!> @file data_output_2d.f90 !--------------------------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General ! Public License as published by the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General ! Public License for more details. ! ! You should have received a copy of the GNU General Public License along with PALM. If not, see ! . ! ! Copyright 1997-2020 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------------------------! ! ! Current revisions: ! ------------------ ! ! ! Former revisions: ! ----------------- ! $Id: data_output_2d.f90 4671 2020-09-09 20:27:58Z hellstea $ ! Implementation of downward facing USM and LSM surfaces ! ! 4559 2020-06-11 08:51:48Z raasch ! file re-formatted to follow the PALM coding standard ! ! 4518 2020-05-04 15:44:28Z suehring ! remove double index ! ! 4514 2020-04-30 16:29:59Z suehring ! Enable output of qsurf and ssurf ! ! 4500 2020-04-17 10:12:45Z suehring ! Unify output conversion of sensible and latent heat flux ! ! 4457 2020-03-11 14:20:43Z raasch ! use statement for exchange horiz added ! ! 4444 2020-03-05 15:59:50Z raasch ! bugfix: cpp-directives for serial mode added ! ! 4442 2020-03-04 19:21:13Z suehring ! Change order of dimension in surface array %frac to allow for better vectorization. ! ! 4441 2020-03-04 19:20:35Z suehring ! Introduction of wall_flags_total_0, which currently sets bits based on static topography ! information used in wall_flags_static_0 ! ! 4331 2019-12-10 18:25:02Z suehring ! Move 2-m potential temperature output to diagnostic_output_quantities ! ! 4329 2019-12-10 15:46:36Z motisi ! Renamed wall_flags_0 to wall_flags_static_0 ! ! 4182 2019-08-22 15:20:23Z scharf ! Corrected "Former revisions" section ! ! 4048 2019-06-21 21:00:21Z knoop ! Removed turbulence_closure_mod dependency ! ! 4039 2019-06-18 10:32:41Z suehring ! modularize diagnostic output ! ! 3994 2019-05-22 18:08:09Z suehring ! output of turbulence intensity added ! ! 3987 2019-05-22 09:52:13Z kanani ! Introduce alternative switch for debug output during timestepping ! ! 3943 2019-05-02 09:50:41Z maronga ! Added output of qsws for green roofs. ! ! 3885 2019-04-11 11:29:34Z kanani ! Changes related to global restructuring of location messages and introductionof additional debug ! messages ! ! 3766 2019-02-26 16:23:41Z raasch ! unused variables removed ! ! 3655 2019-01-07 16:51:22Z knoop ! Bugfix: use time_since_reference_point instead of simulated_time (relevant when using wall/soil ! spinup) ! ! Revision 1.1 1997/08/11 06:24:09 raasch ! Initial revision ! ! ! Description: ! ------------ !> Data output of cross-sections in netCDF format or binary format to be later converted to NetCDF !> by helper routine combine_plot_fields. !> Attention: The position of the sectional planes is still not always computed correctly. (zu is !> used always)! !--------------------------------------------------------------------------------------------------! SUBROUTINE data_output_2d( mode, av ) USE arrays_3d, & ONLY: d_exner, dzw, e, heatflux_output_conversion, p, pt, q, ql, ql_c, ql_v, s, tend, u, & v, vpt, w, waterflux_output_conversion, zu, zw USE averaging USE basic_constants_and_equations_mod, & ONLY: lv_d_cp USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model USE control_parameters, & ONLY: data_output_2d_on_each_pe, & debug_output_timestep, & data_output_xy, data_output_xz, data_output_yz, & do2d, & do2d_xy_last_time, do2d_xy_time_count, & do2d_xz_last_time, do2d_xz_time_count, & do2d_yz_last_time, do2d_yz_time_count, & ibc_uv_b, io_blocks, io_group, message_string, & ntdim_2d_xy, ntdim_2d_xz, ntdim_2d_yz, & psolver, section, & time_since_reference_point USE cpulog, & ONLY: cpu_log, log_point USE exchange_horiz_mod, & ONLY: exchange_horiz USE indices, & ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, nzt, & topo_top_ind, & wall_flags_total_0 USE kinds USE land_surface_model_mod, & ONLY: zs USE module_interface, & ONLY: module_interface_data_output_2d #if defined( __netcdf ) USE NETCDF #endif USE netcdf_interface, & ONLY: fill_value, id_set_xy, id_set_xz, id_set_yz, id_var_do2d, id_var_time_xy, & id_var_time_xz, id_var_time_yz, nc_stat, netcdf_data_format, netcdf_handle_error USE particle_attributes, & ONLY: grid_particles, number_of_particles, particle_advection_start, particles, prt_count USE pegrid USE surface_mod, & ONLY: ind_pav_green, ind_veg_wall, ind_wat_win, surf_def_h, surf_lsm_h, surf_usm_h IMPLICIT NONE CHARACTER (LEN=2) :: do2d_mode !< output mode of variable ('xy', 'xz', 'yz') CHARACTER (LEN=2) :: mode !< mode with which the routine is called ('xy', 'xz', 'yz') CHARACTER (LEN=4) :: grid !< string defining the vertical grid INTEGER(iwp) :: av !< flag for (non-)average output INTEGER(iwp) :: file_id !< id of output files INTEGER(iwp) :: flag_nr !< number of masking flag INTEGER(iwp) :: i !< loop index INTEGER(iwp) :: is !< slice index INTEGER(iwp) :: ivar !< variable index INTEGER(iwp) :: j !< loop index INTEGER(iwp) :: k !< loop index INTEGER(iwp) :: l !< loop index INTEGER(iwp) :: layer_xy !< vertical index of a xy slice in array 'local_pf' INTEGER(iwp) :: m !< loop index INTEGER(iwp) :: n !< loop index INTEGER(iwp) :: ngp !< number of grid points of an output slice INTEGER(iwp) :: nis !< number of vertical slices to be written via parallel NetCDF output INTEGER(iwp) :: ns !< number of output slices INTEGER(iwp) :: nzb_do !