1 | !> @file dynamics_mod.f90 |
---|
2 | !--------------------------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
18 | !--------------------------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: dynamics_mod.f90 4281 2019-10-29 15:15:39Z resler $ |
---|
27 | ! Moved boundary conditions in dynamics module |
---|
28 | ! |
---|
29 | ! 4097 2019-07-15 11:59:11Z suehring |
---|
30 | ! Avoid overlong lines - limit is 132 characters per line |
---|
31 | ! |
---|
32 | ! 4047 2019-06-21 18:58:09Z knoop |
---|
33 | ! Initial introduction of the dynamics module with only dynamics_swap_timelevel implemented |
---|
34 | ! |
---|
35 | ! |
---|
36 | ! Description: |
---|
37 | ! ------------ |
---|
38 | !> This module contains the dynamics of PALM. |
---|
39 | !--------------------------------------------------------------------------------------------------! |
---|
40 | MODULE dynamics_mod |
---|
41 | |
---|
42 | |
---|
43 | USE arrays_3d, & |
---|
44 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
45 | dzu, & |
---|
46 | pt, pt_1, pt_2, pt_init, pt_p, & |
---|
47 | q, q_1, q_2, q_p, & |
---|
48 | s, s_1, s_2, s_p, & |
---|
49 | u, u_1, u_2, u_init, u_p, u_m_l, u_m_n, u_m_r, u_m_s, & |
---|
50 | v, v_1, v_2, v_p, v_init, v_m_l, v_m_n, v_m_r, v_m_s, & |
---|
51 | w, w_1, w_2, w_p, w_m_l, w_m_n, w_m_r, w_m_s |
---|
52 | |
---|
53 | USE control_parameters, & |
---|
54 | ONLY: bc_dirichlet_l, & |
---|
55 | bc_dirichlet_s, & |
---|
56 | bc_radiation_l, & |
---|
57 | bc_radiation_n, & |
---|
58 | bc_radiation_r, & |
---|
59 | bc_radiation_s, & |
---|
60 | bc_pt_t_val, & |
---|
61 | bc_q_t_val, & |
---|
62 | bc_s_t_val, & |
---|
63 | child_domain, & |
---|
64 | coupling_mode, & |
---|
65 | dt_3d, & |
---|
66 | ibc_pt_b, & |
---|
67 | ibc_pt_t, & |
---|
68 | ibc_q_b, & |
---|
69 | ibc_q_t, & |
---|
70 | ibc_s_b, & |
---|
71 | ibc_s_t, & |
---|
72 | ibc_uv_b, & |
---|
73 | ibc_uv_t, & |
---|
74 | intermediate_timestep_count, & |
---|
75 | length, & |
---|
76 | nesting_offline, & |
---|
77 | nudging, & |
---|
78 | restart_string, & |
---|
79 | humidity, & |
---|
80 | neutral, & |
---|
81 | passive_scalar, & |
---|
82 | tsc, & |
---|
83 | use_cmax |
---|
84 | |
---|
85 | USE grid_variables, & |
---|
86 | ONLY: ddx, & |
---|
87 | ddy, & |
---|
88 | dx, & |
---|
89 | dy |
---|
90 | |
---|
91 | USE indices, & |
---|
92 | ONLY: nbgp, & |
---|
93 | nx, & |
---|
94 | nxl, & |
---|
95 | nxlg, & |
---|
96 | nxr, & |
---|
97 | nxrg, & |
---|
98 | ny, & |
---|
99 | nys, & |
---|
100 | nysg, & |
---|
101 | nyn, & |
---|
102 | nyng, & |
---|
103 | nzb, & |
---|
104 | nzt |
---|
105 | |
---|
106 | USE kinds |
---|
107 | |
---|
108 | USE pegrid |
---|
109 | |
---|
110 | USE pmc_interface, & |
---|
111 | ONLY : nesting_mode |
---|
112 | |
---|
113 | USE surface_mod, & |
---|
114 | ONLY : bc_h |
---|
115 | |
---|
116 | |
---|
117 | IMPLICIT NONE |
---|
118 | |
---|
119 | LOGICAL :: dynamics_module_enabled = .FALSE. !< |
---|
120 | |
---|
121 | SAVE |
---|
122 | |
---|
123 | PRIVATE |
---|
124 | |
---|
125 | ! |
---|
126 | !-- Public functions |
---|
127 | PUBLIC & |
---|
128 | dynamics_parin, & |
---|
129 | dynamics_check_parameters, & |
---|
130 | dynamics_check_data_output_ts, & |
---|
131 | dynamics_check_data_output_pr, & |
---|
132 | dynamics_check_data_output, & |
---|
133 | dynamics_init_masks, & |
---|
134 | dynamics_define_netcdf_grid, & |
---|
135 | dynamics_init_arrays, & |
---|
136 | dynamics_init, & |
---|
137 | dynamics_init_checks, & |
---|
138 | dynamics_header, & |
---|
139 | dynamics_actions, & |
---|
140 | dynamics_non_advective_processes, & |
---|
141 | dynamics_exchange_horiz, & |
---|
142 | dynamics_prognostic_equations, & |
---|
143 | dynamics_boundary_conditions, & |
---|
144 | dynamics_swap_timelevel, & |
---|
145 | dynamics_3d_data_averaging, & |
---|
146 | dynamics_data_output_2d, & |
---|
147 | dynamics_data_output_3d, & |
---|
148 | dynamics_statistics, & |
---|
149 | dynamics_rrd_global, & |
---|
150 | dynamics_rrd_local, & |
---|
151 | dynamics_wrd_global, & |
---|
152 | dynamics_wrd_local, & |
---|
153 | dynamics_last_actions |
---|
154 | |
---|
155 | ! |
---|
156 | !-- Public parameters, constants and initial values |
---|
157 | PUBLIC & |
---|
158 | dynamics_module_enabled |
---|
159 | |
---|
160 | INTERFACE dynamics_parin |
---|
161 | MODULE PROCEDURE dynamics_parin |
---|
162 | END INTERFACE dynamics_parin |
---|
163 | |
---|
164 | INTERFACE dynamics_check_parameters |
---|
165 | MODULE PROCEDURE dynamics_check_parameters |
---|
166 | END INTERFACE dynamics_check_parameters |
---|
167 | |
---|
168 | INTERFACE dynamics_check_data_output_ts |
---|
169 | MODULE PROCEDURE dynamics_check_data_output_ts |
---|
170 | END INTERFACE dynamics_check_data_output_ts |
---|
171 | |
---|
172 | INTERFACE dynamics_check_data_output_pr |
---|
173 | MODULE PROCEDURE dynamics_check_data_output_pr |
---|
174 | END INTERFACE dynamics_check_data_output_pr |
---|
175 | |
---|
176 | INTERFACE dynamics_check_data_output |
---|
177 | MODULE PROCEDURE dynamics_check_data_output |
---|
178 | END INTERFACE dynamics_check_data_output |
---|
179 | |
---|
180 | INTERFACE dynamics_init_masks |
---|
181 | MODULE PROCEDURE dynamics_init_masks |
---|
182 | END INTERFACE dynamics_init_masks |
---|
183 | |
---|
184 | INTERFACE dynamics_define_netcdf_grid |
---|
185 | MODULE PROCEDURE dynamics_define_netcdf_grid |
---|
186 | END INTERFACE dynamics_define_netcdf_grid |
---|
187 | |
---|
188 | INTERFACE dynamics_init_arrays |
---|
189 | MODULE PROCEDURE dynamics_init_arrays |
---|
190 | END INTERFACE dynamics_init_arrays |
---|
191 | |
---|
192 | INTERFACE dynamics_init |
---|
193 | MODULE PROCEDURE dynamics_init |
---|
194 | END INTERFACE dynamics_init |
---|
195 | |
---|
196 | INTERFACE dynamics_init_checks |
---|
197 | MODULE PROCEDURE dynamics_init_checks |
---|
198 | END INTERFACE dynamics_init_checks |
---|
199 | |
---|
200 | INTERFACE dynamics_header |
---|
201 | MODULE PROCEDURE dynamics_header |
---|
202 | END INTERFACE dynamics_header |
---|
203 | |
---|
204 | INTERFACE dynamics_actions |
---|
205 | MODULE PROCEDURE dynamics_actions |
---|
206 | MODULE PROCEDURE dynamics_actions_ij |
---|
207 | END INTERFACE dynamics_actions |
---|
208 | |
---|
209 | INTERFACE dynamics_non_advective_processes |
---|
210 | MODULE PROCEDURE dynamics_non_advective_processes |
---|
211 | MODULE PROCEDURE dynamics_non_advective_processes_ij |
---|
212 | END INTERFACE dynamics_non_advective_processes |
---|
213 | |
---|
214 | INTERFACE dynamics_exchange_horiz |
---|
215 | MODULE PROCEDURE dynamics_exchange_horiz |
---|
216 | END INTERFACE dynamics_exchange_horiz |
---|
217 | |
---|
218 | INTERFACE dynamics_prognostic_equations |
---|
219 | MODULE PROCEDURE dynamics_prognostic_equations |
---|
220 | MODULE PROCEDURE dynamics_prognostic_equations_ij |
---|
221 | END INTERFACE dynamics_prognostic_equations |
---|
222 | |
---|
223 | INTERFACE dynamics_boundary_conditions |
---|
224 | MODULE PROCEDURE dynamics_boundary_conditions |
---|
225 | END INTERFACE dynamics_boundary_conditions |
---|
226 | |
---|
227 | INTERFACE dynamics_swap_timelevel |
---|
228 | MODULE PROCEDURE dynamics_swap_timelevel |
---|
229 | END INTERFACE dynamics_swap_timelevel |
---|
230 | |
---|
231 | INTERFACE dynamics_3d_data_averaging |
---|
232 | MODULE PROCEDURE dynamics_3d_data_averaging |
---|
233 | END INTERFACE dynamics_3d_data_averaging |
---|
234 | |
---|
235 | INTERFACE dynamics_data_output_2d |
---|
236 | MODULE PROCEDURE dynamics_data_output_2d |
---|
237 | END INTERFACE dynamics_data_output_2d |
---|
238 | |
---|
239 | INTERFACE dynamics_data_output_3d |
---|
240 | MODULE PROCEDURE dynamics_data_output_3d |
---|
241 | END INTERFACE dynamics_data_output_3d |
---|
242 | |
---|
243 | INTERFACE dynamics_statistics |
---|
244 | MODULE PROCEDURE dynamics_statistics |
---|
245 | END INTERFACE dynamics_statistics |
---|
246 | |
---|
247 | INTERFACE dynamics_rrd_global |
---|
248 | MODULE PROCEDURE dynamics_rrd_global |
---|
249 | END INTERFACE dynamics_rrd_global |
---|
250 | |
---|
251 | INTERFACE dynamics_rrd_local |
---|
252 | MODULE PROCEDURE dynamics_rrd_local |
---|
253 | END INTERFACE dynamics_rrd_local |
---|
254 | |
---|
255 | INTERFACE dynamics_wrd_global |
---|
256 | MODULE PROCEDURE dynamics_wrd_global |
---|
257 | END INTERFACE dynamics_wrd_global |
---|
258 | |
---|
259 | INTERFACE dynamics_wrd_local |
---|
260 | MODULE PROCEDURE dynamics_wrd_local |
---|
261 | END INTERFACE dynamics_wrd_local |
---|
262 | |
---|
263 | INTERFACE dynamics_last_actions |
---|
264 | MODULE PROCEDURE dynamics_last_actions |
---|
265 | END INTERFACE dynamics_last_actions |
---|
266 | |
---|
267 | |
---|
268 | CONTAINS |
---|
269 | |
---|
270 | |
