MODULE diffusion_e_mod !------------------------------------------------------------------------------! ! Actual revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Log: diffusion_e.f90,v $ ! Revision 1.18 2006/08/04 14:29:43 raasch ! dissipation is stored in extra array diss if needed later on for calculating ! the sgs particle velocities ! ! Revision 1.17 2006/02/23 10:31:46 raasch ! nzb_2d replaced by nzb_s_inner ! ! Revision 1.16 2004/01/30 10:18:18 raasch ! Scalar lower k index nzb replaced by 2d-array nzb_2d ! ! Revision 1.15 2003/03/14 13:39:33 raasch ! Loop optimization for diffusion_e, l and ll are now automatic arrays ! ! Revision 1.14 2003/03/12 16:25:03 raasch ! Full code replaced in the call for all gridpoints instead of calling the ! _ij version (required by NEC, because otherwise no vectorization) ! ! Revision 1.13 2002/12/19 14:25:28 raasch ! Correction of mixing length term (l(k)/ll(k)). The condition kh=3*km in ! the unstable case is now also exactly met in the wall adjustment region. ! Factor 0.7 in wall adjustment part replaced by variable ! wall_adjustment_factor, which is set to ... in modules.f90. ! ! Revision 1.12 2002/06/11 12:51:59 raasch ! Former subroutine changed to a module which allows to be called for all grid ! points of a single vertical column with index i,j or for all grid points by ! using function overloading. ! 1D-array l is allocated only once in the first call. ! ! Revision 1.11 2001/08/21 08:24:34 raasch ! Wall adjustment of mixing length to 0.7 z can be switched off ! ! Revision 1.10 2001/03/30 07:06:30 raasch ! Near surface mixing length is limited to 0.7*zu, ! e**1.5 replaced by e*SQRT(e) (more than 10% total increase in performance ! of this routine), ! Translation of remaining German identifiers (variables, subroutines, etc.) ! ! Revision 1.9 2001/01/22 06:05:28 raasch ! Module test_variables removed ! ! Revision 1.8 2001/01/02 17:27:00 raasch ! -dpt_dz_d, dpt_dz_u ! ! Revision 1.7 2000/07/03 12:56:34 raasch ! array l changed from dummy argument to local allocatable array, ! dummy arguments, whose corresponding actual arguments are pointers, ! are now also defined as pointers ! all comments translated into English ! ! Revision 1.6 2000/04/18 08:10:12 schroeter ! Revision 1.4 wieder rueckgaengig gemacht, das Stabilitaets- ! kriterium basiert nun wieder auf zentralen Differenzen ! ! Revision 1.5 2000/04/13 14:33:08 schroeter ! je nach Initialisierungsmodus (trocken/feucht) fliesst in die ! Berechnung des Mischungsweges pt oder vpt ein, wird durch ! entsprechende Variablenuebergabe geregelt ! ! Revision 1.4 99/02/17 09:15:52 09:15:52 raasch (Siegfried Raasch) ! Dissipation jetzt gemaess dem originalen Deardorff-Ansatz ! Kriterium fuer reduzierten Mischungsweg im stabil geschichteten Fall enger ! gefasst (Schichtung muss sowohl oberhalb als auch unterhalb des betrachteten ! Gitterpunkts stabil sein) ! ! Revision 1.3 1998/07/06 12:10:56 raasch ! + USE test_variables ! ! Revision 1.2 1998/03/11 11:48:59 raasch ! Anpassung des Mischungsweges an den Prandtlschen Mischungsweg moeglich ! ! Revision 1.1 1997/09/19 07:40:24 raasch ! Initial revision ! ! ! Description: ! ------------ ! Diffusion- and dissipation terms for the TKE !