< lower limit of the data field (usually nzb) INTEGER(iwp) :: nzt_do !< upper limit of the data field (usually nzt+1) INTEGER(iwp) :: s_ind !< index of slice types (xy=1, xz=2, yz=3) #if defined( __parallel ) INTEGER(iwp) :: iis !< vertical index of a xy slice in array 'local_2d_sections' INTEGER(iwp) :: ind(4) !< index limits (lower/upper bounds) of array 'local_2d' INTEGER(iwp) :: sender !< PE id of sending PE #endif LOGICAL :: found !< true if output variable was found LOGICAL :: resorted !< true if variable is resorted LOGICAL :: two_d !< true if variable is only two dimensional REAL(wp) :: mean_r !< mean particle radius REAL(wp) :: s_r2 !< sum( particle-radius**2 ) REAL(wp) :: s_r3 !< sum( particle-radius**3 ) REAL(wp), DIMENSION(:), ALLOCATABLE :: level_z !< z levels for output array REAL(wp), DIMENSION(:,:), ALLOCATABLE :: local_2d !< local 2-dimensional array !< containing output values REAL(wp), DIMENSION(:,:), ALLOCATABLE :: local_2d_l !< local 2-dimensional array !< containing output values REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: local_pf !< output array REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: local_2d_sections !< local array containing values !< at all slices REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: local_2d_sections_l !< local array containing values !< at all slices #if defined( __parallel ) REAL(wp), DIMENSION(:,:), ALLOCATABLE :: total_2d !< same as local_2d #endif REAL(wp), DIMENSION(:,:,:), POINTER :: to_be_resorted !< points to array which shall be output IF ( debug_output_timestep ) CALL debug_message( 'data_output_2d', 'start' ) ! !-- Immediate return, if no output is requested (no respective sections found in parameter !-- data_output) IF ( mode == 'xy' .AND. .NOT. data_output_xy(av) ) RETURN IF ( mode == 'xz' .AND. .NOT. data_output_xz(av) ) RETURN IF ( mode == 'yz' .AND. .NOT. data_output_yz(av) ) RETURN CALL cpu_log (log_point(3),'data_output_2d','start') two_d = .FALSE. ! local variable to distinguish between output of pure 2D arrays and ! cross-sections of 3D arrays. ! !-- Depending on the orientation of the cross-section, the respective output files have to be !-- opened. SELECT CASE ( mode ) CASE ( 'xy' ) s_ind = 1 ALLOCATE( level_z(nzb:nzt+1), local_2d(nxl:nxr,nys:nyn) ) IF ( netcdf_data_format > 4 ) THEN ns = 1 DO WHILE ( section(ns,s_ind) /= -9999 .AND. ns <= 100 ) ns = ns + 1 ENDDO ns = ns - 1 ALLOCATE( local_2d_sections(nxl:nxr,nys:nyn,1:ns) ) local_2d_sections = 0.0_wp ENDIF ! !-- Parallel netCDF4/HDF5 output is done on all PEs, all other on PE0 only IF ( myid == 0 .OR. netcdf_data_format > 4 ) THEN CALL check_open( 101+av*10 ) ENDIF IF ( data_output_2d_on_each_pe .AND. netcdf_data_format < 5 ) THEN CALL check_open( 21 ) ELSE IF ( myid == 0 ) THEN #if defined( __parallel ) ALLOCATE( total_2d(0:nx,0:ny) ) #endif ENDIF ENDIF CASE ( 'xz' ) s_ind = 2 ALLOCATE( local_2d(nxl:nxr,nzb:nzt+1) ) IF ( netcdf_data_format > 4 ) THEN ns = 1 DO WHILE ( section(ns,s_ind) /= -9999 .AND. ns <= 100 ) ns = ns + 1 ENDDO ns = ns - 1 ALLOCATE( local_2d_sections(nxl:nxr,1:ns,nzb:nzt+1) ) ALLOCATE( local_2d_sections_l(nxl:nxr,1:ns,nzb:nzt+1) ) local_2d_sections = 0.0_wp; local_2d_sections_l = 0.0_wp ENDIF ! !-- Parallel netCDF4/HDF5 output is done on all PEs, all other on PE0 only IF ( myid == 0 .OR. netcdf_data_format > 4 ) THEN CALL check_open( 102+av*10 ) ENDIF IF ( data_output_2d_on_each_pe .AND. netcdf_data_format < 5 ) THEN CALL check_open( 22 ) ELSE IF ( myid == 0 ) THEN #if defined( __parallel ) ALLOCATE( total_2d(0:nx,nzb:nzt+1) ) #endif ENDIF ENDIF CASE ( 'yz' ) s_ind = 3 ALLOCATE( local_2d(nys:nyn,nzb:nzt+1) ) IF ( netcdf_data_format > 4 ) THEN ns = 1 DO WHILE ( section(ns,s_ind) /= -9999 .AND. ns <= 100 ) ns = ns + 1 ENDDO ns = ns - 1 ALLOCATE( local_2d_sections(1:ns,nys:nyn,nzb:nzt+1) ) ALLOCATE( local_2d_sections_l(1:ns,nys:nyn,nzb:nzt+1) ) local_2d_sections = 0.0_wp; local_2d_sections_l = 0.0_wp ENDIF ! !-- Parallel netCDF4/HDF5 output is done on all PEs, all other on PE0 only IF ( myid == 0 .OR. netcdf_data_format > 4 ) THEN CALL check_open( 103+av*10 ) ENDIF IF ( data_output_2d_on_each_pe .AND. netcdf_data_format < 5 ) THEN CALL check_open( 23 ) ELSE IF ( myid == 0 ) THEN #if defined( __parallel ) ALLOCATE( total_2d(0:ny,nzb:nzt+1) ) #endif ENDIF ENDIF CASE DEFAULT message_string = 'unknown cross-section: ' // TRIM( mode ) CALL message( 'data_output_2d', 'PA0180', 1, 2, 0, 6, 0 ) END SELECT ! !-- For parallel netcdf output the time axis must be limited. Return, if this limit is exceeded. !-- This could be the case, if the simulated time exceeds the given end time by the length of the !-- given output interval. IF ( netcdf_data_format > 4 ) THEN IF ( mode == 'xy' .AND. do2d_xy_time_count(av) + 1 > ntdim_2d_xy(av) ) THEN WRITE ( message_string, * ) 'Output of xy cross-sections is not ', & 'given at t=', time_since_reference_point, 's because the', & ' maximum number of output time levels is exceeded.' CALL message( 'data_output_2d', 'PA0384', 0, 1, 0, 6, 0 ) CALL cpu_log( log_point(3), 'data_output_2d', 'stop' ) RETURN ENDIF IF ( mode == 'xz' .AND. do2d_xz_time_count(av) + 1 > ntdim_2d_xz(av) ) THEN WRITE ( message_string, * ) 'Output of xz cross-sections is not ', & 'given at t=', time_since_reference_point, 's because the', & ' maximum number of output time levels is exceeded.' CALL message( 'data_output_2d', 'PA0385', 0, 1, 0, 6, 0 ) CALL cpu_log( log_point(3), 'data_output_2d', 'stop' ) RETURN ENDIF IF ( mode == 'yz' .AND. do2d_yz_time_count(av) + 1 > ntdim_2d_yz(av) ) THEN WRITE ( message_string, * ) 'Output of yz cross-sections is not ', & 'given at t=', time_since_reference_point, 's because the', & ' maximum number of output time levels is exceeded.' CALL message( 'data_output_2d', 'PA0386', 0, 1, 0, 6, 0 ) CALL cpu_log( log_point(3), 'data_output_2d', 'stop' ) RETURN ENDIF ENDIF ! !