---|
271 | !--------------------------------------------------------------------------------------------------! |
---|
272 | ! Description: |
---|
273 | ! ------------ |
---|
274 | !> Read module-specific namelist |
---|
275 | !--------------------------------------------------------------------------------------------------! |
---|
276 | SUBROUTINE dynamics_parin |
---|
277 | |
---|
278 | |
---|
279 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file |
---|
280 | |
---|
281 | NAMELIST /dynamics_parameters/ & |
---|
282 | dynamics_module_enabled |
---|
283 | |
---|
284 | line = ' ' |
---|
285 | ! |
---|
286 | !-- Try to find module-specific namelist |
---|
287 | REWIND ( 11 ) |
---|
288 | line = ' ' |
---|
289 | DO WHILE ( INDEX( line, '&dynamics_parameters' ) == 0 ) |
---|
290 | READ ( 11, '(A)', END=12 ) line |
---|
291 | ENDDO |
---|
292 | BACKSPACE ( 11 ) |
---|
293 | |
---|
294 | !-- Set default module switch to true |
---|
295 | dynamics_module_enabled = .TRUE. |
---|
296 | |
---|
297 | !-- Read user-defined namelist |
---|
298 | READ ( 11, dynamics_parameters, ERR = 10 ) |
---|
299 | |
---|
300 | GOTO 12 |
---|
301 | |
---|
302 | 10 BACKSPACE( 11 ) |
---|
303 | READ( 11 , '(A)') line |
---|
304 | CALL parin_fail_message( 'dynamics_parameters', line ) |
---|
305 | |
---|
306 | 12 CONTINUE |
---|
307 | |
---|
308 | END SUBROUTINE dynamics_parin |
---|
309 | |
---|
310 | |
---|
311 | !--------------------------------------------------------------------------------------------------! |
---|
312 | ! Description: |
---|
313 | ! ------------ |
---|
314 | !> Check control parameters and deduce further quantities. |
---|
315 | !--------------------------------------------------------------------------------------------------! |
---|
316 | SUBROUTINE dynamics_check_parameters |
---|
317 | |
---|
318 | |
---|
319 | END SUBROUTINE dynamics_check_parameters |
---|
320 | |
---|
321 | |
---|
322 | !--------------------------------------------------------------------------------------------------! |
---|
323 | ! Description: |
---|
324 | ! ------------ |
---|
325 | !> Set module-specific timeseries units and labels |
---|
326 | !--------------------------------------------------------------------------------------------------! |
---|
327 | SUBROUTINE dynamics_check_data_output_ts( dots_max, dots_num, dots_label, dots_unit ) |
---|
328 | |
---|
329 | |
---|
330 | INTEGER(iwp), INTENT(IN) :: dots_max |
---|
331 | INTEGER(iwp), INTENT(INOUT) :: dots_num |
---|
332 | CHARACTER (LEN=*), DIMENSION(dots_max), INTENT(INOUT) :: dots_label |
---|
333 | CHARACTER (LEN=*), DIMENSION(dots_max), INTENT(INOUT) :: dots_unit |
---|
334 | |
---|
335 | ! |
---|
336 | !-- Next line is to avoid compiler warning about unused variables. Please remove. |
---|
337 | IF ( dots_num == 0 .OR. dots_label(1)(1:1) == ' ' .OR. dots_unit(1)(1:1) == ' ' ) CONTINUE |
---|
338 | |
---|
339 | |
---|
340 | END SUBROUTINE dynamics_check_data_output_ts |
---|
341 | |
---|
342 | |
---|
343 | !--------------------------------------------------------------------------------------------------! |
---|
344 | ! Description: |
---|
345 | ! ------------ |
---|
346 | !> Set the unit of module-specific profile output quantities. For those variables not recognized, |
---|
347 | !> the parameter unit is set to "illegal", which tells the calling routine that the output variable |
---|
348 | !> is not defined and leads to a program abort. |
---|
349 | !--------------------------------------------------------------------------------------------------! |
---|
350 | SUBROUTINE dynamics_check_data_output_pr( variable, var_count, unit, dopr_unit ) |
---|
351 | |
---|
352 | |
---|
353 | CHARACTER (LEN=*) :: unit !< |
---|
354 | CHARACTER (LEN=*) :: variable !< |
---|
355 | CHARACTER (LEN=*) :: dopr_unit !< local value of dopr_unit |
---|
356 | |
---|
357 | INTEGER(iwp) :: var_count !< |
---|
358 | |
---|
359 | ! |
---|
360 | !-- Next line is to avoid compiler warning about unused variables. Please remove. |
---|
361 | IF ( unit(1:1) == ' ' .OR. dopr_unit(1:1) == ' ' .OR. var_count == 0 ) CONTINUE |
---|
362 | |
---|
363 | SELECT CASE ( TRIM( variable ) ) |
---|
364 | |
---|
365 | ! CASE ( 'var_name' ) |
---|
366 | |
---|
367 | CASE DEFAULT |
---|
368 | unit = 'illegal' |
---|
369 | |
---|
370 | END SELECT |
---|
371 | |
---|
372 | |
---|
373 | END SUBROUTINE dynamics_check_data_output_pr |
---|
374 | |
---|
375 | |
---|
376 | !--------------------------------------------------------------------------------------------------! |
---|
377 | ! Description: |
---|
378 | ! ------------ |
---|
379 | !> Set the unit of module-specific output quantities. For those variables not recognized, |
---|
380 | !> the parameter unit is set to "illegal", which tells the calling routine that the output variable |
---|
381 | !< is not defined and leads to a program abort. |
---|
382 | !--------------------------------------------------------------------------------------------------! |
---|
383 | SUBROUTINE dynamics_check_data_output( variable, unit ) |
---|
384 | |
---|
385 | |
---|
386 | CHARACTER (LEN=*) :: unit !< |
---|
387 | CHARACTER (LEN=*) :: variable !< |
---|
388 | |
---|
389 | SELECT CASE ( TRIM( variable ) ) |
---|
390 | |
---|
391 | ! CASE ( 'u2' ) |
---|
392 | |
---|
393 | CASE DEFAULT |
---|
394 | unit = 'illegal' |
---|
395 | |
---|
396 | END SELECT |
---|
397 | |
---|
398 | |
---|
399 | END SUBROUTINE dynamics_check_data_output |
---|
400 | |
---|
401 | |
---|
402 | !------------------------------------------------------------------------------! |
---|
403 | ! |
---|
404 | ! Description: |
---|
405 | ! ------------ |
---|
406 | !> Initialize module-specific masked output |
---|
407 | !------------------------------------------------------------------------------! |
---|
408 | SUBROUTINE dynamics_init_masks( variable, unit ) |
---|
409 | |
---|
410 | |
---|
411 | CHARACTER (LEN=*) :: unit !< |
---|
412 | CHARACTER (LEN=*) :: variable !< |
---|
413 | |
---|
414 | |
---|
415 | SELECT CASE ( TRIM( variable ) ) |
---|
416 | |
---|
417 | ! CASE ( 'u2' ) |
---|
418 | |
---|
419 | CASE DEFAULT |
---|
420 | unit = 'illegal' |
---|
421 | |
---|
422 | END SELECT |
---|
423 | |
---|
424 | |
---|
425 | END SUBROUTINE dynamics_init_masks |
---|
426 | |
---|
427 | |
---|
428 | !--------------------------------------------------------------------------------------------------! |
---|
429 | ! Description: |
---|
430 | ! ------------ |
---|
431 | !> Initialize module-specific arrays |
---|
432 | !--------------------------------------------------------------------------------------------------! |
---|
433 | SUBROUTINE dynamics_init_arrays |
---|
434 | |
---|
435 | |
---|
436 | END SUBROUTINE dynamics_init_arrays |
---|
437 | |
---|
438 | |
---|
439 | !--------------------------------------------------------------------------------------------------! |
---|
440 | ! Description: |
---|
441 | ! ------------ |
---|
442 | !> Execution of module-specific initializing actions |
---|
443 | !--------------------------------------------------------------------------------------------------! |
---|
444 | SUBROUTINE dynamics_init |
---|
445 | |
---|
446 | |
---|
447 | END SUBROUTINE dynamics_init |
---|
448 | |
---|
449 | |
---|
450 | !--------------------------------------------------------------------------------------------------! |
---|
451 | ! Description: |
---|
452 | ! ------------ |
---|
453 | !> Perform module-specific post-initialization checks |
---|
454 | !--------------------------------------------------------------------------------------------------! |
---|
455 | SUBROUTINE dynamics_init_checks |
---|
456 | |
---|
457 | |
---|
458 | END SUBROUTINE dynamics_init_checks |
---|
459 | |
---|
460 | |
---|
461 | !--------------------------------------------------------------------------------------------------! |
---|
462 | ! Description: |
---|
463 | ! ------------ |
---|
464 | !> Set the grids on which module-specific output quantities are defined. Allowed values for |
---|
465 | !> grid_x are "x" and "xu", for grid_y "y" and "yv", and for grid_z "zu" and "zw". |
---|
466 | !--------------------------------------------------------------------------------------------------! |
---|
467 | SUBROUTINE dynamics_define_netcdf_grid( variable, found, grid_x, grid_y, grid_z ) |
---|
468 | |
---|
469 | |
---|
470 | CHARACTER (LEN=*) :: grid_x !< |
---|
471 | CHARACTER (LEN=*) :: grid_y !< |
---|
472 | CHARACTER (LEN=*) :: grid_z !< |
---|
473 | CHARACTER (LEN=*) :: variable !< |
---|
474 | |
---|
475 | LOGICAL :: found !< |
---|
476 | |
---|
477 | |
---|
478 | SELECT CASE ( TRIM( variable ) ) |
---|
479 | |
---|
480 | ! CASE ( 'u2' ) |
---|
481 | |
---|
