190', 1, 2, 0, 6, 0 )
ENDIF
!
!-- Compute statistics for each (sub-)region
DO sr = 0, statistic_regions
!
!-- Initialize (local) summation array
sums_l = 0.0_wp
!
!-- Store sums that have been computed in other subroutines in summation
!-- array
sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities
!-- WARNING: next line still has to be adjusted for OpenMP
sums_l(:,21,0) = sums_wsts_bc_l(:,sr) ! heat flux from advec_s_bc
sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres
sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres
!
!-- When calcuating horizontally-averaged total (resolved- plus subgrid-
!-- scale) vertical fluxes and velocity variances by using commonly-
!-- applied Reynolds-based methods ( e.g. = (w-)*(pt-) )
!-- in combination with the 5th order advection scheme, pronounced
!-- artificial kinks could be observed in the vertical profiles near the
!-- surface. Please note: these kinks were not related to the model truth,
!-- i.e. these kinks are just related to an evaluation problem.
!-- In order avoid these kinks, vertical fluxes and horizontal as well
!-- vertical velocity variances are calculated directly within the advection
!-- routines, according to the numerical discretization, to evaluate the
!-- statistical quantities as they will appear within the prognostic
!-- equations.
!-- Copy the turbulent quantities, evaluated in the advection routines to
!-- the local array sums_l() for further computations.
IF ( ws_scheme_mom .AND. sr == 0 ) THEN
!
!-- According to the Neumann bc for the horizontal velocity components,
!-- the corresponding fluxes has to satisfiy the same bc.
IF ( ocean ) THEN
sums_us2_ws_l(nzt+1,:) = sums_us2_ws_l(nzt,:)
sums_vs2_ws_l(nzt+1,:) = sums_vs2_ws_l(nzt,:)
ENDIF
DO i = 0, threads_per_task-1
!
!-- Swap the turbulent quantities evaluated in advec_ws.
sums_l(:,13,i) = sums_wsus_ws_l(:,i) ! w*u*
sums_l(:,15,i) = sums_wsvs_ws_l(:,i) ! w*v*
sums_l(:,30,i) = sums_us2_ws_l(:,i) ! u*2
sums_l(:,31,i) = sums_vs2_ws_l(:,i) ! v*2
sums_l(:,32,i) = sums_ws2_ws_l(:,i) ! w*2
sums_l(:,34,i) = sums_l(:,34,i) + 0.5_wp * &
( sums_us2_ws_l(:,i) + sums_vs2_ws_l(:,i) + &
sums_ws2_ws_l(:,i) ) ! e*
DO k = nzb, nzt
sums_l(nzb+5,pr_palm,i) = sums_l(nzb+5,pr_palm,i) + 0.5_wp * ( &
sums_us2_ws_l(k,i) + &
sums_vs2_ws_l(k,i) + &
sums_ws2_ws_l(k,i) )
ENDDO
ENDDO
ENDIF
IF ( ws_scheme_sca .AND. sr == 0 ) THEN
DO i = 0, threads_per_task-1
sums_l(:,17,i) = sums_wspts_ws_l(:,i) ! w*pt* from advec_s_ws
IF ( ocean ) sums_l(:,66,i) = sums_wssas_ws_l(:,i) ! w*sa*
IF ( humidity .OR. passive_scalar ) sums_l(:,49,i) = &
sums_wsqs_ws_l(:,i) !w*q*
ENDDO
ENDIF
!
!-- Horizontally averaged profiles of horizontal velocities and temperature.
!-- They must have been computed before, because they are already required
!-- for other horizontal averages.
tn = 0
!$OMP PARALLEL PRIVATE( i, j, k, tn )
#if defined( __intel_openmp_bug )
tn = omp_get_thread_num()
#else
!$ tn = omp_get_thread_num()
#endif
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_s_inner(j,i), nzt+1
sums_l(k,1,tn) = sums_l(k,1,tn) + u(k,j,i) * rmask(j,i,sr)
sums_l(k,2,tn) = sums_l(k,2,tn) + v(k,j,i) * rmask(j,i,sr)
sums_l(k,4,tn) = sums_l(k,4,tn) + pt(k,j,i) * rmask(j,i,sr)
ENDDO
ENDDO
ENDDO
!
!-- Horizontally averaged profile of salinity
IF ( ocean ) THEN
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_s_inner(j,i), nzt+1
sums_l(k,23,tn) = sums_l(k,23,tn) + &
sa(k,j,i) * rmask(j,i,sr)
ENDDO
ENDDO
ENDDO
ENDIF
!
!-- Horizontally averaged profiles of virtual potential temperature,
!-- total water content, specific humidity and liquid water potential
!-- temperature
IF ( humidity ) THEN
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_s_inner(j,i), nzt+1
sums_l(k,44,tn) = sums_l(k,44,tn) + &
vpt(k,j,i) * rmask(j,i,sr)
sums_l(k,41,tn) = sums_l(k,41,tn) + &
q(k,j,i) * rmask(j,i,sr)
ENDDO
ENDDO
ENDDO
IF ( cloud_physics ) THEN
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_s_inner(j,i), nzt+1
sums_l(k,42,tn) = sums_l(k,42,tn) + &
( q(k,j,i) - ql(k,j,i) ) * rmask(j,i,sr)
sums_l(k,43,tn) = sums_l(k,43,tn) + ( &
pt(k,j,i) + l_d_cp*pt_d_t(k) * ql(k,j,i) &
) * rmask(j,i,sr)
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
!
!-- Horizontally averaged profiles of passive scalar
IF ( passive_scalar ) THEN
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_s_inner(j,i), nzt+1
sums_l(k,41,tn) = sums_l(k,41,tn) + q(k,j,i) * rmask(j,i,sr)
ENDDO
ENDDO
ENDDO
ENDIF
!$OMP END PARALLEL
!
!-- Summation of thread sums
IF ( threads_per_task > 1 ) THEN
DO i = 1, threads_per_task-1
sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i)
sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i)
sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i)
IF ( ocean ) THEN
sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i)
ENDIF
IF ( humidity ) THEN
sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i)
sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i)
IF ( cloud_physics ) THEN
sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i)
sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i)
ENDIF
ENDIF
IF ( passive_scalar ) THEN
sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i)
ENDIF
ENDDO
ENDIF
#if defined( __parallel )
!
!-- Compute total sum from local sums
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, &
MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, &
MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, &
MPI_SUM, comm2d, ierr )
IF ( ocean ) THEN
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
ENDIF
IF ( humidity ) THEN
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( cloud_physics ) THEN
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
ENDIF
ENDIF
IF ( passive_scalar ) THEN
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
ENDIF
#else
sums(:,1) = sums_l(:,1,0)
sums(:,2) = sums_l(:,2,0)
sums(:,4) = sums_l(:,4,0)
IF ( ocean ) sums(:,23) = sums_l(:,23,0)
IF ( humidity ) THEN
sums(:,44) = sums_l(:,44,0)
sums(:,41) = sums_l(:,41,0)
IF ( cloud_physics ) THEN
sums(:,42) = sums_l(:,42,0)
sums(:,43) = sums_l(:,43,0)
ENDIF
ENDIF
IF ( passive_scalar ) sums(:,41) = sums_l(:,41,0)
#endif
!
!-- Final values are obtained by division by the total number of grid points
!-- used for summation. After that store profiles.
sums(:,1) = sums(:,1) / ngp_2dh(sr)
sums(:,2) = sums(:,2) / ngp_2dh(sr)
sums(:,4) = sums(:,4) / ngp_2dh_s_inner(:,sr)
hom(:,1,1,sr) = sums(:,1) ! u
hom(:,1,2,sr) = sums(:,2) ! v
hom(:,1,4,sr) = sums(:,4) ! pt
!
!-- Salinity
IF ( ocean ) THEN
sums(:,23) = sums(:,23) / ngp_2dh_s_inner(:,sr)
hom(:,1,23,sr) = sums(:,23) ! sa
ENDIF
!
!-- Humidity and cloud parameters
IF ( humidity ) THEN
sums(:,44) = sums(:,44) / ngp_2dh_s_inner(:,sr)
sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr)
hom(:,1,44,sr) = sums(:,44) ! vpt
hom(:,1,41,sr) = sums(:,41) ! qv (q)
IF ( cloud_physics ) THEN
sums(:,42) = sums(:,42) / ngp_2dh_s_inner(:,sr)
sums(:,43) = sums(:,43) / ngp_2dh_s_inner(:,sr)
hom(:,1,42,sr) = sums(:,42) ! qv
hom(:,1,43,sr) = sums(:,43) ! pt
ENDIF
ENDIF
!
!-- Passive scalar
IF ( passive_scalar ) hom(:,1,41,sr) = sums(:,41) / &
ngp_2dh_s_inner(:,sr) ! s (q)
!
!-- Horizontally averaged profiles of the remaining prognostic variables,
!-- variances, the total and the perturbation energy (single values in last
!-- column of sums_l) and some diagnostic quantities.
!-- NOTE: for simplicity, nzb_s_inner is used below, although strictly
!-- ---- speaking the following k-loop would have to be split up and
!-- rearranged according to the staggered grid.
!-- However, this implies no error since staggered velocity components
!-- are zero at the walls and inside buildings.
tn = 0
#if defined( __intel_openmp_bug )
!$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, &
!$OMP tn, ust, ust2, u2, vst, vst2, v2, w2 )
tn = omp_get_thread_num()
#else
!$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, w2 )
!$ tn = omp_get_thread_num()
#endif
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
sums_l_etot = 0.0_wp
DO k = nzb_s_inner(j,i), nzt+1
!
!-- Prognostic and diagnostic variables
sums_l(k,3,tn) = sums_l(k,3,tn) + w(k,j,i) * rmask(j,i,sr)
sums_l(k,8,tn) = sums_l(k,8,tn) + e(k,j,i) * rmask(j,i,sr)
sums_l(k,9,tn) = sums_l(k,9,tn) + km(k,j,i) * rmask(j,i,sr)
sums_l(k,10,tn) = sums_l(k,10,tn) + kh(k,j,i) * rmask(j,i,sr)
sums_l(k,40,tn) = sums_l(k,40,tn) + p(k,j,i)
sums_l(k,33,tn) = sums_l(k,33,tn) + &
( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr)
IF ( humidity ) THEN
sums_l(k,70,tn) = sums_l(k,70,tn) + &
( q(k,j,i)-hom(k,1,41,sr) )**2 * rmask(j,i,sr)
ENDIF
!
!-- Higher moments
!-- (Computation of the skewness of w further below)
sums_l(k,38,tn) = sums_l(k,38,tn) + w(k,j,i)**3 * rmask(j,i,sr)
sums_l_etot = sums_l_etot + &
0.5_wp * ( u(k,j,i)**2 + v(k,j,i)**2 + &
w(k,j,i)**2 ) * rmask(j,i,sr)
ENDDO
!
!-- Total and perturbation energy for the total domain (being
!-- collected in the last column of sums_l). Summation of these
!-- quantities is seperated from the previous loop in order to
!-- allow vectorization of that loop.
sums_l(nzb+4,pr_palm,tn) = sums_l(nzb+4,pr_palm,tn) + sums_l_etot
!
!-- 2D-arrays (being collected in the last column of sums_l)
sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + &
us(j,i) * rmask(j,i,sr)
sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + &
usws(j,i) * rmask(j,i,sr)
sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + &
vsws(j,i) * rmask(j,i,sr)
sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + &
ts(j,i) * rmask(j,i,sr)
IF ( humidity ) THEN
sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + &
qs(j,i) * rmask(j,i,sr)
ENDIF
ENDDO
ENDDO
!
!-- Computation of statistics when ws-scheme is not used. Else these
!-- quantities are evaluated in the advection routines.
IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
sums_l_eper = 0.0_wp
DO k = nzb_s_inner(j,i), nzt+1
u2 = u(k,j,i)**2
v2 = v(k,j,i)**2
w2 = w(k,j,i)**2
ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2
vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2
sums_l(k,30,tn) = sums_l(k,30,tn) + ust2 * rmask(j,i,sr)
sums_l(k,31,tn) = sums_l(k,31,tn) + vst2 * rmask(j,i,sr)
sums_l(k,32,tn) = sums_l(k,32,tn) + w2 * rmask(j,i,sr)
!
!-- Perturbation energy
sums_l(k,34,tn) = sums_l(k,34,tn) + 0.5_wp * &
( ust2 + vst2 + w2 ) * rmask(j,i,sr)
sums_l_eper = sums_l_eper + &
0.5_wp * ( ust2+vst2+w2 ) * rmask(j,i,sr)
ENDDO
sums_l(nzb+5,pr_palm,tn) = sums_l(nzb+5,pr_palm,tn) &
+ sums_l_eper
ENDDO
ENDDO
ENDIF
!
!-- Horizontally averaged profiles of the vertical fluxes
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Subgridscale fluxes (without Prandtl layer from k=nzb,
!-- oterwise from k=nzb+1)
!-- NOTE: for simplicity, nzb_diff_s_inner is used below, although
!-- ---- strictly speaking the following k-loop would have to be
!-- split up according to the staggered grid.
!-- However, this implies no error since staggered velocity
!-- components are zero at the walls and inside buildings.
DO k = nzb_diff_s_inner(j,i)-1, nzt_diff
!
!-- Momentum flux w"u"
sums_l(k,12,tn) = sums_l(k,12,tn) - 0.25_wp * ( &
km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) &
) * ( &
( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) &
+ ( w(k,j,i) - w(k,j,i-1) ) * ddx &
) * rmask(j,i,sr)
!
!-- Momentum flux w"v"
sums_l(k,14,tn) = sums_l(k,14,tn) - 0.25_wp * ( &
km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) &
) * ( &
( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) &
+ ( w(k,j,i) - w(k,j-1,i) ) * ddy &
) * rmask(j,i,sr)
!
!-- Heat flux w"pt"
sums_l(k,16,tn) = sums_l(k,16,tn) &
- 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )&
* ( pt(k+1,j,i) - pt(k,j,i) ) &
* ddzu(k+1) * rmask(j,i,sr)
!
!-- Salinity flux w"sa"
IF ( ocean ) THEN
sums_l(k,65,tn) = sums_l(k,65,tn) &
- 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )&
* ( sa(k+1,j,i) - sa(k,j,i) ) &
* ddzu(k+1) * rmask(j,i,sr)
ENDIF
!