-- Allocate a temporary array for resorting (kji -> ijk). ALLOCATE( local_pf(nxl:nxr,nys:nyn,nzb:nzt+1) ) local_pf = 0.0 ! !-- Loop of all variables to be written. !-- Output dimensions chosen ivar = 1 l = MAX( 2, LEN_TRIM( do2d(av,ivar) ) ) do2d_mode = do2d(av,ivar)(l-1:l) DO WHILE ( do2d(av,ivar)(1:1) /= ' ' ) IF ( do2d_mode == mode ) THEN ! !-- Set flag to steer output of radiation, land-surface, or user-defined quantities found = .FALSE. nzb_do = nzb nzt_do = nzt+1 ! !-- Before each output, set array local_pf to fill value local_pf = fill_value ! !-- Set masking flag for topography for not resorted arrays flag_nr = 0 ! !-- Store the array chosen on the temporary array. resorted = .FALSE. SELECT CASE ( TRIM( do2d(av,ivar) ) ) CASE ( 'e_xy', 'e_xz', 'e_yz' ) IF ( av == 0 ) THEN to_be_resorted => e ELSE IF ( .NOT. ALLOCATED( e_av ) ) THEN ALLOCATE( e_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) e_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => e_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'thetal_xy', 'thetal_xz', 'thetal_yz' ) IF ( av == 0 ) THEN to_be_resorted => pt ELSE IF ( .NOT. ALLOCATED( lpt_av ) ) THEN ALLOCATE( lpt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) lpt_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => lpt_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'lwp*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = SUM( ql(nzb:nzt,j,i) * dzw(1:nzt+1) ) ENDDO ENDDO ELSE IF ( .NOT. ALLOCATED( lwp_av ) ) THEN ALLOCATE( lwp_av(nysg:nyng,nxlg:nxrg) ) lwp_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = lwp_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'ghf*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_lsm_h(0)%ns i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_lsm_h(0)%ghf(m) ENDDO DO m = 1, surf_usm_h(0)%ns i = surf_usm_h(0)%i(m) j = surf_usm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_usm_h(0)%frac(m,ind_veg_wall) * & surf_usm_h(0)%wghf_eb(m) + & surf_usm_h(0)%frac(m,ind_pav_green) * & surf_usm_h(0)%wghf_eb_green(m) + & surf_usm_h(0)%frac(m,ind_wat_win) * & surf_usm_h(0)%wghf_eb_window(m) ENDDO ELSE IF ( .NOT. ALLOCATED( ghf_av ) ) THEN ALLOCATE( ghf_av(nysg:nyng,nxlg:nxrg) ) ghf_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = ghf_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'ol*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) local_pf(i,j,nzb+1) = surf_def_h(0)%ol(m) ENDDO DO m = 1, surf_lsm_h(0)%ns i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_lsm_h(0)%ol(m) ENDDO DO m = 1, surf_usm_h(0)%ns i = surf_usm_h(0)%i(m) j = surf_usm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_usm_h(0)%ol(m) ENDDO ELSE IF ( .NOT. ALLOCATED( ol_av ) ) THEN ALLOCATE( ol_av(nysg:nyng,nxlg:nxrg) ) ol_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = ol_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'p_xy', 'p_xz', 'p_yz' ) IF ( av == 0 ) THEN IF ( psolver /= 'sor' ) CALL exchange_horiz( p, nbgp ) to_be_resorted => p ELSE IF ( .NOT. ALLOCATED( p_av ) ) THEN ALLOCATE( p_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) p_av = REAL( fill_value, KIND = wp ) ENDIF IF ( psolver /= 'sor' ) CALL exchange_horiz( p_av, nbgp ) to_be_resorted => p_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'pc_xy', 'pc_xz', 'pc_yz' ) ! particle concentration IF ( av == 0 ) THEN IF ( time_since_reference_point >= particle_advection_start ) THEN tend = prt_count ! CALL exchange_horiz( tend, nbgp ) ELSE tend = 0.0_wp ENDIF DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 local_pf(i,j,k) = tend(k,j,i) ENDDO ENDDO ENDDO resorted = .TRUE. ELSE IF ( .NOT. ALLOCATED( pc_av ) ) THEN ALLOCATE( pc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) pc_av = REAL( fill_value, KIND = wp ) ENDIF ! CALL exchange_horiz( pc_av, nbgp ) to_be_resorted => pc_av ENDIF CASE ( 'pr_xy', 'pr_xz', 'pr_yz' ) ! mean particle radius (effective radius) IF ( av == 0 ) THEN IF ( time_since_reference_point >= particle_advection_start ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 number_of_particles = prt_count(k,j,i) IF (number_of_particles <= 0) CYCLE particles => grid_particles(k,j,i)%particles(1:number_of_particles) s_r2 = 0.0_wp s_r3 = 0.0_wp DO n = 1, number_of_particles IF ( particles(n)%particle_mask ) THEN s_r2 = s_r2 + particles(n)%radius**2 * & particles(n)%weight_factor s_r3 = s_r3 + particles(n)%radius**3 * & particles(n)%weight_factor ENDIF ENDDO IF ( s_r2 > 0.0_wp ) THEN mean_r = s_r3 / s_r2 ELSE mean_r = 0.0_wp ENDIF tend(k,j,i) = mean_r ENDDO ENDDO ENDDO ! CALL exchange_horiz( tend, nbgp ) ELSE tend = 0.0_wp ENDIF DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 local_pf(i,j,k) = tend(k,j,i) ENDDO ENDDO ENDDO resorted = .TRUE. ELSE IF ( .NOT. ALLOCATED( pr_av ) ) THEN ALLOCATE( pr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) pr_av = REAL( fill_value, KIND = wp ) ENDIF ! CALL exchange_horiz( pr_av, nbgp ) to_be_resorted => pr_av ENDIF CASE ( 'theta_xy', 'theta_xz', 'theta_yz' ) IF ( av == 0 ) THEN IF ( .NOT. bulk_cloud_model ) THEN to_be_resorted => pt ELSE DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 local_pf(i,j,k) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) ENDDO ENDDO ENDDO resorted = .TRUE. ENDIF ELSE IF ( .NOT. ALLOCATED( pt_av ) ) THEN ALLOCATE( pt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) pt_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => pt_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'q_xy', 'q_xz', 'q_yz' ) IF ( av == 0 ) THEN to_be_resorted => q ELSE IF ( .NOT. ALLOCATED( q_av ) ) THEN ALLOCATE( q_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) q_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => q_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'ql_xy', 'ql_xz', 'ql_yz' ) IF ( av == 0 ) THEN to_be_resorted => ql ELSE IF ( .NOT. ALLOCATED( ql_av ) ) THEN ALLOCATE( ql_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ql_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => ql_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'ql_c_xy', 'ql_c_xz', 'ql_c_yz' ) IF ( av == 0 ) THEN to_be_resorted => ql_c ELSE IF ( .NOT. ALLOCATED( ql_c_av ) ) THEN ALLOCATE( ql_c_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ql_c_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => ql_c_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'ql_v_xy', 'ql_v_xz', 'ql_v_yz' ) IF ( av == 0 ) THEN to_be_resorted => ql_v ELSE IF ( .NOT. ALLOCATED( ql_v_av ) ) THEN ALLOCATE( ql_v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ql_v_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => ql_v_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'ql_vp_xy', 'ql_vp_xz', 'ql_vp_yz' ) IF ( av == 0 ) THEN IF ( time_since_reference_point >= particle_advection_start ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 number_of_particles = prt_count(k,j,i) IF (number_of_particles <= 0) CYCLE particles => grid_particles(k,j,i)%particles(1:number_of_particles) DO n = 1, number_of_particles IF ( particles(n)%particle_mask ) THEN tend(k,j,i) = tend(k,j,i) + & particles(n)%weight_factor / prt_count(k,j,i) ENDIF ENDDO ENDDO ENDDO ENDDO ! CALL exchange_horiz( tend, nbgp ) ELSE tend = 0.0_wp ENDIF DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 local_pf(i,j,k) = tend(k,j,i) ENDDO ENDDO ENDDO resorted = .TRUE. ELSE IF ( .NOT. ALLOCATED( ql_vp_av ) ) THEN ALLOCATE( ql_vp_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ql_vp_av = REAL( fill_value, KIND = wp ) ENDIF ! CALL exchange_horiz( ql_vp_av, nbgp ) to_be_resorted => ql_vp_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'qsurf*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) local_pf(i,j,nzb+1) = surf_def_h(0)%q_surface(m) ENDDO DO m = 1, surf_lsm_h(0)%ns i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_lsm_h(0)%q_surface(m) ENDDO DO m = 1, surf_usm_h(0)%ns i = surf_usm_h(0)%i(m) j = surf_usm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_usm_h(0)%q_surface(m) ENDDO ELSE IF ( .NOT. ALLOCATED( qsurf_av ) ) THEN ALLOCATE( qsurf_av(nysg:nyng,nxlg:nxrg) ) qsurf_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = qsurf_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'qsws*_xy' ) ! 2d-array IF ( av == 0 ) THEN local_pf(:,:,nzb+1) = REAL( fill_value, KIND = wp ) ! !-- In case of default surfaces, clean-up flux by density. !-- In case of land-surfaces, convert fluxes into dynamic units. DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) k = surf_def_h(0)%k(m) local_pf(i,j,nzb+1) = surf_def_h(0)%qsws(m) * waterflux_output_conversion(k) ENDDO DO m = 1, surf_lsm_h(0)%ns i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) k = surf_lsm_h(0)%k(m) local_pf(i,j,nzb+1) = surf_lsm_h(0)%qsws(m) * waterflux_output_conversion(k) ENDDO DO m = 1, surf_usm_h(0)%ns i = surf_usm_h(0)%i(m) j = surf_usm_h(0)%j(m) k = surf_usm_h(0)%k(m) local_pf(i,j,nzb+1) = surf_usm_h(0)%qsws(m) * waterflux_output_conversion(k) ENDDO ELSE IF ( .NOT. ALLOCATED( qsws_av ) ) THEN ALLOCATE( qsws_av(nysg:nyng,nxlg:nxrg) ) qsws_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = qsws_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'qv_xy', 'qv_xz', 'qv_yz' ) IF ( av == 0 ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 local_pf(i,j,k) = q(k,j,i) - ql(k,j,i) ENDDO ENDDO ENDDO resorted = .TRUE. ELSE IF ( .NOT. ALLOCATED( qv_av ) ) THEN ALLOCATE( qv_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) qv_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => qv_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'r_a*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_lsm_h(0)%ns i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_lsm_h(0)%r_a(m) ENDDO DO m = 1, surf_usm_h(0)%ns i = surf_usm_h(0)%i(m) j = surf_usm_h(0)%j(m) local_pf(i,j,nzb+1) = ( surf_usm_h(0)%frac(m,ind_veg_wall) * & surf_usm_h(0)%r_a(m) + & surf_usm_h(0)%frac(m,ind_pav_green) * & surf_usm_h(0)%r_a_green(m) + & surf_usm_h(0)%frac(m,ind_wat_win) * & surf_usm_h(0)%r_a_window(m) ) ENDDO ELSE IF ( .NOT. ALLOCATED( r_a_av ) ) THEN ALLOCATE( r_a_av(nysg:nyng,nxlg:nxrg) ) r_a_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = r_a_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 's_xy', 's_xz', 's_yz' ) IF ( av == 0 ) THEN to_be_resorted => s ELSE IF ( .NOT. ALLOCATED( s_av ) ) THEN ALLOCATE( s_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) s_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => s_av ENDIF CASE ( 'shf*_xy' ) ! 