482 | CASE DEFAULT |
---|
483 | found = .FALSE. |
---|
484 | grid_x = 'none' |
---|
485 | grid_y = 'none' |
---|
486 | grid_z = 'none' |
---|
487 | |
---|
488 | END SELECT |
---|
489 | |
---|
490 | |
---|
491 | END SUBROUTINE dynamics_define_netcdf_grid |
---|
492 | |
---|
493 | |
---|
494 | !--------------------------------------------------------------------------------------------------! |
---|
495 | ! Description: |
---|
496 | ! ------------ |
---|
497 | !> Print a header with module-specific information. |
---|
498 | !--------------------------------------------------------------------------------------------------! |
---|
499 | SUBROUTINE dynamics_header( io ) |
---|
500 | |
---|
501 | |
---|
502 | INTEGER(iwp) :: io !< |
---|
503 | |
---|
504 | ! |
---|
505 | !-- If no module-specific variables are read from the namelist-file, no information will be printed. |
---|
506 | IF ( .NOT. dynamics_module_enabled ) THEN |
---|
507 | WRITE ( io, 100 ) |
---|
508 | RETURN |
---|
509 | ENDIF |
---|
510 | |
---|
511 | ! |
---|
512 | !-- Printing the information. |
---|
513 | WRITE ( io, 110 ) |
---|
514 | |
---|
515 | ! |
---|
516 | !-- Format-descriptors |
---|
517 | 100 FORMAT (//' *** dynamic module disabled'/) |
---|
518 | 110 FORMAT (//1X,78('#') & |
---|
519 | //' User-defined variables and actions:'/ & |
---|
520 | ' -----------------------------------'//) |
---|
521 | |
---|
522 | END SUBROUTINE dynamics_header |
---|
523 | |
---|
524 | |
---|
525 | !--------------------------------------------------------------------------------------------------! |
---|
526 | ! Description: |
---|
527 | ! ------------ |
---|
528 | !> Execute module-specific actions for all grid points |
---|
529 | !--------------------------------------------------------------------------------------------------! |
---|
530 | SUBROUTINE dynamics_actions( location ) |
---|
531 | |
---|
532 | |
---|
533 | CHARACTER (LEN=*) :: location !< |
---|
534 | |
---|
535 | ! INTEGER(iwp) :: i !< |
---|
536 | ! INTEGER(iwp) :: j !< |
---|
537 | ! INTEGER(iwp) :: k !< |
---|
538 | |
---|
539 | ! |
---|
540 | !-- Here the user-defined actions follow |
---|
541 | !-- No calls for single grid points are allowed at locations before and |
---|
542 | !-- after the timestep, since these calls are not within an i,j-loop |
---|
543 | SELECT CASE ( location ) |
---|
544 | |
---|
545 | CASE ( 'before_timestep' ) |
---|
546 | |
---|
547 | |
---|
548 | CASE ( 'before_prognostic_equations' ) |
---|
549 | |
---|
550 | |
---|
551 | CASE ( 'after_integration' ) |
---|
552 | |
---|
553 | |
---|
554 | CASE ( 'after_timestep' ) |
---|
555 | |
---|
556 | |
---|
557 | CASE ( 'u-tendency' ) |
---|
558 | |
---|
559 | |
---|
560 | CASE ( 'v-tendency' ) |
---|
561 | |
---|
562 | |
---|
563 | CASE ( 'w-tendency' ) |
---|
564 | |
---|
565 | |
---|
566 | CASE ( 'pt-tendency' ) |
---|
567 | |
---|
568 | |
---|
569 | CASE ( 'sa-tendency' ) |
---|
570 | |
---|
571 | |
---|
572 | CASE ( 'e-tendency' ) |
---|
573 | |
---|
574 | |
---|
575 | CASE ( 'q-tendency' ) |
---|
576 | |
---|
577 | |
---|
578 | CASE ( 's-tendency' ) |
---|
579 | |
---|
580 | |
---|
581 | CASE DEFAULT |
---|
582 | CONTINUE |
---|
583 | |
---|
584 | END SELECT |
---|
585 | |
---|
586 | END SUBROUTINE dynamics_actions |
---|
587 | |
---|
588 | |
---|
589 | !--------------------------------------------------------------------------------------------------! |
---|
590 | ! Description: |
---|
591 | ! ------------ |
---|
592 | !> Execute module-specific actions for grid point i,j |
---|
593 | !--------------------------------------------------------------------------------------------------! |
---|
594 | SUBROUTINE dynamics_actions_ij( i, j, location ) |
---|
595 | |
---|
596 | |
---|
597 | CHARACTER (LEN=*) :: location |
---|
598 | |
---|
599 | INTEGER(iwp) :: i |
---|
600 | INTEGER(iwp) :: j |
---|
601 | |
---|
602 | ! |
---|
603 | !-- Here the user-defined actions follow |
---|
604 | SELECT CASE ( location ) |
---|
605 | |
---|
606 | CASE ( 'u-tendency' ) |
---|
607 | |
---|
608 | !-- Next line is to avoid compiler warning about unused variables. Please remove. |
---|
609 | IF ( i + j < 0 ) CONTINUE |
---|
610 | |
---|
611 | CASE ( 'v-tendency' ) |
---|
612 | |
---|
613 | |
---|
614 | CASE ( 'w-tendency' ) |
---|
615 | |
---|
616 | |
---|
617 | CASE ( 'pt-tendency' ) |
---|
618 | |
---|
619 | |
---|
620 | CASE ( 'sa-tendency' ) |
---|
621 | |
---|
622 | |
---|
623 | CASE ( 'e-tendency' ) |
---|
624 | |
---|
625 | |
---|
626 | CASE ( 'q-tendency' ) |
---|
627 | |
---|
628 | |
---|
629 | CASE ( 's-tendency' ) |
---|
630 | |
---|
631 | |
---|
632 | CASE DEFAULT |
---|
633 | CONTINUE |
---|
634 | |
---|
635 | END SELECT |
---|
636 | |
---|
637 | END SUBROUTINE dynamics_actions_ij |
---|
638 | |
---|
639 | |
---|
640 | !--------------------------------------------------------------------------------------------------! |
---|
641 | ! Description: |
---|
642 | ! ------------ |
---|
643 | !> Compute module-specific non-advective processes for all grid points |
---|
644 | !--------------------------------------------------------------------------------------------------! |
---|
645 | SUBROUTINE dynamics_non_advective_processes |
---|
646 | |
---|
647 | |
---|
648 | |
---|
649 | END SUBROUTINE dynamics_non_advective_processes |
---|
650 | |
---|
651 | |
---|
652 | !--------------------------------------------------------------------------------------------------! |
---|
653 | ! Description: |
---|
654 | ! ------------ |
---|
655 | !> Compute module-specific non-advective processes for grid points i,j |
---|
656 | !--------------------------------------------------------------------------------------------------! |
---|
657 | SUBROUTINE dynamics_non_advective_processes_ij( i, j ) |
---|
658 | |
---|
659 | |
---|
660 | INTEGER(iwp) :: i !< |
---|
661 | INTEGER(iwp) :: j !< |
---|
662 | |
---|
663 | ! |
---|
664 | !-- Next line is just to avoid compiler warnings about unused variables. You may remove it. |
---|
665 | IF ( i + j < 0 ) CONTINUE |
---|
666 | |
---|
667 | |
---|
668 | END SUBROUTINE dynamics_non_advective_processes_ij |
---|
669 | |
---|
670 | |
---|
671 | !--------------------------------------------------------------------------------------------------! |
---|
672 | ! Description: |
---|
673 | ! ------------ |
---|
674 | !> Perform module-specific horizontal boundary exchange |
---|
675 | !--------------------------------------------------------------------------------------------------! |
---|
676 | SUBROUTINE dynamics_exchange_horiz |
---|
677 | |
---|
678 | |
---|
679 | |
---|
680 | END SUBROUTINE dynamics_exchange_horiz |
---|
681 | |
---|
682 | |
---|
683 | !--------------------------------------------------------------------------------------------------! |
---|
684 | ! Description: |
---|
685 | ! ------------ |
---|
686 | !> Compute module-specific prognostic equations for all grid points |
---|
687 | !--------------------------------------------------------------------------------------------------! |
---|
688 | SUBROUTINE dynamics_prognostic_equations |
---|
689 | |
---|
690 | |
---|
691 | |
---|
692 | END SUBROUTINE dynamics_prognostic_equations |
---|
693 | |
---|
694 | |
---|
695 | !--------------------------------------------------------------------------------------------------! |
---|
696 | ! Description: |
---|
697 | ! ------------ |
---|
698 | !> Compute module-specific prognostic equations for grid point i,j |
---|
699 | !--------------------------------------------------------------------------------------------------! |
---|
700 | SUBROUTINE dynamics_prognostic_equations_ij( i, j, i_omp_start, tn ) |
---|
701 | |
---|
702 | |
---|
703 | INTEGER(iwp), INTENT(IN) :: i !< grid index in x-direction |
---|
704 | INTEGER(iwp), INTENT(IN) :: j !< grid index in y-direction |
---|
705 | INTEGER(iwp), INTENT(IN) :: i_omp_start !< first loop index of i-loop in prognostic_equations |
---|
706 | INTEGER(iwp), INTENT(IN) :: tn !< task number of openmp task |
---|
707 | |
---|
708 | ! |
---|
709 | !-- Next line is just to avoid compiler warnings about unused variables. You may remove it. |
---|
710 | IF ( i + j + i_omp_start + tn < 0 ) CONTINUE |
---|
711 | |
---|
712 | END SUBROUTINE dynamics_prognostic_equations_ij |
---|
713 | |
---|
714 | |
---|
715 | !--------------------------------------------------------------------------------------------------! |
---|
716 | ! Description: |
---|
717 | ! ------------ |
---|
718 | !> Compute boundary conditions of dynamics model |
---|
719 | !--------------------------------------------------------------------------------------------------! |
---|
720 | SUBROUTINE dynamics_boundary_conditions |
---|
721 | |
---|
722 | IMPLICIT NONE |
