1 | MODULE diffusion_w_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! Wall functions now include diabatic conditions, call of routine wall_fluxes |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: diffusion_w.f90 53 2007-03-07 12:33:47Z raasch $ |
---|
11 | ! |
---|
12 | ! 20 2007-02-26 00:12:32Z raasch |
---|
13 | ! Bugfix: ddzw dimensioned 1:nzt"+1" |
---|
14 | ! |
---|
15 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
16 | ! |
---|
17 | ! Revision 1.12 2006/02/23 10:38:03 raasch |
---|
18 | ! nzb_2d replaced by nzb_w_outer, wall functions added for all vertical walls, |
---|
19 | ! +z0 in argument list |
---|
20 | ! WARNING: loops containing the MAX function are still not properly vectorized! |
---|
21 | ! |
---|
22 | ! Revision 1.1 1997/09/12 06:24:11 raasch |
---|
23 | ! Initial revision |
---|
24 | ! |
---|
25 | ! |
---|
26 | ! Description: |
---|
27 | ! ------------ |
---|
28 | ! Diffusion term of the w-component |
---|
29 | !------------------------------------------------------------------------------! |
---|
30 | |
---|
31 | PRIVATE |
---|
32 | PUBLIC diffusion_w |
---|
33 | |
---|
34 | INTERFACE diffusion_w |
---|
35 | MODULE PROCEDURE diffusion_w |
---|
36 | MODULE PROCEDURE diffusion_w_ij |
---|
37 | END INTERFACE diffusion_w |
---|
38 | |
---|
39 | CONTAINS |
---|
40 | |
---|
41 | |
---|
42 | !------------------------------------------------------------------------------! |
---|
43 | ! Call for all grid points |
---|
44 | !------------------------------------------------------------------------------! |
---|
45 | SUBROUTINE diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, & |
---|
46 | w, z0 ) |
---|
47 | |
---|
48 | USE control_parameters |
---|
49 | USE grid_variables |
---|
50 | USE indices |
---|
51 | |
---|
52 | IMPLICIT NONE |
---|
53 | |
---|
54 | INTEGER :: i, j, k |
---|
55 | REAL :: kmxm_x, kmxm_z, kmxp_x, kmxp_z, kmym_y, kmym_z, kmyp_y, & |
---|
56 | kmyp_z |
---|
57 | REAL :: ddzu(1:nzt+1), ddzw(1:nzt+1), km_damp_x(nxl-1:nxr+1), & |
---|
58 | km_damp_y(nys-1:nyn+1) |
---|
59 | REAL :: z0(nys-1:nyn+1,nxl-1:nxr+1) |
---|
60 | REAL :: tend(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) |
---|
61 | REAL, DIMENSION(nzb:nzt+1) :: wsus, wsvs |
---|
62 | REAL, DIMENSION(:,:,:), POINTER :: km, u, v, w |
---|
63 | |
---|
64 | |
---|
65 | DO i = nxl, nxr |
---|
66 | DO j = nys, nyn |
---|
67 | DO k = nzb_w_outer(j,i)+1, nzt-1 |
---|
68 | ! |
---|
69 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
70 | kmxp_x = 0.25 * & |
---|
71 | ( km(k,j,i)+km(k,j,i+1)+km(k+1,j,i)+km(k+1,j,i+1) ) |
---|
72 | kmxm_x = 0.25 * & |
---|
73 | ( km(k,j,i)+km(k,j,i-1)+km(k+1,j,i)+km(k+1,j,i-1) ) |
---|
74 | kmxp_z = kmxp_x |
---|
75 | kmxm_z = kmxm_x |
---|
76 | kmyp_y = 0.25 * & |
---|
77 | ( km(k,j,i)+km(k+1,j,i)+km(k,j+1,i)+km(k+1,j+1,i) ) |