!-- Buoyancy flux, water flux (humidity flux) w"q"
IF ( humidity ) THEN
sums_l(k,45,tn) = sums_l(k,45,tn) &
- 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )&
* ( vpt(k+1,j,i) - vpt(k,j,i) ) &
* ddzu(k+1) * rmask(j,i,sr)
sums_l(k,48,tn) = sums_l(k,48,tn) &
- 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )&
* ( q(k+1,j,i) - q(k,j,i) ) &
* ddzu(k+1) * rmask(j,i,sr)
IF ( cloud_physics ) THEN
sums_l(k,51,tn) = sums_l(k,51,tn) &
- 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )&
* ( ( q(k+1,j,i) - ql(k+1,j,i) )&
- ( q(k,j,i) - ql(k,j,i) ) ) &
* ddzu(k+1) * rmask(j,i,sr)
ENDIF
ENDIF
!
!-- Passive scalar flux
IF ( passive_scalar ) THEN
sums_l(k,48,tn) = sums_l(k,48,tn) &
- 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )&
* ( q(k+1,j,i) - q(k,j,i) ) &
* ddzu(k+1) * rmask(j,i,sr)
ENDIF
ENDDO
!
!-- Subgridscale fluxes in the Prandtl layer
IF ( use_surface_fluxes ) THEN
sums_l(nzb,12,tn) = sums_l(nzb,12,tn) + &
usws(j,i) * rmask(j,i,sr) ! w"u"
sums_l(nzb,14,tn) = sums_l(nzb,14,tn) + &
vsws(j,i) * rmask(j,i,sr) ! w"v"
sums_l(nzb,16,tn) = sums_l(nzb,16,tn) + &
shf(j,i) * rmask(j,i,sr) ! w"pt"
sums_l(nzb,58,tn) = sums_l(nzb,58,tn) + &
0.0_wp * rmask(j,i,sr) ! u"pt"
sums_l(nzb,61,tn) = sums_l(nzb,61,tn) + &
0.0_wp * rmask(j,i,sr) ! v"pt"
IF ( ocean ) THEN
sums_l(nzb,65,tn) = sums_l(nzb,65,tn) + &
saswsb(j,i) * rmask(j,i,sr) ! w"sa"
ENDIF
IF ( humidity ) THEN
sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + &
qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv")
sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( &
( 1.0_wp + 0.61_wp * q(nzb,j,i) ) * &
shf(j,i) + 0.61_wp * pt(nzb,j,i) * &
qsws(j,i) )
IF ( cloud_droplets ) THEN
sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( &
( 1.0_wp + 0.61_wp * q(nzb,j,i) - &
ql(nzb,j,i) ) * shf(j,i) + &
0.61_wp * pt(nzb,j,i) * qsws(j,i) )
ENDIF
IF ( cloud_physics ) THEN
!
!-- Formula does not work if ql(nzb) /= 0.0
sums_l(nzb,51,tn) = sums_l(nzb,51,tn) + &
qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv")
ENDIF
ENDIF
IF ( passive_scalar ) THEN
sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + &
qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv")
ENDIF
ENDIF
IF ( .NOT. neutral ) THEN
sums_l(nzb,114,tn) = sums_l(nzb,114,tn) + &
ol(j,i) * rmask(j,i,sr) ! L
ENDIF
IF ( land_surface ) THEN
sums_l(nzb,93,tn) = sums_l(nzb,93,tn) + ghf_eb(j,i)
sums_l(nzb,94,tn) = sums_l(nzb,94,tn) + shf_eb(j,i)
sums_l(nzb,95,tn) = sums_l(nzb,95,tn) + qsws_eb(j,i)
sums_l(nzb,96,tn) = sums_l(nzb,96,tn) + qsws_liq_eb(j,i)
sums_l(nzb,97,tn) = sums_l(nzb,97,tn) + qsws_soil_eb(j,i)
sums_l(nzb,98,tn) = sums_l(nzb,98,tn) + qsws_veg_eb(j,i)
sums_l(nzb,99,tn) = sums_l(nzb,99,tn) + r_a(j,i)
sums_l(nzb,100,tn) = sums_l(nzb,100,tn)+ r_s(j,i)
ENDIF
IF ( radiation ) THEN
sums_l(nzb,101,tn) = sums_l(nzb,101,tn) + rad_net(j,i)
sums_l(nzb,102,tn) = sums_l(nzb,102,tn) + rad_lw_in(nzb,j,i)
sums_l(nzb,103,tn) = sums_l(nzb,103,tn) + rad_lw_out(nzb,j,i)
sums_l(nzb,104,tn) = sums_l(nzb,104,tn) + rad_sw_in(nzb,j,i)
sums_l(nzb,105,tn) = sums_l(nzb,105,tn) + rad_sw_out(nzb,j,i)
#if defined ( __rrtmg )
IF ( radiation_scheme == 'rrtmg' ) THEN
sums_l(nzb,110,tn) = sums_l(nzb,110,tn) + rrtm_aldif(0,j,i)
sums_l(nzb,111,tn) = sums_l(nzb,111,tn) + rrtm_aldir(0,j,i)
sums_l(nzb,112,tn) = sums_l(nzb,112,tn) + rrtm_asdif(0,j,i)
sums_l(nzb,113,tn) = sums_l(nzb,113,tn) + rrtm_asdir(0,j,i)
ENDIF
#endif
ENDIF
!
!-- Subgridscale fluxes at the top surface
IF ( use_top_fluxes ) THEN
sums_l(nzt:nzt+1,12,tn) = sums_l(nzt:nzt+1,12,tn) + &
uswst(j,i) * rmask(j,i,sr) ! w"u"
sums_l(nzt:nzt+1,14,tn) = sums_l(nzt:nzt+1,14,tn) + &
vswst(j,i) * rmask(j,i,sr) ! w"v"
sums_l(nzt:nzt+1,16,tn) = sums_l(nzt:nzt+1,16,tn) + &
tswst(j,i) * rmask(j,i,sr) ! w"pt"
sums_l(nzt:nzt+1,58,tn) = sums_l(nzt:nzt+1,58,tn) + &
0.0_wp * rmask(j,i,sr) ! u"pt"
sums_l(nzt:nzt+1,61,tn) = sums_l(nzt:nzt+1,61,tn) + &
0.0_wp * rmask(j,i,sr) ! v"pt"
IF ( ocean ) THEN
sums_l(nzt,65,tn) = sums_l(nzt,65,tn) + &
saswst(j,i) * rmask(j,i,sr) ! w"sa"
ENDIF
IF ( humidity ) THEN
sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + &
qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv")
sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( &
( 1.0_wp + 0.61_wp * q(nzt,j,i) ) * &
tswst(j,i) + 0.61_wp * pt(nzt,j,i) * &
qswst(j,i) )
IF ( cloud_droplets ) THEN
sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( &
( 1.0_wp + 0.61_wp * q(nzt,j,i) - &
ql(nzt,j,i) ) * tswst(j,i) + &
0.61_wp * pt(nzt,j,i) * qswst(j,i) )
ENDIF
IF ( cloud_physics ) THEN
!
!-- Formula does not work if ql(nzb) /= 0.0
sums_l(nzt,51,tn) = sums_l(nzt,51,tn) + & ! w"q" (w"qv")
qswst(j,i) * rmask(j,i,sr)
ENDIF
ENDIF
IF ( passive_scalar ) THEN
sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + &
qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv")
ENDIF
ENDIF
!
!-- Resolved fluxes (can be computed for all horizontal points)
!-- NOTE: for simplicity, nzb_s_inner is used below, although strictly
!-- ---- speaking the following k-loop would have to be split up and
!-- rearranged according to the staggered grid.
DO k = nzb_s_inner(j,i), nzt
ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + &
u(k+1,j,i) - hom(k+1,1,1,sr) )
vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + &
v(k+1,j,i) - hom(k+1,1,2,sr) )
pts = 0.5_wp * ( pt(k,j,i) - hom(k,1,4,sr) + &
pt(k+1,j,i) - hom(k+1,1,4,sr) )
!-- Higher moments
sums_l(k,35,tn) = sums_l(k,35,tn) + pts * w(k,j,i)**2 * &
rmask(j,i,sr)
sums_l(k,36,tn) = sums_l(k,36,tn) + pts**2 * w(k,j,i) * &
rmask(j,i,sr)
!
!-- Salinity flux and density (density does not belong to here,
!-- but so far there is no other suitable place to calculate)
IF ( ocean ) THEN
IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN
pts = 0.5_wp * ( sa(k,j,i) - hom(k,1,23,sr) + &
sa(k+1,j,i) - hom(k+1,1,23,sr) )
sums_l(k,66,tn) = sums_l(k,66,tn) + pts * w(k,j,i) * &
rmask(j,i,sr)
ENDIF
sums_l(k,64,tn) = sums_l(k,64,tn) + rho(k,j,i) * &
rmask(j,i,sr)
sums_l(k,71,tn) = sums_l(k,71,tn) + prho(k,j,i) * &
rmask(j,i,sr)
ENDIF
!
!-- Buoyancy flux, water flux, humidity flux, liquid water
!-- content, rain drop concentration and rain water content
IF ( humidity ) THEN
IF ( cloud_physics .OR. cloud_droplets ) THEN
pts = 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + &
vpt(k+1,j,i) - hom(k+1,1,44,sr) )
sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * &
rmask(j,i,sr)
IF ( .NOT. cloud_droplets ) THEN
pts = 0.5_wp * &
( ( q(k,j,i) - ql(k,j,i) ) - &
hom(k,1,42,sr) + &
( q(k+1,j,i) - ql(k+1,j,i) ) - &
hom(k+1,1,42,sr) )
sums_l(k,52,tn) = sums_l(k,52,tn) + pts * w(k,j,i) * &
rmask(j,i,sr)
IF ( icloud_scheme == 0 ) THEN
sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * &
rmask(j,i,sr)
sums_l(k,75,tn) = sums_l(k,75,tn) + qc(k,j,i) * &
rmask(j,i,sr)
IF ( precipitation ) THEN
sums_l(k,73,tn) = sums_l(k,73,tn) + nr(k,j,i) * &
rmask(j,i,sr)
sums_l(k,74,tn) = sums_l(k,74,tn) + qr(k,j,i) * &
rmask(j,i,sr)
sums_l(k,76,tn) = sums_l(k,76,tn) + prr(k,j,i) *&
rmask(j,i,sr)
ENDIF
ELSE
sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * &
rmask(j,i,sr)
ENDIF
ELSE
sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * &
rmask(j,i,sr)
ENDIF
ELSE
IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN
pts = 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + &
vpt(k+1,j,i) - hom(k+1,1,44,sr) )
sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * &
rmask(j,i,sr)
ELSE IF ( ws_scheme_sca .AND. sr == 0 ) THEN
sums_l(k,46,tn) = ( 1.0_wp + 0.61_wp * &
hom(k,1,41,sr) ) * &
sums_l(k,17,tn) + &
0.61_wp * hom(k,1,4,sr) * &
sums_l(k,49,tn)
END IF
END IF
ENDIF
!
!-- Passive scalar flux
IF ( passive_scalar .AND. ( .NOT. ws_scheme_sca &
.OR. sr /= 0 ) ) THEN
pts = 0.5_wp * ( q(k,j,i) - hom(k,1,41,sr) + &
q(k+1,j,i) - hom(k+1,1,41,sr) )
sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * &
rmask(j,i,sr)
ENDIF
!
!-- Energy flux w*e*
!-- has to be adjusted
sums_l(k,37,tn) = sums_l(k,37,tn) + w(k,j,i) * 0.5_wp * &
( ust**2 + vst**2 + w(k,j,i)**2 ) &
* rmask(j,i,sr)
ENDDO
ENDDO
ENDDO
!
!-- For speed optimization fluxes which have been computed in part directly
!-- inside the WS advection routines are treated seperatly
!-- Momentum fluxes first:
IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_diff_s_inner(j,i)-1, nzt_diff
ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + &
u(k+1,j,i) - hom(k+1,1,1,sr) )
vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + &
v(k+1,j,i) - hom(k+1,1,2,sr) )
!
!-- Momentum flux w*u*
sums_l(k,13,tn) = sums_l(k,13,tn) + 0.5_wp * &
( w(k,j,i-1) + w(k,j,i) ) &
* ust * rmask(j,i,sr)
!
!-- Momentum flux w*v*
sums_l(k,15,tn) = sums_l(k,15,tn) + 0.5_wp * &
( w(k,j-1,i) + w(k,j,i) ) &
* vst * rmask(j,i,sr)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_diff_s_inner(j,i)-1, nzt_diff
!
!-- Vertical heat flux
sums_l(k,17,tn) = sums_l(k,17,tn) + 0.5_wp * &
( pt(k,j,i) - hom(k,1,4,sr) + &
pt(k+1,j,i) - hom(k+1,1,4,sr) ) &
* w(k,j,i) * rmask(j,i,sr)
IF ( humidity ) THEN
pts = 0.5_wp * ( q(k,j,i) - hom(k,1,41,sr) + &
q(k+1,j,i) - hom(k+1,1,41,sr) )
sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * &
rmask(j,i,sr)
ENDIF
ENDDO
ENDDO
ENDDO
ENDIF
!
!-- Density at top follows Neumann condition
IF ( ocean ) THEN
sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn)
sums_l(nzt+1,71,tn) = sums_l(nzt,71,tn)
ENDIF
!
!-- Divergence of vertical flux of resolved scale energy and pressure
!-- fluctuations as well as flux of pressure fluctuation itself (68).
!-- First calculate the products, then the divergence.
!-- Calculation is time consuming. Do it only, if profiles shall be plotted.
IF ( hom(nzb+1,2,55,0) /= 0.0_wp .OR. hom(nzb+1,2,68,0) /= 0.0_wp ) &
THEN
sums_ll = 0.0_wp ! local array
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_s_inner(j,i)+1, nzt
sums_ll(k,1) = sums_ll(k,1) + 0.5_wp * w(k,j,i) * ( &
( 0.25_wp * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) ) &
- 0.5_wp * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) )**2&
+ ( 0.25_wp * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) ) &
- 0.5_wp * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) )**2&
+ w(k,j,i)**2 )
sums_ll(k,2) = sums_ll(k,2) + 0.5_wp * w(k,j,i) &
* ( p(k,j,i) + p(k+1,j,i) )
ENDDO
ENDDO
ENDDO
sums_ll(0,1) = 0.0_wp ! because w is zero at the bottom
sums_ll(nzt+1,1) = 0.0_wp
sums_ll(0,2) = 0.0_wp
sums_ll(nzt+1,2) = 0.0_wp
DO k = nzb+1, nzt
sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k)
sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k)
sums_l(k,68,tn) = sums_ll(k,2)
ENDDO
sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn)
sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn)
sums_l(nzb,68,tn) = 0.0_wp ! because w* = 0 at nzb
ENDIF
!