---|
723 | |
---|
724 | INTEGER(iwp) :: i !< grid index x direction |
---|
725 | INTEGER(iwp) :: j !< grid index y direction |
---|
726 | INTEGER(iwp) :: k !< grid index z direction |
---|
727 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
728 | INTEGER(iwp) :: m !< running index surface elements |
---|
729 | |
---|
730 | REAL(wp) :: c_max !< maximum phase velocity allowed by CFL criterion, used for outflow boundary condition |
---|
731 | REAL(wp) :: denom !< horizontal gradient of velocity component normal to the outflow boundary |
---|
732 | |
---|
733 | ! |
---|
734 | !-- Bottom boundary |
---|
735 | IF ( ibc_uv_b == 1 ) THEN |
---|
736 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
737 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
738 | ENDIF |
---|
739 | ! |
---|
740 | !-- Set zero vertical velocity at topography top (l=0), or bottom (l=1) in case |
---|
741 | !-- of downward-facing surfaces. |
---|
742 | DO l = 0, 1 |
---|
743 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
744 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
745 | !$ACC PRESENT(bc_h, w_p) |
---|
746 | DO m = 1, bc_h(l)%ns |
---|
747 | i = bc_h(l)%i(m) |
---|
748 | j = bc_h(l)%j(m) |
---|
749 | k = bc_h(l)%k(m) |
---|
750 | w_p(k+bc_h(l)%koff,j,i) = 0.0_wp |
---|
751 | ENDDO |
---|
752 | ENDDO |
---|
753 | |
---|
754 | ! |
---|
755 | !-- Top boundary. A nested domain ( ibc_uv_t = 3 ) does not require settings. |
---|
756 | IF ( ibc_uv_t == 0 ) THEN |
---|
757 | !$ACC KERNELS PRESENT(u_p, v_p, u_init, v_init) |
---|
758 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
759 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
760 | !$ACC END KERNELS |
---|
761 | ELSEIF ( ibc_uv_t == 1 ) THEN |
---|
762 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
763 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
764 | ENDIF |
---|
765 | |
---|
766 | ! |
---|
767 | !-- Vertical nesting: Vertical velocity not zero at the top of the fine grid |
---|
768 | IF ( .NOT. child_domain .AND. .NOT. nesting_offline .AND. & |
---|
769 | TRIM(coupling_mode) /= 'vnested_fine' ) THEN |
---|
770 | !$ACC KERNELS PRESENT(w_p) |
---|
771 | w_p(nzt:nzt+1,:,:) = 0.0_wp !< nzt is not a prognostic level (but cf. pres) |
---|
772 | !$ACC END KERNELS |
---|
773 | ENDIF |
---|
774 | |
---|
775 | ! |
---|
776 | !-- Temperature at bottom and top boundary. |
---|
777 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
778 | !-- the sea surface temperature of the coupled ocean model. |
---|
779 | !-- Dirichlet |
---|
780 | IF ( .NOT. neutral ) THEN |
---|
781 | IF ( ibc_pt_b == 0 ) THEN |
---|
782 | DO l = 0, 1 |
---|
783 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
784 | DO m = 1, bc_h(l)%ns |
---|
785 | i = bc_h(l)%i(m) |
---|
786 | j = bc_h(l)%j(m) |
---|
787 | k = bc_h(l)%k(m) |
---|
788 | pt_p(k+bc_h(l)%koff,j,i) = pt(k+bc_h(l)%koff,j,i) |
---|
789 | ENDDO |
---|
790 | ENDDO |
---|
791 | ! |
---|
792 | !-- Neumann, zero-gradient |
---|
793 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
794 | DO l = 0, 1 |
---|
795 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
796 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
797 | !$ACC PRESENT(bc_h, pt_p) |
---|
798 | DO m = 1, bc_h(l)%ns |
---|
799 | i = bc_h(l)%i(m) |
---|
800 | j = bc_h(l)%j(m) |
---|
801 | k = bc_h(l)%k(m) |
---|
802 | pt_p(k+bc_h(l)%koff,j,i) = pt_p(k,j,i) |
---|
803 | ENDDO |
---|
804 | ENDDO |
---|
805 | ENDIF |
---|
806 | |
---|
807 | ! |
---|
808 | !-- Temperature at top boundary |
---|
809 | IF ( ibc_pt_t == 0 ) THEN |
---|
810 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
811 | ! |
---|
812 | !-- In case of nudging adjust top boundary to pt which is |
---|
813 | !-- read in from NUDGING-DATA |
---|
814 | IF ( nudging ) THEN |
---|
815 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
816 | ENDIF |
---|
817 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
818 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
819 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
820 | !$ACC KERNELS PRESENT(pt_p, dzu) |
---|
821 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
822 | !$ACC END KERNELS |
---|
823 | ENDIF |
---|
824 | ENDIF |
---|
825 | ! |
---|
826 | !-- Boundary conditions for total water content, |
---|
827 | !-- bottom and top boundary (see also temperature) |
---|
828 | IF ( humidity ) THEN |
---|
829 | ! |
---|
830 | !-- Surface conditions for constant_humidity_flux |
---|
831 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
832 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
833 | !-- q_p at k-1 |
---|
834 | IF ( ibc_q_b == 0 ) THEN |
---|
835 | |
---|
836 | DO l = 0, 1 |
---|
837 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
838 | DO m = 1, bc_h(l)%ns |
---|
839 | i = bc_h(l)%i(m) |
---|
840 | j = bc_h(l)%j(m) |
---|
841 | k = bc_h(l)%k(m) |
---|
842 | q_p(k+bc_h(l)%koff,j,i) = q(k+bc_h(l)%koff,j,i) |
---|
843 | ENDDO |
---|
844 | ENDDO |
---|
845 | |
---|
846 | ELSE |
---|
847 | |
---|
848 | DO l = 0, 1 |
---|
849 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
850 | DO m = 1, bc_h(l)%ns |
---|
851 | i = bc_h(l)%i(m) |
---|
852 | j = bc_h(l)%j(m) |
---|
853 | k = bc_h(l)%k(m) |
---|
854 | q_p(k+bc_h(l)%koff,j,i) = q_p(k,j,i) |
---|
855 | ENDDO |
---|
856 | ENDDO |
---|
857 | ENDIF |
---|
858 | ! |
---|
859 | !-- Top boundary |
---|
860 | IF ( ibc_q_t == 0 ) THEN |
---|
861 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
862 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
863 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
864 | ENDIF |
---|
865 | ENDIF |
---|
866 | ! |
---|
867 | !-- Boundary conditions for scalar, |
---|
868 | !-- bottom and top boundary (see also temperature) |
---|
869 | IF ( passive_scalar ) THEN |
---|
870 | ! |
---|
871 | !-- Surface conditions for constant_humidity_flux |
---|
872 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
873 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
874 | !-- s_p at k-1 |
---|
875 | IF ( ibc_s_b == 0 ) THEN |
---|
876 | |
---|
877 | DO l = 0, 1 |
---|
878 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
879 | DO m = 1, bc_h(l)%ns |
---|
880 | i = bc_h(l)%i(m) |
---|
881 | j = bc_h(l)%j(m) |
---|
882 | k = bc_h(l)%k(m) |
---|
883 | s_p(k+bc_h(l)%koff,j,i) = s(k+bc_h(l)%koff,j,i) |
---|
884 | ENDDO |
---|
885 | ENDDO |
---|
886 | |
---|
887 | ELSE |
---|
888 | |
---|
889 | DO l = 0, 1 |
---|
890 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
891 | DO m = 1, bc_h(l)%ns |
---|
892 | i = bc_h(l)%i(m) |
---|
893 | j = bc_h(l)%j(m) |
---|
894 | k = bc_h(l)%k(m) |
---|
895 | s_p(k+bc_h(l)%koff,j,i) = s_p(k,j,i) |
---|
896 | ENDDO |
---|
897 | ENDDO |
---|
898 | ENDIF |
---|
899 | ! |
---|
900 | !-- Top boundary condition |
---|
901 | IF ( ibc_s_t == 0 ) THEN |
---|
902 | s_p(nzt+1,:,:) = s(nzt+1,:,:) |
---|
903 | ELSEIF ( ibc_s_t == 1 ) THEN |
---|
904 | s_p(nzt+1,:,:) = s_p(nzt,:,:) |
---|
905 | ELSEIF ( ibc_s_t == 2 ) THEN |
---|
906 | s_p(nzt+1,:,:) = s_p(nzt,:,:) + bc_s_t_val * dzu(nzt+1) |
---|
907 | ENDIF |
---|
908 | |
---|
909 | ENDIF |
---|
910 | ! |
---|
911 | !-- In case of inflow or nest boundary at the south boundary the boundary for v |
---|
912 | !-- is at nys and in case of inflow or nest boundary at the left boundary the |
---|
913 | !-- boundary for u is at nxl. Since in prognostic_equations (cache optimized |
---|
914 | !-- version) these levels are handled as a prognostic level, boundary values |
---|
915 | !-- have to be restored here. |
---|
916 | IF ( bc_dirichlet_s ) THEN |
---|
917 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
918 | ELSEIF ( bc_dirichlet_l ) THEN |
---|
919 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
920 | ENDIF |
---|
921 | |
---|
922 | ! |
---|
923 | !-- The same restoration for u at i=nxl and v at j=nys as above must be made |
---|
924 | !-- in case of nest boundaries. This must not be done in case of vertical nesting |
---|
925 | !-- mode as in that case the lateral boundaries are actually cyclic. |
---|
926 | !-- Lateral oundary conditions for TKE and dissipation are set |
---|
927 | !-- in tcm_boundary_conds. |
---|
928 | IF ( nesting_mode /= 'vertical' .OR. nesting_offline ) THEN |
---|
929 | IF ( bc_dirichlet_s ) THEN |
---|
930 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
931 | ENDIF |
---|
932 | IF ( bc_dirichlet_l ) THEN |
---|
933 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
934 | ENDIF |
---|
935 | ENDIF |
---|
936 | |
---|
937 | ! |
---|
938 | !-- Lateral boundary conditions for scalar quantities at the outflow. |
---|
939 | !-- Lateral oundary conditions for TKE and dissipation are set |
---|
940 | !-- in tcm_boundary_conds. |
---|
941 | IF ( bc_radiation_s ) THEN |