2d-array IF ( av == 0 ) THEN ! !-- In case of default surfaces, clean-up flux by density. !-- In case of land- and urban-surfaces, convert fluxes into dynamic units. DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) k = surf_def_h(0)%k(m) local_pf(i,j,nzb+1) = surf_def_h(0)%shf(m) * heatflux_output_conversion(k) ENDDO DO m = 1, surf_lsm_h(0)%ns i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) k = surf_lsm_h(0)%k(m) local_pf(i,j,nzb+1) = surf_lsm_h(0)%shf(m) * heatflux_output_conversion(k) ENDDO DO m = 1, surf_usm_h(0)%ns i = surf_usm_h(0)%i(m) j = surf_usm_h(0)%j(m) k = surf_usm_h(0)%k(m) local_pf(i,j,nzb+1) = surf_usm_h(0)%shf(m) * heatflux_output_conversion(k) ENDDO ELSE IF ( .NOT. ALLOCATED( shf_av ) ) THEN ALLOCATE( shf_av(nysg:nyng,nxlg:nxrg) ) shf_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = shf_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'ssurf*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO i = nxl, nxr DO j = nys, nyn k = topo_top_ind(j,i,0) local_pf(i,j,nzb+1) = s(k,j,i) ENDDO ENDDO ELSE IF ( .NOT. ALLOCATED( ssurf_av ) ) THEN ALLOCATE( ssurf_av(nysg:nyng,nxlg:nxrg) ) ssurf_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = ssurf_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'ssws*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) local_pf(i,j,nzb+1) = surf_def_h(0)%ssws(m) ENDDO DO m = 1, surf_lsm_h(0)%ns i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_lsm_h(0)%ssws(m) ENDDO DO m = 1, surf_usm_h(0)%ns i = surf_usm_h(0)%i(m) j = surf_usm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_usm_h(0)%ssws(m) ENDDO ELSE IF ( .NOT. ALLOCATED( ssws_av ) ) THEN ALLOCATE( ssws_av(nysg:nyng,nxlg:nxrg) ) ssws_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = ssws_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 't*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) local_pf(i,j,nzb+1) = surf_def_h(0)%ts(m) ENDDO DO m = 1, surf_lsm_h(0)%ns i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_lsm_h(0)%ts(m) ENDDO DO m = 1, surf_usm_h(0)%ns i = surf_usm_h(0)%i(m) j = surf_usm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_usm_h(0)%ts(m) ENDDO ELSE IF ( .NOT. ALLOCATED( ts_av ) ) THEN ALLOCATE( ts_av(nysg:nyng,nxlg:nxrg) ) ts_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = ts_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'tsurf*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) local_pf(i,j,nzb+1) = surf_def_h(0)%pt_surface(m) ENDDO DO m = 1, surf_lsm_h(0)%ns i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_lsm_h(0)%pt_surface(m) ENDDO DO m = 1, surf_usm_h(0)%ns i = surf_usm_h(0)%i(m) j = surf_usm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_usm_h(0)%pt_surface(m) ENDDO ELSE IF ( .NOT. ALLOCATED( tsurf_av ) ) THEN ALLOCATE( tsurf_av(nysg:nyng,nxlg:nxrg) ) tsurf_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = tsurf_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'u_xy', 'u_xz', 'u_yz' ) flag_nr = 1 IF ( av == 0 ) THEN to_be_resorted => u ELSE IF ( .NOT. ALLOCATED( u_av ) ) THEN ALLOCATE( u_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) u_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => u_av ENDIF IF ( mode == 'xy' ) level_z = zu ! !-- Substitute the values generated by "mirror" boundary condition at the bottom !-- boundary by the real surface values. IF ( do2d(av,ivar) == 'u_xz' .OR. do2d(av,ivar) == 'u_yz' ) THEN IF ( ibc_uv_b == 0 ) local_pf(:,:,nzb) = 0.0_wp ENDIF CASE ( 'us*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) local_pf(i,j,nzb+1) = surf_def_h(0)%us(m) ENDDO DO m = 1, surf_lsm_h(0)%ns i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_lsm_h(0)%us(m) ENDDO DO m = 1, surf_usm_h(0)%ns i = surf_usm_h(0)%i(m) j = surf_usm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_usm_h(0)%us(m) ENDDO ELSE IF ( .NOT. ALLOCATED( us_av ) ) THEN ALLOCATE( us_av(nysg:nyng,nxlg:nxrg) ) us_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = us_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'v_xy', 'v_xz', 'v_yz' ) flag_nr = 2 IF ( av == 0 ) THEN to_be_resorted => v ELSE IF ( .NOT. ALLOCATED( v_av ) ) THEN ALLOCATE( v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) v_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => v_av ENDIF IF ( mode == 'xy' ) level_z = zu ! !-- Substitute the values generated by "mirror" boundary condition !-- at the bottom boundary by the real surface values. IF ( do2d(av,ivar) == 'v_xz' .OR. do2d(av,ivar) == 'v_yz' ) THEN IF ( ibc_uv_b == 0 ) local_pf(:,:,nzb) = 0.0_wp ENDIF CASE ( 'thetav_xy', 'thetav_xz', 'thetav_yz' ) IF ( av == 0 ) THEN to_be_resorted => vpt ELSE IF ( .NOT. ALLOCATED( vpt_av ) ) THEN ALLOCATE( vpt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) vpt_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => vpt_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'w_xy', 'w_xz', 'w_yz' ) flag_nr = 3 IF ( av == 0 ) THEN to_be_resorted => w ELSE IF ( .NOT. ALLOCATED( w_av ) ) THEN ALLOCATE( w_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) w_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => w_av ENDIF IF ( mode == 'xy' ) level_z = zw CASE ( 'z0*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) local_pf(i,j,nzb+1) = surf_def_h(0)%z0(m) ENDDO