!-- Divergence of vertical flux of SGS TKE and the flux itself (69)
IF ( hom(nzb+1,2,57,0) /= 0.0_wp .OR. hom(nzb+1,2,69,0) /= 0.0_wp ) &
THEN
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_s_inner(j,i)+1, nzt
sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5_wp * ( &
(km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) &
- (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) &
) * ddzw(k)
sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5_wp * ( &
(km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) &
)
ENDDO
ENDDO
ENDDO
sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn)
sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn)
ENDIF
!
!-- Horizontal heat fluxes (subgrid, resolved, total).
!-- Do it only, if profiles shall be plotted.
IF ( hom(nzb+1,2,58,0) /= 0.0_wp ) THEN
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_s_inner(j,i)+1, nzt
!
!-- Subgrid horizontal heat fluxes u"pt", v"pt"
sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5_wp * &
( kh(k,j,i) + kh(k,j,i-1) ) &
* ( pt(k,j,i-1) - pt(k,j,i) ) &
* ddx * rmask(j,i,sr)
sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5_wp * &
( kh(k,j,i) + kh(k,j-1,i) ) &
* ( pt(k,j-1,i) - pt(k,j,i) ) &
* ddy * rmask(j,i,sr)
!
!-- Resolved horizontal heat fluxes u*pt*, v*pt*
sums_l(k,59,tn) = sums_l(k,59,tn) + &
( u(k,j,i) - hom(k,1,1,sr) ) &
* 0.5_wp * ( pt(k,j,i-1) - hom(k,1,4,sr) + &
pt(k,j,i) - hom(k,1,4,sr) )
pts = 0.5_wp * ( pt(k,j-1,i) - hom(k,1,4,sr) + &
pt(k,j,i) - hom(k,1,4,sr) )
sums_l(k,62,tn) = sums_l(k,62,tn) + &
( v(k,j,i) - hom(k,1,2,sr) ) &
* 0.5_wp * ( pt(k,j-1,i) - hom(k,1,4,sr) + &
pt(k,j,i) - hom(k,1,4,sr) )
ENDDO
ENDDO
ENDDO
!
!-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer)
sums_l(nzb,58,tn) = 0.0_wp
sums_l(nzb,59,tn) = 0.0_wp
sums_l(nzb,60,tn) = 0.0_wp
sums_l(nzb,61,tn) = 0.0_wp
sums_l(nzb,62,tn) = 0.0_wp
sums_l(nzb,63,tn) = 0.0_wp
ENDIF
!
!-- Collect current large scale advection and subsidence tendencies for
!-- data output
IF ( large_scale_forcing .AND. ( simulated_time > 0.0_wp ) ) THEN
!
!-- Interpolation in time of LSF_DATA
nt = 1
DO WHILE ( simulated_time - dt_3d > time_vert(nt) )
nt = nt + 1
ENDDO
IF ( simulated_time - dt_3d /= time_vert(nt) ) THEN
nt = nt - 1
ENDIF
fac = ( simulated_time - dt_3d - time_vert(nt) ) &
/ ( time_vert(nt+1)-time_vert(nt) )
DO k = nzb, nzt
sums_ls_l(k,0) = td_lsa_lpt(k,nt) &
+ fac * ( td_lsa_lpt(k,nt+1) - td_lsa_lpt(k,nt) )
sums_ls_l(k,1) = td_lsa_q(k,nt) &
+ fac * ( td_lsa_q(k,nt+1) - td_lsa_q(k,nt) )
ENDDO
sums_ls_l(nzt+1,0) = sums_ls_l(nzt,0)
sums_ls_l(nzt+1,1) = sums_ls_l(nzt,1)
IF ( large_scale_subsidence .AND. use_subsidence_tendencies ) THEN
DO k = nzb, nzt
sums_ls_l(k,2) = td_sub_lpt(k,nt) + fac * &
( td_sub_lpt(k,nt+1) - td_sub_lpt(k,nt) )
sums_ls_l(k,3) = td_sub_q(k,nt) + fac * &
( td_sub_q(k,nt+1) - td_sub_q(k,nt) )
ENDDO
sums_ls_l(nzt+1,2) = sums_ls_l(nzt,2)
sums_ls_l(nzt+1,3) = sums_ls_l(nzt,3)
ENDIF
ENDIF
IF ( land_surface ) THEN
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_soil, nzt_soil
sums_l(k,89,tn) = sums_l(k,89,tn) + t_soil(k,j,i) &
* rmask(j,i,sr)
sums_l(k,91,tn) = sums_l(k,91,tn) + m_soil(k,j,i) &
* rmask(j,i,sr)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( radiation .AND. radiation_scheme == 'rrtmg' ) THEN
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_s_inner(j,i)+1, nzt+1
sums_l(k,102,tn) = sums_l(k,102,tn) + rad_lw_in(k,j,i) &
* rmask(j,i,sr)
sums_l(k,103,tn) = sums_l(k,103,tn) + rad_lw_out(k,j,i) &
* rmask(j,i,sr)
sums_l(k,104,tn) = sums_l(k,104,tn) + rad_sw_in(k,j,i) &
* rmask(j,i,sr)
sums_l(k,105,tn) = sums_l(k,105,tn) + rad_sw_out(k,j,i) &
* rmask(j,i,sr)
sums_l(k,106,tn) = sums_l(k,106,tn) + rad_lw_cs_hr(k,j,i) &
* rmask(j,i,sr)
sums_l(k,107,tn) = sums_l(k,107,tn) + rad_lw_hr(k,j,i) &
* rmask(j,i,sr)
sums_l(k,108,tn) = sums_l(k,108,tn) + rad_sw_cs_hr(k,j,i) &
* rmask(j,i,sr)
sums_l(k,109,tn) = sums_l(k,109,tn) + rad_sw_hr(k,j,i) &
* rmask(j,i,sr)
ENDDO
ENDDO
ENDDO
ENDIF
!
!-- Calculate the user-defined profiles
CALL user_statistics( 'profiles', sr, tn )
!$OMP END PARALLEL
!
!-- Summation of thread sums
IF ( threads_per_task > 1 ) THEN
DO i = 1, threads_per_task-1
sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i)
sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i)
sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + &
sums_l(:,45:pr_palm,i)
IF ( max_pr_user > 0 ) THEN
sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = &
sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + &
sums_l(:,pr_palm+1:pr_palm+max_pr_user,i)
ENDIF
ENDDO
ENDIF
#if defined( __parallel )
!
!-- Compute total sum from local sums
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, &
MPI_SUM, comm2d, ierr )
IF ( large_scale_forcing ) THEN
CALL MPI_ALLREDUCE( sums_ls_l(nzb,2), sums(nzb,83), ngp_sums_ls, &
MPI_REAL, MPI_SUM, comm2d, ierr )
ENDIF
#else
sums = sums_l(:,:,0)
IF ( large_scale_forcing ) THEN
sums(:,81:88) = sums_ls_l
ENDIF
#endif
!
!-- Final values are obtained by division by the total number of grid points
!-- used for summation. After that store profiles.
!-- Check, if statistical regions do contain at least one grid point at the
!-- respective k-level, otherwise division by zero will lead to undefined
!-- values, which may cause e.g. problems with NetCDF output
!-- Profiles:
DO k = nzb, nzt+1
sums(k,3) = sums(k,3) / ngp_2dh(sr)
sums(k,12:22) = sums(k,12:22) / ngp_2dh(sr)
sums(k,30:32) = sums(k,30:32) / ngp_2dh(sr)
sums(k,35:39) = sums(k,35:39) / ngp_2dh(sr)
sums(k,45:53) = sums(k,45:53) / ngp_2dh(sr)
sums(k,55:63) = sums(k,55:63) / ngp_2dh(sr)
sums(k,81:88) = sums(k,81:88) / ngp_2dh(sr)
sums(k,89:114) = sums(k,89:114) / ngp_2dh(sr)
IF ( ngp_2dh_s_inner(k,sr) /= 0 ) THEN
sums(k,8:11) = sums(k,8:11) / ngp_2dh_s_inner(k,sr)
sums(k,23:29) = sums(k,23:29) / ngp_2dh_s_inner(k,sr)
sums(k,33:34) = sums(k,33:34) / ngp_2dh_s_inner(k,sr)
sums(k,40) = sums(k,40) / ngp_2dh_s_inner(k,sr)
sums(k,54) = sums(k,54) / ngp_2dh_s_inner(k,sr)
sums(k,64) = sums(k,64) / ngp_2dh_s_inner(k,sr)
sums(k,70:80) = sums(k,70:80) / ngp_2dh_s_inner(k,sr)
sums(k,115:pr_palm-2) = sums(k,115:pr_palm-2) / ngp_2dh_s_inner(k,sr)
ENDIF
ENDDO
!-- u* and so on
!-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose
!-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer
!-- above the topography, they are being divided by ngp_2dh(sr)
sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / &
ngp_2dh(sr)
sums(nzb+12,pr_palm) = sums(nzb+12,pr_palm) / & ! qs
ngp_2dh(sr)
!-- eges, e*
sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / &
ngp_3d(sr)
!-- Old and new divergence
sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / &
ngp_3d_inner(sr)
!-- User-defined profiles
IF ( max_pr_user > 0 ) THEN
DO k = nzb, nzt+1
sums(k,pr_palm+1:pr_palm+max_pr_user) = &
sums(k,pr_palm+1:pr_palm+max_pr_user) / &
ngp_2dh_s_inner(k,sr)
ENDDO
ENDIF
!
!-- Collect horizontal average in hom.
!-- Compute deduced averages (e.g. total heat flux)
hom(:,1,3,sr) = sums(:,3) ! w
hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles
hom(:,1,9,sr) = sums(:,9) ! km
hom(:,1,10,sr) = sums(:,10) ! kh
hom(:,1,11,sr) = sums(:,11) ! l
hom(:,1,12,sr) = sums(:,12) ! w"u"
hom(:,1,13,sr) = sums(:,13) ! w*u*
hom(:,1,14,sr) = sums(:,14) ! w"v"
hom(:,1,15,sr) = sums(:,15) ! w*v*
hom(:,1,16,sr) = sums(:,16) ! w"pt"
hom(:,1,17,sr) = sums(:,17) ! w*pt*
hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt
hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu
hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv
hom(:,1,21,sr) = sums(:,21) ! w*pt*BC
hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC
! profile 24 is initial profile (sa)
! profiles 25-29 left empty for initial
! profiles
hom(:,1,30,sr) = sums(:,30) ! u*2
hom(:,1,31,sr) = sums(:,31) ! v*2
hom(:,1,32,sr) = sums(:,32) ! w*2
hom(:,1,33,sr) = sums(:,33) ! pt*2
hom(:,1,34,sr) = sums(:,34) ! e*
hom(:,1,35,sr) = sums(:,35) ! w*2pt*
hom(:,1,36,sr) = sums(:,36) ! w*pt*2
hom(:,1,37,sr) = sums(:,37) ! w*e*
hom(:,1,38,sr) = sums(:,38) ! w*3
hom(:,1,39,sr) = sums(:,38) / ( abs( sums(:,32) ) + 1E-20_wp )**1.5_wp ! Sw
hom(:,1,40,sr) = sums(:,40) ! p
hom(:,1,45,sr) = sums(:,45) ! w"vpt"
hom(:,1,46,sr) = sums(:,46) ! w*vpt*
hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt
hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv")
hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*)
hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv)
hom(:,1,51,sr) = sums(:,51) ! w"qv"
hom(:,1,52,sr) = sums(:,52) ! w*qv*
hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv)
hom(:,1,54,sr) = sums(:,54) ! ql
hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz
hom(:,1,56,sr) = sums(:,56) ! w*p*/dz
hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho )/dz
hom(:,1,58,sr) = sums(:,58) ! u"pt"
hom(:,1,59,sr) = sums(:,59) ! u*pt*
hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t
hom(:,1,61,sr) = sums(:,61) ! v"pt"
hom(:,1,62,sr) = sums(:,62) ! v*pt*
hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t
hom(:,1,64,sr) = sums(:,64) ! rho
hom(:,1,65,sr) = sums(:,65) ! w"sa"
hom(:,1,66,sr) = sums(:,66) ! w*sa*
hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa
hom(:,1,68,sr) = sums(:,68) ! w*p*
hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho
hom(:,1,70,sr) = sums(:,70) ! q*2
hom(:,1,71,sr) = sums(:,71) ! prho
hom(:,1,72,sr) = hyp * 1E-4_wp ! hyp in dbar
hom(:,1,73,sr) = sums(:,73) ! nr
hom(:,1,74,sr) = sums(:,74) ! qr
hom(:,1,75,sr) = sums(:,75) ! qc
hom(:,1,76,sr) = sums(:,76) ! prr (precipitation rate)
! 77 is initial density profile
hom(:,1,78,sr) = ug ! ug
hom(:,1,79,sr) = vg ! vg
hom(:,1,80,sr) = w_subs ! w_subs
IF ( large_scale_forcing ) THEN
hom(:,1,81,sr) = sums_ls_l(:,0) ! td_lsa_lpt
hom(:,1,82,sr) = sums_ls_l(:,1) ! td_lsa_q
IF ( use_subsidence_tendencies ) THEN
hom(:,1,83,sr) = sums_ls_l(:,2) ! td_sub_lpt
hom(:,1,84,sr) = sums_ls_l(:,3) ! td_sub_q
ELSE
hom(:,1,83,sr) = sums(:,83) ! td_sub_lpt
hom(:,1,84,sr) = sums(:,84) ! td_sub_q
ENDIF
hom(:,1,85,sr) = sums(:,85) ! td_nud_lpt
hom(:,1,86,sr) = sums(:,86) ! td_nud_q
hom(:,1,87,sr) = sums(:,87) ! td_nud_u
hom(:,1,88,sr) = sums(:,88) ! td_nud_v
ENDIF
IF ( land_surface ) THEN
hom(:,1,89,sr) = sums(:,89) ! t_soil
! 90 is initial t_soil profile
hom(:,1,91,sr) = sums(:,91) ! m_soil
! 92 is initial m_soil profile
hom(:,1,93,sr) = sums(:,93) ! ghf_eb
hom(:,1,94,sr) = sums(:,94) ! shf_eb
hom(:,1,95,sr) = sums(:,95) ! qsws_eb
hom(:,1,96,sr) = sums(:,96) ! qsws_liq_eb
hom(:,1,97,sr) = sums(:,97) ! qsws_soil_eb
hom(:,1,98,sr) = sums(:,98) ! qsws_veg_eb
hom(:,1,99,sr) = sums(:,99) ! r_a
hom(:,1,100,sr) = sums(:,100) ! r_s
ENDIF
IF ( radiation ) THEN
hom(:,1,101,sr) = sums(:,101) ! rad_net
hom(:,1,102,sr) = sums(:,102) ! rad_lw_in
hom(:,1,103,sr) = sums(:,103) ! rad_lw_out
hom(:,1,104,sr) = sums(:,104) ! rad_sw_in
hom(:,1,105,sr) = sums(:,105) ! rad_sw_out
IF ( radiation_scheme == 'rrtmg' ) THEN
#if defined ( __rrtmg )
hom(:,1,106,sr) = sums(:,106) ! rad_lw_cs_hr
hom(:,1,107,sr) = sums(:,107) ! rad_lw_hr
hom(:,1,108,sr) = sums(:,108) ! rad_sw_cs_hr
hom(:,1,109,sr) = sums(:,109) ! rad_sw_hr
hom(:,1,110,sr) = sums(:,110) ! rrtm_aldif
hom(:,1,111,sr) = sums(:,111) ! rrtm_aldir
hom(:,1,112,sr) = sums(:,112) ! rrtm_asdif
hom(:,1,113,sr) = sums(:,113) ! rrtm_asdir
#endif
ENDIF
ENDIF
hom(:,1,114,sr) = sums(:,114) !: L
hom(:,1,pr_palm,sr) = sums(:,pr_palm)
! u*, w'u', w'v', t* (in last profile)
IF ( max_pr_user > 0 ) THEN ! user-defined profiles
hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = &
sums(:,pr_palm+1:pr_palm+max_pr_user)
ENDIF
!
