[1850] | 1 | !> @file fft_xy_mod.f90 |
---|
[4646] | 2 | !--------------------------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[4646] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
| 6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
| 7 | ! (at your option) any later version. |
---|
[1036] | 8 | ! |
---|
[4646] | 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
| 10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
| 11 | ! Public License for more details. |
---|
[1036] | 12 | ! |
---|
[4646] | 13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
| 14 | ! <http://www.gnu.org/licenses/>. |
---|
[1036] | 15 | ! |
---|
[4828] | 16 | ! Copyright 1997-2021 Leibniz Universitaet Hannover |
---|
[4646] | 17 | !--------------------------------------------------------------------------------------------------! |
---|
[1036] | 18 | ! |
---|
[254] | 19 | ! Current revisions: |
---|
[1] | 20 | ! ----------------- |
---|
[4646] | 21 | ! |
---|
| 22 | ! |
---|
[1321] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: fft_xy_mod.f90 4828 2021-01-05 11:21:41Z scharf $ |
---|
[4651] | 26 | ! preprocessor branch for ibm removed |
---|
| 27 | ! |
---|
| 28 | ! 4646 2020-08-24 16:02:40Z raasch |
---|
[4646] | 29 | ! file re-formatted to follow the PALM coding standard |
---|
| 30 | ! |
---|
| 31 | ! 4370 2020-01-10 14:00:44Z raasch |
---|
[4370] | 32 | ! bugfix for Temperton-fft usage on GPU |
---|
[4646] | 33 | ! |
---|
[4370] | 34 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
[4366] | 35 | ! Vectorized Temperton-fft added |
---|
[4646] | 36 | ! |
---|
[4366] | 37 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4182] | 38 | ! Corrected "Former revisions" section |
---|
[4646] | 39 | ! |
---|
[4182] | 40 | ! 4069 2019-07-01 14:05:51Z Giersch |
---|
[4069] | 41 | ! Code added to avoid compiler warnings |
---|
[4646] | 42 | ! |
---|
[4069] | 43 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3634] | 44 | ! OpenACC port for SPEC |
---|
[2716] | 45 | ! |
---|
[4182] | 46 | ! Revision 1.1 2002/06/11 13:00:49 raasch |
---|
| 47 | ! Initial revision |
---|
| 48 | ! |
---|
| 49 | ! |
---|
[1] | 50 | ! Description: |
---|
| 51 | ! ------------ |
---|
[1682] | 52 | !> Fast Fourier transformation along x and y for 1d domain decomposition along x. |
---|
| 53 | !> Original version: Klaus Ketelsen (May 2002) |
---|
[4366] | 54 | !> @todo openmp support for vectorized Temperton fft |
---|
[1] | 55 | !------------------------------------------------------------------------------! |
---|
[1682] | 56 | MODULE fft_xy |
---|
[1] | 57 | |
---|
[4646] | 58 | |
---|
| 59 | USE control_parameters, & |
---|
[4366] | 60 | ONLY: fft_method, loop_optimization, message_string |
---|
[4646] | 61 | |
---|
[3634] | 62 | USE cuda_fft_interfaces |
---|
[4646] | 63 | |
---|
| 64 | USE indices, & |
---|
[1320] | 65 | ONLY: nx, ny, nz |
---|
[4366] | 66 | |
---|
[3634] | 67 | #if defined( __cuda_fft ) |
---|
| 68 | USE ISO_C_BINDING |
---|
| 69 | #elif defined( __fftw ) |
---|
[1210] | 70 | USE, INTRINSIC :: ISO_C_BINDING |
---|
[1153] | 71 | #endif |
---|
[1320] | 72 | |
---|
| 73 | USE kinds |
---|
[4646] | 74 | |
---|
| 75 | USE singleton, & |
---|
[1320] | 76 | ONLY: fftn |
---|
[4646] | 77 | |
---|
[1] | 78 | USE temperton_fft |
---|
[4646] | 79 | |
---|
| 80 | USE transpose_indices, & |
---|
[1374] | 81 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
[1] | 82 | |
---|
| 83 | IMPLICIT NONE |
---|
| 84 | |
---|
| 85 | PRIVATE |
---|
[4646] | 86 | PUBLIC fft_init, f_vec_x, fft_x, fft_x_1d, fft_x_m, fft_y, fft_y_1d, fft_y_m, temperton_fft_vec |
---|
[1] | 87 | |
---|
[1682] | 88 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_x !< |
---|
| 89 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_y !< |
---|
[1] | 90 | |
---|
[4366] | 91 | LOGICAL, SAVE :: init_fft = .FALSE. !< |
---|
| 92 | LOGICAL, SAVE :: temperton_fft_vec = .FALSE. !< |
---|
[1] | 93 | |
---|
[1682] | 94 | REAL(wp), SAVE :: dnx !< |
---|
| 95 | REAL(wp), SAVE :: dny !< |
---|
| 96 | REAL(wp), SAVE :: sqr_dnx !< |
---|
| 97 | REAL(wp), SAVE :: sqr_dny !< |
---|
[4646] | 98 | |
---|
| 99 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_x !< |
---|
[1682] | 100 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_y !< |
---|
[1] | 101 | |
---|
[4370] | 102 | REAL(wp), DIMENSION(:,:), ALLOCATABLE, SAVE :: f_vec_x |
---|
[4366] | 103 | |
---|
[4651] | 104 | #if defined( __nec_fft ) |
---|
[1682] | 105 | INTEGER(iwp), SAVE :: nz1 !< |
---|
[4646] | 106 | |
---|
[1682] | 107 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xb !< |
---|
[4646] | 108 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xf !< |
---|
[1682] | 109 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yb !< |
---|
| 110 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yf !< |
---|
[4646] | 111 | |
---|
[3634] | 112 | #elif defined( __cuda_fft ) |
---|
| 113 | INTEGER(C_INT), SAVE :: plan_xf !< |
---|
| 114 | INTEGER(C_INT), SAVE :: plan_xi !< |
---|
| 115 | INTEGER(C_INT), SAVE :: plan_yf !< |
---|
| 116 | INTEGER(C_INT), SAVE :: plan_yi !< |
---|
| 117 | |
---|
[1219] | 118 | #endif |
---|
| 119 | |
---|
| 120 | #if defined( __fftw ) |
---|
[1210] | 121 | INCLUDE 'fftw3.f03' |
---|
[4646] | 122 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: x_out !< |
---|
| 123 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: y_out !< |
---|
| 124 | |
---|
[1682] | 125 | INTEGER(KIND=C_INT) :: nx_c !< |
---|
| 126 | INTEGER(KIND=C_INT) :: ny_c !< |
---|
[4646] | 127 | |
---|
| 128 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: x_in !< |
---|
| 129 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: y_in !< |
---|
[1600] | 130 | !$OMP THREADPRIVATE( x_out, y_out, x_in, y_in ) |
---|
[4646] | 131 | |
---|
| 132 | |
---|
[1210] | 133 | TYPE(C_PTR), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
[1] | 134 | #endif |
---|
| 135 | |
---|
| 136 | ! |
---|
| 137 | !-- Public interfaces |
---|
| 138 | INTERFACE fft_init |
---|
| 139 | MODULE PROCEDURE fft_init |
---|
| 140 | END INTERFACE fft_init |
---|
| 141 | |
---|
| 142 | INTERFACE fft_x |
---|
| 143 | MODULE PROCEDURE fft_x |
---|
| 144 | END INTERFACE fft_x |
---|
| 145 | |
---|
[1106] | 146 | INTERFACE fft_x_1d |
---|
| 147 | MODULE PROCEDURE fft_x_1d |
---|
| 148 | END INTERFACE fft_x_1d |
---|
| 149 | |
---|
[1] | 150 | INTERFACE fft_y |
---|
| 151 | MODULE PROCEDURE fft_y |
---|
| 152 | END INTERFACE fft_y |
---|
| 153 | |
---|
[1106] | 154 | INTERFACE fft_y_1d |
---|
| 155 | MODULE PROCEDURE fft_y_1d |
---|
| 156 | END INTERFACE fft_y_1d |
---|
| 157 | |
---|
[1] | 158 | INTERFACE fft_x_m |
---|
| 159 | MODULE PROCEDURE fft_x_m |
---|
| 160 | END INTERFACE fft_x_m |
---|
| 161 | |
---|
| 162 | INTERFACE fft_y_m |
---|
| 163 | MODULE PROCEDURE fft_y_m |
---|
| 164 | END INTERFACE fft_y_m |
---|
| 165 | |
---|
| 166 | CONTAINS |
---|
| 167 | |
---|
| 168 | |
---|
[4646] | 169 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 170 | ! Description: |
---|
| 171 | ! ------------ |
---|
| 172 | !> @todo Missing subroutine description. |
---|
[4646] | 173 | !--------------------------------------------------------------------------------------------------! |
---|
[1] | 174 | SUBROUTINE fft_init |
---|
| 175 | |
---|
[4370] | 176 | USE pegrid, & |
---|
| 177 | ONLY: pdims |
---|
| 178 | |
---|
[1] | 179 | IMPLICIT NONE |
---|
| 180 | |
---|
| 181 | ! |
---|
| 182 | !-- The following temporary working arrays have to be on stack or private |
---|
| 183 | !-- in OpenMP sense |
---|
[4651] | 184 | #if defined( __nec_fft ) |
---|
[1682] | 185 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: work_x !< |
---|
| 186 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: work_y !< |
---|
| 187 | REAL(wp), DIMENSION(6*(nx+3),nz+1) :: workx !< |
---|
| 188 | REAL(wp), DIMENSION(6*(ny+3),nz+1) :: worky !< |
---|
[4646] | 189 | #endif |
---|
[1] | 190 | |
---|
| 191 | ! |
---|
| 192 | !-- Return, if already called |
---|
| 193 | IF ( init_fft ) THEN |
---|
| 194 | RETURN |
---|
| 195 | ELSE |
---|
| 196 | init_fft = .TRUE. |
---|
| 197 | ENDIF |
---|
| 198 | |
---|
[4370] | 199 | #if defined( _OPENACC ) && defined( __cuda_fft ) |
---|
| 200 | fft_method = 'system-specific' |
---|
| 201 | #endif |
---|
| 202 | |
---|
[4366] | 203 | ! |
---|
| 204 | !-- Switch to tell the Poisson-solver that the vectorized version of Temperton-fft is to be used. |
---|
[4370] | 205 | IF ( fft_method == 'temperton-algorithm' .AND. loop_optimization == 'vector' .AND. & |
---|
| 206 | pdims(1) /= 1 .AND. pdims(2) /= 1 ) THEN |
---|
[4366] | 207 | temperton_fft_vec = .TRUE. |