DO m = 1, surf_lsm_h(0)%ns i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_lsm_h(0)%z0(m) ENDDO DO m = 1, surf_usm_h(0)%ns i = surf_usm_h(0)%i(m) j = surf_usm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_usm_h(0)%z0(m) ENDDO ELSE IF ( .NOT. ALLOCATED( z0_av ) ) THEN ALLOCATE( z0_av(nysg:nyng,nxlg:nxrg) ) z0_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = z0_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'z0h*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) local_pf(i,j,nzb+1) = surf_def_h(0)%z0h(m) ENDDO DO m = 1, surf_lsm_h(0)%ns i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_lsm_h(0)%z0h(m) ENDDO DO m = 1, surf_usm_h(0)%ns i = surf_usm_h(0)%i(m) j = surf_usm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_usm_h(0)%z0h(m) ENDDO ELSE IF ( .NOT. ALLOCATED( z0h_av ) ) THEN ALLOCATE( z0h_av(nysg:nyng,nxlg:nxrg) ) z0h_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = z0h_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'z0q*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) local_pf(i,j,nzb+1) = surf_def_h(0)%z0q(m) ENDDO DO m = 1, surf_lsm_h(0)%ns i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_lsm_h(0)%z0q(m) ENDDO DO m = 1, surf_usm_h(0)%ns i = surf_usm_h(0)%i(m) j = surf_usm_h(0)%j(m) local_pf(i,j,nzb+1) = surf_usm_h(0)%z0q(m) ENDDO ELSE IF ( .NOT. ALLOCATED( z0q_av ) ) THEN ALLOCATE( z0q_av(nysg:nyng,nxlg:nxrg) ) z0q_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = z0q_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE DEFAULT ! !-- Quantities of other modules IF ( .NOT. found ) THEN CALL module_interface_data_output_2d( av, do2d(av,ivar), found, grid, mode, & local_pf, two_d, nzb_do, nzt_do, & fill_value & ) ENDIF resorted = .TRUE. IF ( grid == 'zu' ) THEN IF ( mode == 'xy' ) level_z = zu ELSEIF ( grid == 'zw' ) THEN IF ( mode == 'xy' ) level_z = zw ELSEIF ( grid == 'zu1' ) THEN IF ( mode == 'xy' ) level_z(nzb+1) = zu(nzb+1) ELSEIF ( grid == 'zs' ) THEN IF ( mode == 'xy' ) level_z = zs ENDIF IF ( .NOT. found ) THEN message_string = 'no output provided for: ' // TRIM( do2d(av,ivar) ) CALL message( 'data_output_2d', 'PA0181', 0, 0, 0, 6, 0 ) ENDIF END SELECT ! !-- Resort the array to be output, if not done above. Flag topography grid points with fill !-- values, using the corresponding maksing flag. IF ( .NOT. resorted ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb_do, nzt_do local_pf(i,j,k) = MERGE( to_be_resorted(k,j,i), & REAL( fill_value, KIND = wp ), & BTEST( wall_flags_total_0(k,j,i), flag_nr ) ) ENDDO ENDDO ENDDO ENDIF ! !-- Output of the individual cross-sections, depending on the cross-section mode chosen. is = 1 loop1: DO WHILE ( section(is,s_ind) /= -9999 .OR. two_d ) SELECT CASE ( mode ) CASE ( 'xy' ) ! !-- Determine the cross section index IF ( two_d ) THEN layer_xy = nzb+1 ELSE layer_xy = section(is,s_ind) ENDIF ! !-- Exit the loop for layers beyond the data output domain (used for soil model) IF ( layer_xy > nzt_do ) THEN EXIT loop1 ENDIF ! !-- Update the netCDF xy cross section time axis. !-- In case of parallel output, this is only done by PE0 to increase the performance. IF ( time_since_reference_point /= do2d_xy_last_time(av) ) THEN do2d_xy_time_count(av) = do2d_xy_time_count(av) + 1 do2d_xy_last_time(av) = time_since_reference_point IF ( myid == 0 ) THEN IF ( .NOT. data_output_2d_on_each_pe .OR. netcdf_data_format > 4 ) THEN #if defined( __netcdf ) nc_stat = NF90_PUT_VAR( id_set_xy(av), & id_var_time_xy(av), & (/ time_since_reference_point /), & start = (/ do2d_xy_time_count(av) /), & count = (/ 1 /) ) CALL netcdf_handle_error( 'data_output_2d', 53 ) #endif ENDIF ENDIF ENDIF ! !-- If required, carry out averaging along z IF ( section(is,s_ind) == -1 .AND. .NOT. two_d ) THEN local_2d = 0.0_wp ! !-- Carry out the averaging (all data are on the PE) DO k = nzb_do, nzt_do DO j = nys, nyn DO i = nxl, nxr local_2d(i,j) = local_2d(i,j) + local_pf(i,j,k) ENDDO ENDDO ENDDO local_2d = local_2d / ( nzt_do - nzb_do + 1.0_wp) ELSE ! !-- Just store the respective section on the local array local_2d = local_pf(:,:,layer_xy) ENDIF #if defined( __parallel ) IF ( netcdf_data_format > 4 ) THEN ! !-- Parallel output in netCDF4/HDF5 format. IF ( two_d ) THEN iis = 1 ELSE iis = is ENDIF #if defined( __netcdf ) ! !-- For parallel output, all cross sections are first stored here on a local array !-- and will be written to the output file afterwards to increase the performance. DO i = nxl, nxr DO j = nys, nyn local_2d_sections(i,j,iis) = local_2d(i,j) ENDDO ENDDO #endif ELSE IF ( data_output_2d_on_each_pe ) THEN ! !-- Output of partial arrays on each PE #if defined( __netcdf ) IF ( myid == 0 ) THEN WRITE ( 21 ) time_since_reference_point, do2d_xy_time_count(av), av ENDIF #endif DO i = 0, io_blocks-1 IF ( i == io_group ) THEN WRITE ( 21 ) nxl, nxr, nys, nyn, nys, nyn WRITE ( 21 ) local_2d ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ELSE ! !-- PE0 receives partial arrays from all processors and then outputs them. Here !-- a barrier has to be set, because otherwise "-MPI- FATAL: Remote protocol !-- queue full" may occur. CALL MPI_BARRIER( comm2d, ierr ) ngp = ( nxr-nxl+1 ) * ( nyn-nys+1 ) IF ( myid == 0 ) THEN ! !-- Local array can be relocated directly. total_2d(nxl:nxr,nys:nyn) = local_2d ! !-- Receive data from all other PEs. DO n = 1, numprocs-1 ! !