---|
78 | kmym_y = 0.25 * & |
---|
79 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
80 | kmyp_z = kmyp_y |
---|
81 | kmym_z = kmym_y |
---|
82 | ! |
---|
83 | !-- Increase diffusion at the outflow boundary in case of |
---|
84 | !-- non-cyclic lateral boundaries. Damping is only needed for |
---|
85 | !-- velocity components parallel to the outflow boundary in |
---|
86 | !-- the direction normal to the outflow boundary. |
---|
87 | IF ( bc_lr /= 'cyclic' ) THEN |
---|
88 | kmxp_x = MAX( kmxp_x, km_damp_x(i) ) |
---|
89 | kmxm_x = MAX( kmxm_x, km_damp_x(i) ) |
---|
90 | ENDIF |
---|
91 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
92 | kmyp_y = MAX( kmyp_y, km_damp_y(j) ) |
---|
93 | kmym_y = MAX( kmym_y, km_damp_y(j) ) |
---|
94 | ENDIF |
---|
95 | |
---|
96 | tend(k,j,i) = tend(k,j,i) & |
---|
97 | & + ( kmxp_x * ( w(k,j,i+1) - w(k,j,i) ) * ddx & |
---|
98 | & + kmxp_z * ( u(k+1,j,i+1) - u(k,j,i+1) ) * ddzu(k+1) & |
---|
99 | & - kmxm_x * ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
100 | & - kmxm_z * ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
101 | & ) * ddx & |
---|
102 | & + ( kmyp_y * ( w(k,j+1,i) - w(k,j,i) ) * ddy & |
---|
103 | & + kmyp_z * ( v(k+1,j+1,i) - v(k,j+1,i) ) * ddzu(k+1) & |
---|
104 | & - kmym_y * ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
105 | & - kmym_z * ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
106 | & ) * ddy & |
---|
107 | & + 2.0 * ( & |
---|
108 | & km(k+1,j,i) * ( w(k+1,j,i) - w(k,j,i) ) * ddzw(k+1) & |
---|
109 | & - km(k,j,i) * ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) & |
---|
110 | & ) * ddzu(k+1) |
---|
111 | ENDDO |
---|
112 | |
---|
113 | ! |
---|
114 | !-- Wall functions at all vertical walls, where necessary |
---|
115 | IF ( wall_w_x(j,i) /= 0.0 .OR. wall_w_y(j,i) /= 0.0 ) THEN |
---|
116 | |
---|
117 | ! |
---|
118 | !-- Calculate the horizontal momentum fluxes w'u' and/or w'v' |
---|
119 | IF ( wall_w_x(j,i) /= 0.0 ) THEN |
---|
120 | CALL wall_fluxes( i, j, nzb_w_inner(j,i)+1, & |
---|
121 | nzb_w_outer(j,i), wsus, 0.0, 0.0, 0.0, & |
---|
122 | 1.0 ) |
---|
123 | ELSE |
---|
124 | wsus = 0.0 |
---|
125 | ENDIF |
---|
126 | |
---|
127 | IF ( wall_w_y(j,i) /= 0.0 ) THEN |
---|
128 | CALL wall_fluxes( i, j, nzb_w_inner(j,i)+1, & |
---|
129 | nzb_w_outer(j,i), wsvs, 0.0, 0.0, 1.0, & |
---|
130 | 0.0 ) |
---|
131 | ELSE |
---|
132 | wsvs = 0.0 |
---|
133 | ENDIF |
---|
134 | |
---|
135 | DO k = nzb_w_inner(j,i)+1, nzb_w_outer(j,i) |
---|
136 | ! |
---|
137 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
138 | kmxp_x = 0.25 * & |
---|
139 | ( km(k,j,i)+km(k,j,i+1)+km(k+1,j,i)+km(k+1,j,i+1) ) |
---|
140 | kmxm_x = 0.25 * & |
---|
141 | ( km(k,j,i)+km(k,j,i-1)+km(k+1,j,i)+km(k+1,j,i-1) ) |
---|
142 | kmxp_z = kmxp_x |
---|
143 | kmxm_z = kmxm_x |
---|