---|
| 208 | ENDIF |
---|
| 209 | |
---|
[1] | 210 | IF ( fft_method == 'system-specific' ) THEN |
---|
| 211 | |
---|
[1342] | 212 | dnx = 1.0_wp / ( nx + 1.0_wp ) |
---|
| 213 | dny = 1.0_wp / ( ny + 1.0_wp ) |
---|
[1106] | 214 | sqr_dnx = SQRT( dnx ) |
---|
| 215 | sqr_dny = SQRT( dny ) |
---|
[4651] | 216 | |
---|
| 217 | #if defined( __nec_fft ) |
---|
[4646] | 218 | message_string = 'fft method "' // TRIM( fft_method) // '" currently does not work on NEC' |
---|
[254] | 219 | CALL message( 'fft_init', 'PA0187', 1, 2, 0, 6, 0 ) |
---|
[1] | 220 | |
---|
[4646] | 221 | ALLOCATE( trig_xb(2*(nx+1)), trig_xf(2*(nx+1)), trig_yb(2*(ny+1)), trig_yf(2*(ny+1)) ) |
---|
[1] | 222 | |
---|
[1342] | 223 | work_x = 0.0_wp |
---|
| 224 | work_y = 0.0_wp |
---|
[1] | 225 | nz1 = nz + MOD( nz+1, 2 ) ! odd nz slows down fft significantly |
---|
| 226 | ! when using the NEC ffts |
---|
| 227 | |
---|
| 228 | ! |
---|
| 229 | !-- Initialize tables for fft along x (non-vector and vector case (M)) |
---|
[1106] | 230 | CALL DZFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xf, workx, 0 ) |
---|
| 231 | CALL ZDFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xb, workx, 0 ) |
---|
[4646] | 232 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, trig_xf, workx, 0 ) |
---|
| 233 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, trig_xb, workx, 0 ) |
---|
[1] | 234 | ! |
---|
| 235 | !-- Initialize tables for fft along y (non-vector and vector case (M)) |
---|
[1106] | 236 | CALL DZFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yf, worky, 0 ) |
---|
| 237 | CALL ZDFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yb, worky, 0 ) |
---|
[4646] | 238 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, trig_yf, worky, 0 ) |
---|
| 239 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, trig_yb, worky, 0 ) |
---|
[3634] | 240 | #elif defined( __cuda_fft ) |
---|
| 241 | CALL CUFFTPLAN1D( plan_xf, nx+1, CUFFT_D2Z, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 242 | CALL CUFFTPLAN1D( plan_xi, nx+1, CUFFT_Z2D, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 243 | CALL CUFFTPLAN1D( plan_yf, ny+1, CUFFT_D2Z, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
| 244 | CALL CUFFTPLAN1D( plan_yi, ny+1, CUFFT_Z2D, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
[1] | 245 | #else |
---|
[254] | 246 | message_string = 'no system-specific fft-call available' |
---|
| 247 | CALL message( 'fft_init', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 248 | #endif |
---|
| 249 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 250 | ! |
---|
| 251 | !-- Temperton-algorithm |
---|
| 252 | !-- Initialize tables for fft along x and y |
---|
| 253 | ALLOCATE( ifax_x(nx+1), ifax_y(ny+1), trigs_x(nx+1), trigs_y(ny+1) ) |
---|
| 254 | |
---|
| 255 | CALL set99( trigs_x, ifax_x, nx+1 ) |
---|
| 256 | CALL set99( trigs_y, ifax_y, ny+1 ) |
---|
| 257 | |
---|
[4366] | 258 | IF ( temperton_fft_vec ) THEN |
---|
[4370] | 259 | ALLOCATE( f_vec_x((nyn_x-nys_x+1)*(nzt_x-nzb_x+1),0:nx+2) ) |
---|
[4366] | 260 | ENDIF |
---|
| 261 | |
---|
| 262 | |
---|
| 263 | |
---|
[1210] | 264 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 265 | ! |
---|
| 266 | !-- FFTW |
---|
| 267 | #if defined( __fftw ) |
---|
| 268 | nx_c = nx+1 |
---|
| 269 | ny_c = ny+1 |
---|
[1372] | 270 | !$OMP PARALLEL |
---|
[4646] | 271 | ALLOCATE( x_in(0:nx+2), y_in(0:ny+2), x_out(0:(nx+1)/2), y_out(0:(ny+1)/2) ) |
---|
[1372] | 272 | !$OMP END PARALLEL |
---|
[1210] | 273 | plan_xf = FFTW_PLAN_DFT_R2C_1D( nx_c, x_in, x_out, FFTW_ESTIMATE ) |
---|
| 274 | plan_xi = FFTW_PLAN_DFT_C2R_1D( nx_c, x_out, x_in, FFTW_ESTIMATE ) |
---|
| 275 | plan_yf = FFTW_PLAN_DFT_R2C_1D( ny_c, y_in, y_out, FFTW_ESTIMATE ) |
---|
| 276 | plan_yi = FFTW_PLAN_DFT_C2R_1D( ny_c, y_out, y_in, FFTW_ESTIMATE ) |
---|
| 277 | #else |
---|
| 278 | message_string = 'preprocessor switch for fftw is missing' |
---|
| 279 | CALL message( 'fft_init', 'PA0080', 1, 2, 0, 6, 0 ) |
---|
| 280 | #endif |
---|
| 281 | |
---|
[1] | 282 | ELSEIF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 283 | |
---|
| 284 | CONTINUE |
---|
| 285 | |
---|
| 286 | ELSE |
---|
| 287 | |
---|
[4646] | 288 | message_string = 'fft method "' // TRIM( fft_method) // '" not available' |
---|
[254] | 289 | CALL message( 'fft_init', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 290 | ENDIF |
---|
| 291 | |
---|
| 292 | END SUBROUTINE fft_init |
---|
| 293 | |
---|
| 294 | |
---|
[4646] | 295 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 296 | ! Description: |
---|
| 297 | ! ------------ |
---|
[4646] | 298 | !> Fourier-transformation along x-direction. |
---|
[1682] | 299 | !> Version for 2D-decomposition. |
---|
[4646] | 300 | !> It uses internal algorithms (Singleton or Temperton) or system-specific routines, if they are |
---|
| 301 | !> available. |
---|
| 302 | !--------------------------------------------------------------------------------------------------! |
---|
| 303 | |
---|
[4366] | 304 | SUBROUTINE fft_x( ar, direction, ar_2d, ar_inv ) |
---|
[1] | 305 | |
---|
| 306 | |
---|
| 307 | IMPLICIT NONE |
---|
| 308 | |
---|
[1682] | 309 | CHARACTER (LEN=*) :: direction !< |
---|
[4646] | 310 | |
---|
[1682] | 311 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1106] | 312 | |
---|
[4646] | 313 | INTEGER(iwp) :: i !< |
---|
[1682] | 314 | INTEGER(iwp) :: ishape(1) !< |
---|
| 315 | INTEGER(iwp) :: j !< |
---|
| 316 | INTEGER(iwp) :: k !< |
---|
[4366] | 317 | INTEGER(iwp) :: mm !< |
---|
[1106] | 318 | |
---|
[1682] | 319 | LOGICAL :: forward_fft !< |
---|
[4646] | 320 | |
---|
[1682] | 321 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
| 322 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
[4646] | 323 | |
---|
[4366] | 324 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_vec !< |
---|
| 325 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x), OPTIONAL :: ar_2d !< |
---|
| 326 | |
---|
[4646] | 327 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x,nzb_x:nzt_x) :: ar !< |
---|
[4366] | 328 | REAL(wp), DIMENSION(nys_x:nyn_x,nzb_x:nzt_x,0:nx), OPTIONAL :: ar_inv !< |
---|
| 329 | |
---|
[4651] | 330 | #if defined( __nec_fft ) |
---|
[1682] | 331 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
[3634] | 332 | #elif defined( __cuda_fft ) |
---|
[4366] | 333 | COMPLEX(dp), DIMENSION(0:(nx+1)/2,nys_x:nyn_x,nzb_x:nzt_x) :: ar_tmp !< |
---|
[3634] | 334 | !$ACC DECLARE CREATE(ar_tmp) |
---|
[1106] | 335 | #endif |
---|
| 336 | |
---|
[4069] | 337 | ! |
---|
| 338 | !-- To avoid compiler warning: Unused dummy argument âar_2dâ |
---|
| 339 | IF ( PRESENT( ar_2d ) ) CONTINUE |
---|
| 340 | |
---|
[1106] | 341 | IF ( direction == 'forward' ) THEN |
---|
| 342 | forward_fft = .TRUE. |
---|
| 343 | ELSE |
---|
| 344 | forward_fft = .FALSE. |
---|
| 345 | ENDIF |
---|
| 346 | |
---|
| 347 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 348 | |
---|
| 349 | ! |
---|
[4646] | 350 | !-- Performing the fft with singleton's software works on every system, since it is part of |
---|
| 351 | !-- the model. |
---|
[1106] | 352 | ALLOCATE( cwork(0:nx) ) |
---|
| 353 | |
---|
[4646] | 354 | IF ( forward_fft ) THEN |
---|
| 355 | |
---|
[1106] | 356 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 357 | !$OMP DO |
---|
| 358 | DO k = nzb_x, nzt_x |
---|
| 359 | DO j = nys_x, nyn_x |
---|
| 360 | |
---|
| 361 | DO i = 0, nx |
---|
[1392] | 362 | cwork(i) = CMPLX( ar(i,j,k), KIND=wp ) |
---|
[1106] | 363 | ENDDO |
---|
| 364 | |
---|
| 365 | ishape = SHAPE( cwork ) |
---|
| 366 | CALL FFTN( cwork, ishape ) |
---|
| 367 | |
---|
| 368 | DO i = 0, (nx+1)/2 |
---|
[1322] | 369 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 370 | ENDDO |
---|
| 371 | DO i = 1, (nx+1)/2 - 1 |
---|
| 372 | ar(nx+1-i,j,k) = -AIMAG( cwork(i) ) |
---|
| 373 | ENDDO |
---|
| 374 | |
---|
| 375 | ENDDO |
---|
| 376 | ENDDO |
---|
| 377 | !$OMP END PARALLEL |
---|
| 378 | |
---|
| 379 | ELSE |
---|
| 380 | |
---|
| 381 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 382 | !$OMP DO |
---|
| 383 | DO k = nzb_x, nzt_x |
---|
| 384 | DO j = nys_x, nyn_x |
---|
| 385 | |
---|
[1392] | 386 | cwork(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 387 | DO i = 1, (nx+1)/2 - 1 |
---|
[4646] | 388 | cwork(i) = CMPLX( ar(i,j,k), -ar(nx+1-i,j,k), KIND=wp ) |
---|
| 389 | cwork(nx+1-i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), KIND=wp ) |
---|
[1106] | 390 | ENDDO |
---|
[1392] | 391 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 392 | |
---|
| 393 | ishape = SHAPE( cwork ) |
---|