------------------------------------------------------------------------------! PRIVATE PUBLIC diffusion_e INTERFACE diffusion_e MODULE PROCEDURE diffusion_e MODULE PROCEDURE diffusion_e_ij END INTERFACE diffusion_e CONTAINS !------------------------------------------------------------------------------! ! Call for all grid points !------------------------------------------------------------------------------! SUBROUTINE diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, theta, & rif, tend, zu ) USE control_parameters USE grid_variables USE indices USE particle_attributes IMPLICIT NONE INTEGER :: i, j, k REAL :: dpt_dz, l_stable, phi_m REAL :: ddzu(1:nzt+1), dd2zu(1:nzt), ddzw(1:nzt), & l_grid(1:nzt), zu(0:nzt+1) REAL, DIMENSION(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) :: diss, tend REAL, DIMENSION(:,:), POINTER :: rif REAL, DIMENSION(:,:,:), POINTER :: e, km, theta REAL, DIMENSION(nzb+1:nzt-1,nys:nyn) :: dissipation, l, ll DO i = nxl, nxr DO j = nys, nyn ! !-- First, calculate phi-function for eventually adjusting the & !-- mixing length to the prandtl mixing length IF ( adjust_mixing_length .AND. prandtl_layer ) THEN IF ( rif(j,i) >= 0.0 ) THEN phi_m = 1.0 + 5.0 * rif(j,i) ELSE phi_m = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif(j,i) ) ) ENDIF ENDIF DO k = nzb_s_inner(j,i)+1, nzt-1 ! !-- Calculate the mixing length (for dissipation) dpt_dz = ( theta(k+1,j,i) - theta(k-1,j,i) ) * dd2zu(k) IF ( dpt_dz > 0.0 ) THEN l_stable = 0.76 * SQRT( e(k,j,i) ) / & SQRT( g / theta(k,j,i) * dpt_dz ) + 1E-5 ELSE l_stable = l_grid(k) ENDIF ! !-- Adjustment of the mixing length IF ( wall_adjustment ) THEN l(k,j) = MIN( wall_adjustment_factor * zu(k), l_grid(k), & l_stable ) ll(k,j) = MIN( wall_adjustment_factor * zu(k), l_grid(k) ) ELSE l(k,j) = MIN( l_grid(k), l_stable ) ll(k,j) = l_grid(k) ENDIF IF ( adjust_mixing_length .AND. prandtl_layer ) THEN l(k,j) = MIN( l(k,j), kappa * zu(k) / phi_m ) ll(k,j) = MIN( ll(k,j), kappa * zu(k) / phi_m ) ENDIF ENDDO ENDDO ! !-- Calculate the tendency terms DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt-1 dissipation(k,j) = ( 0.19 + 0.74 * l(k,j) / ll(k,j) ) * & e(k,j,i) * SQRT( e(k,j,i) ) / l(k,j) tend(k,j,i) = tend(k,j,i) & + ( & ( km(k,j,i)+km(k,j,i+1) ) * ( e(k,j,i+1)-e(k,j,i) ) & - ( km(k,j,i)+km(k,j,i-1) ) * ( e(k,j,i)-e(k,j,i-1) ) & ) * ddx2 & + ( & ( km(k,j,i)+km(k,j+1,i) ) * ( e(k,j+1,i)-e(k,j,i) ) & - ( km(k,j,i)+km(k,j-1,i) ) * ( e(k,j,i)-e(k,j-1,i) ) & ) * ddy2 & + ( & ( km(k,j,i)+km(k+1,j,i) ) * ( e(k+1,j,i)-e(k,j,i) ) * ddzu(k+1) & - ( km(k,j,i)+km(k-1,j,i) ) * ( e(k,j,i)-e(k-1,j,i) ) * ddzu(k) & ) * ddzw(k) & - dissipation(k,j) ENDDO ENDDO ! !-- Store dissipation if needed for calculating the sgs particle !