144 | kmyp_y = 0.25 * & |
---|
145 | ( km(k,j,i)+km(k+1,j,i)+km(k,j+1,i)+km(k+1,j+1,i) ) |
---|
146 | kmym_y = 0.25 * & |
---|
147 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
148 | kmyp_z = kmyp_y |
---|
149 | kmym_z = kmym_y |
---|
150 | ! |
---|
151 | !-- Increase diffusion at the outflow boundary in case of |
---|
152 | !-- non-cyclic lateral boundaries. Damping is only needed for |
---|
153 | !-- velocity components parallel to the outflow boundary in |
---|
154 | !-- the direction normal to the outflow boundary. |
---|
155 | IF ( bc_lr /= 'cyclic' ) THEN |
---|
156 | kmxp_x = MAX( kmxp_x, km_damp_x(i) ) |
---|
157 | kmxm_x = MAX( kmxm_x, km_damp_x(i) ) |
---|
158 | ENDIF |
---|
159 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
160 | kmyp_y = MAX( kmyp_y, km_damp_y(j) ) |
---|
161 | kmym_y = MAX( kmym_y, km_damp_y(j) ) |
---|
162 | ENDIF |
---|
163 | |
---|
164 | tend(k,j,i) = tend(k,j,i) & |
---|
165 | + ( fwxp(j,i) * ( & |
---|
166 | kmxp_x * ( w(k,j,i+1) - w(k,j,i) ) * ddx & |
---|
167 | + kmxp_z * ( u(k+1,j,i+1) - u(k,j,i+1) ) * ddzu(k+1) & |
---|
168 | ) & |
---|
169 | - fwxm(j,i) * ( & |
---|
170 | kmxm_x * ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
171 | + kmxm_z * ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
172 | ) & |
---|
173 | + wall_w_x(j,i) * wsus(k) & |
---|
174 | ) * ddx & |
---|
175 | + ( fwyp(j,i) * ( & |
---|
176 | kmyp_y * ( w(k,j+1,i) - w(k,j,i) ) * ddy & |
---|
177 | + kmyp_z * ( v(k+1,j+1,i) - v(k,j+1,i) ) * ddzu(k+1) & |
---|
178 | ) & |
---|
179 | - fwym(j,i) * ( & |
---|
180 | kmym_y * ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
181 | + kmym_z * ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
182 | ) & |
---|
183 | + wall_w_y(j,i) * wsvs(k) & |
---|
184 | ) * ddy & |
---|
185 | + 2.0 * ( & |
---|
186 | km(k+1,j,i) * ( w(k+1,j,i) - w(k,j,i) ) * ddzw(k+1) & |
---|
187 | - km(k,j,i) * ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) & |
---|
188 | ) * ddzu(k+1) |
---|
189 | ENDDO |
---|
190 | ENDIF |
---|
191 | |
---|
192 | ENDDO |
---|
193 | ENDDO |
---|
194 | |
---|
195 | END SUBROUTINE diffusion_w |
---|
196 | |
---|
197 | |
---|
198 | !------------------------------------------------------------------------------! |
---|
199 | ! Call for grid point i,j |
---|
200 | !------------------------------------------------------------------------------! |
---|
201 | SUBROUTINE diffusion_w_ij( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
202 | tend, u, v, w, z0 ) |
---|
203 | |
---|
204 | USE control_parameters |
---|
205 | USE grid_variables |
---|
206 | USE indices |
---|
207 | |
---|
208 | IMPLICIT NONE |
---|
209 | |
---|
210 | INTEGER :: i, j, k |
---|
211 | REAL :: kmxm_x, kmxm_z, kmxp_x, kmxp_z, kmym_y, kmym_z, kmyp_y, & |
---|
212 | kmyp_z |
---|