| 394 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 395 | |
---|
| 396 | DO i = 0, nx |
---|
[1322] | 397 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 398 | ENDDO |
---|
| 399 | |
---|
| 400 | ENDDO |
---|
| 401 | ENDDO |
---|
| 402 | !$OMP END PARALLEL |
---|
| 403 | |
---|
| 404 | ENDIF |
---|
| 405 | |
---|
| 406 | DEALLOCATE( cwork ) |
---|
| 407 | |
---|
| 408 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 409 | |
---|
| 410 | ! |
---|
[4646] | 411 | !-- Performing the fft with Temperton's software works on every system, since it is part of |
---|
| 412 | !-- the model. |
---|
[1106] | 413 | IF ( forward_fft ) THEN |
---|
| 414 | |
---|
[4366] | 415 | IF ( .NOT. temperton_fft_vec ) THEN |
---|
[1106] | 416 | |
---|
[4366] | 417 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
| 418 | !$OMP DO |
---|
| 419 | DO k = nzb_x, nzt_x |
---|
| 420 | DO j = nys_x, nyn_x |
---|
[1106] | 421 | |
---|
[4366] | 422 | work(0:nx) = ar(0:nx,j,k) |
---|
| 423 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 424 | |
---|
| 425 | DO i = 0, (nx+1)/2 |
---|
| 426 | ar(i,j,k) = work(2*i) |
---|
| 427 | ENDDO |
---|
| 428 | DO i = 1, (nx+1)/2 - 1 |
---|
| 429 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 430 | ENDDO |
---|
| 431 | |
---|
[1106] | 432 | ENDDO |
---|
[4366] | 433 | ENDDO |
---|
| 434 | !$OMP END PARALLEL |
---|
| 435 | |
---|
| 436 | ELSE |
---|
| 437 | |
---|
| 438 | ! |
---|
| 439 | !-- Vector version of the Temperton-algorithm. Computes multiple 1-D FFT's. |
---|
| 440 | ALLOCATE( work_vec( (nyn_x-nys_x+1)*(nzt_x-nzb_x+1),nx+2) ) |
---|
| 441 | ! |
---|
[4370] | 442 | !-- f_vec_x is already set in transpose_zx |
---|
| 443 | CALL fft991cy_vec( f_vec_x, work_vec, trigs_x, ifax_x, nx+1, -1 ) |
---|
[4366] | 444 | DEALLOCATE( work_vec ) |
---|
| 445 | |
---|
| 446 | IF ( PRESENT( ar_inv ) ) THEN |
---|
| 447 | |
---|
| 448 | DO k = nzb_x, nzt_x |
---|
| 449 | DO j = nys_x, nyn_x |
---|
| 450 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
| 451 | DO i = 0, (nx+1)/2 |
---|
[4370] | 452 | ar_inv(j,k,i) = f_vec_x(mm,2*i) |
---|
[4366] | 453 | ENDDO |
---|
| 454 | DO i = 1, (nx+1)/2-1 |
---|
[4370] | 455 | ar_inv(j,k,nx+1-i) = f_vec_x(mm,2*i+1) |
---|
[4366] | 456 | ENDDO |
---|
| 457 | ENDDO |
---|
[1106] | 458 | ENDDO |
---|
| 459 | |
---|
[4366] | 460 | ELSE |
---|
[1106] | 461 | |
---|
[4366] | 462 | DO k = nzb_x, nzt_x |
---|
| 463 | DO j = nys_x, nyn_x |
---|
| 464 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
| 465 | DO i = 0, (nx+1)/2 |
---|
[4370] | 466 | ar(i,j,k) = f_vec_x(mm,2*i) |
---|
[4366] | 467 | ENDDO |
---|
| 468 | DO i = 1, (nx+1)/2-1 |
---|
[4370] | 469 | ar(nx+1-i,j,k) = f_vec_x(mm,2*i+1) |
---|
[4366] | 470 | ENDDO |
---|
| 471 | ENDDO |
---|
| 472 | ENDDO |
---|
| 473 | |
---|
| 474 | ENDIF |
---|
| 475 | |
---|
| 476 | ENDIF |
---|
| 477 | |
---|
[1106] | 478 | ELSE |
---|
| 479 | |
---|
[4366] | 480 | ! |
---|
| 481 | !-- Backward fft |
---|
| 482 | IF ( .NOT. temperton_fft_vec ) THEN |
---|
[1106] | 483 | |
---|
[4366] | 484 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
| 485 | !$OMP DO |
---|
| 486 | DO k = nzb_x, nzt_x |
---|
| 487 | DO j = nys_x, nyn_x |
---|
| 488 | |
---|
| 489 | DO i = 0, (nx+1)/2 |
---|
| 490 | work(2*i) = ar(i,j,k) |
---|
| 491 | ENDDO |
---|
| 492 | DO i = 1, (nx+1)/2 - 1 |
---|
| 493 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 494 | ENDDO |
---|
| 495 | work(1) = 0.0_wp |
---|
| 496 | work(nx+2) = 0.0_wp |
---|
| 497 | |
---|
| 498 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 499 | ar(0:nx,j,k) = work(0:nx) |
---|
| 500 | |
---|
[1106] | 501 | ENDDO |
---|
[4366] | 502 | ENDDO |
---|
| 503 | !$OMP END PARALLEL |
---|
| 504 | |
---|
| 505 | ELSE |
---|
| 506 | |
---|
| 507 | IF ( PRESENT( ar_inv ) ) THEN |
---|
| 508 | |
---|
| 509 | DO k = nzb_x, nzt_x |
---|
| 510 | DO j = nys_x, nyn_x |
---|
| 511 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
| 512 | DO i = 0, (nx+1)/2 |
---|
[4370] | 513 | f_vec_x(mm,2*i) = ar_inv(j,k,i) |
---|
[4366] | 514 | ENDDO |
---|
| 515 | DO i = 1, (nx+1)/2-1 |
---|
[4370] | 516 | f_vec_x(mm,2*i+1) = ar_inv(j,k,nx+1-i) |
---|
[4366] | 517 | ENDDO |
---|
| 518 | ENDDO |
---|
[1106] | 519 | ENDDO |
---|
| 520 | |
---|
[4366] | 521 | ELSE |
---|
[1106] | 522 | |
---|
[4366] | 523 | DO k = nzb_x, nzt_x |
---|
| 524 | DO j = nys_x, nyn_x |
---|
| 525 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
| 526 | DO i = 0, (nx+1)/2 |
---|
[4370] | 527 | f_vec_x(mm,2*i) = ar(i,j,k) |
---|
[4366] | 528 | ENDDO |
---|
| 529 | DO i = 1, (nx+1)/2-1 |
---|
[4370] | 530 | f_vec_x(mm,2*i+1) = ar(nx+1-i,j,k) |
---|
[4366] | 531 | ENDDO |
---|
| 532 | ENDDO |
---|
| 533 | ENDDO |
---|
[1106] | 534 | |
---|
[4366] | 535 | ENDIF |
---|
[4370] | 536 | f_vec_x(:,1) = 0.0_wp |
---|
| 537 | f_vec_x(:,nx+2) = 0.0_wp |
---|
[4366] | 538 | |
---|
| 539 | ALLOCATE( work_vec((nyn_x-nys_x+1)*(nzt_x-nzb_x+1),nx+2) ) |
---|
[4370] | 540 | CALL fft991cy_vec( f_vec_x, work_vec, trigs_x, ifax_x, nx+1, 1 ) |
---|
[4366] | 541 | DEALLOCATE( work_vec ) |
---|
| 542 | |
---|
| 543 | ENDIF |
---|
| 544 | |
---|
[1106] | 545 | ENDIF |
---|
| 546 | |
---|
[1210] | 547 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 548 | |
---|
| 549 | #if defined( __fftw ) |
---|
| 550 | IF ( forward_fft ) THEN |
---|
| 551 | |
---|
| 552 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 553 | !$OMP DO |
---|
| 554 | DO k = nzb_x, nzt_x |
---|
| 555 | DO j = nys_x, nyn_x |
---|
| 556 | |
---|
| 557 | x_in(0:nx) = ar(0:nx,j,k) |
---|
| 558 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 559 | |
---|
[1216] | 560 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 561 | |
---|
[1216] | 562 | DO i = 0, (nx+1)/2 |
---|
[1322] | 563 | ar_2d(i,j) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 564 | ENDDO |
---|
| 565 | DO i = 1, (nx+1)/2 - 1 |
---|
| 566 | ar_2d(nx+1-i,j) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 567 | ENDDO |
---|
| 568 | |
---|
| 569 | ELSE |
---|
| 570 | |
---|
| 571 | DO i = 0, (nx+1)/2 |
---|
[1322] | 572 | ar(i,j,k) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 573 | ENDDO |
---|
| 574 | DO i = 1, (nx+1)/2 - 1 |
---|
| 575 | ar(nx+1-i,j,k) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 576 | ENDDO |
---|
| 577 | |
---|
| 578 | ENDIF |
---|
| 579 | |
---|
[1210] | 580 | ENDDO |
---|
| 581 | ENDDO |
---|
| 582 | !$OMP END PARALLEL |
---|
| 583 | |
---|
[1216] | 584 | ELSE |
---|
[1210] | 585 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 586 | !$OMP DO |
---|
| 587 | DO k = nzb_x, nzt_x |
---|
| 588 | DO j = nys_x, nyn_x |
---|
| 589 | |
---|
[1216] | 590 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 591 | |
---|
[1392] | 592 | x_out(0) = CMPLX( ar_2d(0,j), 0.0_wp, KIND=wp ) |
---|
[1216] | 593 | DO i = 1, (nx+1)/2 - 1 |
---|
[4646] | 594 | x_out(i) = CMPLX( ar_2d(i,j), ar_2d(nx+1-i,j), KIND=wp ) |
---|
[1216] | 595 | ENDDO |
---|
[4646] | 596 | x_out((nx+1)/2) = CMPLX( ar_2d((nx+1)/2,j), 0.0_wp, KIND=wp ) |
---|
[1216] | 597 | |
---|
| 598 | ELSE |
---|
| 599 | |
---|
[1392] | 600 | x_out(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
[1216] | 601 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 602 | x_out(i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), KIND=wp ) |
---|
[1216] | 603 | ENDDO |
---|
[4646] | 604 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, KIND=wp ) |
---|
[1216] | 605 | |
---|
| 606 | ENDIF |
---|
| 607 | |
---|
[1210] | 608 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 609 | ar(0:nx,j,k) = x_in(0:nx) |
---|
| 610 | |
---|
| 611 | ENDDO |
---|
| 612 | ENDDO |
---|
| 613 | !$OMP END PARALLEL |
---|
| 614 | |
---|
[1216] | 615 | ENDIF |
---|
[1210] | 616 | #endif |
---|
| 617 | |
---|
[1106] | 618 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 619 | |
---|
[4651] | 620 | #if defined( __nec_fft ) |
---|
[1106] | 621 | |
---|
| 622 | IF ( forward_fft ) THEN |
---|
| 623 | |
---|
| 624 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 625 | !$OMP DO |
---|
| 626 | DO k = nzb_x, nzt_x |
---|
| 627 | DO j = nys_x, nyn_x |
---|
| 628 | |
---|
| 629 | work(0:nx) = ar(0:nx,j,k) |
---|
| 630 | |
---|
| 631 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
[4646] | 632 | |
---|
[1106] | 633 | DO i = 0, (nx+1)/2 |
---|
| 634 | ar(i,j,k) = work(2*i) |
---|
| 635 | ENDDO |
---|
| 636 | DO i = 1, (nx+1)/2 - 1 |
---|
| 637 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 638 | ENDDO |
---|
| 639 | |
---|
| 640 | ENDDO |
---|
| 641 | ENDDO |
---|
| 642 | !$END OMP PARALLEL |
---|
| 643 | |
---|
| 644 | ELSE |
---|