!-- Determine the boundary layer height using two different schemes.
!-- First scheme: Starting from the Earth's (Ocean's) surface, look for the
!-- first relative minimum (maximum) of the total heat flux.
!-- The corresponding height is assumed as the boundary layer height, if it
!-- is less than 1.5 times the height where the heat flux becomes negative
!-- (positive) for the first time.
z_i(1) = 0.0_wp
first = .TRUE.
IF ( ocean ) THEN
DO k = nzt, nzb+1, -1
IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN
first = .FALSE.
height = zw(k)
ENDIF
IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. &
hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN
IF ( zw(k) < 1.5_wp * height ) THEN
z_i(1) = zw(k)
ELSE
z_i(1) = height
ENDIF
EXIT
ENDIF
ENDDO
ELSE
DO k = nzb, nzt-1
IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN
first = .FALSE.
height = zw(k)
ENDIF
IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. &
hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN
IF ( zw(k) < 1.5_wp * height ) THEN
z_i(1) = zw(k)
ELSE
z_i(1) = height
ENDIF
EXIT
ENDIF
ENDDO
ENDIF
!
!-- Second scheme: Gradient scheme from Sullivan et al. (1998), modified
!-- by Uhlenbrock(2006). The boundary layer height is the height with the
!-- maximal local temperature gradient: starting from the second (the last
!-- but one) vertical gridpoint, the local gradient must be at least
!-- 0.2K/100m and greater than the next four gradients.
!-- WARNING: The threshold value of 0.2K/100m must be adjusted for the
!-- ocean case!
z_i(2) = 0.0_wp
DO k = nzb+1, nzt+1
dptdz(k) = ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) * ddzu(k)
ENDDO
dptdz_threshold = 0.2_wp / 100.0_wp
IF ( ocean ) THEN
DO k = nzt+1, nzb+5, -1
IF ( dptdz(k) > dptdz_threshold .AND. &
dptdz(k) > dptdz(k-1) .AND. dptdz(k) > dptdz(k-2) .AND. &
dptdz(k) > dptdz(k-3) .AND. dptdz(k) > dptdz(k-4) ) THEN
z_i(2) = zw(k-1)
EXIT
ENDIF
ENDDO
ELSE
DO k = nzb+1, nzt-3
IF ( dptdz(k) > dptdz_threshold .AND. &
dptdz(k) > dptdz(k+1) .AND. dptdz(k) > dptdz(k+2) .AND. &
dptdz(k) > dptdz(k+3) .AND. dptdz(k) > dptdz(k+4) ) THEN
z_i(2) = zw(k-1)
EXIT
ENDIF
ENDDO
ENDIF
hom(nzb+6,1,pr_palm,sr) = z_i(1)
hom(nzb+7,1,pr_palm,sr) = z_i(2)
!
!-- Determine vertical index which is nearest to the mean surface level
!-- height of the respective statistic region
DO k = nzb, nzt
IF ( zw(k) >= mean_surface_level_height(sr) ) THEN
k_surface_level = k
EXIT
ENDIF
ENDDO
!
!-- Computation of both the characteristic vertical velocity and
!-- the characteristic convective boundary layer temperature.
!-- The inversion height entering into the equation is defined with respect
!-- to the mean surface level height of the respective statistic region.
!-- The horizontal average at surface level index + 1 is input for the
!-- average temperature.
IF ( hom(k_surface_level,1,18,sr) > 1.0E-8_wp .AND. z_i(1) /= 0.0_wp )&
THEN
hom(nzb+8,1,pr_palm,sr) = &
( g / hom(k_surface_level+1,1,4,sr) * hom(k_surface_level,1,18,sr)&
* ABS( z_i(1) - mean_surface_level_height(sr) ) )**0.333333333_wp
ELSE
hom(nzb+8,1,pr_palm,sr) = 0.0_wp
ENDIF
!
!-- Collect the time series quantities
ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E
ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E*
ts_value(3,sr) = dt_3d
ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u*
ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th*
ts_value(6,sr) = u_max
ts_value(7,sr) = v_max
ts_value(8,sr) = w_max
ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence
ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence
ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1)
ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2)
ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w*
ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0
ts_value(15,sr) = hom(nzb+1,1,16,sr) ! w'pt' at k=1
ts_value(16,sr) = hom(nzb+1,1,18,sr) ! wpt at k=1
ts_value(17,sr) = hom(nzb,1,4,sr) ! pt(0)
ts_value(18,sr) = hom(nzb+1,1,4,sr) ! pt(zp)
ts_value(19,sr) = hom(nzb+1,1,pr_palm,sr) ! u'w' at k=0
ts_value(20,sr) = hom(nzb+2,1,pr_palm,sr) ! v'w' at k=0
ts_value(21,sr) = hom(nzb,1,48,sr) ! w"q" at k=0
IF ( .NOT. neutral ) THEN
ts_value(22,sr) = hom(nzb,1,114,sr) ! L
ELSE
ts_value(22,sr) = 1.0E10_wp
ENDIF
ts_value(23,sr) = hom(nzb+12,1,pr_palm,sr) ! q*
!
!-- Collect land surface model timeseries
IF ( land_surface ) THEN
ts_value(dots_soil ,sr) = hom(nzb,1,93,sr) ! ghf_eb
ts_value(dots_soil+1,sr) = hom(nzb,1,94,sr) ! shf_eb
ts_value(dots_soil+2,sr) = hom(nzb,1,95,sr) ! qsws_eb
ts_value(dots_soil+3,sr) = hom(nzb,1,96,sr) ! qsws_liq_eb
ts_value(dots_soil+4,sr) = hom(nzb,1,97,sr) ! qsws_soil_eb
ts_value(dots_soil+5,sr) = hom(nzb,1,98,sr) ! qsws_veg_eb
ts_value(dots_soil+6,sr) = hom(nzb,1,99,sr) ! r_a
ts_value(dots_soil+7,sr) = hom(nzb,1,100,sr) ! r_s
ENDIF
!
!-- Collect radiation model timeseries
IF ( radiation ) THEN
ts_value(dots_rad,sr) = hom(nzb,1,101,sr) ! rad_net
ts_value(dots_rad+1,sr) = hom(nzb,1,102,sr) ! rad_lw_in
ts_value(dots_rad+2,sr) = hom(nzb,1,103,sr) ! rad_lw_out
ts_value(dots_rad+3,sr) = hom(nzb,1,104,sr) ! rad_sw_in
ts_value(dots_rad+4,sr) = hom(nzb,1,105,sr) ! rad_sw_out
#if defined ( __rrtmg )
IF ( radiation_scheme == 'rrtmg' ) THEN
ts_value(dots_rad+5,sr) = hom(nzb,1,110,sr) ! rrtm_aldif
ts_value(dots_rad+6,sr) = hom(nzb,1,111,sr) ! rrtm_aldir
ts_value(dots_rad+7,sr) = hom(nzb,1,112,sr) ! rrtm_asdif
ts_value(dots_rad+8,sr) = hom(nzb,1,113,sr) ! rrtm_asdir
ENDIF
#endif
ENDIF
!
!-- Calculate additional statistics provided by the user interface
CALL user_statistics( 'time_series', sr, 0 )
ENDDO ! loop of the subregions
!
!-- If required, sum up horizontal averages for subsequent time averaging
IF ( do_sum ) THEN
IF ( average_count_pr == 0 ) hom_sum = 0.0_wp
hom_sum = hom_sum + hom(:,1,:,:)
average_count_pr = average_count_pr + 1
do_sum = .FALSE.
ENDIF
!
!-- Set flag for other UPs (e.g. output routines, but also buoyancy).
!-- This flag is reset after each time step in time_integration.
flow_statistics_called = .TRUE.
CALL cpu_log( log_point(10), 'flow_statistics', 'stop' )
END SUBROUTINE flow_statistics
#else
!------------------------------------------------------------------------------!
! Description:
! ------------
!> flow statistics - accelerator version
!------------------------------------------------------------------------------!
SUBROUTINE flow_statistics
USE arrays_3d, &
ONLY: ddzu, ddzw, e, hyp, km, kh, nr, p, prho, pt, q, qc, ql, qr, qs, &
qsws, qswst, rho, sa, saswsb, saswst, shf, td_lsa_lpt, td_lsa_q,&
td_sub_lpt, td_sub_q, time_vert, ts, tswst, u, ug, us, usws, &
uswst, vsws, v, vg, vpt, vswst, w, w_subs, zw
USE cloud_parameters, &
ONLY: l_d_cp, prr, pt_d_t
USE control_parameters, &
ONLY : average_count_pr, cloud_droplets, cloud_physics, do_sum, &
dt_3d, g, humidity, icloud_scheme, kappa, large_scale_forcing, &
large_scale_subsidence, max_pr_user, message_string, neutral, &
ocean, passive_scalar, precipitation, simulated_time, &
use_subsidence_tendencies, use_surface_fluxes, use_top_fluxes, &
ws_scheme_mom, ws_scheme_sca
USE cpulog, &
ONLY: cpu_log, log_point
USE grid_variables, &
ONLY: ddx, ddy
USE indices, &
ONLY: ngp_2dh, ngp_2dh_s_inner, ngp_3d, ngp_3d_inner, ngp_sums, &
ngp_sums_ls, nxl, nxr, nyn, nys, nzb, nzb_diff_s_inner, &
nzb_s_inner, nzt, nzt_diff, rflags_invers
USE kinds
USE land_surface_model_mod, &
ONLY: ghf_eb, land_surface, m_soil, nzb_soil, nzt_soil, &
qsws_eb, qsws_liq_eb, qsws_soil_eb, qsws_veg_eb, r_a, r_s, &
shf_eb, t_soil
USE netcdf_interface, &
ONLY: dots_rad, dots_soil
USE pegrid
USE radiation_model_mod, &
ONLY: radiation, radiation_scheme, rad_net, &
rad_lw_in, rad_lw_out, rad_sw_in, rad_sw_out
#if defined ( __rrtmg )
USE radiation_model_mod, &
ONLY: rrtm_aldif, rrtm_aldir, rrtm_asdif, rrtm_asdir, rad_lw_cs_hr, &
rad_lw_hr, rad_sw_cs_hr, rad_sw_hr
#endif
USE statistics
IMPLICIT NONE
INTEGER(iwp) :: i !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: k !<
INTEGER(iwp) :: k_surface_level !<
INTEGER(iwp) :: nt !<
INTEGER(iwp) :: omp_get_thread_num !<
INTEGER(iwp) :: sr !<
INTEGER(iwp) :: tn !<
LOGICAL :: first !<
REAL(wp) :: dptdz_threshold !<
REAL(wp) :: fac !<
REAL(wp) :: height !<
REAL(wp) :: pts !<
REAL(wp) :: sums_l_eper !<
REAL(wp) :: sums_l_etot !<
REAL(wp) :: s1 !<
REAL(wp) :: s2 !<
REAL(wp) :: s3 !<
REAL(wp) :: s4 !<
REAL(wp) :: s5 !<
REAL(wp) :: s6 !<
REAL(wp) :: s7 !<
REAL(wp) :: ust !<
REAL(wp) :: ust2 !<
REAL(wp) :: u2 !<
REAL(wp) :: vst !<
REAL(wp) :: vst2 !<
REAL(wp) :: v2 !<
REAL(wp) :: w2 !<
REAL(wp) :: z_i(2) !<
REAL(wp) :: dptdz(nzb+1:nzt+1) !<
REAL(wp) :: sums_ll(nzb:nzt+1,2) !<
CALL cpu_log( log_point(10), 'flow_statistics', 'start' )
!
!-- To be on the safe side, check whether flow_statistics has already been
!-- called once after the current time step
IF ( flow_statistics_called ) THEN
message_string = 'flow_statistics is called two times within one ' // &
'timestep'
CALL message( 'flow_statistics', 'PA0190', 1, 2, 0, 6, 0 )
ENDIF
!$acc data create( sums, sums_l )
!$acc update device( hom )
!
!-- Compute statistics for each (sub-)region
DO sr = 0, statistic_regions
!
!-- Initialize (local) summation array
sums_l = 0.0_wp
!
!-- Store sums that have been computed in other subroutines in summation
!-- array
sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities
!-- WARNING: next line still has to be adjusted for OpenMP
sums_l(:,21,0) = sums_wsts_bc_l(:,sr) ! heat flux from advec_s_bc
sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres
sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres
!
!-- When calcuating horizontally-averaged total (resolved- plus subgrid-
!-- scale) vertical fluxes and velocity variances by using commonly-
!-- applied Reynolds-based methods ( e.g. = (w-)*(pt-) )
!-- in combination with the 5th order advection scheme, pronounced
!-- artificial kinks could be observed in the vertical profiles near the
!-- surface. Please note: these kinks were not related to the model truth,
!-- i.e. these kinks are just related to an evaluation problem.