-- Receive index limits first, then array. !-- Index limits are received in arbitrary order from !-- the PEs. CALL MPI_RECV( ind(1), 4, MPI_INTEGER, MPI_ANY_SOURCE, 0, comm2d, & status, ierr ) sender = status(MPI_SOURCE) DEALLOCATE( local_2d ) ALLOCATE( local_2d(ind(1):ind(2),ind(3):ind(4)) ) CALL MPI_RECV( local_2d(ind(1),ind(3)), ngp, MPI_REAL, sender, 1, & comm2d, status, ierr ) total_2d(ind(1):ind(2),ind(3):ind(4)) = local_2d ENDDO ! !-- Relocate the local array for the next loop increment DEALLOCATE( local_2d ) ALLOCATE( local_2d(nxl:nxr,nys:nyn) ) #if defined( __netcdf ) IF ( two_d ) THEN nc_stat = NF90_PUT_VAR( id_set_xy(av), & id_var_do2d(av,ivar), & total_2d(0:nx,0:ny), & start = (/ 1, 1, 1, do2d_xy_time_count(av) /), & count = (/ nx+1, ny+1, 1, 1 /) ) ELSE nc_stat = NF90_PUT_VAR( id_set_xy(av), & id_var_do2d(av,ivar), & total_2d(0:nx,0:ny), & start = (/ 1, 1, is, do2d_xy_time_count(av) /), & count = (/ nx+1, ny+1, 1, 1 /) ) ENDIF CALL netcdf_handle_error( 'data_output_2d', 54 ) #endif ELSE ! !-- First send the local index limits to PE0 ind(1) = nxl; ind(2) = nxr ind(3) = nys; ind(4) = nyn CALL MPI_SEND( ind(1), 4, MPI_INTEGER, 0, 0, comm2d, ierr ) ! !-- Send data to PE0 CALL MPI_SEND( local_2d(nxl,nys), ngp, MPI_REAL, 0, 1, comm2d, ierr ) ENDIF ! !-- A barrier has to be set, because otherwise some PEs may proceed too fast so !-- that PE0 may receive wrong data on tag 0. CALL MPI_BARRIER( comm2d, ierr ) ENDIF ENDIF #else #if defined( __netcdf ) IF ( two_d ) THEN nc_stat = NF90_PUT_VAR( id_set_xy(av), & id_var_do2d(av,ivar), & local_2d(nxl:nxr,nys:nyn), & start = (/ 1, 1, 1, do2d_xy_time_count(av) /), & count = (/ nx+1, ny+1, 1, 1 /) ) ELSE nc_stat = NF90_PUT_VAR( id_set_xy(av), & id_var_do2d(av,ivar), & local_2d(nxl:nxr,nys:nyn), & start = (/ 1, 1, is, do2d_xy_time_count(av) /), & count = (/ nx+1, ny+1, 1, 1 /) ) ENDIF CALL netcdf_handle_error( 'data_output_2d', 447 ) #endif #endif ! !-- For 2D-arrays (e.g. u*) only one cross-section is available. !-- Hence exit loop of output levels. IF ( two_d ) THEN IF ( netcdf_data_format < 5 ) two_d = .FALSE. EXIT loop1 ENDIF CASE ( 'xz' ) ! !-- Update the netCDF xz cross section time axis. !-- In case of parallel output, this is only done by PE0 to increase the performance. IF ( time_since_reference_point /= do2d_xz_last_time(av) ) THEN do2d_xz_time_count(av) = do2d_xz_time_count(av) + 1 do2d_xz_last_time(av) = time_since_reference_point IF ( myid == 0 ) THEN IF ( .NOT. data_output_2d_on_each_pe .OR. netcdf_data_format > 4 ) THEN #if defined( __netcdf ) nc_stat = NF90_PUT_VAR( id_set_xz(av), & id_var_time_xz(av), & (/ time_since_reference_point /), & start = (/ do2d_xz_time_count(av) /), & count = (/ 1 /) ) CALL netcdf_handle_error( 'data_output_2d', 56 ) #endif ENDIF ENDIF ENDIF ! !-- If required, carry out averaging along y IF ( section(is,s_ind) == -1 ) THEN ALLOCATE( local_2d_l(nxl:nxr,nzb_do:nzt_do) ) local_2d_l = 0.0_wp ngp = ( nxr-nxl + 1 ) * ( nzt_do-nzb_do + 1 ) ! !-- First local averaging on the PE DO k = nzb_do, nzt_do DO j = nys, nyn DO i = nxl, nxr local_2d_l(i,k) = local_2d_l(i,k) + local_pf(i,j,k) ENDDO ENDDO ENDDO #if defined( __parallel ) ! !-- Now do the averaging over all PEs along y IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( local_2d_l(nxl,nzb_do), local_2d(nxl,nzb_do), ngp, & MPI_REAL, MPI_SUM, comm1dy, ierr ) #else local_2d = local_2d_l #endif local_2d = local_2d / ( ny + 1.0_wp ) DEALLOCATE( local_2d_l ) ELSE ! !-- Just store the respective section on the local array (but only if it is !-- available on this PE!) IF ( section(is,s_ind) >= nys .AND. section(is,s_ind) <= nyn ) THEN local_2d = local_pf(:,section(is,s_ind),nzb_do:nzt_do) ENDIF ENDIF #if defined( __parallel ) IF ( netcdf_data_format > 4 ) THEN ! !-- Output in netCDF4/HDF5 format. !-- Output only on those PEs where the respective cross sections reside. Cross !-- sections averaged along y are output on the respective first PE along y !-- (myidy=0). IF ( ( section(is,s_ind) >= nys .AND. section(is,s_ind) <= nyn ) .OR. & ( section(is,s_ind) == -1 .AND. myidy == 0 ) ) THEN #if defined( __netcdf ) ! !-- For parallel output, all cross sections are first stored here on a local !-- array and will be written to the output file afterwards to increase the !-- performance. DO i = nxl, nxr DO k = nzb_do, nzt_do local_2d_sections_l(i,is,k) = local_2d(i,k) ENDDO ENDDO #endif ENDIF ELSE IF ( data_output_2d_on_each_pe ) THEN ! !-- Output of partial arrays on each PE. If the cross section does not reside !-- on the PE, output special index values. #if defined( __netcdf ) IF ( myid == 0 ) THEN WRITE ( 22 ) time_since_reference_point, do2d_xz_time_count(av), av ENDIF #endif DO i = 0, io_blocks-1 IF ( i == io_group ) THEN IF ( ( section(is,s_ind) >= nys .AND. section(is,s_ind) <= nyn ) & .OR. ( section(is,s_ind) == -1 .AND. nys-1 == -1 ) ) THEN WRITE (22) nxl, nxr, nzb_do, nzt_do, nzb, nzt+1 WRITE (22) local_2d ELSE WRITE (22) -1, -1, -1, -1, -1, -1 ENDIF ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ELSE ! !-- PE0 receives partial arrays from all processors of the respective cross !-- section and outputs them. Here a barrier has to be set, because otherwise !-- "-MPI- FATAL: Remote protocol queue full" may occur. CALL MPI_BARRIER( comm2d, ierr ) ngp = ( nxr-nxl + 1 ) * ( nzt_do-nzb_do + 1 ) IF ( myid == 0 ) THEN ! !