| 645 | |
---|
| 646 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 647 | !$OMP DO |
---|
| 648 | DO k = nzb_x, nzt_x |
---|
| 649 | DO j = nys_x, nyn_x |
---|
| 650 | |
---|
| 651 | DO i = 0, (nx+1)/2 |
---|
| 652 | work(2*i) = ar(i,j,k) |
---|
| 653 | ENDDO |
---|
| 654 | DO i = 1, (nx+1)/2 - 1 |
---|
| 655 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 656 | ENDDO |
---|
[1342] | 657 | work(1) = 0.0_wp |
---|
| 658 | work(nx+2) = 0.0_wp |
---|
[1106] | 659 | |
---|
| 660 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
| 661 | |
---|
| 662 | ar(0:nx,j,k) = work(0:nx) |
---|
| 663 | |
---|
| 664 | ENDDO |
---|
| 665 | ENDDO |
---|
| 666 | !$OMP END PARALLEL |
---|
| 667 | |
---|
| 668 | ENDIF |
---|
| 669 | |
---|
[3634] | 670 | #elif defined( __cuda_fft ) |
---|
| 671 | |
---|
| 672 | IF ( forward_fft ) THEN |
---|
| 673 | |
---|
| 674 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 675 | CALL CUFFTEXECD2Z( plan_xf, ar, ar_tmp ) |
---|
| 676 | !$ACC END HOST_DATA |
---|
| 677 | |
---|
| 678 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 679 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 680 | DO k = nzb_x, nzt_x |
---|
| 681 | DO j = nys_x, nyn_x |
---|
| 682 | |
---|
| 683 | DO i = 0, (nx+1)/2 |
---|
| 684 | ar(i,j,k) = REAL( ar_tmp(i,j,k), KIND=wp ) * dnx |
---|
| 685 | ENDDO |
---|
| 686 | |
---|
| 687 | DO i = 1, (nx+1)/2 - 1 |
---|
| 688 | ar(nx+1-i,j,k) = AIMAG( ar_tmp(i,j,k) ) * dnx |
---|
| 689 | ENDDO |
---|
| 690 | |
---|
| 691 | ENDDO |
---|
| 692 | ENDDO |
---|
| 693 | |
---|
| 694 | ELSE |
---|
| 695 | |
---|
| 696 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 697 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 698 | DO k = nzb_x, nzt_x |
---|
| 699 | DO j = nys_x, nyn_x |
---|
| 700 | |
---|
| 701 | ar_tmp(0,j,k) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
| 702 | |
---|
| 703 | DO i = 1, (nx+1)/2 - 1 |
---|
[4646] | 704 | ar_tmp(i,j,k) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), KIND=wp ) |
---|
[3634] | 705 | ENDDO |
---|
[4646] | 706 | ar_tmp((nx+1)/2,j,k) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, KIND=wp ) |
---|
[3634] | 707 | |
---|
| 708 | ENDDO |
---|
| 709 | ENDDO |
---|
| 710 | |
---|
| 711 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 712 | CALL CUFFTEXECZ2D( plan_xi, ar_tmp, ar ) |
---|
| 713 | !$ACC END HOST_DATA |
---|
| 714 | |
---|
| 715 | ENDIF |
---|
| 716 | |
---|
[1106] | 717 | #endif |
---|
| 718 | |
---|
| 719 | ENDIF |
---|
| 720 | |
---|
| 721 | END SUBROUTINE fft_x |
---|
| 722 | |
---|
[4646] | 723 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 724 | ! Description: |
---|
| 725 | ! ------------ |
---|
| 726 | !> Fourier-transformation along x-direction. |
---|
| 727 | !> Version for 1D-decomposition. |
---|
[4646] | 728 | !> It uses internal algorithms (Singleton or Temperton) or system-specific routines, if they are |
---|
| 729 | !> available. |
---|
| 730 | !--------------------------------------------------------------------------------------------------! |
---|
| 731 | |
---|
[1106] | 732 | SUBROUTINE fft_x_1d( ar, direction ) |
---|
| 733 | |
---|
| 734 | |
---|
| 735 | IMPLICIT NONE |
---|
| 736 | |
---|
[1682] | 737 | CHARACTER (LEN=*) :: direction !< |
---|
[4646] | 738 | |
---|
[1682] | 739 | INTEGER(iwp) :: i !< |
---|
| 740 | INTEGER(iwp) :: ishape(1) !< |
---|
[1] | 741 | |
---|
[1682] | 742 | LOGICAL :: forward_fft !< |
---|
[1106] | 743 | |
---|
[1682] | 744 | REAL(wp), DIMENSION(0:nx) :: ar !< |
---|
| 745 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
| 746 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
[4646] | 747 | |
---|
[1682] | 748 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[4646] | 749 | |
---|
[4651] | 750 | #if defined( __nec_fft ) |
---|
[1682] | 751 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
[1] | 752 | #endif |
---|
| 753 | |
---|
[1106] | 754 | IF ( direction == 'forward' ) THEN |
---|
| 755 | forward_fft = .TRUE. |
---|
| 756 | ELSE |
---|
| 757 | forward_fft = .FALSE. |
---|
| 758 | ENDIF |
---|
| 759 | |
---|
[1] | 760 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 761 | |
---|
| 762 | ! |
---|
[4646] | 763 | !-- Performing the fft with singleton's software works on every system, since it is part of |
---|
| 764 | !-- the model. |
---|
[1] | 765 | ALLOCATE( cwork(0:nx) ) |
---|
| 766 | |
---|
[4646] | 767 | IF ( forward_fft ) THEN |
---|
| 768 | |
---|
[1] | 769 | DO i = 0, nx |
---|
[1392] | 770 | cwork(i) = CMPLX( ar(i), KIND=wp ) |
---|
[1] | 771 | ENDDO |
---|
| 772 | ishape = SHAPE( cwork ) |
---|
| 773 | CALL FFTN( cwork, ishape ) |
---|
| 774 | DO i = 0, (nx+1)/2 |
---|
[1322] | 775 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 776 | ENDDO |
---|
| 777 | DO i = 1, (nx+1)/2 - 1 |
---|
| 778 | ar(nx+1-i) = -AIMAG( cwork(i) ) |
---|
| 779 | ENDDO |
---|
| 780 | |
---|
| 781 | ELSE |
---|
| 782 | |
---|
[1392] | 783 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1] | 784 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 785 | cwork(i) = CMPLX( ar(i), -ar(nx+1-i), KIND=wp ) |
---|
| 786 | cwork(nx+1-i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
[1] | 787 | ENDDO |
---|
[1392] | 788 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
[1] | 789 | |
---|
| 790 | ishape = SHAPE( cwork ) |
---|
| 791 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 792 | |
---|
| 793 | DO i = 0, nx |
---|
[1322] | 794 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 795 | ENDDO |
---|
| 796 | |
---|
| 797 | ENDIF |
---|
| 798 | |
---|
| 799 | DEALLOCATE( cwork ) |
---|
| 800 | |
---|
| 801 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 802 | |
---|
| 803 | ! |
---|
[4646] | 804 | !-- Performing the fft with Temperton's software works on every system, since it is part of |
---|
| 805 | !-- the model. |
---|
[1106] | 806 | IF ( forward_fft ) THEN |
---|
[1] | 807 | |
---|
| 808 | work(0:nx) = ar |
---|
| 809 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 810 | |
---|
| 811 | DO i = 0, (nx+1)/2 |
---|
| 812 | ar(i) = work(2*i) |
---|
| 813 | ENDDO |
---|
| 814 | DO i = 1, (nx+1)/2 - 1 |
---|
| 815 | ar(nx+1-i) = work(2*i+1) |
---|
| 816 | ENDDO |
---|
| 817 | |
---|
| 818 | ELSE |
---|
| 819 | |
---|
| 820 | DO i = 0, (nx+1)/2 |
---|
| 821 | work(2*i) = ar(i) |
---|
| 822 | ENDDO |
---|
| 823 | DO i = 1, (nx+1)/2 - 1 |
---|
| 824 | work(2*i+1) = ar(nx+1-i) |
---|
| 825 | ENDDO |
---|
[1342] | 826 | work(1) = 0.0_wp |
---|
| 827 | work(nx+2) = 0.0_wp |
---|
[1] | 828 | |
---|
| 829 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 830 | ar = work(0:nx) |
---|
| 831 | |
---|
| 832 | ENDIF |
---|
| 833 | |
---|
[1216] | 834 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 835 | |
---|
| 836 | #if defined( __fftw ) |
---|
| 837 | IF ( forward_fft ) THEN |
---|
| 838 | |
---|
| 839 | x_in(0:nx) = ar(0:nx) |
---|
| 840 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 841 | |
---|
| 842 | DO i = 0, (nx+1)/2 |
---|
[1322] | 843 | ar(i) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 844 | ENDDO |
---|
| 845 | DO i = 1, (nx+1)/2 - 1 |
---|
| 846 | ar(nx+1-i) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 847 | ENDDO |
---|
| 848 | |
---|
| 849 | ELSE |
---|
| 850 | |
---|
[1392] | 851 | x_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1216] | 852 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 853 | x_out(i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
[1216] | 854 | ENDDO |
---|
[1392] | 855 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
[1216] | 856 | |
---|
| 857 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 858 | ar(0:nx) = x_in(0:nx) |
---|
| 859 | |
---|
| 860 | ENDIF |
---|
| 861 | #endif |
---|
| 862 | |
---|
[1] | 863 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 864 | |
---|
[4651] | 865 | #if defined( __nec_fft ) |
---|
[1106] | 866 | IF ( forward_fft ) THEN |
---|
[1] | 867 | |
---|
| 868 | work(0:nx) = ar(0:nx) |
---|
| 869 | |
---|
[1106] | 870 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
[4646] | 871 | |
---|
[1] | 872 | DO i = 0, (nx+1)/2 |
---|
| 873 | ar(i) = work(2*i) |
---|
| 874 | ENDDO |
---|
| 875 | DO i = 1, (nx+1)/2 - 1 |
---|
| 876 | ar(nx+1-i) = work(2*i+1) |
---|
| 877 | ENDDO |
---|
| 878 | |
---|
| 879 | ELSE |
---|
| 880 | |
---|
| 881 | DO i = 0, (nx+1)/2 |
---|
| 882 | work(2*i) = ar(i) |
---|
| 883 | ENDDO |
---|
| 884 | DO i = 1, (nx+1)/2 - 1 |
---|
| 885 | work(2*i+1) = ar(nx+1-i) |
---|
| 886 | ENDDO |
---|
[1342] | 887 | work(1) = 0.0_wp |
---|
| 888 | work(nx+2) = 0.0_wp |
---|
[1] | 889 | |
---|