!-- In order avoid these kinks, vertical fluxes and horizontal as well
!-- vertical velocity variances are calculated directly within the advection
!-- routines, according to the numerical discretization, to evaluate the
!-- statistical quantities as they will appear within the prognostic
!-- equations.
!-- Copy the turbulent quantities, evaluated in the advection routines to
!-- the local array sums_l() for further computations.
IF ( ws_scheme_mom .AND. sr == 0 ) THEN
!
!-- According to the Neumann bc for the horizontal velocity components,
!-- the corresponding fluxes has to satisfiy the same bc.
IF ( ocean ) THEN
sums_us2_ws_l(nzt+1,:) = sums_us2_ws_l(nzt,:)
sums_vs2_ws_l(nzt+1,:) = sums_vs2_ws_l(nzt,:)
ENDIF
DO i = 0, threads_per_task-1
!
!-- Swap the turbulent quantities evaluated in advec_ws.
sums_l(:,13,i) = sums_wsus_ws_l(:,i) ! w*u*
sums_l(:,15,i) = sums_wsvs_ws_l(:,i) ! w*v*
sums_l(:,30,i) = sums_us2_ws_l(:,i) ! u*2
sums_l(:,31,i) = sums_vs2_ws_l(:,i) ! v*2
sums_l(:,32,i) = sums_ws2_ws_l(:,i) ! w*2
sums_l(:,34,i) = sums_l(:,34,i) + 0.5_wp * &
( sums_us2_ws_l(:,i) + sums_vs2_ws_l(:,i) + &
sums_ws2_ws_l(:,i) ) ! e*
DO k = nzb, nzt
sums_l(nzb+5,pr_palm,i) = sums_l(nzb+5,pr_palm,i) + 0.5_wp * ( &
sums_us2_ws_l(k,i) + &
sums_vs2_ws_l(k,i) + &
sums_ws2_ws_l(k,i) )
ENDDO
ENDDO
ENDIF
IF ( ws_scheme_sca .AND. sr == 0 ) THEN
DO i = 0, threads_per_task-1
sums_l(:,17,i) = sums_wspts_ws_l(:,i) ! w*pt* from advec_s_ws
IF ( ocean ) sums_l(:,66,i) = sums_wssas_ws_l(:,i) ! w*sa*
IF ( humidity .OR. passive_scalar ) sums_l(:,49,i) = &
sums_wsqs_ws_l(:,i) !w*q*
ENDDO
ENDIF
!
!-- Horizontally averaged profiles of horizontal velocities and temperature.
!-- They must have been computed before, because they are already required
!-- for other horizontal averages.
tn = 0
!$OMP PARALLEL PRIVATE( i, j, k, tn )
#if defined( __intel_openmp_bug )
tn = omp_get_thread_num()
#else
!$ tn = omp_get_thread_num()
#endif
!$acc update device( sums_l )
!$OMP DO
!$acc parallel loop gang present( pt, rflags_invers, rmask, sums_l, u, v ) create( s1, s2, s3 )
DO k = nzb, nzt+1
s1 = 0
s2 = 0
s3 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 )
DO i = nxl, nxr
DO j = nys, nyn
!
!-- k+1 is used in rflags since rflags is set 0 at surface points
s1 = s1 + u(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
s2 = s2 + v(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
s3 = s3 + pt(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,1,tn) = s1
sums_l(k,2,tn) = s2
sums_l(k,4,tn) = s3
ENDDO
!$acc end parallel loop
!
!-- Horizontally averaged profile of salinity
IF ( ocean ) THEN
!$OMP DO
!$acc parallel loop gang present( rflags_invers, rmask, sums_l, sa ) create( s1 )
DO k = nzb, nzt+1
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + sa(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,23,tn) = s1
ENDDO
!$acc end parallel loop
ENDIF
!
!-- Horizontally averaged profiles of virtual potential temperature,
!-- total water content, specific humidity and liquid water potential
!-- temperature
IF ( humidity ) THEN
!$OMP DO
!$acc parallel loop gang present( q, rflags_invers, rmask, sums_l, vpt ) create( s1, s2 )
DO k = nzb, nzt+1
s1 = 0
s2 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1, s2 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + q(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
s2 = s2 + vpt(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,41,tn) = s1
sums_l(k,44,tn) = s2
ENDDO
!$acc end parallel loop
IF ( cloud_physics ) THEN
!$OMP DO
!$acc parallel loop gang present( pt, q, ql, rflags_invers, rmask, sums_l ) create( s1, s2 )
DO k = nzb, nzt+1
s1 = 0
s2 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1, s2 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + ( q(k,j,i) - ql(k,j,i) ) * &
rmask(j,i,sr) * rflags_invers(j,i,k+1)
s2 = s2 + ( pt(k,j,i) + l_d_cp*pt_d_t(k) * ql(k,j,i) ) * &
rmask(j,i,sr) * rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,42,tn) = s1
sums_l(k,43,tn) = s2
ENDDO
!$acc end parallel loop
ENDIF
ENDIF
!
!-- Horizontally averaged profiles of passive scalar
IF ( passive_scalar ) THEN
!$OMP DO
!$acc parallel loop gang present( q, rflags_invers, rmask, sums_l ) create( s1 )
DO k = nzb, nzt+1
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + q(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,41,tn) = s1
ENDDO
!$acc end parallel loop
ENDIF
!$OMP END PARALLEL
!
!-- Summation of thread sums
IF ( threads_per_task > 1 ) THEN
DO i = 1, threads_per_task-1
!$acc parallel present( sums_l )
sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i)
sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i)
sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i)
!$acc end parallel
IF ( ocean ) THEN
!$acc parallel present( sums_l )
sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i)
!$acc end parallel
ENDIF
IF ( humidity ) THEN
!$acc parallel present( sums_l )
sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i)
sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i)
!$acc end parallel
IF ( cloud_physics ) THEN
!$acc parallel present( sums_l )
sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i)
sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i)
!$acc end parallel
ENDIF
ENDIF
IF ( passive_scalar ) THEN
!$acc parallel present( sums_l )
sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i)
!$acc end parallel
ENDIF
ENDDO
ENDIF
#if defined( __parallel )
!
!-- Compute total sum from local sums
!$acc update host( sums_l )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, &
MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, &
MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, &
MPI_SUM, comm2d, ierr )
IF ( ocean ) THEN
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
ENDIF
IF ( humidity ) THEN
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( cloud_physics ) THEN
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
ENDIF
ENDIF
IF ( passive_scalar ) THEN
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
ENDIF
!$acc update device( sums )
#else
!$acc parallel present( sums, sums_l )
sums(:,1) = sums_l(:,1,0)
sums(:,2) = sums_l(:,2,0)
sums(:,4) = sums_l(:,4,0)
!$acc end parallel
IF ( ocean ) THEN
!$acc parallel present( sums, sums_l )
sums(:,23) = sums_l(:,23,0)
!$acc end parallel
ENDIF
IF ( humidity ) THEN
!$acc parallel present( sums, sums_l )
sums(:,44) = sums_l(:,44,0)
sums(:,41) = sums_l(:,41,0)
!$acc end parallel
IF ( cloud_physics ) THEN
!$acc parallel present( sums, sums_l )
sums(:,42) = sums_l(:,42,0)
sums(:,43) = sums_l(:,43,0)
!$acc end parallel
ENDIF
ENDIF
IF ( passive_scalar ) THEN
!$acc parallel present( sums, sums_l )
sums(:,41) = sums_l(:,41,0)
!$acc end parallel
ENDIF
#endif
!
!-- Final values are obtained by division by the total number of grid points
!-- used for summation. After that store profiles.
!$acc parallel present( hom, ngp_2dh, ngp_2dh_s_inner, sums )
sums(:,1) = sums(:,1) / ngp_2dh(sr)
sums(:,2) = sums(:,2) / ngp_2dh(sr)
sums(:,4) = sums(:,4) / ngp_2dh_s_inner(:,sr)
hom(:,1,1,sr) = sums(:,1) ! u
hom(:,1,2,sr) = sums(:,2) ! v
hom(:,1,4,sr) = sums(:,4) ! pt
!$acc end parallel
!
!-- Salinity
IF ( ocean ) THEN
!$acc parallel present( hom, ngp_2dh_s_inner, sums )
sums(:,23) = sums(:,23) / ngp_2dh_s_inner(:,sr)
hom(:,1,23,sr) = sums(:,23) ! sa
!$acc end parallel
ENDIF
!
!-- Humidity and cloud parameters
IF ( humidity ) THEN
!$acc parallel present( hom, ngp_2dh_s_inner, sums )
sums(:,44) = sums(:,44) / ngp_2dh_s_inner(:,sr)
sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr)
hom(:,1,44,sr) = sums(:,44) ! vpt
hom(:,1,41,sr) = sums(:,41) ! qv (q)
!$acc end parallel
IF ( cloud_physics ) THEN
!$acc parallel present( hom, ngp_2dh_s_inner, sums )
sums(:,42) = sums(:,42) / ngp_2dh_s_inner(:,sr)
sums(:,43) = sums(:,43) / ngp_2dh_s_inner(:,sr)
hom(:,1,42,sr) = sums(:,42) ! qv
hom(:,1,43,sr) = sums(:,43) ! pt
!$acc end parallel
ENDIF
ENDIF
!
!-- Passive scalar
IF ( passive_scalar ) THEN
!$acc parallel present( hom, ngp_2dh_s_inner, sums )
sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr)
hom(:,1,41,sr) = sums(:,41) ! s (q)
!$acc end parallel
ENDIF
!
!-- Horizontally averaged profiles of the remaining prognostic variables,
!-- variances, the total and the perturbation energy (single values in last
!-- column of sums_l) and some diagnostic quantities.
!-- NOTE: for simplicity, nzb_s_inner is used below, although strictly
!-- ---- speaking the following k-loop would have to be split up and
!-- rearranged according to the staggered grid.
!-- However, this implies no error since staggered velocity components
!-- are zero at the walls and inside buildings.
tn = 0
#if defined( __intel_openmp_bug )
!$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, &
!$OMP tn, ust, ust2, u2, vst, vst2, v2, w2 )
tn = omp_get_thread_num()
#else
!$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, w2 )
!$ tn = omp_get_thread_num()
#endif
!$OMP DO
!$acc parallel loop gang present( e, hom, kh, km, p, pt, w, rflags_invers, rmask, sums_l ) create( s1, s2, s3, s4, s5, s6, s7 )
DO k = nzb, nzt+1
s1 = 0
s2 = 0
s3 = 0
s4 = 0
s5 = 0
s6 = 0
s7 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4, s5, s6, s7 )
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Prognostic and diagnostic variables
s1 = s1 + w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
s2 = s2 + e(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
s3 = s3 + km(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
s4 = s4 + kh(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
s5 = s5 + p(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
s6 = s6 + ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr) * &
rflags_invers(j,i,k+1)
!
!-- Higher moments
!-- (Computation of the skewness of w further below)
s7 = s7 + w(k,j,i)**3 * rmask(j,i,sr) * rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,3,tn) = s1
sums_l(k,8,tn) = s2
sums_l(k,9,tn) = s3
sums_l(k,10,tn) = s4
sums_l(k,40,tn) = s5
sums_l(k,33,tn) = s6
sums_l(k,38,tn) = s7
ENDDO
!$acc end parallel loop
IF ( humidity ) THEN
!$OMP DO
!$acc parallel loop gang present( hom, q, rflags_invers, rmask, sums_l ) create( s1 )
DO k = nzb, nzt+1
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + ( q(k,j,i)-hom(k,1,41,sr) )**2 * rmask(j,i,sr) * &
rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,70,tn) = s1
ENDDO
!$acc end parallel loop
ENDIF
!
!-- Total and perturbation energy for the total domain (being
!-- collected in the last column of sums_l).
s1 = 0
!$OMP DO
!$acc parallel loop collapse(3) present( rflags_invers, rmask, u, v, w ) reduction(+:s1)
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt+1
s1 = s1 + 0.5_wp * &
( u(k,j,i)**2 + v(k,j,i)**2 + w(k,j,i)**2 ) * &
rmask(j,i,sr) * rflags_invers(j,i,k+1)
ENDDO
ENDDO
ENDDO
!$acc end parallel loop
!$acc parallel present( sums_l )
sums_l(nzb+4,pr_palm,tn) = s1
!$acc end parallel
!$OMP DO
!$acc parallel present( rmask, sums_l, us, usws, vsws, ts ) create( s1, s2, s3, s4 )
s1 = 0
s2 = 0
s3 = 0
s4 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4 )
DO i = nxl, nxr
DO j = nys, nyn
!
!-- 2D-arrays (being collected in the last column of sums_l)
s1 = s1 + us(j,i) * rmask(j,i,sr)
s2 = s2 + usws(j,i) * rmask(j,i,sr)
s3 = s3 + vsws(j,i) * rmask(j,i,sr)
s4 = s4 + ts(j,i) * rmask(j,i,sr)
ENDDO
ENDDO
sums_l(nzb,pr_palm,tn) = s1
sums_l(nzb+1,pr_palm,tn) = s2
sums_l(nzb+2,pr_palm,tn) = s3
sums_l(nzb+3,pr_palm,tn) = s4
!$acc end parallel
IF ( humidity ) THEN
!$acc parallel present( qs, rmask, sums_l ) create( s1 )
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + qs(j,i) * rmask(j,i,sr)
ENDDO
ENDDO
sums_l(nzb+12,pr_palm,tn) = s1
!$acc end parallel
ENDIF
!
!-- Computation of statistics when ws-scheme is not used. Else these
!-- quantities are evaluated in the advection routines.
IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN
!$OMP DO
!$acc parallel loop gang present( u, v, w, rflags_invers, rmask, sums_l ) create( s1, s2, s3, s4, ust2, vst2, w2 )
DO k = nzb, nzt+1
s1 = 0
s2 = 0
s3 = 0
s4 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4 )
DO i = nxl, nxr
DO j = nys, nyn
ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2
vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2
w2 = w(k,j,i)**2
s1 = s1 + ust2 * rmask(j,i,sr) * rflags_invers(j,i,k+1)
s2 = s2 + vst2 * rmask(j,i,sr) * rflags_invers(j,i,k+1)
s3 = s3 + w2 * rmask(j,i,sr) * rflags_invers(j,i,k+1)
!