---|
942 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
943 | IF ( humidity ) THEN |
---|
944 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
945 | ENDIF |
---|
946 | IF ( passive_scalar ) s_p(:,nys-1,:) = s_p(:,nys,:) |
---|
947 | ELSEIF ( bc_radiation_n ) THEN |
---|
948 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
949 | IF ( humidity ) THEN |
---|
950 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
951 | ENDIF |
---|
952 | IF ( passive_scalar ) s_p(:,nyn+1,:) = s_p(:,nyn,:) |
---|
953 | ELSEIF ( bc_radiation_l ) THEN |
---|
954 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
955 | IF ( humidity ) THEN |
---|
956 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
957 | ENDIF |
---|
958 | IF ( passive_scalar ) s_p(:,:,nxl-1) = s_p(:,:,nxl) |
---|
959 | ELSEIF ( bc_radiation_r ) THEN |
---|
960 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
961 | IF ( humidity ) THEN |
---|
962 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
963 | ENDIF |
---|
964 | IF ( passive_scalar ) s_p(:,:,nxr+1) = s_p(:,:,nxr) |
---|
965 | ENDIF |
---|
966 | |
---|
967 | ! |
---|
968 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
969 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
970 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
971 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
972 | IF ( bc_radiation_s ) THEN |
---|
973 | |
---|
974 | IF ( use_cmax ) THEN |
---|
975 | u_p(:,-1,:) = u(:,0,:) |
---|
976 | v_p(:,0,:) = v(:,1,:) |
---|
977 | w_p(:,-1,:) = w(:,0,:) |
---|
978 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
979 | |
---|
980 | c_max = dy / dt_3d |
---|
981 | |
---|
982 | c_u_m_l = 0.0_wp |
---|
983 | c_v_m_l = 0.0_wp |
---|
984 | c_w_m_l = 0.0_wp |
---|
985 | |
---|
986 | c_u_m = 0.0_wp |
---|
987 | c_v_m = 0.0_wp |
---|
988 | c_w_m = 0.0_wp |
---|
989 | |
---|
990 | ! |
---|
991 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
992 | !-- average along the outflow boundary. |
---|
993 | DO k = nzb+1, nzt+1 |
---|
994 | DO i = nxl, nxr |
---|
995 | |
---|
996 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
997 | |
---|
998 | IF ( denom /= 0.0_wp ) THEN |
---|
999 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
1000 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
1001 | c_u(k,i) = 0.0_wp |
---|
1002 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
1003 | c_u(k,i) = c_max |
---|
1004 | ENDIF |
---|
1005 | ELSE |
---|
1006 | c_u(k,i) = c_max |
---|
1007 | ENDIF |
---|
1008 | |
---|
1009 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
1010 | |
---|
1011 | IF ( denom /= 0.0_wp ) THEN |
---|
1012 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
1013 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
1014 | c_v(k,i) = 0.0_wp |
---|
1015 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
1016 | c_v(k,i) = c_max |
---|
1017 | ENDIF |
---|
1018 | ELSE |
---|
1019 | c_v(k,i) = c_max |
---|
1020 | ENDIF |
---|
1021 | |
---|
1022 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
1023 | |
---|
1024 | IF ( denom /= 0.0_wp ) THEN |
---|
1025 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
1026 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
1027 | c_w(k,i) = 0.0_wp |
---|
1028 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
1029 | c_w(k,i) = c_max |
---|
1030 | ENDIF |
---|
1031 | ELSE |
---|
1032 | c_w(k,i) = c_max |
---|
1033 | ENDIF |
---|
1034 | |
---|
1035 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
1036 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
1037 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
1038 | |
---|
1039 | ENDDO |
---|
1040 | ENDDO |
---|
1041 | |
---|
1042 | #if defined( __parallel ) |
---|
1043 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
1044 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1045 | MPI_SUM, comm1dx, ierr ) |
---|
1046 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
1047 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1048 | MPI_SUM, comm1dx, ierr ) |
---|
1049 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
1050 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1051 | MPI_SUM, comm1dx, ierr ) |
---|
1052 | #else |
---|
1053 | c_u_m = c_u_m_l |
---|
1054 | c_v_m = c_v_m_l |
---|
1055 | c_w_m = c_w_m_l |
---|
1056 | #endif |
---|
1057 | |
---|
1058 | c_u_m = c_u_m / (nx+1) |
---|
1059 | c_v_m = c_v_m / (nx+1) |
---|
1060 | c_w_m = c_w_m / (nx+1) |
---|
1061 | |
---|
1062 | ! |
---|
1063 | !-- Save old timelevels for the next timestep |
---|
1064 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1065 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
1066 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
1067 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
1068 | ENDIF |
---|
1069 | |
---|
1070 | ! |
---|
1071 | !-- Calculate the new velocities |
---|
1072 | DO k = nzb+1, nzt+1 |
---|
1073 | DO i = nxlg, nxrg |
---|
1074 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
1075 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
1076 | |
---|
1077 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
1078 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
1079 | |
---|
1080 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
1081 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
1082 | ENDDO |
---|
1083 | ENDDO |
---|
1084 | |
---|
1085 | ! |
---|
1086 | !-- Bottom boundary at the outflow |
---|
1087 | IF ( ibc_uv_b == 0 ) THEN |
---|
1088 | u_p(nzb,-1,:) = 0.0_wp |
---|
1089 | v_p(nzb,0,:) = 0.0_wp |
---|
1090 | ELSE |
---|
1091 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
1092 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
1093 | ENDIF |
---|
1094 | w_p(nzb,-1,:) = 0.0_wp |
---|
1095 | |
---|
1096 | ! |
---|
1097 | !-- Top boundary at the outflow |
---|
1098 | IF ( ibc_uv_t == 0 ) THEN |
---|
1099 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
1100 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
1101 | ELSE |
---|
1102 | u_p(nzt+1,-1,:) = u_p(nzt,-1,:) |
---|
1103 | v_p(nzt+1,0,:) = v_p(nzt,0,:) |
---|
1104 | ENDIF |
---|
1105 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
1106 | |
---|
1107 | ENDIF |
---|
1108 | |
---|
1109 | ENDIF |
---|
1110 | |
---|
1111 | IF ( bc_radiation_n ) THEN |
---|
1112 | |
---|
1113 | IF ( use_cmax ) THEN |
---|
1114 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
1115 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
1116 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
1117 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
1118 | |
---|
1119 | c_max = dy / dt_3d |
---|
1120 | |
---|
1121 | c_u_m_l = 0.0_wp |
---|
1122 | c_v_m_l = 0.0_wp |
---|
1123 | c_w_m_l = 0.0_wp |
---|
1124 | |
---|
1125 | c_u_m = 0.0_wp |
---|
1126 | c_v_m = 0.0_wp |
---|
1127 | c_w_m = 0.0_wp |
---|
1128 | |
---|
1129 | ! |
---|
1130 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
1131 | !-- average along the outflow boundary. |
---|
1132 | DO k = nzb+1, nzt+1 |
---|
1133 | DO i = nxl, nxr |
---|
1134 | |
---|
1135 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
1136 | |
---|
1137 | IF ( denom /= 0.0_wp ) THEN |
---|
1138 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
1139 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
1140 | c_u(k,i) = 0.0_wp |
---|
1141 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
1142 | c_u(k,i) = c_max |
---|
1143 | ENDIF |
---|
1144 | ELSE |
---|
1145 | c_u(k,i) = c_max |
---|
1146 | ENDIF |
---|
1147 | |
---|
1148 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
1149 | |
---|
1150 | IF ( denom /= 0.0_wp ) THEN |
---|
1151 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
1152 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
1153 | c_v(k,i) = 0.0_wp |
---|
1154 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
1155 | c_v(k,i) = c_max |
---|
1156 | ENDIF |
---|
1157 | ELSE |
---|
1158 | c_v(k,i) = c_max |
---|
1159 | ENDIF |
---|
1160 | |
---|
1161 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
1162 | |
---|
1163 | IF ( denom /= 0.0_wp ) THEN |
---|
1164 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
1165 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
1166 | c_w(k,i) = 0.0_wp |
---|
1167 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
1168 | c_w(k,i) = c_max |
---|
1169 | ENDIF |
---|
1170 | ELSE |
---|
1171 | c_w(k,i) = c_max |
---|
1172 | ENDIF |
---|
1173 | |
---|
1174 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
1175 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
1176 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
1177 | |
---|
1178 | ENDDO |
---|
1179 | ENDDO |
---|
1180 | |
---|
1181 | #if defined( __parallel ) |
---|