[1106] | 890 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
[1] | 891 | |
---|
| 892 | ar(0:nx) = work(0:nx) |
---|
| 893 | |
---|
| 894 | ENDIF |
---|
| 895 | #endif |
---|
| 896 | |
---|
| 897 | ENDIF |
---|
| 898 | |
---|
[1106] | 899 | END SUBROUTINE fft_x_1d |
---|
[1] | 900 | |
---|
[4646] | 901 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 902 | ! Description: |
---|
| 903 | ! ------------ |
---|
| 904 | !> Fourier-transformation along y-direction. |
---|
| 905 | !> Version for 2D-decomposition. |
---|
[4646] | 906 | !> It uses internal algorithms (Singleton or Temperton) or system-specific routines, if they are |
---|
| 907 | !> available. |
---|
| 908 | !> |
---|
[1682] | 909 | !> direction: 'forward' or 'backward' |
---|
[4646] | 910 | !> ar, ar_tr: 3D data arrays |
---|
[1682] | 911 | !> forward: ar: before ar_tr: after transformation |
---|
| 912 | !> backward: ar_tr: before ar: after transfosition |
---|
[4646] | 913 | !> |
---|
[1682] | 914 | !> In case of non-overlapping transposition/transformation: |
---|
[4646] | 915 | !> nxl_y_bound = nxl_y_l = nxl_y |
---|
| 916 | !> nxr_y_bound = nxr_y_l = nxr_y |
---|
| 917 | !> |
---|
[1682] | 918 | !> In case of overlapping transposition/transformation |
---|
[4646] | 919 | !> - nxl_y_bound and nxr_y_bound have the original values of nxl_y, nxr_y. ar_tr is dimensioned |
---|
| 920 | !> using these values. |
---|
| 921 | !> - nxl_y_l = nxr_y_r. ar is dimensioned with these values, so that transformation is carried out |
---|
| 922 | !> for a 2D-plane only. |
---|
| 923 | !--------------------------------------------------------------------------------------------------! |
---|
[1] | 924 | |
---|
[4646] | 925 | SUBROUTINE fft_y( ar, direction, ar_tr, nxl_y_bound, nxr_y_bound, nxl_y_l, nxr_y_l, ar_inv ) |
---|
[1] | 926 | |
---|
[4646] | 927 | |
---|
[1] | 928 | IMPLICIT NONE |
---|
| 929 | |
---|
[1682] | 930 | CHARACTER (LEN=*) :: direction !< |
---|
[4646] | 931 | |
---|
[1682] | 932 | INTEGER(iwp) :: i !< |
---|
[4646] | 933 | INTEGER(iwp) :: j !< |
---|
[1682] | 934 | INTEGER(iwp) :: jshape(1) !< |
---|
| 935 | INTEGER(iwp) :: k !< |
---|
[4366] | 936 | INTEGER(iwp) :: mm !< |
---|
[1682] | 937 | INTEGER(iwp) :: nxl_y_bound !< |
---|
| 938 | INTEGER(iwp) :: nxl_y_l !< |
---|
| 939 | INTEGER(iwp) :: nxr_y_bound !< |
---|
| 940 | INTEGER(iwp) :: nxr_y_l !< |
---|
[1106] | 941 | |
---|
[1682] | 942 | LOGICAL :: forward_fft !< |
---|
[1106] | 943 | |
---|
[1682] | 944 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
| 945 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
[4646] | 946 | |
---|
[4370] | 947 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: f_vec_y |
---|
[4366] | 948 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_vec |
---|
| 949 | |
---|
| 950 | REAL(wp), DIMENSION(0:ny,nxl_y_l:nxr_y_l,nzb_y:nzt_y) :: ar !< |
---|
| 951 | REAL(wp), DIMENSION(nxl_y:nxr_y,nzb_y:nzt_y,0:ny), OPTIONAL :: ar_inv !< |
---|
| 952 | REAL(wp), DIMENSION(0:ny,nxl_y_bound:nxr_y_bound,nzb_y:nzt_y), OPTIONAL :: ar_tr !< |
---|
| 953 | |
---|
[1682] | 954 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[4646] | 955 | |
---|
[4651] | 956 | #if defined( __nec_fft ) |
---|
[1682] | 957 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
[3634] | 958 | #elif defined( __cuda_fft ) |
---|
[4646] | 959 | COMPLEX(dp), DIMENSION(0:(ny+1)/2,nxl_y:nxr_y,nzb_y:nzt_y) :: ar_tmp !< |
---|
[3634] | 960 | !$ACC DECLARE CREATE(ar_tmp) |
---|
[1106] | 961 | #endif |
---|
| 962 | |
---|
[1320] | 963 | |
---|
[1106] | 964 | IF ( direction == 'forward' ) THEN |
---|
| 965 | forward_fft = .TRUE. |
---|
| 966 | ELSE |
---|
| 967 | forward_fft = .FALSE. |
---|
| 968 | ENDIF |
---|
| 969 | |
---|
| 970 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 971 | |
---|
| 972 | ! |
---|
[4646] | 973 | !-- Performing the fft with singleton's software works on every system, since it is part of |
---|
| 974 | !-- the model. |
---|
[1106] | 975 | ALLOCATE( cwork(0:ny) ) |
---|
| 976 | |
---|
[4646] | 977 | IF ( forward_fft ) THEN |
---|
[1106] | 978 | |
---|
| 979 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 980 | !$OMP DO |
---|
| 981 | DO k = nzb_y, nzt_y |
---|
[1216] | 982 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 983 | |
---|
| 984 | DO j = 0, ny |
---|
[1392] | 985 | cwork(j) = CMPLX( ar(j,i,k), KIND=wp ) |
---|
[1106] | 986 | ENDDO |
---|
| 987 | |
---|
| 988 | jshape = SHAPE( cwork ) |
---|
| 989 | CALL FFTN( cwork, jshape ) |
---|
| 990 | |
---|
| 991 | DO j = 0, (ny+1)/2 |
---|
[1322] | 992 | ar_tr(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 993 | ENDDO |
---|
| 994 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 995 | ar_tr(ny+1-j,i,k) = -AIMAG( cwork(j) ) |
---|
[1106] | 996 | ENDDO |
---|
| 997 | |
---|
| 998 | ENDDO |
---|
| 999 | ENDDO |
---|
| 1000 | !$OMP END PARALLEL |
---|
| 1001 | |
---|
| 1002 | ELSE |
---|
| 1003 | |
---|
| 1004 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1005 | !$OMP DO |
---|
| 1006 | DO k = nzb_y, nzt_y |
---|
[1216] | 1007 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1008 | |
---|
[1392] | 1009 | cwork(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 1010 | DO j = 1, (ny+1)/2 - 1 |
---|
[4646] | 1011 | cwork(j) = CMPLX( ar_tr(j,i,k), -ar_tr(ny+1-j,i,k), KIND=wp ) |
---|
| 1012 | cwork(ny+1-j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), KIND=wp ) |
---|
[1106] | 1013 | ENDDO |
---|
[4646] | 1014 | cwork((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 1015 | |
---|
| 1016 | jshape = SHAPE( cwork ) |
---|
| 1017 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1018 | |
---|
| 1019 | DO j = 0, ny |
---|
[1322] | 1020 | ar(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1021 | ENDDO |
---|
| 1022 | |
---|
| 1023 | ENDDO |
---|
| 1024 | ENDDO |
---|
| 1025 | !$OMP END PARALLEL |
---|
| 1026 | |
---|
| 1027 | ENDIF |
---|
| 1028 | |
---|
| 1029 | DEALLOCATE( cwork ) |
---|
| 1030 | |
---|
| 1031 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1032 | |
---|
| 1033 | ! |
---|
[4646] | 1034 | !-- Performing the fft with Temperton's software works on every system, since it is part of |
---|
| 1035 | !-- the model. |
---|
[1106] | 1036 | IF ( forward_fft ) THEN |
---|
| 1037 | |
---|
[4366] | 1038 | IF ( .NOT. temperton_fft_vec ) THEN |
---|
[1106] | 1039 | |
---|
[4366] | 1040 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
| 1041 | !$OMP DO |
---|
| 1042 | DO k = nzb_y, nzt_y |
---|
| 1043 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1044 | |
---|
[4366] | 1045 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1046 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1047 | |
---|
| 1048 | DO j = 0, (ny+1)/2 |
---|
| 1049 | ar_tr(j,i,k) = work(2*j) |
---|
| 1050 | ENDDO |
---|
| 1051 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1052 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
| 1053 | ENDDO |
---|
| 1054 | |
---|
[1106] | 1055 | ENDDO |
---|
[4366] | 1056 | ENDDO |
---|
| 1057 | !$OMP END PARALLEL |
---|
| 1058 | |
---|
| 1059 | ELSE |
---|
| 1060 | ! |
---|
| 1061 | !-- Vector version of Temperton-fft. Computes multiple 1-D FFT's. |
---|
[4370] | 1062 | ALLOCATE( f_vec_y((nxr_y_l-nxl_y_l+1)*(nzt_y-nzb_y+1),0:ny+2) ) |
---|
[4366] | 1063 | |
---|
| 1064 | mm = 1 |
---|
| 1065 | DO k = nzb_y, nzt_y |
---|
| 1066 | DO i = nxl_y_l, nxr_y_l |
---|
[4370] | 1067 | f_vec_y(mm,0:nx) = ar(0:nx,i,k) |
---|
[4366] | 1068 | mm = mm+1 |
---|
[1106] | 1069 | ENDDO |
---|
| 1070 | ENDDO |
---|
| 1071 | |
---|
[4366] | 1072 | ALLOCATE( work_vec( (nxr_y_l-nxl_y_l+1)*(nzt_y-nzb_y+1),ny+2) ) |
---|
[4370] | 1073 | CALL fft991cy_vec( f_vec_y, work_vec, trigs_y, ifax_y, ny+1, -1 ) |
---|
[4366] | 1074 | DEALLOCATE( work_vec ) |
---|
| 1075 | |
---|
| 1076 | IF( PRESENT( ar_inv ) ) THEN |
---|
| 1077 | |
---|
| 1078 | DO k = nzb_y, nzt_y |
---|
| 1079 | DO i = nxl_y_l, nxr_y_l |
---|
| 1080 | mm = i-nxl_y_l+1+(k-nzb_y)*(nxr_y_l-nxl_y_l+1) |
---|
| 1081 | DO j = 0, (ny+1)/2 |
---|
[4370] | 1082 | ar_inv(i,k,j) = f_vec_y(mm,2*j) |
---|
[4366] | 1083 | ENDDO |
---|
| 1084 | DO j = 1, (ny+1)/2 - 1 |
---|
[4370] | 1085 | ar_inv(i,k,ny+1-j) = f_vec_y(mm,2*j+1) |
---|
[4366] | 1086 | ENDDO |
---|
| 1087 | ENDDO |
---|
| 1088 | ENDDO |
---|
| 1089 | |
---|
| 1090 | ELSE |
---|
| 1091 | |
---|
| 1092 | DO k = nzb_y, nzt_y |
---|
| 1093 | DO i = nxl_y_l, nxr_y_l |
---|
| 1094 | mm = i-nxl_y_l+1+(k-nzb_y)*(nxr_y_l-nxl_y_l+1) |
---|
| 1095 | DO j = 0, (ny+1)/2 |
---|
[4370] | 1096 | ar(j,i,k) = f_vec_y(mm,2*j) |
---|
[4366] | 1097 | ENDDO |
---|
| 1098 | DO j = 1, (ny+1)/2 - 1 |
---|