!-- Perturbation energy
s4 = s4 + 0.5_wp * ( ust2 + vst2 + w2 ) * rmask(j,i,sr) * &
rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,30,tn) = s1
sums_l(k,31,tn) = s2
sums_l(k,32,tn) = s3
sums_l(k,34,tn) = s4
ENDDO
!$acc end parallel loop
!
!-- Total perturbation TKE
!$OMP DO
!$acc parallel present( sums_l ) create( s1 )
s1 = 0
!$acc loop reduction( +: s1 )
DO k = nzb, nzt+1
s1 = s1 + sums_l(k,34,tn)
ENDDO
sums_l(nzb+5,pr_palm,tn) = s1
!$acc end parallel
ENDIF
!
!-- Horizontally averaged profiles of the vertical fluxes
!
!-- Subgridscale fluxes.
!-- WARNING: If a Prandtl-layer is used (k=nzb for flat terrain), the fluxes
!-- ------- should be calculated there in a different way. This is done
!-- in the next loop further below, where results from this loop are
!-- overwritten. However, THIS WORKS IN CASE OF FLAT TERRAIN ONLY!
!-- The non-flat case still has to be handled.
!-- NOTE: for simplicity, nzb_s_inner is used below, although
!-- ---- strictly speaking the following k-loop would have to be
!-- split up according to the staggered grid.
!-- However, this implies no error since staggered velocity
!-- components are zero at the walls and inside buildings.
!$OMP DO
!$acc parallel loop gang present( ddzu, kh, km, pt, u, v, w, rflags_invers, rmask, sums_l ) create( s1, s2, s3 )
DO k = nzb, nzt_diff
s1 = 0
s2 = 0
s3 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 )
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Momentum flux w"u"
s1 = s1 - 0.25_wp * ( &
km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) &
) * ( &
( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) &
+ ( w(k,j,i) - w(k,j,i-1) ) * ddx &
) &
* rmask(j,i,sr) * rflags_invers(j,i,k+1)
!
!-- Momentum flux w"v"
s2 = s2 - 0.25_wp * ( &
km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) &
) * ( &
( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) &
+ ( w(k,j,i) - w(k,j-1,i) ) * ddy &
) &
* rmask(j,i,sr) * rflags_invers(j,i,k+1)
!
!-- Heat flux w"pt"
s3 = s3 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) &
* ( pt(k+1,j,i) - pt(k,j,i) ) &
* ddzu(k+1) * rmask(j,i,sr) &
* rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,12,tn) = s1
sums_l(k,14,tn) = s2
sums_l(k,16,tn) = s3
ENDDO
!$acc end parallel loop
!
!-- Salinity flux w"sa"
IF ( ocean ) THEN
!$acc parallel loop gang present( ddzu, kh, sa, rflags_invers, rmask, sums_l ) create( s1 )
DO k = nzb, nzt_diff
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) &
* ( sa(k+1,j,i) - sa(k,j,i) ) &
* ddzu(k+1) * rmask(j,i,sr) &
* rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,65,tn) = s1
ENDDO
!$acc end parallel loop
ENDIF
!
!-- Buoyancy flux, water flux (humidity flux) w"q"
IF ( humidity ) THEN
!$acc parallel loop gang present( ddzu, kh, q, vpt, rflags_invers, rmask, sums_l ) create( s1, s2 )
DO k = nzb, nzt_diff
s1 = 0
s2 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1, s2 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) &
* ( vpt(k+1,j,i) - vpt(k,j,i) ) &
* ddzu(k+1) * rmask(j,i,sr) &
* rflags_invers(j,i,k+1)
s2 = s2 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) &
* ( q(k+1,j,i) - q(k,j,i) ) &
* ddzu(k+1) * rmask(j,i,sr) &
* rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,45,tn) = s1
sums_l(k,48,tn) = s2
ENDDO
!$acc end parallel loop
IF ( cloud_physics ) THEN
!$acc parallel loop gang present( ddzu, kh, q, ql, rflags_invers, rmask, sums_l ) create( s1 )
DO k = nzb, nzt_diff
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) &
* ( ( q(k+1,j,i) - ql(k+1,j,i) ) &
- ( q(k,j,i) - ql(k,j,i) ) ) &
* ddzu(k+1) * rmask(j,i,sr) &
* rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,51,tn) = s1
ENDDO
!$acc end parallel loop
ENDIF
ENDIF
!
!-- Passive scalar flux
IF ( passive_scalar ) THEN
!$acc parallel loop gang present( ddzu, kh, q, rflags_invers, rmask, sums_l ) create( s1 )
DO k = nzb, nzt_diff
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) &
* ( q(k+1,j,i) - q(k,j,i) ) &
* ddzu(k+1) * rmask(j,i,sr) &
* rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,48,tn) = s1
ENDDO
!$acc end parallel loop
ENDIF
IF ( use_surface_fluxes ) THEN
!$OMP DO
!$acc parallel present( rmask, shf, sums_l, usws, vsws ) create( s1, s2, s3, s4, s5 )
s1 = 0
s2 = 0
s3 = 0
s4 = 0
s5 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4, s5 )
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Subgridscale fluxes in the Prandtl layer
s1 = s1 + usws(j,i) * rmask(j,i,sr) ! w"u"
s2 = s2 + vsws(j,i) * rmask(j,i,sr) ! w"v"
s3 = s3 + shf(j,i) * rmask(j,i,sr) ! w"pt"
s4 = s4 + 0.0_wp * rmask(j,i,sr) ! u"pt"
s5 = s5 + 0.0_wp * rmask(j,i,sr) ! v"pt"
ENDDO
ENDDO
sums_l(nzb,12,tn) = s1
sums_l(nzb,14,tn) = s2
sums_l(nzb,16,tn) = s3
sums_l(nzb,58,tn) = s4
sums_l(nzb,61,tn) = s5
!$acc end parallel
IF ( ocean ) THEN
!$OMP DO
!$acc parallel present( rmask, saswsb, sums_l ) create( s1 )
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + saswsb(j,i) * rmask(j,i,sr) ! w"sa"
ENDDO
ENDDO
sums_l(nzb,65,tn) = s1
!$acc end parallel
ENDIF
IF ( humidity ) THEN
!$OMP DO
!$acc parallel present( pt, q, qsws, rmask, shf, sums_l ) create( s1, s2 )
s1 = 0
s2 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1, s2 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv")
s2 = s2 + ( ( 1.0_wp + 0.61_wp * q(nzb,j,i) ) * shf(j,i) &
+ 0.61_wp * pt(nzb,j,i) * qsws(j,i) )
ENDDO
ENDDO
sums_l(nzb,48,tn) = s1
sums_l(nzb,45,tn) = s2
!$acc end parallel
IF ( cloud_droplets ) THEN
!$OMP DO
!$acc parallel present( pt, q, ql, qsws, rmask, shf, sums_l ) create( s1 )
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + ( ( 1.0_wp + &
0.61_wp * q(nzb,j,i) - ql(nzb,j,i) ) * &
shf(j,i) + 0.61_wp * pt(nzb,j,i) * qsws(j,i) )
ENDDO
ENDDO
sums_l(nzb,45,tn) = s1
!$acc end parallel
ENDIF
IF ( cloud_physics ) THEN
!$OMP DO
!$acc parallel present( qsws, rmask, sums_l ) create( s1 )
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Formula does not work if ql(nzb) /= 0.0
s1 = s1 + qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv")
ENDDO
ENDDO
sums_l(nzb,51,tn) = s1
!$acc end parallel
ENDIF
ENDIF
IF ( passive_scalar ) THEN
!$OMP DO
!$acc parallel present( qsws, rmask, sums_l ) create( s1 )
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv")
ENDDO
ENDDO
sums_l(nzb,48,tn) = s1
!$acc end parallel
ENDIF
ENDIF
!
!-- Subgridscale fluxes at the top surface
IF ( use_top_fluxes ) THEN
!$OMP DO
!$acc parallel present( rmask, sums_l, tswst, uswst, vswst ) create( s1, s2, s3, s4, s5 )
s1 = 0
s2 = 0
s3 = 0
s4 = 0
s5 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4, s5 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + uswst(j,i) * rmask(j,i,sr) ! w"u"
s2 = s2 + vswst(j,i) * rmask(j,i,sr) ! w"v"
s3 = s3 + tswst(j,i) * rmask(j,i,sr) ! w"pt"
s4 = s4 + 0.0_wp * rmask(j,i,sr) ! u"pt"
s5 = s5 + 0.0_wp * rmask(j,i,sr) ! v"pt"
ENDDO
ENDDO
sums_l(nzt:nzt+1,12,tn) = s1
sums_l(nzt:nzt+1,14,tn) = s2
sums_l(nzt:nzt+1,16,tn) = s3
sums_l(nzt:nzt+1,58,tn) = s4
sums_l(nzt:nzt+1,61,tn) = s5
!$acc end parallel
IF ( ocean ) THEN
!$OMP DO
!$acc parallel present( rmask, saswst, sums_l ) create( s1 )
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + saswst(j,i) * rmask(j,i,sr) ! w"sa"
ENDDO
ENDDO
sums_l(nzt,65,tn) = s1
!$acc end parallel
ENDIF
IF ( humidity ) THEN
!$OMP DO
!$acc parallel present( pt, q, qswst, rmask, tswst, sums_l ) create( s1, s2 )
s1 = 0
s2 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1, s2 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv")
s2 = s2 + ( ( 1.0_wp + 0.61_wp * q(nzt,j,i) ) * tswst(j,i) +&
0.61_wp * pt(nzt,j,i) * qswst(j,i) )
ENDDO
ENDDO
sums_l(nzt,48,tn) = s1
sums_l(nzt,45,tn) = s2
!$acc end parallel
IF ( cloud_droplets ) THEN
!$OMP DO
!$acc parallel present( pt, q, ql, qswst, rmask, tswst, sums_l ) create( s1 )
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + ( ( 1.0_wp + &
0.61_wp * q(nzt,j,i) - ql(nzt,j,i) ) * &
tswst(j,i) + &
0.61_wp * pt(nzt,j,i) * qswst(j,i) )
ENDDO
ENDDO
sums_l(nzt,45,tn) = s1
!$acc end parallel
ENDIF
IF ( cloud_physics ) THEN
!$OMP DO
!$acc parallel present( qswst, rmask, sums_l ) create( s1 )
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Formula does not work if ql(nzb) /= 0.0
s1 = s1 + qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv")
ENDDO
ENDDO
sums_l(nzt,51,tn) = s1
!$acc end parallel
ENDIF
ENDIF
IF ( passive_scalar ) THEN
!$OMP DO
!$acc parallel present( qswst, rmask, sums_l ) create( s1 )
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv")
ENDDO
ENDDO
sums_l(nzt,48,tn) = s1
!$acc end parallel
ENDIF
ENDIF
!
!-- Resolved fluxes (can be computed for all horizontal points)
!-- NOTE: for simplicity, nzb_s_inner is used below, although strictly
!-- ---- speaking the following k-loop would have to be split up and
!-- rearranged according to the staggered grid.
!$acc parallel loop gang present( hom, pt, rflags_invers, rmask, sums_l, u, v, w ) create( s1, s2, s3 )
DO k = nzb, nzt_diff
s1 = 0
s2 = 0
s3 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 )
DO i = nxl, nxr
DO j = nys, nyn
ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + &
u(k+1,j,i) - hom(k+1,1,1,sr) )
vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + &
v(k+1,j,i) - hom(k+1,1,2,sr) )
pts = 0.5_wp * ( pt(k,j,i) - hom(k,1,4,sr) + &
pt(k+1,j,i) - hom(k+1,1,4,sr) )
!
!-- Higher moments
s1 = s1 + pts * w(k,j,i)**2 * rmask(j,i,sr) * rflags_invers(j,i,k+1)
s2 = s2 + pts**2 * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
!
!-- Energy flux w*e* (has to be adjusted?)
s3 = s3 + w(k,j,i) * 0.5_wp * ( ust**2 + vst**2 + w(k,j,i)**2 )&
* rmask(j,i,sr) * rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,35,tn) = s1
sums_l(k,36,tn) = s2
sums_l(k,37,tn) = s3
ENDDO
!$acc end parallel loop
!
!-- Salinity flux and density (density does not belong to here,
!-- but so far there is no other suitable place to calculate)
IF ( ocean ) THEN
IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN
!$acc parallel loop gang present( hom, rflags_invers, rmask, sa, sums_l, w ) create( s1 )
DO k = nzb, nzt_diff
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + 0.5_wp * ( sa(k,j,i) - hom(k,1,23,sr) + &
sa(k+1,j,i) - hom(k+1,1,23,sr) ) &
* w(k,j,i) * rmask(j,i,sr) &
* rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,66,tn) = s1
ENDDO
!$acc end parallel loop
ENDIF
!$acc parallel loop gang present( rflags_invers, rho, prho, rmask, sums_l ) create( s1, s2 )
DO k = nzb, nzt_diff
s1 = 0
s2 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1, s2 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + rho(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
s2 = s2 + prho(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,64,tn) = s1
sums_l(k,71,tn) = s2
ENDDO
!$acc end parallel loop
ENDIF
!