213 | REAL :: ddzu(1:nzt+1), ddzw(1:nzt+1), km_damp_x(nxl-1:nxr+1), & |
---|
214 | km_damp_y(nys-1:nyn+1) |
---|
215 | REAL :: z0(nys-1:nyn+1,nxl-1:nxr+1) |
---|
216 | REAL :: tend(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) |
---|
217 | REAL, DIMENSION(nzb:nzt+1) :: wsus, wsvs |
---|
218 | REAL, DIMENSION(:,:,:), POINTER :: km, u, v, w |
---|
219 | |
---|
220 | |
---|
221 | DO k = nzb_w_outer(j,i)+1, nzt-1 |
---|
222 | ! |
---|
223 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
224 | kmxp_x = 0.25 * ( km(k,j,i)+km(k,j,i+1)+km(k+1,j,i)+km(k+1,j,i+1) ) |
---|
225 | kmxm_x = 0.25 * ( km(k,j,i)+km(k,j,i-1)+km(k+1,j,i)+km(k+1,j,i-1) ) |
---|
226 | kmxp_z = kmxp_x |
---|
227 | kmxm_z = kmxm_x |
---|
228 | kmyp_y = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j+1,i)+km(k+1,j+1,i) ) |
---|
229 | kmym_y = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
230 | kmyp_z = kmyp_y |
---|
231 | kmym_z = kmym_y |
---|
232 | ! |
---|
233 | !-- Increase diffusion at the outflow boundary in case of non-cyclic |
---|
234 | !-- lateral boundaries. Damping is only needed for velocity components |
---|
235 | !-- parallel to the outflow boundary in the direction normal to the |
---|
236 | !-- outflow boundary. |
---|
237 | IF ( bc_lr /= 'cyclic' ) THEN |
---|
238 | kmxp_x = MAX( kmxp_x, km_damp_x(i) ) |
---|
239 | kmxm_x = MAX( kmxm_x, km_damp_x(i) ) |
---|
240 | ENDIF |
---|
241 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
242 | kmyp_y = MAX( kmyp_y, km_damp_y(j) ) |
---|
243 | kmym_y = MAX( kmym_y, km_damp_y(j) ) |
---|
244 | ENDIF |
---|
245 | |
---|
246 | tend(k,j,i) = tend(k,j,i) & |
---|
247 | & + ( kmxp_x * ( w(k,j,i+1) - w(k,j,i) ) * ddx & |
---|
248 | & + kmxp_z * ( u(k+1,j,i+1) - u(k,j,i+1) ) * ddzu(k+1) & |
---|
249 | & - kmxm_x * ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
250 | & - kmxm_z * ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
251 | & ) * ddx & |
---|
252 | & + ( kmyp_y * ( w(k,j+1,i) - w(k,j,i) ) * ddy & |
---|
253 | & + kmyp_z * ( v(k+1,j+1,i) - v(k,j+1,i) ) * ddzu(k+1) & |
---|
254 | & - kmym_y * ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
255 | & - kmym_z * ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
256 | & ) * ddy & |
---|
257 | & + 2.0 * ( & |
---|
258 | & km(k+1,j,i) * ( w(k+1,j,i) - w(k,j,i) ) * ddzw(k+1) & |
---|
259 | & - km(k,j,i) * ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) & |
---|
260 | & ) * ddzu(k+1) |
---|
261 | ENDDO |
---|
262 | |
---|
263 | ! |
---|
264 | !-- Wall functions at all vertical walls, where necessary |
---|
265 | IF ( wall_w_x(j,i) /= 0.0 .OR. wall_w_y(j,i) /= 0.0 ) THEN |
---|
266 | |
---|
267 | ! |
---|
268 | !-- Calculate the horizontal momentum fluxes w'u' and/or w'v' |
---|
269 | IF ( wall_w_x(j,i) /= 0.0 ) THEN |
---|
270 | CALL wall_fluxes( i, j, nzb_w_inner(j,i)+1, nzb_w_outer(j,i), & |