1182 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
1183 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1184 | MPI_SUM, comm1dx, ierr ) |
---|
1185 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
1186 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1187 | MPI_SUM, comm1dx, ierr ) |
---|
1188 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
1189 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1190 | MPI_SUM, comm1dx, ierr ) |
---|
1191 | #else |
---|
1192 | c_u_m = c_u_m_l |
---|
1193 | c_v_m = c_v_m_l |
---|
1194 | c_w_m = c_w_m_l |
---|
1195 | #endif |
---|
1196 | |
---|
1197 | c_u_m = c_u_m / (nx+1) |
---|
1198 | c_v_m = c_v_m / (nx+1) |
---|
1199 | c_w_m = c_w_m / (nx+1) |
---|
1200 | |
---|
1201 | ! |
---|
1202 | !-- Save old timelevels for the next timestep |
---|
1203 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1204 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
1205 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
1206 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
1207 | ENDIF |
---|
1208 | |
---|
1209 | ! |
---|
1210 | !-- Calculate the new velocities |
---|
1211 | DO k = nzb+1, nzt+1 |
---|
1212 | DO i = nxlg, nxrg |
---|
1213 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
1214 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
1215 | |
---|
1216 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
1217 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
1218 | |
---|
1219 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
1220 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
1221 | ENDDO |
---|
1222 | ENDDO |
---|
1223 | |
---|
1224 | ! |
---|
1225 | !-- Bottom boundary at the outflow |
---|
1226 | IF ( ibc_uv_b == 0 ) THEN |
---|
1227 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
1228 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
1229 | ELSE |
---|
1230 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
1231 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
1232 | ENDIF |
---|
1233 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
1234 | |
---|
1235 | ! |
---|
1236 | !-- Top boundary at the outflow |
---|
1237 | IF ( ibc_uv_t == 0 ) THEN |
---|
1238 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
1239 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
1240 | ELSE |
---|
1241 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
1242 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
1243 | ENDIF |
---|
1244 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
1245 | |
---|
1246 | ENDIF |
---|
1247 | |
---|
1248 | ENDIF |
---|
1249 | |
---|
1250 | IF ( bc_radiation_l ) THEN |
---|
1251 | |
---|
1252 | IF ( use_cmax ) THEN |
---|
1253 | u_p(:,:,0) = u(:,:,1) |
---|
1254 | v_p(:,:,-1) = v(:,:,0) |
---|
1255 | w_p(:,:,-1) = w(:,:,0) |
---|
1256 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
1257 | |
---|
1258 | c_max = dx / dt_3d |
---|
1259 | |
---|
1260 | c_u_m_l = 0.0_wp |
---|
1261 | c_v_m_l = 0.0_wp |
---|
1262 | c_w_m_l = 0.0_wp |
---|
1263 | |
---|
1264 | c_u_m = 0.0_wp |
---|
1265 | c_v_m = 0.0_wp |
---|
1266 | c_w_m = 0.0_wp |
---|
1267 | |
---|
1268 | ! |
---|
1269 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
1270 | !-- average along the outflow boundary. |
---|
1271 | DO k = nzb+1, nzt+1 |
---|
1272 | DO j = nys, nyn |
---|
1273 | |
---|
1274 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
1275 | |
---|
1276 | IF ( denom /= 0.0_wp ) THEN |
---|
1277 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
1278 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
1279 | c_u(k,j) = 0.0_wp |
---|
1280 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
1281 | c_u(k,j) = c_max |
---|
1282 | ENDIF |
---|
1283 | ELSE |
---|
1284 | c_u(k,j) = c_max |
---|
1285 | ENDIF |
---|
1286 | |
---|
1287 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
1288 | |
---|
1289 | IF ( denom /= 0.0_wp ) THEN |
---|
1290 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
1291 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
1292 | c_v(k,j) = 0.0_wp |
---|
1293 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
1294 | c_v(k,j) = c_max |
---|
1295 | ENDIF |
---|
1296 | ELSE |
---|
1297 | c_v(k,j) = c_max |
---|
1298 | ENDIF |
---|
1299 | |
---|
1300 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
1301 | |
---|
1302 | IF ( denom /= 0.0_wp ) THEN |
---|
1303 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
1304 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
1305 | c_w(k,j) = 0.0_wp |
---|
1306 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
1307 | c_w(k,j) = c_max |
---|
1308 | ENDIF |
---|
1309 | ELSE |
---|
1310 | c_w(k,j) = c_max |
---|
1311 | ENDIF |
---|
1312 | |
---|
1313 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
1314 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
1315 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
1316 | |
---|
1317 | ENDDO |
---|
1318 | ENDDO |
---|
1319 | |
---|
1320 | #if defined( __parallel ) |
---|
1321 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1322 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1323 | MPI_SUM, comm1dy, ierr ) |
---|
1324 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1325 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1326 | MPI_SUM, comm1dy, ierr ) |
---|
1327 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1328 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1329 | MPI_SUM, comm1dy, ierr ) |
---|
1330 | #else |
---|
1331 | c_u_m = c_u_m_l |
---|
1332 | c_v_m = c_v_m_l |
---|
1333 | c_w_m = c_w_m_l |
---|
1334 | #endif |
---|
1335 | |
---|
1336 | c_u_m = c_u_m / (ny+1) |
---|
1337 | c_v_m = c_v_m / (ny+1) |
---|
1338 | c_w_m = c_w_m / (ny+1) |
---|
1339 | |
---|
1340 | ! |
---|
1341 | !-- Save old timelevels for the next timestep |
---|
1342 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1343 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
1344 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
1345 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
1346 | ENDIF |
---|
1347 | |
---|
1348 | ! |
---|
1349 | !-- Calculate the new velocities |
---|
1350 | DO k = nzb+1, nzt+1 |
---|
1351 | DO j = nysg, nyng |
---|
1352 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
1353 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
1354 | |
---|
1355 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
1356 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
1357 | |
---|
1358 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
1359 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
1360 | ENDDO |
---|
1361 | ENDDO |
---|
1362 | |
---|
1363 | ! |
---|
1364 | !-- Bottom boundary at the outflow |
---|
1365 | IF ( ibc_uv_b == 0 ) THEN |
---|
1366 | u_p(nzb,:,0) = 0.0_wp |
---|
1367 | v_p(nzb,:,-1) = 0.0_wp |
---|
1368 | ELSE |
---|
1369 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
1370 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
1371 | ENDIF |
---|
1372 | w_p(nzb,:,-1) = 0.0_wp |
---|
1373 | |
---|
1374 | ! |
---|
1375 | !-- Top boundary at the outflow |
---|
1376 | IF ( ibc_uv_t == 0 ) THEN |
---|
1377 | u_p(nzt+1,:,0) = u_init(nzt+1) |
---|
1378 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
1379 | ELSE |
---|
1380 | u_p(nzt+1,:,0) = u_p(nzt,:,0) |
---|
1381 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
1382 | ENDIF |
---|
1383 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
1384 | |
---|
1385 | ENDIF |
---|
1386 | |
---|
1387 | ENDIF |
---|
1388 | |
---|
1389 | IF ( bc_radiation_r ) THEN |
---|
1390 | |
---|
1391 | IF ( use_cmax ) THEN |
---|
1392 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
1393 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
1394 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
1395 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
1396 | |
---|
1397 | c_max = dx / dt_3d |
---|
1398 | |
---|
1399 | c_u_m_l = 0.0_wp |
---|
1400 | c_v_m_l = 0.0_wp |
---|
1401 | c_w_m_l = 0.0_wp |
---|
1402 | |
---|
1403 | c_u_m = 0.0_wp |
---|
1404 | c_v_m = 0.0_wp |
---|
1405 | c_w_m = 0.0_wp |
---|
1406 | |
---|
1407 | ! |
---|
1408 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
1409 | !-- average along the outflow boundary. |
---|
1410 | DO k = nzb+1, nzt+1 |
---|
1411 | DO j = nys, nyn |
---|
1412 | |
---|
1413 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
1414 | |
---|
1415 | IF ( denom /= 0.0_wp ) THEN |
---|
1416 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
1417 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
1418 | c_u(k,j) = 0.0_wp |
---|
1419 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
1420 | c_u(k,j) = c_max |
---|
1421 | ENDIF |
---|
1422 | ELSE |
---|