!-- Buoyancy flux, water flux, humidity flux, liquid water
!-- content, rain drop concentration and rain water content
IF ( humidity ) THEN
IF ( cloud_physics .OR. cloud_droplets ) THEN
!$acc parallel loop gang present( hom, rflags_invers, rmask, sums_l, vpt, w ) create( s1 )
DO k = nzb, nzt_diff
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + &
vpt(k+1,j,i) - hom(k+1,1,44,sr) ) * &
w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,46,tn) = s1
ENDDO
!$acc end parallel loop
IF ( .NOT. cloud_droplets ) THEN
!$acc parallel loop gang present( hom, q, ql, rflags_invers, rmask, sums_l, w ) create( s1 )
DO k = nzb, nzt_diff
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + 0.5_wp * ( ( q(k,j,i) - ql(k,j,i) ) - hom(k,1,42,sr) + &
( q(k+1,j,i) - ql(k+1,j,i) ) - hom(k+1,1,42,sr) ) &
* w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,52,tn) = s1
ENDDO
!$acc end parallel loop
IF ( icloud_scheme == 0 ) THEN
!$acc parallel loop gang present( qc, ql, rflags_invers, rmask, sums_l ) create( s1, s2 )
DO k = nzb, nzt_diff
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1, s2 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + ql(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
s2 = s2 + qc(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,54,tn) = s1
sums_l(k,75,tn) = s2
ENDDO
!$acc end parallel loop
IF ( precipitation ) THEN
!$acc parallel loop gang present( nr, qr, prr, rflags_invers, rmask, sums_l ) create( s1, s2, s3 )
DO k = nzb, nzt_diff
s1 = 0
s2 = 0
s3 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + nr(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
s2 = s2 + qr(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
s3 = s3 + prr(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,73,tn) = s1
sums_l(k,74,tn) = s2
sums_l(k,76,tn) = s3
ENDDO
!$acc end parallel loop
ENDIF
ELSE
!$acc parallel loop gang present( ql, rflags_invers, rmask, sums_l ) create( s1 )
DO k = nzb, nzt_diff
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + ql(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,54,tn) = s1
ENDDO
!$acc end parallel loop
ENDIF
ELSE
!$acc parallel loop gang present( ql, rflags_invers, rmask, sums_l ) create( s1 )
DO k = nzb, nzt_diff
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + ql(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,54,tn) = s1
ENDDO
!$acc end parallel loop
ENDIF
ELSE
IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN
!$acc parallel loop gang present( hom, rflags_invers, rmask, sums_l, vpt, w ) create( s1 )
DO k = nzb, nzt_diff
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + &
vpt(k+1,j,i) - hom(k+1,1,44,sr) ) &
* w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,46,tn) = s1
ENDDO
!$acc end parallel loop
ELSEIF ( ws_scheme_sca .AND. sr == 0 ) THEN
!$acc parallel loop present( hom, sums_l )
DO k = nzb, nzt_diff
sums_l(k,46,tn) = ( 1.0_wp + 0.61_wp * hom(k,1,41,sr) ) * sums_l(k,17,tn) + &
0.61_wp * hom(k,1,4,sr) * sums_l(k,49,tn)
ENDDO
!$acc end parallel loop
ENDIF
ENDIF
ENDIF
!
!-- Passive scalar flux
IF ( passive_scalar .AND. ( .NOT. ws_scheme_sca .OR. sr /= 0 ) ) THEN
!$acc parallel loop gang present( hom, q, rflags_invers, rmask, sums_l, w ) create( s1 )
DO k = nzb, nzt_diff
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + 0.5_wp * ( q(k,j,i) - hom(k,1,41,sr) + &
q(k+1,j,i) - hom(k+1,1,41,sr) ) &
* w(k,j,i) * rmask(j,i,sr) &
* rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,49,tn) = s1
ENDDO
!$acc end parallel loop
ENDIF
!
!-- For speed optimization fluxes which have been computed in part directly
!-- inside the WS advection routines are treated seperatly
!-- Momentum fluxes first:
IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN
!$OMP DO
!$acc parallel loop gang present( hom, rflags_invers, rmask, sums_l, u, v, w ) create( s1, s2 )
DO k = nzb, nzt_diff
s1 = 0
s2 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1, s2 )
DO i = nxl, nxr
DO j = nys, nyn
ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + &
u(k+1,j,i) - hom(k+1,1,1,sr) )
vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + &
v(k+1,j,i) - hom(k+1,1,2,sr) )
!
!-- Momentum flux w*u*
s1 = s1 + 0.5_wp * ( w(k,j,i-1) + w(k,j,i) ) &
* ust * rmask(j,i,sr) &
* rflags_invers(j,i,k+1)
!
!-- Momentum flux w*v*
s2 = s2 + 0.5_wp * ( w(k,j-1,i) + w(k,j,i) ) &
* vst * rmask(j,i,sr) &
* rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,13,tn) = s1
sums_l(k,15,tn) = s1
ENDDO
!$acc end parallel loop
ENDIF
IF ( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN
!$OMP DO
!$acc parallel loop gang present( hom, pt, rflags_invers, rmask, sums_l, w ) create( s1 )
DO k = nzb, nzt_diff
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Vertical heat flux
s1 = s1 + 0.5_wp * ( pt(k,j,i) - hom(k,1,4,sr) + &
pt(k+1,j,i) - hom(k+1,1,4,sr) ) &
* w(k,j,i) * rmask(j,i,sr) &
* rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,17,tn) = s1
ENDDO
!$acc end parallel loop
IF ( humidity ) THEN
!$acc parallel loop gang present( hom, q, rflags_invers, rmask, sums_l, w ) create( s1 )
DO k = nzb, nzt_diff
s1 = 0
!$acc loop vector collapse( 2 ) reduction( +: s1 )
DO i = nxl, nxr
DO j = nys, nyn
s1 = s1 + 0.5_wp * ( q(k,j,i) - hom(k,1,41,sr) + &
q(k+1,j,i) - hom(k+1,1,41,sr) ) &
* w(k,j,i) * rmask(j,i,sr) &
* rflags_invers(j,i,k+1)
ENDDO
ENDDO
sums_l(k,49,tn) = s1
ENDDO
!$acc end parallel loop
ENDIF
ENDIF
!
!-- Density at top follows Neumann condition
IF ( ocean ) THEN
!$acc parallel present( sums_l )
sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn)
sums_l(nzt+1,71,tn) = sums_l(nzt,71,tn)
!$acc end parallel
ENDIF
!
!-- Divergence of vertical flux of resolved scale energy and pressure
!-- fluctuations as well as flux of pressure fluctuation itself (68).
!-- First calculate the products, then the divergence.
!-- Calculation is time consuming. Do it only, if profiles shall be plotted.
IF ( hom(nzb+1,2,55,0) /= 0.0_wp .OR. hom(nzb+1,2,68,0) /= 0.0_wp ) THEN
STOP '+++ openACC porting for vertical flux div of resolved scale TKE in flow_statistics is still missing'
sums_ll = 0.0_wp ! local array
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_s_inner(j,i)+1, nzt
sums_ll(k,1) = sums_ll(k,1) + 0.5_wp * w(k,j,i) * ( &
( 0.25_wp * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) ) &
- 0.5_wp * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) )**2&
+ ( 0.25_wp * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) ) &
- 0.5_wp * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) )**2&
+ w(k,j,i)**2 )
sums_ll(k,2) = sums_ll(k,2) + 0.5_wp * w(k,j,i) &
* ( p(k,j,i) + p(k+1,j,i) )
ENDDO
ENDDO
ENDDO
sums_ll(0,1) = 0.0_wp ! because w is zero at the bottom
sums_ll(nzt+1,1) = 0.0_wp
sums_ll(0,2) = 0.0_wp
sums_ll(nzt+1,2) = 0.0_wp
DO k = nzb+1, nzt
sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k)
sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k)
sums_l(k,68,tn) = sums_ll(k,2)
ENDDO
sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn)
sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn)
sums_l(nzb,68,tn) = 0.0_wp ! because w* = 0 at nzb
ENDIF
!
!-- Divergence of vertical flux of SGS TKE and the flux itself (69)
IF ( hom(nzb+1,2,57,0) /= 0.0_wp .OR. hom(nzb+1,2,69,0) /= 0.0_wp ) THEN
STOP '+++ openACC porting for vertical flux div of SGS TKE in flow_statistics is still missing'
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_s_inner(j,i)+1, nzt
sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5_wp * ( &
(km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) &
- (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) &
) * ddzw(k)
sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5_wp * ( &
(km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) &
)
ENDDO
ENDDO
ENDDO
sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn)
sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn)
ENDIF
!
!-- Horizontal heat fluxes (subgrid, resolved, total).
!-- Do it only, if profiles shall be plotted.
IF ( hom(nzb+1,2,58,0) /= 0.0_wp ) THEN
STOP '+++ openACC porting for horizontal flux calculation in flow_statistics is still missing'
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_s_inner(j,i)+1, nzt
!
!-- Subgrid horizontal heat fluxes u"pt", v"pt"
sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5_wp * &
( kh(k,j,i) + kh(k,j,i-1) ) &
* ( pt(k,j,i-1) - pt(k,j,i) ) &
* ddx * rmask(j,i,sr)
sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5_wp * &
( kh(k,j,i) + kh(k,j-1,i) ) &
* ( pt(k,j-1,i) - pt(k,j,i) ) &
* ddy * rmask(j,i,sr)
!
!-- Resolved horizontal heat fluxes u*pt*, v*pt*
sums_l(k,59,tn) = sums_l(k,59,tn) + &
( u(k,j,i) - hom(k,1,1,sr) ) * 0.5_wp * &
( pt(k,j,i-1) - hom(k,1,4,sr) + &
pt(k,j,i) - hom(k,1,4,sr) )
pts = 0.5_wp * ( pt(k,j-1,i) - hom(k,1,4,sr) + &
pt(k,j,i) - hom(k,1,4,sr) )
sums_l(k,62,tn) = sums_l(k,62,tn) + &
( v(k,j,i) - hom(k,1,2,sr) ) * 0.5_wp * &
( pt(k,j-1,i) - hom(k,1,4,sr) + &
pt(k,j,i) - hom(k,1,4,sr) )
ENDDO
ENDDO
ENDDO
!
!-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer)
sums_l(nzb,58,tn) = 0.0_wp
sums_l(nzb,59,tn) = 0.0_wp
sums_l(nzb,60,tn) = 0.0_wp
sums_l(nzb,61,tn) = 0.0_wp
sums_l(nzb,62,tn) = 0.0_wp
sums_l(nzb,63,tn) = 0.0_wp
ENDIF
!
!-- Collect current large scale advection and subsidence tendencies for
!-- data output
IF ( large_scale_forcing .AND. ( simulated_time > 0.0_wp ) ) THEN
!
!-- Interpolation in time of LSF_DATA
nt = 1
DO WHILE ( simulated_time - dt_3d > time_vert(nt) )
nt = nt + 1
ENDDO
IF ( simulated_time - dt_3d /= time_vert(nt) ) THEN
nt = nt - 1
ENDIF
fac = ( simulated_time - dt_3d - time_vert(nt) ) &
/ ( time_vert(nt+1)-time_vert(nt) )
DO k = nzb, nzt
sums_ls_l(k,0) = td_lsa_lpt(k,nt) &
+ fac * ( td_lsa_lpt(k,nt+1) - td_lsa_lpt(k,nt) )
sums_ls_l(k,1) = td_lsa_q(k,nt) &
+ fac * ( td_lsa_q(k,nt+1) - td_lsa_q(k,nt) )
ENDDO
sums_ls_l(nzt+1,0) = sums_ls_l(nzt,0)
sums_ls_l(nzt+1,1) = sums_ls_l(nzt,1)
IF ( large_scale_subsidence .AND. use_subsidence_tendencies ) THEN
DO k = nzb, nzt
sums_ls_l(k,2) = td_sub_lpt(k,nt) + fac * &
( td_sub_lpt(k,nt+1) - td_sub_lpt(k,nt) )
sums_ls_l(k,3) = td_sub_q(k,nt) + fac * &
( td_sub_q(k,nt+1) - td_sub_q(k,nt) )
ENDDO
sums_ls_l(nzt+1,2) = sums_ls_l(nzt,2)
sums_ls_l(nzt+1,3) = sums_ls_l(nzt,3)
ENDIF
ENDIF
IF ( land_surface ) THEN
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_soil, nzt_soil
sums_l(k,89,tn) = sums_l(k,89,tn) + t_soil(k,j,i) &
* rmask(j,i,sr)
sums_l(k,91,tn) = sums_l(k,91,tn) + m_soil(k,j,i) &
* rmask(j,i,sr)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( radiation .AND. radiation_scheme == 'rrtmg' ) THEN
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_s_inner(j,i)+1, nzt+1
sums_l(k,102,tn) = sums_l(k,102,tn) + rad_lw_in(k,j,i) &
* rmask(j,i,sr)
sums_l(k,103,tn) = sums_l(k,103,tn) + rad_lw_out(k,j,i) &
* rmask(j,i,sr)
sums_l(k,104,tn) = sums_l(k,104,tn) + rad_sw_in(k,j,i) &
* rmask(j,i,sr)
sums_l(k,105,tn) = sums_l(k,105,tn) + rad_sw_out(k,j,i) &
* rmask(j,i,sr)
#if defined ( __rrtmg )
sums_l(k,106,tn) = sums_l(k,106,tn) + rad_lw_cs_hr(k,j,i) &
* rmask(j,i,sr)
sums_l(k,107,tn) = sums_l(k,107,tn) + rad_lw_hr(k,j,i) &
* rmask(j,i,sr)
sums_l(k,108,tn) = sums_l(k,108,tn) + rad_sw_cs_hr(k,j,i) &
* rmask(j,i,sr)
sums_l(k,109,tn) = sums_l(k,109,tn) + rad_sw_hr(k,j,i) &
* rmask(j,i,sr)
#endif
ENDDO
ENDDO
ENDDO
ENDIF
!
!-- Calculate the user-defined profiles
CALL user_statistics( 'profiles', sr, tn )
!$OMP END PARALLEL
!
!-- Summation of thread sums
IF ( threads_per_task > 1 ) THEN
STOP '+++ openACC porting for threads_per_task > 1 in flow_statistics is still missing'
DO i = 1, threads_per_task-1
sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i)
sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i)
sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + &
sums_l(:,45:pr_palm,i)
IF ( max_pr_user > 0 ) THEN
sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = &
sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + &
sums_l(:,pr_palm+1:pr_palm+max_pr_user,i)
ENDIF
ENDDO
ENDIF
!$acc update host( hom, sums, sums_l )
#if defined( __parallel )
!
!-- Compute total sum from local sums
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, &
MPI_SUM, comm2d, ierr )
IF ( large_scale_forcing ) THEN
CALL MPI_ALLREDUCE( sums_ls_l(nzb,2), sums(nzb,83), ngp_sums_ls, &
MPI_REAL, MPI_SUM, comm2d, ierr )
ENDIF
#else
sums = sums_l(:,:,0)
IF ( large_scale_forcing ) THEN
sums(:,81:88) = sums_ls_l
ENDIF
#endif
!
!-- Final values are obtained by division by the total number of grid points
!-- used for summation. After that store profiles.