[4370] | 1099 | ar(ny+1-j,i,k) = f_vec_y(mm,2*j+1) |
---|
[4366] | 1100 | ENDDO |
---|
| 1101 | ENDDO |
---|
| 1102 | ENDDO |
---|
| 1103 | |
---|
| 1104 | ENDIF |
---|
| 1105 | |
---|
[4370] | 1106 | DEALLOCATE( f_vec_y ) |
---|
[4366] | 1107 | |
---|
| 1108 | ENDIF |
---|
| 1109 | |
---|
[1106] | 1110 | ELSE |
---|
| 1111 | |
---|
[4366] | 1112 | IF ( .NOT. temperton_fft_vec ) THEN |
---|
[1106] | 1113 | |
---|
[4366] | 1114 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
| 1115 | !$OMP DO |
---|
| 1116 | DO k = nzb_y, nzt_y |
---|
| 1117 | DO i = nxl_y_l, nxr_y_l |
---|
| 1118 | |
---|
| 1119 | DO j = 0, (ny+1)/2 |
---|
| 1120 | work(2*j) = ar_tr(j,i,k) |
---|
| 1121 | ENDDO |
---|
| 1122 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1123 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
| 1124 | ENDDO |
---|
| 1125 | work(1) = 0.0_wp |
---|
| 1126 | work(ny+2) = 0.0_wp |
---|
| 1127 | |
---|
| 1128 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1129 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1130 | |
---|
[1106] | 1131 | ENDDO |
---|
[4366] | 1132 | ENDDO |
---|
| 1133 | !$OMP END PARALLEL |
---|
| 1134 | |
---|
| 1135 | ELSE |
---|
| 1136 | |
---|
[4370] | 1137 | ALLOCATE( f_vec_y((nxr_y_l-nxl_y_l+1)*(nzt_y-nzb_y+1),0:ny+2) ) |
---|
[4366] | 1138 | |
---|
| 1139 | IF ( PRESENT( ar_inv ) ) THEN |
---|
| 1140 | |
---|
| 1141 | DO k = nzb_y, nzt_y |
---|
| 1142 | DO i = nxl_y_l, nxr_y_l |
---|
| 1143 | mm = i-nxl_y_l+1+(k-nzb_y)*(nxr_y_l-nxl_y_l+1) |
---|
| 1144 | DO j = 0, (ny+1)/2 |
---|
[4370] | 1145 | f_vec_y(mm,2*j) = ar_inv(i,k,j) |
---|
[4366] | 1146 | ENDDO |
---|
| 1147 | DO j = 1, (ny+1)/2 - 1 |
---|
[4370] | 1148 | f_vec_y(mm,2*j+1) = ar_inv(i,k,ny+1-j) |
---|
[4366] | 1149 | ENDDO |
---|
| 1150 | ENDDO |
---|
[1106] | 1151 | ENDDO |
---|
| 1152 | |
---|
[4366] | 1153 | ELSE |
---|
[1106] | 1154 | |
---|
[4366] | 1155 | DO k = nzb_y, nzt_y |
---|
| 1156 | DO i = nxl_y_l, nxr_y_l |
---|
| 1157 | mm = i-nxl_y_l+1+(k-nzb_y)*(nxr_y_l-nxl_y_l+1) |
---|
| 1158 | DO j = 0, (ny+1)/2 |
---|
[4370] | 1159 | f_vec_y(mm,2*j) = ar(j,i,k) |
---|
[4366] | 1160 | ENDDO |
---|
| 1161 | DO j = 1, (ny+1)/2 - 1 |
---|
[4370] | 1162 | f_vec_y(mm,2*j+1) = ar(ny+1-j,i,k) |
---|
[4366] | 1163 | ENDDO |
---|
| 1164 | ENDDO |
---|
| 1165 | ENDDO |
---|
| 1166 | |
---|
| 1167 | ENDIF |
---|
| 1168 | |
---|
[4370] | 1169 | f_vec_y(:,1) = 0.0_wp |
---|
| 1170 | f_vec_y(:,ny+2) = 0.0_wp |
---|
[4366] | 1171 | |
---|
| 1172 | ALLOCATE( work_vec((nxr_y_l-nxl_y_l+1)*(nzt_y-nzb_y+1),ny+2) ) |
---|
[4370] | 1173 | CALL fft991cy_vec( f_vec_y, work_vec, trigs_y, ifax_y, ny+1, 1 ) |
---|
[4366] | 1174 | DEALLOCATE( work_vec ) |
---|
| 1175 | |
---|
| 1176 | mm = 1 |
---|
| 1177 | DO k = nzb_y, nzt_y |
---|
| 1178 | DO i = nxl_y_l, nxr_y_l |
---|
[4370] | 1179 | ar(0:ny,i,k) = f_vec_y(mm,0:ny) |
---|
[4366] | 1180 | mm = mm+1 |
---|
| 1181 | ENDDO |
---|
[1106] | 1182 | ENDDO |
---|
| 1183 | |
---|
[4370] | 1184 | DEALLOCATE( f_vec_y ) |
---|
[4366] | 1185 | |
---|
| 1186 | ENDIF |
---|
| 1187 | |
---|
[1106] | 1188 | ENDIF |
---|
| 1189 | |
---|
[1210] | 1190 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1191 | |
---|
| 1192 | #if defined( __fftw ) |
---|
| 1193 | IF ( forward_fft ) THEN |
---|
| 1194 | |
---|
| 1195 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1196 | !$OMP DO |
---|
| 1197 | DO k = nzb_y, nzt_y |
---|
[1216] | 1198 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1199 | |
---|
| 1200 | y_in(0:ny) = ar(0:ny,i,k) |
---|
| 1201 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1202 | |
---|
| 1203 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1204 | ar_tr(j,i,k) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1210] | 1205 | ENDDO |
---|
| 1206 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1207 | ar_tr(ny+1-j,i,k) = AIMAG( y_out(j) ) / (ny+1) |
---|
[1210] | 1208 | ENDDO |
---|
| 1209 | |
---|
| 1210 | ENDDO |
---|
| 1211 | ENDDO |
---|
| 1212 | !$OMP END PARALLEL |
---|
| 1213 | |
---|
| 1214 | ELSE |
---|
| 1215 | |
---|
| 1216 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1217 | !$OMP DO |
---|
| 1218 | DO k = nzb_y, nzt_y |
---|
[1216] | 1219 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1220 | |
---|
[1392] | 1221 | y_out(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
[1210] | 1222 | DO j = 1, (ny+1)/2 - 1 |
---|
[4646] | 1223 | y_out(j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), KIND=wp ) |
---|
[1210] | 1224 | ENDDO |
---|
[4646] | 1225 | y_out((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, KIND=wp ) |
---|
[1210] | 1226 | |
---|
| 1227 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1228 | ar(0:ny,i,k) = y_in(0:ny) |
---|
| 1229 | |
---|
| 1230 | ENDDO |
---|
| 1231 | ENDDO |
---|
| 1232 | !$OMP END PARALLEL |
---|
| 1233 | |
---|
| 1234 | ENDIF |
---|
| 1235 | #endif |
---|
| 1236 | |
---|
[1106] | 1237 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1238 | |
---|
[4651] | 1239 | #if defined( __nec_fft ) |
---|
[1106] | 1240 | IF ( forward_fft ) THEN |
---|
| 1241 | |
---|
| 1242 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1243 | !$OMP DO |
---|
| 1244 | DO k = nzb_y, nzt_y |
---|
[1216] | 1245 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1246 | |
---|
| 1247 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1248 | |
---|
| 1249 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
| 1250 | |
---|
| 1251 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1252 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1253 | ENDDO |
---|
| 1254 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1255 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1256 | ENDDO |
---|
| 1257 | |
---|
| 1258 | ENDDO |
---|
| 1259 | ENDDO |
---|
| 1260 | !$END OMP PARALLEL |
---|
| 1261 | |
---|
| 1262 | ELSE |
---|
| 1263 | |
---|
| 1264 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1265 | !$OMP DO |
---|
| 1266 | DO k = nzb_y, nzt_y |
---|
[1216] | 1267 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1268 | |
---|
| 1269 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1270 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1271 | ENDDO |
---|
| 1272 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1273 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1274 | ENDDO |
---|
[1342] | 1275 | work(1) = 0.0_wp |
---|
| 1276 | work(ny+2) = 0.0_wp |
---|
[1106] | 1277 | |
---|
| 1278 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
| 1279 | |
---|
| 1280 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1281 | |
---|
| 1282 | ENDDO |
---|
| 1283 | ENDDO |
---|
| 1284 | !$OMP END PARALLEL |
---|
| 1285 | |
---|
| 1286 | ENDIF |
---|
[3634] | 1287 | #elif defined( __cuda_fft ) |
---|
| 1288 | |
---|
| 1289 | IF ( forward_fft ) THEN |
---|
| 1290 | |
---|
| 1291 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 1292 | CALL CUFFTEXECD2Z( plan_yf, ar, ar_tmp ) |
---|
| 1293 | !$ACC END HOST_DATA |
---|
| 1294 | |
---|
| 1295 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 1296 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 1297 | DO k = nzb_y, nzt_y |
---|
| 1298 | DO i = nxl_y, nxr_y |
---|
| 1299 | |
---|
| 1300 | DO j = 0, (ny+1)/2 |
---|
[4646] | 1301 | ar(j,i,k) = REAL( ar_tmp(j,i,k), KIND=wp ) * dny |
---|
[3634] | 1302 | ENDDO |
---|
| 1303 | |
---|
| 1304 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1305 | ar(ny+1-j,i,k) = AIMAG( ar_tmp(j,i,k) ) * dny |
---|
| 1306 | ENDDO |
---|
| 1307 | |
---|
| 1308 | ENDDO |
---|
| 1309 | ENDDO |
---|
| 1310 | |
---|
| 1311 | ELSE |
---|
| 1312 | |
---|
| 1313 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 1314 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 1315 | DO k = nzb_y, nzt_y |
---|
| 1316 | DO i = nxl_y, nxr_y |
---|
| 1317 | |
---|
| 1318 | ar_tmp(0,i,k) = CMPLX( ar(0,i,k), 0.0_wp, KIND=wp ) |
---|
| 1319 | |
---|
| 1320 | DO j = 1, (ny+1)/2 - 1 |
---|
[4646] | 1321 | ar_tmp(j,i,k) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k), KIND=wp ) |
---|
[3634] | 1322 | ENDDO |
---|
[4646] | 1323 | ar_tmp((ny+1)/2,i,k) = CMPLX( ar((ny+1)/2,i,k), 0.0_wp, KIND=wp ) |
---|
[3634] | 1324 | |
---|
| 1325 | ENDDO |
---|
| 1326 | ENDDO |
---|
| 1327 | |
---|
| 1328 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 1329 | CALL CUFFTEXECZ2D( plan_yi, ar_tmp, ar ) |
---|
| 1330 | !$ACC END HOST_DATA |
---|
| 1331 | |
---|
| 1332 | ENDIF |
---|
| 1333 | |
---|
[1106] | 1334 | #endif |
---|
| 1335 | |
---|
| 1336 | ENDIF |
---|
| 1337 | |
---|
| 1338 | END SUBROUTINE fft_y |
---|
| 1339 | |
---|