---|
271 | wsus, 0.0, 0.0, 0.0, 1.0 ) |
---|
272 | ELSE |
---|
273 | wsus = 0.0 |
---|
274 | ENDIF |
---|
275 | |
---|
276 | IF ( wall_w_y(j,i) /= 0.0 ) THEN |
---|
277 | CALL wall_fluxes( i, j, nzb_w_inner(j,i)+1, nzb_w_outer(j,i), & |
---|
278 | wsvs, 0.0, 0.0, 1.0, 0.0 ) |
---|
279 | ELSE |
---|
280 | wsvs = 0.0 |
---|
281 | ENDIF |
---|
282 | |
---|
283 | DO k = nzb_w_inner(j,i)+1, nzb_w_outer(j,i) |
---|
284 | ! |
---|
285 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
286 | kmxp_x = 0.25 * ( km(k,j,i)+km(k,j,i+1)+km(k+1,j,i)+km(k+1,j,i+1) ) |
---|
287 | kmxm_x = 0.25 * ( km(k,j,i)+km(k,j,i-1)+km(k+1,j,i)+km(k+1,j,i-1) ) |
---|
288 | kmxp_z = kmxp_x |
---|
289 | kmxm_z = kmxm_x |
---|
290 | kmyp_y = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j+1,i)+km(k+1,j+1,i) ) |
---|
291 | kmym_y = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
292 | kmyp_z = kmyp_y |
---|
293 | kmym_z = kmym_y |
---|
294 | ! |
---|
295 | !-- Increase diffusion at the outflow boundary in case of |
---|
296 | !-- non-cyclic lateral boundaries. Damping is only needed for |
---|
297 | !-- velocity components parallel to the outflow boundary in |
---|
298 | !-- the direction normal to the outflow boundary. |
---|
299 | IF ( bc_lr /= 'cyclic' ) THEN |
---|
300 | kmxp_x = MAX( kmxp_x, km_damp_x(i) ) |
---|
301 | kmxm_x = MAX( kmxm_x, km_damp_x(i) ) |
---|
302 | ENDIF |
---|
303 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
304 | kmyp_y = MAX( kmyp_y, km_damp_y(j) ) |
---|
305 | kmym_y = MAX( kmym_y, km_damp_y(j) ) |
---|
306 | ENDIF |
---|
307 | |
---|
308 | tend(k,j,i) = tend(k,j,i) & |
---|
309 | + ( fwxp(j,i) * ( & |
---|
310 | kmxp_x * ( w(k,j,i+1) - w(k,j,i) ) * ddx & |
---|
311 | + kmxp_z * ( u(k+1,j,i+1) - u(k,j,i+1) ) * ddzu(k+1) & |
---|
312 | ) & |
---|
313 | - fwxm(j,i) * ( & |
---|
314 | kmxm_x * ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
315 | + kmxm_z * ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
316 | ) & |
---|
317 | + wall_w_x(j,i) * wsus(k) & |
---|
318 | ) * ddx & |
---|
319 | + ( fwyp(j,i) * ( & |
---|
320 | kmyp_y * ( w(k,j+1,i) - w(k,j,i) ) * ddy & |
---|
321 | + kmyp_z * ( v(k+1,j+1,i) - v(k,j+1,i) ) * ddzu(k+1) & |
---|
322 | ) & |
---|
323 | - fwym(j,i) * ( & |
---|
324 | kmym_y * ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
325 | + kmym_z * ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
326 | ) & |
---|
327 | + wall_w_y(j,i) * wsvs(k) & |
---|
328 | ) * ddy & |
---|
329 | + 2.0 * ( & |
---|
330 | km(k+1,j,i) * ( w(k+1,j,i) - w(k,j,i) ) * ddzw(k+1) & |
---|
331 | - km(k,j,i) * ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) & |
---|
332 | ) * ddzu(k+1) |
---|
333 | ENDDO |
---|
334 | ENDIF |
---|
335 | |
---|
336 | END SUBROUTINE diffusion_w_ij |
---|
337 | |
---|
338 | END MODULE diffusion_w_mod |
---|