!-- Check, if statistical regions do contain at least one grid point at the
!-- respective k-level, otherwise division by zero will lead to undefined
!-- values, which may cause e.g. problems with NetCDF output
!-- Profiles:
DO k = nzb, nzt+1
sums(k,3) = sums(k,3) / ngp_2dh(sr)
sums(k,12:22) = sums(k,12:22) / ngp_2dh(sr)
sums(k,30:32) = sums(k,30:32) / ngp_2dh(sr)
sums(k,35:39) = sums(k,35:39) / ngp_2dh(sr)
sums(k,45:53) = sums(k,45:53) / ngp_2dh(sr)
sums(k,55:63) = sums(k,55:63) / ngp_2dh(sr)
sums(k,81:88) = sums(k,81:88) / ngp_2dh(sr)
sums(k,89:114) = sums(k,89:114) / ngp_2dh(sr)
IF ( ngp_2dh_s_inner(k,sr) /= 0 ) THEN
sums(k,8:11) = sums(k,8:11) / ngp_2dh_s_inner(k,sr)
sums(k,23:29) = sums(k,23:29) / ngp_2dh_s_inner(k,sr)
sums(k,33:34) = sums(k,33:34) / ngp_2dh_s_inner(k,sr)
sums(k,40) = sums(k,40) / ngp_2dh_s_inner(k,sr)
sums(k,54) = sums(k,54) / ngp_2dh_s_inner(k,sr)
sums(k,64) = sums(k,64) / ngp_2dh_s_inner(k,sr)
sums(k,70:80) = sums(k,70:80) / ngp_2dh_s_inner(k,sr)
sums(k,115:pr_palm-2) = sums(k,115:pr_palm-2) / ngp_2dh_s_inner(k,sr)
ENDIF
ENDDO
!-- u* and so on
!-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose
!-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer
!-- above the topography, they are being divided by ngp_2dh(sr)
sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / &
ngp_2dh(sr)
sums(nzb+12,pr_palm) = sums(nzb+12,pr_palm) / & ! qs
ngp_2dh(sr)
!-- eges, e*
sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / &
ngp_3d(sr)
!-- Old and new divergence
sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / &
ngp_3d_inner(sr)
!-- User-defined profiles
IF ( max_pr_user > 0 ) THEN
DO k = nzb, nzt+1
IF ( ngp_2dh_s_inner(k,sr) /= 0 ) THEN
sums(k,pr_palm+1:pr_palm+max_pr_user) = &
sums(k,pr_palm+1:pr_palm+max_pr_user) / &
ngp_2dh_s_inner(k,sr)
ENDIF
ENDDO
ENDIF
!
!-- Collect horizontal average in hom.
!-- Compute deduced averages (e.g. total heat flux)
hom(:,1,3,sr) = sums(:,3) ! w
hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles
hom(:,1,9,sr) = sums(:,9) ! km
hom(:,1,10,sr) = sums(:,10) ! kh
hom(:,1,11,sr) = sums(:,11) ! l
hom(:,1,12,sr) = sums(:,12) ! w"u"
hom(:,1,13,sr) = sums(:,13) ! w*u*
hom(:,1,14,sr) = sums(:,14) ! w"v"
hom(:,1,15,sr) = sums(:,15) ! w*v*
hom(:,1,16,sr) = sums(:,16) ! w"pt"
hom(:,1,17,sr) = sums(:,17) ! w*pt*
hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt
hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu
hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv
hom(:,1,21,sr) = sums(:,21) ! w*pt*BC
hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC
! profile 24 is initial profile (sa)
! profiles 25-29 left empty for initial
! profiles
hom(:,1,30,sr) = sums(:,30) ! u*2
hom(:,1,31,sr) = sums(:,31) ! v*2
hom(:,1,32,sr) = sums(:,32) ! w*2
hom(:,1,33,sr) = sums(:,33) ! pt*2
hom(:,1,34,sr) = sums(:,34) ! e*
hom(:,1,35,sr) = sums(:,35) ! w*2pt*
hom(:,1,36,sr) = sums(:,36) ! w*pt*2
hom(:,1,37,sr) = sums(:,37) ! w*e*
hom(:,1,38,sr) = sums(:,38) ! w*3
hom(:,1,39,sr) = sums(:,38) / ( abs( sums(:,32) ) + 1E-20_wp )**1.5_wp ! Sw
hom(:,1,40,sr) = sums(:,40) ! p
hom(:,1,45,sr) = sums(:,45) ! w"vpt"
hom(:,1,46,sr) = sums(:,46) ! w*vpt*
hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt
hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv")
hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*)
hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv)
hom(:,1,51,sr) = sums(:,51) ! w"qv"
hom(:,1,52,sr) = sums(:,52) ! w*qv*
hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv)
hom(:,1,54,sr) = sums(:,54) ! ql
hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz
hom(:,1,56,sr) = sums(:,56) ! w*p*/dz
hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho )/dz
hom(:,1,58,sr) = sums(:,58) ! u"pt"
hom(:,1,59,sr) = sums(:,59) ! u*pt*
hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t
hom(:,1,61,sr) = sums(:,61) ! v"pt"
hom(:,1,62,sr) = sums(:,62) ! v*pt*
hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t
hom(:,1,64,sr) = sums(:,64) ! rho
hom(:,1,65,sr) = sums(:,65) ! w"sa"
hom(:,1,66,sr) = sums(:,66) ! w*sa*
hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa
hom(:,1,68,sr) = sums(:,68) ! w*p*
hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho
hom(:,1,70,sr) = sums(:,70) ! q*2
hom(:,1,71,sr) = sums(:,71) ! prho
hom(:,1,72,sr) = hyp * 1E-4_wp ! hyp in dbar
hom(:,1,73,sr) = sums(:,73) ! nr
hom(:,1,74,sr) = sums(:,74) ! qr
hom(:,1,75,sr) = sums(:,75) ! qc
hom(:,1,76,sr) = sums(:,76) ! prr (precipitation rate)
! 77 is initial density profile
hom(:,1,78,sr) = ug ! ug
hom(:,1,79,sr) = vg ! vg
hom(:,1,80,sr) = w_subs ! w_subs
IF ( large_scale_forcing ) THEN
hom(:,1,81,sr) = sums_ls_l(:,0) ! td_lsa_lpt
hom(:,1,82,sr) = sums_ls_l(:,1) ! td_lsa_q
IF ( use_subsidence_tendencies ) THEN
hom(:,1,83,sr) = sums_ls_l(:,2) ! td_sub_lpt
hom(:,1,84,sr) = sums_ls_l(:,3) ! td_sub_q
ELSE
hom(:,1,83,sr) = sums(:,83) ! td_sub_lpt
hom(:,1,84,sr) = sums(:,84) ! td_sub_q
ENDIF
hom(:,1,85,sr) = sums(:,85) ! td_nud_lpt
hom(:,1,86,sr) = sums(:,86) ! td_nud_q
hom(:,1,87,sr) = sums(:,87) ! td_nud_u
hom(:,1,88,sr) = sums(:,88) ! td_nud_v
END IF
hom(:,1,pr_palm,sr) = sums(:,pr_palm)
! u*, w'u', w'v', t* (in last profile)
IF ( max_pr_user > 0 ) THEN ! user-defined profiles
hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = &
sums(:,pr_palm+1:pr_palm+max_pr_user)
ENDIF
!
!-- Determine the boundary layer height using two different schemes.
!-- First scheme: Starting from the Earth's (Ocean's) surface, look for the
!-- first relative minimum (maximum) of the total heat flux.
!-- The corresponding height is assumed as the boundary layer height, if it
!-- is less than 1.5 times the height where the heat flux becomes negative
!-- (positive) for the first time.
z_i(1) = 0.0_wp
first = .TRUE.
IF ( ocean ) THEN
DO k = nzt, nzb+1, -1
IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN
first = .FALSE.
height = zw(k)
ENDIF
IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. &
hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN
IF ( zw(k) < 1.5_wp * height ) THEN
z_i(1) = zw(k)
ELSE
z_i(1) = height
ENDIF
EXIT
ENDIF
ENDDO
ELSE
DO k = nzb, nzt-1
IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN
first = .FALSE.
height = zw(k)
ENDIF
IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. &
hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN
IF ( zw(k) < 1.5_wp * height ) THEN
z_i(1) = zw(k)
ELSE
z_i(1) = height
ENDIF
EXIT
ENDIF
ENDDO
ENDIF
!
!-- Second scheme: Gradient scheme from Sullivan et al. (1998), modified
!-- by Uhlenbrock(2006). The boundary layer height is the height with the
!-- maximal local temperature gradient: starting from the second (the last
!-- but one) vertical gridpoint, the local gradient must be at least
!-- 0.2K/100m and greater than the next four gradients.
!-- WARNING: The threshold value of 0.2K/100m must be adjusted for the
!-- ocean case!
z_i(2) = 0.0_wp
DO k = nzb+1, nzt+1
dptdz(k) = ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) * ddzu(k)
ENDDO
dptdz_threshold = 0.2_wp / 100.0_wp
IF ( ocean ) THEN
DO k = nzt+1, nzb+5, -1
IF ( dptdz(k) > dptdz_threshold .AND. &
dptdz(k) > dptdz(k-1) .AND. dptdz(k) > dptdz(k-2) .AND. &
dptdz(k) > dptdz(k-3) .AND. dptdz(k) > dptdz(k-4) ) THEN
z_i(2) = zw(k-1)
EXIT
ENDIF
ENDDO
ELSE
DO k = nzb+1, nzt-3
IF ( dptdz(k) > dptdz_threshold .AND. &
dptdz(k) > dptdz(k+1) .AND. dptdz(k) > dptdz(k+2) .AND. &
dptdz(k) > dptdz(k+3) .AND. dptdz(k) > dptdz(k+4) ) THEN
z_i(2) = zw(k-1)
EXIT
ENDIF
ENDDO
ENDIF
hom(nzb+6,1,pr_palm,sr) = z_i(1)
hom(nzb+7,1,pr_palm,sr) = z_i(2)
!
!-- Determine vertical index which is nearest to the mean surface level
!-- height of the respective statistic region
DO k = nzb, nzt
IF ( zw(k) >= mean_surface_level_height(sr) ) THEN
k_surface_level = k
EXIT
ENDIF
ENDDO
!
!-- Computation of both the characteristic vertical velocity and
!-- the characteristic convective boundary layer temperature.
!-- The inversion height entering into the equation is defined with respect
!-- to the mean surface level height of the respective statistic region.
!-- The horizontal average at surface level index + 1 is input for the
!-- average temperature.
IF ( hom(nzb,1,18,sr) > 1.0E-8_wp .AND. z_i(1) /= 0.0_wp ) THEN
hom(nzb+8,1,pr_palm,sr) = &
( g / hom(k_surface_level+1,1,4,sr) * hom(k_surface_level,1,18,sr)&
* ABS( z_i(1) - mean_surface_level_height(sr) ) )**0.333333333_wp
ELSE
hom(nzb+8,1,pr_palm,sr) = 0.0_wp
ENDIF
!
!-- Collect the time series quantities
ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E
ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E*
ts_value(3,sr) = dt_3d
ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u*
ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th*
ts_value(6,sr) = u_max
ts_value(7,sr) = v_max
ts_value(8,sr) = w_max
ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence
ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence
ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1)
ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2)
ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w*
ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0
ts_value(15,sr) = hom(nzb+1,1,16,sr) ! w'pt' at k=1
ts_value(16,sr) = hom(nzb+1,1,18,sr) ! wpt at k=1
ts_value(17,sr) = hom(nzb,1,4,sr) ! pt(0)
ts_value(18,sr) = hom(nzb+1,1,4,sr) ! pt(zp)
ts_value(19,sr) = hom(nzb+1,1,pr_palm,sr) ! u'w' at k=0
ts_value(20,sr) = hom(nzb+2,1,pr_palm,sr) ! v'w' at k=0
ts_value(21,sr) = hom(nzb,1,48,sr) ! w"q" at k=0
IF ( .NOT. neutral ) THEN
ts_value(22,sr) = hom(nzb,1,114,sr) ! L
ELSE
ts_value(22,sr) = 1.0E10_wp
ENDIF
ts_value(23,sr) = hom(nzb+12,1,pr_palm,sr) ! q*
!
!-- Collect land surface model timeseries
IF ( land_surface ) THEN
ts_value(dots_soil ,sr) = hom(nzb,1,93,sr) ! ghf_eb
ts_value(dots_soil+1,sr) = hom(nzb,1,94,sr) ! shf_eb
ts_value(dots_soil+2,sr) = hom(nzb,1,95,sr) ! qsws_eb
ts_value(dots_soil+3,sr) = hom(nzb,1,96,sr) ! qsws_liq_eb
ts_value(dots_soil+4,sr) = hom(nzb,1,97,sr) ! qsws_soil_eb
ts_value(dots_soil+5,sr) = hom(nzb,1,98,sr) ! qsws_veg_eb
ts_value(dots_soil+6,sr) = hom(nzb,1,99,sr) ! r_a
ts_value(dots_soil+7,sr) = hom(nzb,1,100,sr) ! r_s
ENDIF
!
!-- Collect radiation model timeseries
IF ( radiation ) THEN
ts_value(dots_rad,sr) = hom(nzb,1,101,sr) ! rad_net
ts_value(dots_rad+1,sr) = hom(nzb,1,102,sr) ! rad_lw_in
ts_value(dots_rad+2,sr) = hom(nzb,1,103,sr) ! rad_lw_out
ts_value(dots_rad+3,sr) = hom(nzb,1,104,sr) ! rad_sw_in
ts_value(dots_rad+4,sr) = hom(nzb,1,105,sr) ! rad_sw_out
#if defined ( __rrtmg )
IF ( radiation_scheme == 'rrtmg' ) THEN
ts_value(dots_rad+5,sr) = hom(nzb,1,106,sr) ! rrtm_aldif
ts_value(dots_rad+6,sr) = hom(nzb,1,107,sr) ! rrtm_aldir
ts_value(dots_rad+7,sr) = hom(nzb,1,108,sr) ! rrtm_asdif
ts_value(dots_rad+8,sr) = hom(nzb,1,109,sr) ! rrtm_asdir
ENDIF
#endif
ENDIF
!
!-- Calculate additional statistics provided by the user interface
CALL user_statistics( 'time_series', sr, 0 )
ENDDO ! loop of the subregions
!$acc end data
!
!-- If required, sum up horizontal averages for subsequent time averaging
IF ( do_sum ) THEN
IF ( average_count_pr == 0 ) hom_sum = 0.0_wp
hom_sum = hom_sum + hom(:,1,:,:)
average_count_pr = average_count_pr + 1
do_sum = .FALSE.
ENDIF
!
!-- Set flag for other UPs (e.g. output routines, but also buoyancy).
!-- This flag is reset after each time step in time_integration.
flow_statistics_called = .TRUE.
CALL cpu_log( log_point(10), 'flow_statistics', 'stop' )
END SUBROUTINE flow_statistics
#endif