[4646] | 1340 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 1341 | ! Description: |
---|
| 1342 | ! ------------ |
---|
| 1343 | !> Fourier-transformation along y-direction. |
---|
| 1344 | !> Version for 1D-decomposition. |
---|
[4646] | 1345 | !> It uses internal algorithms (Singleton or Temperton) or system-specific routines, if they are |
---|
| 1346 | !> available. |
---|
| 1347 | !--------------------------------------------------------------------------------------------------! |
---|
| 1348 | |
---|
[1106] | 1349 | SUBROUTINE fft_y_1d( ar, direction ) |
---|
| 1350 | |
---|
| 1351 | |
---|
| 1352 | IMPLICIT NONE |
---|
| 1353 | |
---|
| 1354 | CHARACTER (LEN=*) :: direction |
---|
[4646] | 1355 | |
---|
[1682] | 1356 | INTEGER(iwp) :: j !< |
---|
| 1357 | INTEGER(iwp) :: jshape(1) !< |
---|
[1] | 1358 | |
---|
[1682] | 1359 | LOGICAL :: forward_fft !< |
---|
[1106] | 1360 | |
---|
[1682] | 1361 | REAL(wp), DIMENSION(0:ny) :: ar !< |
---|
| 1362 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
| 1363 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
[4646] | 1364 | |
---|
[1682] | 1365 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[4646] | 1366 | |
---|
[4651] | 1367 | #if defined( __nec_fft ) |
---|
[1682] | 1368 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
[1] | 1369 | #endif |
---|
| 1370 | |
---|
[1106] | 1371 | IF ( direction == 'forward' ) THEN |
---|
| 1372 | forward_fft = .TRUE. |
---|
| 1373 | ELSE |
---|
| 1374 | forward_fft = .FALSE. |
---|
| 1375 | ENDIF |
---|
| 1376 | |
---|
[1] | 1377 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1378 | |
---|
| 1379 | ! |
---|
[4646] | 1380 | !-- Performing the fft with singleton's software works on every system, since it is part of |
---|
| 1381 | !-- the model. |
---|
[1] | 1382 | ALLOCATE( cwork(0:ny) ) |
---|
| 1383 | |
---|
[1106] | 1384 | IF ( forward_fft ) THEN |
---|
[1] | 1385 | |
---|
| 1386 | DO j = 0, ny |
---|
[1392] | 1387 | cwork(j) = CMPLX( ar(j), KIND=wp ) |
---|
[1] | 1388 | ENDDO |
---|
| 1389 | |
---|
| 1390 | jshape = SHAPE( cwork ) |
---|
| 1391 | CALL FFTN( cwork, jshape ) |
---|
| 1392 | |
---|
| 1393 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1394 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1395 | ENDDO |
---|
| 1396 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1397 | ar(ny+1-j) = -AIMAG( cwork(j) ) |
---|
| 1398 | ENDDO |
---|
| 1399 | |
---|
| 1400 | ELSE |
---|
| 1401 | |
---|
[1392] | 1402 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1] | 1403 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1404 | cwork(j) = CMPLX( ar(j), -ar(ny+1-j), KIND=wp ) |
---|
| 1405 | cwork(ny+1-j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
[1] | 1406 | ENDDO |
---|
[1392] | 1407 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
[1] | 1408 | |
---|
| 1409 | jshape = SHAPE( cwork ) |
---|
| 1410 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1411 | |
---|
| 1412 | DO j = 0, ny |
---|
[1322] | 1413 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1414 | ENDDO |
---|
| 1415 | |
---|
| 1416 | ENDIF |
---|
| 1417 | |
---|
| 1418 | DEALLOCATE( cwork ) |
---|
| 1419 | |
---|
| 1420 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1421 | |
---|
| 1422 | ! |
---|
[4646] | 1423 | !-- Performing the fft with Temperton's software works on every system, since it is part of |
---|
| 1424 | !-- the model. |
---|
[1106] | 1425 | IF ( forward_fft ) THEN |
---|
[1] | 1426 | |
---|
| 1427 | work(0:ny) = ar |
---|
| 1428 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1429 | |
---|
| 1430 | DO j = 0, (ny+1)/2 |
---|
| 1431 | ar(j) = work(2*j) |
---|
| 1432 | ENDDO |
---|
| 1433 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1434 | ar(ny+1-j) = work(2*j+1) |
---|
| 1435 | ENDDO |
---|
| 1436 | |
---|
| 1437 | ELSE |
---|
| 1438 | |
---|
| 1439 | DO j = 0, (ny+1)/2 |
---|
| 1440 | work(2*j) = ar(j) |
---|
| 1441 | ENDDO |
---|
| 1442 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1443 | work(2*j+1) = ar(ny+1-j) |
---|
| 1444 | ENDDO |
---|
[1342] | 1445 | work(1) = 0.0_wp |
---|
| 1446 | work(ny+2) = 0.0_wp |
---|
[1] | 1447 | |
---|
| 1448 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1449 | ar = work(0:ny) |
---|
| 1450 | |
---|
| 1451 | ENDIF |
---|
| 1452 | |
---|
[1216] | 1453 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1454 | |
---|
| 1455 | #if defined( __fftw ) |
---|
| 1456 | IF ( forward_fft ) THEN |
---|
| 1457 | |
---|
| 1458 | y_in(0:ny) = ar(0:ny) |
---|
| 1459 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1460 | |
---|
| 1461 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1462 | ar(j) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1216] | 1463 | ENDDO |
---|
| 1464 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1465 | ar(ny+1-j) = AIMAG( y_out(j) ) / (ny+1) |
---|
| 1466 | ENDDO |
---|
| 1467 | |
---|
| 1468 | ELSE |
---|
| 1469 | |
---|
[1392] | 1470 | y_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1216] | 1471 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1472 | y_out(j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
[1216] | 1473 | ENDDO |
---|
[1392] | 1474 | y_out((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
[1216] | 1475 | |
---|
| 1476 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1477 | ar(0:ny) = y_in(0:ny) |
---|
| 1478 | |
---|
| 1479 | ENDIF |
---|
| 1480 | #endif |
---|
| 1481 | |
---|
[1] | 1482 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1483 | |
---|
[4651] | 1484 | #if defined( __nec_fft ) |
---|
[1106] | 1485 | IF ( forward_fft ) THEN |
---|
[1] | 1486 | |
---|
| 1487 | work(0:ny) = ar(0:ny) |
---|
| 1488 | |
---|
[1106] | 1489 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
[1] | 1490 | |
---|
| 1491 | DO j = 0, (ny+1)/2 |
---|
| 1492 | ar(j) = work(2*j) |
---|
| 1493 | ENDDO |
---|
| 1494 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1495 | ar(ny+1-j) = work(2*j+1) |
---|
| 1496 | ENDDO |
---|
| 1497 | |
---|
| 1498 | ELSE |
---|
| 1499 | |
---|
| 1500 | DO j = 0, (ny+1)/2 |
---|
| 1501 | work(2*j) = ar(j) |
---|
| 1502 | ENDDO |
---|
| 1503 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1504 | work(2*j+1) = ar(ny+1-j) |
---|
| 1505 | ENDDO |
---|
[1342] | 1506 | work(1) = 0.0_wp |
---|
| 1507 | work(ny+2) = 0.0_wp |
---|
[1] | 1508 | |
---|
[1106] | 1509 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
[1] | 1510 | |
---|
| 1511 | ar(0:ny) = work(0:ny) |
---|
| 1512 | |
---|
| 1513 | ENDIF |
---|
| 1514 | #endif |
---|
| 1515 | |
---|
| 1516 | ENDIF |
---|
| 1517 | |
---|
[1106] | 1518 | END SUBROUTINE fft_y_1d |
---|
[1] | 1519 | |
---|
[4646] | 1520 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 1521 | ! Description: |
---|
| 1522 | ! ------------ |
---|
| 1523 | !> Fourier-transformation along x-direction. |
---|
[4646] | 1524 | !> Version for 1d domain decomposition, |
---|
[1682] | 1525 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
[4646] | 1526 | !> (no singleton-algorithm on NEC because it does not vectorize). |
---|
| 1527 | !--------------------------------------------------------------------------------------------------! |
---|
| 1528 | |
---|
[1] | 1529 | SUBROUTINE fft_x_m( ar, direction ) |
---|
| 1530 | |
---|
| 1531 | |
---|
| 1532 | IMPLICIT NONE |
---|
| 1533 | |
---|
[1682] | 1534 | CHARACTER (LEN=*) :: direction !< |
---|
[4646] | 1535 | |
---|
[1682] | 1536 | INTEGER(iwp) :: i !< |
---|
| 1537 | INTEGER(iwp) :: k !< |
---|
| 1538 | INTEGER(iwp) :: siza !< |
---|
[4370] | 1539 | #if defined( __nec_fft ) |
---|
[3241] | 1540 | INTEGER(iwp) :: sizw |
---|
| 1541 | #endif |
---|
[1] | 1542 | |
---|
[1682] | 1543 | REAL(wp), DIMENSION(0:nx,nz) :: ar !< |
---|
| 1544 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: ai !< |
---|
| 1545 | REAL(wp), DIMENSION(6*(nx+4),nz+1) :: work1 !< |
---|
[4646] | 1546 | |
---|
[4370] | 1547 | #if defined( __nec_fft ) |
---|
[3241] | 1548 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work |
---|
| 1549 | #endif |
---|
[1] | 1550 | |
---|
| 1551 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1552 | |
---|
| 1553 | siza = SIZE( ai, 1 ) |
---|
| 1554 | |
---|
| 1555 | IF ( direction == 'forward') THEN |
---|
| 1556 | |
---|
| 1557 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
[1342] | 1558 | ai(nx+1:,:) = 0.0_wp |
---|
[1] | 1559 | |
---|
| 1560 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, -1 ) |
---|
| 1561 | |
---|
| 1562 | DO k = 1, nz |
---|
| 1563 | DO i = 0, (nx+1)/2 |
---|
| 1564 | ar(i,k) = ai(2*i,k) |
---|
| 1565 | ENDDO |
---|
| 1566 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1567 | ar(nx+1-i,k) = ai(2*i+1,k) |