1423 | c_u(k,j) = c_max |
---|
1424 | ENDIF |
---|
1425 | |
---|
1426 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
1427 | |
---|
1428 | IF ( denom /= 0.0_wp ) THEN |
---|
1429 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
1430 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
1431 | c_v(k,j) = 0.0_wp |
---|
1432 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
1433 | c_v(k,j) = c_max |
---|
1434 | ENDIF |
---|
1435 | ELSE |
---|
1436 | c_v(k,j) = c_max |
---|
1437 | ENDIF |
---|
1438 | |
---|
1439 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
1440 | |
---|
1441 | IF ( denom /= 0.0_wp ) THEN |
---|
1442 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
1443 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
1444 | c_w(k,j) = 0.0_wp |
---|
1445 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
1446 | c_w(k,j) = c_max |
---|
1447 | ENDIF |
---|
1448 | ELSE |
---|
1449 | c_w(k,j) = c_max |
---|
1450 | ENDIF |
---|
1451 | |
---|
1452 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
1453 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
1454 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
1455 | |
---|
1456 | ENDDO |
---|
1457 | ENDDO |
---|
1458 | |
---|
1459 | #if defined( __parallel ) |
---|
1460 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1461 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1462 | MPI_SUM, comm1dy, ierr ) |
---|
1463 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1464 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1465 | MPI_SUM, comm1dy, ierr ) |
---|
1466 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1467 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1468 | MPI_SUM, comm1dy, ierr ) |
---|
1469 | #else |
---|
1470 | c_u_m = c_u_m_l |
---|
1471 | c_v_m = c_v_m_l |
---|
1472 | c_w_m = c_w_m_l |
---|
1473 | #endif |
---|
1474 | |
---|
1475 | c_u_m = c_u_m / (ny+1) |
---|
1476 | c_v_m = c_v_m / (ny+1) |
---|
1477 | c_w_m = c_w_m / (ny+1) |
---|
1478 | |
---|
1479 | ! |
---|
1480 | !-- Save old timelevels for the next timestep |
---|
1481 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1482 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
1483 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
1484 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
1485 | ENDIF |
---|
1486 | |
---|
1487 | ! |
---|
1488 | !-- Calculate the new velocities |
---|
1489 | DO k = nzb+1, nzt+1 |
---|
1490 | DO j = nysg, nyng |
---|
1491 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
1492 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
1493 | |
---|
1494 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
1495 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
1496 | |
---|
1497 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
1498 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
1499 | ENDDO |
---|
1500 | ENDDO |
---|
1501 | |
---|
1502 | ! |
---|
1503 | !-- Bottom boundary at the outflow |
---|
1504 | IF ( ibc_uv_b == 0 ) THEN |
---|
1505 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
1506 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
1507 | ELSE |
---|
1508 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
1509 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
1510 | ENDIF |
---|
1511 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
1512 | |
---|
1513 | ! |
---|
1514 | !-- Top boundary at the outflow |
---|
1515 | IF ( ibc_uv_t == 0 ) THEN |
---|
1516 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
1517 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
1518 | ELSE |
---|
1519 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
1520 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
1521 | ENDIF |
---|
1522 | w_p(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
1523 | |
---|
1524 | ENDIF |
---|
1525 | |
---|
1526 | ENDIF |
---|
1527 | |
---|
1528 | END SUBROUTINE dynamics_boundary_conditions |
---|
1529 | !------------------------------------------------------------------------------! |
---|
1530 | ! Description: |
---|
1531 | ! ------------ |
---|
1532 | !> Swap timelevels of module-specific array pointers |
---|
1533 | !------------------------------------------------------------------------------! |
---|
1534 | SUBROUTINE dynamics_swap_timelevel ( mod_count ) |
---|
1535 | |
---|
1536 | |
---|
1537 | INTEGER, INTENT(IN) :: mod_count |
---|
1538 | |
---|
1539 | |
---|
1540 | SELECT CASE ( mod_count ) |
---|
1541 | |
---|
1542 | CASE ( 0 ) |
---|
1543 | |
---|
1544 | u => u_1; u_p => u_2 |
---|
1545 | v => v_1; v_p => v_2 |
---|
1546 | w => w_1; w_p => w_2 |
---|
1547 | IF ( .NOT. neutral ) THEN |
---|
1548 | pt => pt_1; pt_p => pt_2 |
---|
1549 | ENDIF |
---|
1550 | IF ( humidity ) THEN |
---|
1551 | q => q_1; q_p => q_2 |
---|
1552 | ENDIF |
---|
1553 | IF ( passive_scalar ) THEN |
---|
1554 | s => s_1; s_p => s_2 |
---|
1555 | ENDIF |
---|
1556 | |
---|
1557 | CASE ( 1 ) |
---|
1558 | |
---|
1559 | u => u_2; u_p => u_1 |
---|
1560 | v => v_2; v_p => v_1 |
---|
1561 | w => w_2; w_p => w_1 |
---|
1562 | IF ( .NOT. neutral ) THEN |
---|
1563 | pt => pt_2; pt_p => pt_1 |
---|
1564 | ENDIF |
---|
1565 | IF ( humidity ) THEN |
---|
1566 | q => q_2; q_p => q_1 |
---|
1567 | ENDIF |
---|
1568 | IF ( passive_scalar ) THEN |
---|
1569 | s => s_2; s_p => s_1 |
---|
1570 | ENDIF |
---|
1571 | |
---|
1572 | END SELECT |
---|
1573 | |
---|
1574 | END SUBROUTINE dynamics_swap_timelevel |
---|
1575 | |
---|
1576 | |
---|
1577 | !--------------------------------------------------------------------------------------------------! |
---|
1578 | ! Description: |
---|
1579 | ! ------------ |
---|
1580 | !> Sum up and time-average module-specific output quantities |
---|
1581 | !> as well as allocate the array necessary for storing the average. |
---|
1582 | !--------------------------------------------------------------------------------------------------! |
---|
1583 | SUBROUTINE dynamics_3d_data_averaging( mode, variable ) |
---|
1584 | |
---|
1585 | |
---|
1586 | CHARACTER (LEN=*) :: mode !< |
---|
1587 | CHARACTER (LEN=*) :: variable !< |
---|
1588 | |
---|
1589 | |
---|
1590 | IF ( mode == 'allocate' ) THEN |
---|
1591 | |
---|
1592 | SELECT CASE ( TRIM( variable ) ) |
---|
1593 | |
---|
1594 | ! CASE ( 'u2' ) |
---|
1595 | |
---|
1596 | CASE DEFAULT |
---|
1597 | CONTINUE |
---|
1598 | |
---|
1599 | END SELECT |
---|
1600 | |
---|
1601 | ELSEIF ( mode == 'sum' ) THEN |
---|
1602 | |
---|
1603 | SELECT CASE ( TRIM( variable ) ) |
---|
1604 | |
---|
1605 | ! CASE ( 'u2' ) |
---|
1606 | |
---|
1607 | CASE DEFAULT |
---|
1608 | CONTINUE |
---|
1609 | |
---|
1610 | END SELECT |
---|
1611 | |
---|
1612 | ELSEIF ( mode == 'average' ) THEN |
---|
1613 | |
---|
1614 | SELECT CASE ( TRIM( variable ) ) |
---|
1615 | |
---|
1616 | ! CASE ( 'u2' ) |
---|
1617 | |
---|
1618 | END SELECT |
---|
1619 | |
---|
1620 | ENDIF |
---|
1621 | |
---|
1622 | |
---|
1623 | END SUBROUTINE dynamics_3d_data_averaging |
---|
1624 | |
---|
1625 | |
---|
1626 | !--------------------------------------------------------------------------------------------------! |
---|
1627 | ! Description: |
---|
1628 | ! ------------ |
---|
1629 | !> Resorts the module-specific output quantity with indices (k,j,i) to a |
---|
1630 | !> temporary array with indices (i,j,k) and sets the grid on which it is defined. |
---|
1631 | !> Allowed values for grid are "zu" and "zw". |
---|
1632 | !--------------------------------------------------------------------------------------------------! |
---|
1633 | SUBROUTINE dynamics_data_output_2d( av, variable, found, grid, mode, local_pf, & |
---|
1634 | two_d, nzb_do, nzt_do, fill_value ) |
---|
1635 | |
---|
1636 | |
---|
1637 | CHARACTER (LEN=*) :: grid !< |
---|
1638 | CHARACTER (LEN=*), INTENT(IN) :: mode !< either 'xy', 'xz' or 'yz' |
---|
1639 | CHARACTER (LEN=*) :: variable !< |
---|
1640 | |
---|
1641 | INTEGER(iwp) :: av !< flag to control data output of instantaneous or time-averaged data |
---|
1642 | ! INTEGER(iwp) :: i !< grid index along x-direction |
---|
1643 | ! INTEGER(iwp) :: j !< grid index along y-direction |
---|
1644 | ! INTEGER(iwp) :: k !< grid index along z-direction |
---|
1645 | ! INTEGER(iwp) :: m !< running index surface elements |
---|
1646 | INTEGER(iwp) :: nzb_do !< lower limit of the domain (usually nzb) |
---|
1647 | INTEGER(iwp) :: nzt_do !< upper limit of the domain (usually nzt+1) |
---|
1648 | |
---|
1649 | LOGICAL :: found !< |
---|
1650 | LOGICAL :: two_d !< flag parameter that indicates 2D variables (horizontal cross sections) |
---|
1651 | |
---|
1652 | REAL(wp), INTENT(IN) :: fill_value |
---|
1653 | |
---|
1654 | REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< |
---|