-- velocities IF ( use_sgs_for_particles ) THEN DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt-1 diss(k,j,i) = dissipation(k,j) ENDDO ENDDO ENDIF ENDDO ! !-- Boundary condition for dissipation IF ( use_sgs_for_particles ) THEN DO i = nxl, nxr DO j = nys, nyn diss(nzb_s_inner(j,i),j,i) = diss(nzb_s_inner(j,i)+1,j,i) ENDDO ENDDO ENDIF END SUBROUTINE diffusion_e !------------------------------------------------------------------------------! ! Call for grid point i,j !------------------------------------------------------------------------------! SUBROUTINE diffusion_e_ij( i, j, ddzu, dd2zu, ddzw, diss, e, km, l_grid, & theta, rif, tend, zu ) USE control_parameters USE grid_variables USE indices USE particle_attributes IMPLICIT NONE INTEGER :: i, j, k REAL :: dpt_dz, l_stable, phi_m REAL :: ddzu(1:nzt+1), dd2zu(1:nzt), ddzw(1:nzt), & l_grid(1:nzt), zu(0:nzt+1) REAL, DIMENSION(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) :: diss, tend REAL, DIMENSION(:,:), POINTER :: rif REAL, DIMENSION(:,:,:), POINTER :: e, km, theta REAL, DIMENSION(nzb+1:nzt-1) :: dissipation, l, ll ! !-- First, calculate phi-function for eventually adjusting the mixing length !-- to the prandtl mixing length IF ( adjust_mixing_length .AND. prandtl_layer ) THEN IF ( rif(j,i) >= 0.0 ) THEN phi_m = 1.0 + 5.0 * rif(j,i) ELSE phi_m = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif(j,i) ) ) ENDIF ENDIF ! !-- Calculate the mixing length (for dissipation) DO k = nzb_s_inner(j,i)+1, nzt-1 dpt_dz = ( theta(k+1,j,i) - theta(k-1,j,i) ) * dd2zu(k) IF ( dpt_dz > 0.0 ) THEN l_stable = 0.76 * SQRT( e(k,j,i) ) / & SQRT( g / theta(k,j,i) * dpt_dz ) + 1E-5 ELSE l_stable = l_grid(k) ENDIF ! !-- Adjustment of the mixing length IF ( wall_adjustment ) THEN l(k) = MIN( wall_adjustment_factor * zu(k), l_grid(k), l_stable ) ll(k) = MIN( wall_adjustment_factor * zu(k), l_grid(k) ) ELSE l(k) = MIN( l_grid(k), l_stable ) ll(k) = l_grid(k) ENDIF IF ( adjust_mixing_length .AND. prandtl_layer ) THEN l(k) = MIN( l(k), kappa * zu(k) / phi_m ) ll(k) = MIN( ll(k), kappa * zu(k) / phi_m ) ENDIF ! !-- Calculate the tendency term dissipation(k) = ( 0.19 + 0.74 * l(k) / ll(k) ) * e(k,j,i) * & SQRT( e(k,j,i) ) / l(k) tend(k,j,i) = tend(k,j,i) & + ( & ( km(k,j,i)+km(k,j,i+1) ) * ( e(k,j,i+1)-e(k,j,i) ) & - ( km(k,j,i)+km(k,j,i-1) ) * ( e(k,j,i)-e(k,j,i-1) ) & ) * ddx2 & + ( & ( km(k,j,i)+km(k,j+1,i) ) * ( e(k,j+1,i)-e(k,j,i) ) & - ( km(k,j,i)+km(k,j-1,i) ) * ( e(k,j,i)-e(k,j-1,i) ) & ) * ddy2 & + ( & ( km(k,j,i)+km(k+1,j,i) ) * ( e(k+1,j,i)-e(k,j,i) ) * ddzu(k+1) & - ( km(k,j,i)+km(k-1,j,i) ) * ( e(k,j,i)-e(k-1,j,i) ) * ddzu(k) & ) * ddzw(k) & - dissipation(k) ENDDO ! !-- Store dissipation if needed for calculating the sgs particle velocities IF ( use_sgs_for_particles ) THEN DO k = nzb_s_inner(j,i)+1, nzt-1 diss(k,j,i) = dissipation(k) ENDDO ! !-- Boundary condition for dissipation diss(nzb_s_inner(j,i),j,i) = diss(nzb_s_inner(j,i)+1,j,i) ENDIF END SUBROUTINE diffusion_e_ij END MODULE diffusion_e_mod