---|
| 1568 | ENDDO |
---|
| 1569 | ENDDO |
---|
| 1570 | |
---|
| 1571 | ELSE |
---|
| 1572 | |
---|
| 1573 | DO k = 1, nz |
---|
| 1574 | DO i = 0, (nx+1)/2 |
---|
| 1575 | ai(2*i,k) = ar(i,k) |
---|
| 1576 | ENDDO |
---|
| 1577 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1578 | ai(2*i+1,k) = ar(nx+1-i,k) |
---|
| 1579 | ENDDO |
---|
[1342] | 1580 | ai(1,k) = 0.0_wp |
---|
| 1581 | ai(nx+2,k) = 0.0_wp |
---|
[1] | 1582 | ENDDO |
---|
| 1583 | |
---|
| 1584 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, 1 ) |
---|
| 1585 | |
---|
| 1586 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1587 | |
---|
| 1588 | ENDIF |
---|
| 1589 | |
---|
| 1590 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1591 | |
---|
[4370] | 1592 | #if defined( __nec_fft ) |
---|
[2300] | 1593 | ALLOCATE( work((nx+4)/2+1,nz+1) ) |
---|
[1] | 1594 | siza = SIZE( ai, 1 ) |
---|
| 1595 | sizw = SIZE( work, 1 ) |
---|
| 1596 | |
---|
| 1597 | IF ( direction == 'forward') THEN |
---|
| 1598 | |
---|
| 1599 | ! |
---|
[4646] | 1600 | !-- Tables are initialized once more. This call should not be necessary, but otherwise |
---|
| 1601 | !-- program aborts in asymmetric case. |
---|
| 1602 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, trig_xf, work1, 0 ) |
---|
[1] | 1603 | |
---|
| 1604 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
| 1605 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1606 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1607 | ENDIF |
---|
| 1608 | |
---|
[4646] | 1609 | CALL DZFFTM( 1, nx+1, nz1, sqr_dnx, ai, siza, work, sizw, trig_xf, work1, 0 ) |
---|
[1] | 1610 | |
---|
| 1611 | DO k = 1, nz |
---|
| 1612 | DO i = 0, (nx+1)/2 |
---|
[1322] | 1613 | ar(i,k) = REAL( work(i+1,k), KIND=wp ) |
---|
[1] | 1614 | ENDDO |
---|
| 1615 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1616 | ar(nx+1-i,k) = AIMAG( work(i+1,k) ) |
---|
| 1617 | ENDDO |
---|
| 1618 | ENDDO |
---|
| 1619 | |
---|
| 1620 | ELSE |
---|
| 1621 | |
---|
| 1622 | ! |
---|
| 1623 | !-- Tables are initialized once more. This call should not be |
---|
| 1624 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[4646] | 1625 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, trig_xb, work1, 0 ) |
---|
[1] | 1626 | |
---|
| 1627 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1628 | work(:,nz1) = 0.0_wp |
---|
[1] | 1629 | ENDIF |
---|
| 1630 | DO k = 1, nz |
---|
[1392] | 1631 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1632 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 1633 | work(i+1,k) = CMPLX( ar(i,k), ar(nx+1-i,k), KIND=wp ) |
---|
[1] | 1634 | ENDDO |
---|
[1392] | 1635 | work(((nx+1)/2)+1,k) = CMPLX( ar((nx+1)/2,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1636 | ENDDO |
---|
| 1637 | |
---|
[4646] | 1638 | CALL ZDFFTM( -1, nx+1, nz1, sqr_dnx, work, sizw, ai, siza, trig_xb, work1, 0 ) |
---|
[1] | 1639 | |
---|
| 1640 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1641 | |
---|
| 1642 | ENDIF |
---|
| 1643 | |
---|
[2300] | 1644 | DEALLOCATE( work ) |
---|
[1] | 1645 | #endif |
---|
| 1646 | |
---|
| 1647 | ENDIF |
---|
| 1648 | |
---|
| 1649 | END SUBROUTINE fft_x_m |
---|
| 1650 | |
---|
[4646] | 1651 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 1652 | ! Description: |
---|
| 1653 | ! ------------ |
---|
| 1654 | !> Fourier-transformation along y-direction. |
---|
[4646] | 1655 | !> Version for 1d domain decomposition, |
---|
[1682] | 1656 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
[4646] | 1657 | !> (no singleton-algorithm on NEC because it does not vectorize). |
---|
| 1658 | !--------------------------------------------------------------------------------------------------! |
---|
| 1659 | |
---|
[1] | 1660 | SUBROUTINE fft_y_m( ar, ny1, direction ) |
---|
| 1661 | |
---|
| 1662 | |
---|
| 1663 | IMPLICIT NONE |
---|
| 1664 | |
---|
[1682] | 1665 | CHARACTER (LEN=*) :: direction !< |
---|
[4646] | 1666 | |
---|
| 1667 | INTEGER(iwp) :: j !< |
---|
[1682] | 1668 | INTEGER(iwp) :: k !< |
---|
| 1669 | INTEGER(iwp) :: ny1 !< |
---|
| 1670 | INTEGER(iwp) :: siza !< |
---|
[4370] | 1671 | #if defined( __nec_fft ) |
---|
[3241] | 1672 | INTEGER(iwp) :: sizw |
---|
| 1673 | #endif |
---|
[1] | 1674 | |
---|
[1682] | 1675 | REAL(wp), DIMENSION(0:ny1,nz) :: ar !< |
---|
| 1676 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: ai !< |
---|
| 1677 | REAL(wp), DIMENSION(6*(ny+4),nz+1) :: work1 !< |
---|
[1] | 1678 | |
---|
[4370] | 1679 | #if defined( __nec_fft ) |
---|
[3241] | 1680 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work |
---|
| 1681 | #endif |
---|
[2300] | 1682 | |
---|
[3241] | 1683 | |
---|
[1] | 1684 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1685 | |
---|
| 1686 | siza = SIZE( ai, 1 ) |
---|
| 1687 | |
---|
| 1688 | IF ( direction == 'forward') THEN |
---|
| 1689 | |
---|
| 1690 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
[1342] | 1691 | ai(ny+1:,:) = 0.0_wp |
---|
[1] | 1692 | |
---|
| 1693 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, -1 ) |
---|
| 1694 | |
---|
| 1695 | DO k = 1, nz |
---|
| 1696 | DO j = 0, (ny+1)/2 |
---|
| 1697 | ar(j,k) = ai(2*j,k) |
---|
| 1698 | ENDDO |
---|
| 1699 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1700 | ar(ny+1-j,k) = ai(2*j+1,k) |
---|
| 1701 | ENDDO |
---|
| 1702 | ENDDO |
---|
| 1703 | |
---|
| 1704 | ELSE |
---|
| 1705 | |
---|
| 1706 | DO k = 1, nz |
---|
| 1707 | DO j = 0, (ny+1)/2 |
---|
| 1708 | ai(2*j,k) = ar(j,k) |
---|
| 1709 | ENDDO |
---|
| 1710 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1711 | ai(2*j+1,k) = ar(ny+1-j,k) |
---|
| 1712 | ENDDO |
---|
[1342] | 1713 | ai(1,k) = 0.0_wp |
---|
| 1714 | ai(ny+2,k) = 0.0_wp |
---|
[1] | 1715 | ENDDO |
---|
| 1716 | |
---|
| 1717 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, 1 ) |
---|
| 1718 | |
---|
| 1719 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1720 | |
---|
| 1721 | ENDIF |
---|
| 1722 | |
---|
| 1723 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1724 | |
---|
[4370] | 1725 | #if defined( __nec_fft ) |
---|
[2300] | 1726 | ALLOCATE( work((ny+4)/2+1,nz+1) ) |
---|
[1] | 1727 | siza = SIZE( ai, 1 ) |
---|
| 1728 | sizw = SIZE( work, 1 ) |
---|
| 1729 | |
---|
| 1730 | IF ( direction == 'forward') THEN |
---|
| 1731 | |
---|
| 1732 | ! |
---|
[4646] | 1733 | !-- Tables are initialized once more. This call should not be necessary, but otherwise |
---|
| 1734 | !-- program aborts in asymmetric case. |
---|
| 1735 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, trig_yf, work1, 0 ) |
---|
[1] | 1736 | |
---|
| 1737 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
| 1738 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1739 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1740 | ENDIF |
---|
| 1741 | |
---|
[4646] | 1742 | CALL DZFFTM( 1, ny+1, nz1, sqr_dny, ai, siza, work, sizw, trig_yf, work1, 0 ) |
---|
[1] | 1743 | |
---|
| 1744 | DO k = 1, nz |
---|
| 1745 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1746 | ar(j,k) = REAL( work(j+1,k), KIND=wp ) |
---|
[1] | 1747 | ENDDO |
---|
| 1748 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1749 | ar(ny+1-j,k) = AIMAG( work(j+1,k) ) |
---|
| 1750 | ENDDO |
---|
| 1751 | ENDDO |
---|
| 1752 | |
---|
| 1753 | ELSE |
---|
| 1754 | |
---|
| 1755 | ! |
---|
[4646] | 1756 | !-- Tables are initialized once more. This call should not be necessary, but otherwise |
---|
| 1757 | !-- program aborts in asymmetric case. |
---|
| 1758 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, trig_yb, work1, 0 ) |
---|
[1] | 1759 | |
---|
| 1760 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1761 | work(:,nz1) = 0.0_wp |
---|
[1] | 1762 | ENDIF |
---|
| 1763 | DO k = 1, nz |
---|
[1392] | 1764 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1765 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1766 | work(j+1,k) = CMPLX( ar(j,k), ar(ny+1-j,k), KIND=wp ) |
---|
[1] | 1767 | ENDDO |
---|
[1392] | 1768 | work(((ny+1)/2)+1,k) = CMPLX( ar((ny+1)/2,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1769 | ENDDO |
---|
| 1770 | |
---|
[4646] | 1771 | CALL ZDFFTM( -1, ny+1, nz1, sqr_dny, work, sizw, ai, siza, trig_yb, work1, 0 ) |
---|
[1] | 1772 | |
---|
| 1773 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1774 | |
---|
| 1775 | ENDIF |
---|
| 1776 | |
---|
[2300] | 1777 | DEALLOCATE( work ) |
---|
[1] | 1778 | #endif |
---|
| 1779 | |
---|
| 1780 | ENDIF |
---|
| 1781 | |
---|
| 1782 | END SUBROUTINE fft_y_m |
---|
| 1783 | |
---|
[1106] | 1784 | |
---|
[1] | 1785 | END MODULE fft_xy |
---|