1655 | |
---|
1656 | ! |
---|
1657 | !-- Next line is just to avoid compiler warnings about unused variables. You may remove it. |
---|
1658 | IF ( two_d .AND. av + LEN( mode ) + local_pf(nxl,nys,nzb_do) + fill_value < 0.0 ) CONTINUE |
---|
1659 | |
---|
1660 | found = .TRUE. |
---|
1661 | |
---|
1662 | SELECT CASE ( TRIM( variable ) ) |
---|
1663 | |
---|
1664 | ! CASE ( 'u2_xy', 'u2_xz', 'u2_yz' ) |
---|
1665 | |
---|
1666 | CASE DEFAULT |
---|
1667 | found = .FALSE. |
---|
1668 | grid = 'none' |
---|
1669 | |
---|
1670 | END SELECT |
---|
1671 | |
---|
1672 | |
---|
1673 | END SUBROUTINE dynamics_data_output_2d |
---|
1674 | |
---|
1675 | |
---|
1676 | !--------------------------------------------------------------------------------------------------! |
---|
1677 | ! Description: |
---|
1678 | ! ------------ |
---|
1679 | !> Resorts the module-specific output quantity with indices (k,j,i) |
---|
1680 | !> to a temporary array with indices (i,j,k). |
---|
1681 | !--------------------------------------------------------------------------------------------------! |
---|
1682 | SUBROUTINE dynamics_data_output_3d( av, variable, found, local_pf, fill_value, nzb_do, nzt_do ) |
---|
1683 | |
---|
1684 | |
---|
1685 | CHARACTER (LEN=*) :: variable !< |
---|
1686 | |
---|
1687 | INTEGER(iwp) :: av !< |
---|
1688 | ! INTEGER(iwp) :: i !< |
---|
1689 | ! INTEGER(iwp) :: j !< |
---|
1690 | ! INTEGER(iwp) :: k !< |
---|
1691 | INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0) |
---|
1692 | INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) |
---|
1693 | |
---|
1694 | LOGICAL :: found !< |
---|
1695 | |
---|
1696 | REAL(wp), INTENT(IN) :: fill_value !< value for the _FillValue attribute |
---|
1697 | |
---|
1698 | REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< |
---|
1699 | |
---|
1700 | ! |
---|
1701 | !-- Next line is to avoid compiler warning about unused variables. Please remove. |
---|
1702 | IF ( av + local_pf(nxl,nys,nzb_do) + fill_value < 0.0 ) CONTINUE |
---|
1703 | |
---|
1704 | |
---|
1705 | found = .TRUE. |
---|
1706 | |
---|
1707 | SELECT CASE ( TRIM( variable ) ) |
---|
1708 | |
---|
1709 | ! CASE ( 'u2' ) |
---|
1710 | |
---|
1711 | CASE DEFAULT |
---|
1712 | found = .FALSE. |
---|
1713 | |
---|
1714 | END SELECT |
---|
1715 | |
---|
1716 | |
---|
1717 | END SUBROUTINE dynamics_data_output_3d |
---|
1718 | |
---|
1719 | |
---|
1720 | !--------------------------------------------------------------------------------------------------! |
---|
1721 | ! Description: |
---|
1722 | ! ------------ |
---|
1723 | !> Calculation of module-specific statistics, i.e. horizontally averaged profiles and time series. |
---|
1724 | !> This is called for every statistic region sr, but at least for the region "total domain" (sr=0). |
---|
1725 | !--------------------------------------------------------------------------------------------------! |
---|
1726 | SUBROUTINE dynamics_statistics( mode, sr, tn ) |
---|
1727 | |
---|
1728 | |
---|
1729 | CHARACTER (LEN=*) :: mode !< |
---|
1730 | ! INTEGER(iwp) :: i !< |
---|
1731 | ! INTEGER(iwp) :: j !< |
---|
1732 | ! INTEGER(iwp) :: k !< |
---|
1733 | INTEGER(iwp) :: sr !< |
---|
1734 | INTEGER(iwp) :: tn !< |
---|
1735 | |
---|
1736 | ! |
---|
1737 | !-- Next line is to avoid compiler warning about unused variables. Please remove. |
---|
1738 | IF ( sr == 0 .OR. tn == 0 ) CONTINUE |
---|
1739 | |
---|
1740 | IF ( mode == 'profiles' ) THEN |
---|
1741 | |
---|
1742 | ELSEIF ( mode == 'time_series' ) THEN |
---|
1743 | |
---|
1744 | ENDIF |
---|
1745 | |
---|
1746 | END SUBROUTINE dynamics_statistics |
---|
1747 | |
---|
1748 | |
---|
1749 | !--------------------------------------------------------------------------------------------------! |
---|
1750 | ! Description: |
---|
1751 | ! ------------ |
---|
1752 | !> Read module-specific global restart data. |
---|
1753 | !--------------------------------------------------------------------------------------------------! |
---|
1754 | SUBROUTINE dynamics_rrd_global( found ) |
---|
1755 | |
---|
1756 | |
---|
1757 | LOGICAL, INTENT(OUT) :: found |
---|
1758 | |
---|
1759 | |
---|
1760 | found = .TRUE. |
---|
1761 | |
---|
1762 | |
---|
1763 | SELECT CASE ( restart_string(1:length) ) |
---|
1764 | |
---|
1765 | CASE ( 'global_paramter' ) |
---|
1766 | ! READ ( 13 ) global_parameter |
---|
1767 | |
---|
1768 | CASE DEFAULT |
---|
1769 | |
---|
1770 | found = .FALSE. |
---|
1771 | |
---|
1772 | END SELECT |
---|
1773 | |
---|
1774 | |
---|
1775 | END SUBROUTINE dynamics_rrd_global |
---|
1776 | |
---|
1777 | |
---|
1778 | !--------------------------------------------------------------------------------------------------! |
---|
1779 | ! Description: |
---|
1780 | ! ------------ |
---|
1781 | !> Read module-specific processor specific restart data from file(s). |
---|
1782 | !> Subdomain index limits on file are given by nxl_on_file, etc. |
---|
1783 | !> Indices nxlc, etc. indicate the range of gridpoints to be mapped from the subdomain on file (f) |
---|
1784 | !> to the subdomain of the current PE (c). They have been calculated in routine rrd_local. |
---|
1785 | !--------------------------------------------------------------------------------------------------! |
---|
1786 | SUBROUTINE dynamics_rrd_local( k, nxlf, nxlc, nxl_on_file, nxrf, nxrc, nxr_on_file, nynf, nync, & |
---|
1787 | nyn_on_file, nysf, nysc, nys_on_file, tmp_2d, tmp_3d, found ) |
---|
1788 | |
---|
1789 | |
---|
1790 | INTEGER(iwp) :: k !< |
---|
1791 | INTEGER(iwp) :: nxlc !< |
---|
1792 | INTEGER(iwp) :: nxlf !< |
---|
1793 | INTEGER(iwp) :: nxl_on_file !< |
---|
1794 | INTEGER(iwp) :: nxrc !< |
---|
1795 | INTEGER(iwp) :: nxrf !< |
---|
1796 | INTEGER(iwp) :: nxr_on_file !< |
---|
1797 | INTEGER(iwp) :: nync !< |
---|
1798 | INTEGER(iwp) :: nynf !< |
---|
1799 | INTEGER(iwp) :: nyn_on_file !< |
---|
1800 | INTEGER(iwp) :: nysc !< |
---|
1801 | INTEGER(iwp) :: nysf !< |
---|
1802 | INTEGER(iwp) :: nys_on_file !< |
---|
1803 | |
---|
1804 | LOGICAL, INTENT(OUT) :: found |
---|
1805 | |
---|
1806 | REAL(wp), DIMENSION(nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_2d !< |
---|
1807 | REAL(wp), DIMENSION(nzb:nzt+1,nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d !< |
---|
1808 | |
---|
1809 | ! |
---|
1810 | !-- Next line is to avoid compiler warning about unused variables. Please remove. |
---|
1811 | IF ( k + nxlc + nxlf + nxrc + nxrf + nync + nynf + nysc + nysf + & |
---|
1812 | tmp_2d(nys_on_file,nxl_on_file) + & |
---|
1813 | tmp_3d(nzb,nys_on_file,nxl_on_file) < 0.0 ) CONTINUE |
---|
1814 | ! |
---|
1815 | !-- Here the reading of user-defined restart data follows: |
---|
1816 | !-- Sample for user-defined output |
---|
1817 | |
---|
1818 | found = .TRUE. |
---|
1819 | |
---|
1820 | SELECT CASE ( restart_string(1:length) ) |
---|
1821 | |
---|
1822 | ! CASE ( 'u2_av' ) |
---|
1823 | |
---|
1824 | CASE DEFAULT |
---|
1825 | |
---|
1826 | found = .FALSE. |
---|
1827 | |
---|
1828 | END SELECT |
---|
1829 | |
---|
1830 | END SUBROUTINE dynamics_rrd_local |
---|
1831 | |
---|
1832 | |
---|
1833 | !--------------------------------------------------------------------------------------------------! |
---|
1834 | ! Description: |
---|
1835 | ! ------------ |
---|
1836 | !> Writes global module-specific restart data into binary file(s) for restart runs. |
---|
1837 | !--------------------------------------------------------------------------------------------------! |
---|
1838 | SUBROUTINE dynamics_wrd_global |
---|
1839 | |
---|
1840 | |
---|
1841 | END SUBROUTINE dynamics_wrd_global |
---|
1842 | |
---|
1843 | |
---|
1844 | !--------------------------------------------------------------------------------------------------! |
---|
1845 | ! Description: |
---|
1846 | ! ------------ |
---|
1847 | !> Writes processor specific and module-specific restart data into binary file(s) for restart runs. |
---|
1848 | !--------------------------------------------------------------------------------------------------! |
---|
1849 | SUBROUTINE dynamics_wrd_local |
---|
1850 | |
---|
1851 | |
---|
1852 | END SUBROUTINE dynamics_wrd_local |
---|
1853 | |
---|
1854 | |
---|
1855 | !--------------------------------------------------------------------------------------------------! |
---|
1856 | ! Description: |
---|
1857 | ! ------------ |
---|
1858 | !> Execute module-specific actions at the very end of the program. |
---|
1859 | !--------------------------------------------------------------------------------------------------! |
---|
1860 | SUBROUTINE dynamics_last_actions |
---|
1861 | |
---|
1862 | |
---|
1863 | END SUBROUTINE dynamics_last_actions |
---|
1864 | |
---|
1865 | END MODULE dynamics_mod |
---|