-- Local array can be relocated directly. IF ( ( section(is,s_ind) >= nys .AND. section(is,s_ind) <= nyn ) .OR. & ( section(is,s_ind) == -1 .AND. nys-1 == -1 ) ) THEN total_2d(nxl:nxr,nzb_do:nzt_do) = local_2d ENDIF ! !-- Receive data from all other PEs. DO n = 1, numprocs-1 ! !-- Receive index limits first, then array. !-- Index limits are received in arbitrary order from the PEs. CALL MPI_RECV( ind(1), 4, MPI_INTEGER, MPI_ANY_SOURCE, 0, comm2d, & status, ierr ) ! !-- Not all PEs have data for XZ-cross-section. IF ( ind(1) /= -9999 ) THEN sender = status(MPI_SOURCE) DEALLOCATE( local_2d ) ALLOCATE( local_2d(ind(1):ind(2), ind(3):ind(4)) ) CALL MPI_RECV( local_2d(ind(1),ind(3)), ngp, MPI_REAL, sender, 1,& comm2d, status, ierr ) total_2d(ind(1):ind(2),ind(3):ind(4)) = local_2d ENDIF ENDDO ! !-- Relocate the local array for the next loop increment DEALLOCATE( local_2d ) ALLOCATE( local_2d(nxl:nxr,nzb_do:nzt_do) ) #if defined( __netcdf ) nc_stat = NF90_PUT_VAR( id_set_xz(av), & id_var_do2d(av,ivar), & total_2d(0:nx,nzb_do:nzt_do), & start = (/ 1, is, 1, do2d_xz_time_count(av) /),& count = (/ nx+1, 1, nzt_do-nzb_do+1, 1 /) ) CALL netcdf_handle_error( 'data_output_2d', 58 ) #endif ELSE ! !-- If the cross section resides on the PE, send the local index limits, !-- otherwise send -9999 to PE0. IF ( ( section(is,s_ind) >= nys .AND. section(is,s_ind) <= nyn ) .OR. & ( section(is,s_ind) == -1 .AND. nys-1 == -1 ) ) THEN ind(1) = nxl; ind(2) = nxr ind(3) = nzb_do; ind(4) = nzt_do ELSE ind(1) = -9999; ind(2) = -9999 ind(3) = -9999; ind(4) = -9999 ENDIF CALL MPI_SEND( ind(1), 4, MPI_INTEGER, 0, 0, comm2d, ierr ) ! !-- If applicable, send data to PE0. IF ( ind(1) /= -9999 ) THEN CALL MPI_SEND( local_2d(nxl,nzb_do), ngp, MPI_REAL, 0, 1, comm2d, & ierr ) ENDIF ENDIF ! !-- A barrier has to be set, because otherwise some PEs may proceed too fast so !-- that PE0 may receive wrong data on tag 0 CALL MPI_BARRIER( comm2d, ierr ) ENDIF ENDIF #else #if defined( __netcdf ) nc_stat = NF90_PUT_VAR( id_set_xz(av), & id_var_do2d(av,ivar), & local_2d(nxl:nxr,nzb_do:nzt_do), & start = (/ 1, is, 1, do2d_xz_time_count(av) /), & count = (/ nx+1, 1, nzt_do-nzb_do+1, 1 /) ) CALL netcdf_handle_error( 'data_output_2d', 451 ) #endif #endif CASE ( 'yz' ) ! !-- Update the netCDF yz cross section time axis. !-- In case of parallel output, this is only done by PE0 to increase the performance. IF ( time_since_reference_point /= do2d_yz_last_time(av) ) THEN do2d_yz_time_count(av) = do2d_yz_time_count(av) + 1 do2d_yz_last_time(av) = time_since_reference_point IF ( myid == 0 ) THEN IF ( .NOT. data_output_2d_on_each_pe .OR. netcdf_data_format > 4 ) THEN #if defined( __netcdf ) nc_stat = NF90_PUT_VAR( id_set_yz(av), & id_var_time_yz(av), & (/ time_since_reference_point /), & start = (/ do2d_yz_time_count(av) /), & count = (/ 1 /) ) CALL netcdf_handle_error( 'data_output_2d', 59 ) #endif ENDIF ENDIF ENDIF ! !-- If required, carry out averaging along x IF ( section(is,s_ind) == -1 ) THEN ALLOCATE( local_2d_l(nys:nyn,nzb_do:nzt_do) ) local_2d_l = 0.0_wp ngp = ( nyn-nys+1 ) * ( nzt_do-nzb_do+1 ) ! !-- First local averaging on the PE DO k = nzb_do, nzt_do DO j = nys, nyn DO i = nxl, nxr local_2d_l(j,k) = local_2d_l(j,k) + local_pf(i,j,k) ENDDO ENDDO ENDDO #if defined( __parallel ) ! !-- Now do the averaging over all PEs along x IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( local_2d_l(nys,nzb_do), local_2d(nys,nzb_do), ngp, & MPI_REAL, MPI_SUM, comm1dx, ierr ) #else local_2d = local_2d_l #endif local_2d = local_2d / ( nx + 1.0_wp ) DEALLOCATE( local_2d_l ) ELSE ! !-- Just store the respective section on the local array (but only if it is !-- available on this PE!) IF ( section(is,s_ind) >= nxl .AND. section(is,s_ind) <= nxr ) THEN local_2d = local_pf(section(is,s_ind),:,nzb_do:nzt_do) ENDIF ENDIF #if defined( __parallel ) IF ( netcdf_data_format > 4 ) THEN ! !-- Output in netCDF4/HDF5 format. !-- Output only on those PEs where the respective cross sections reside. Cross !-- sections averaged along x are output on the respective first PE along x !-- (myidx=0). IF ( ( section(is,s_ind) >= nxl .AND. section(is,s_ind) <= nxr ) .OR. & ( section(is,s_ind) == -1 .AND. myidx == 0 ) ) THEN #if defined( __netcdf ) ! !-- For parallel output, all cross sections are first stored here on a local !-- array and will be written to the output file afterwards to increase the !-- performance. DO j = nys, nyn DO k = nzb_do, nzt_do local_2d_sections_l(is,j,k) = local_2d(j,k) ENDDO ENDDO #endif ENDIF ELSE IF ( data_output_2d_on_each_pe ) THEN ! !-- Output of partial arrays on each PE. If the cross section does not reside !-- on the PE, output special index values. #if defined( __netcdf ) IF ( myid == 0 ) THEN WRITE ( 23 ) time_since_reference_point, do2d_yz_time_count(av), av ENDIF #endif DO i = 0, io_blocks-1 IF ( i == io_group ) THEN IF ( ( section(is,s_ind) >= nxl .AND. section(is,s_ind) <= nxr ) & .OR. ( section(is,s_ind) == -1 .AND. nxl-1 == -1 ) ) THEN WRITE (23) nys, nyn, nzb_do, nzt_do, nzb, nzt+1 WRITE (23) local_2d ELSE WRITE (23) -1, -1, -1, -1, -1, -1 ENDIF ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ELSE ! !-- PE0 receives partial arrays from all processors of the respective cross !-- section and outputs them. Here a barrier has to be set, because otherwise !-- "-MPI- FATAL: Remote protocol queue full" may occur. CALL MPI_BARRIER( comm2d, ierr ) ngp = ( nyn-nys+1 ) * ( nzt_do-nzb_do+1 ) IF ( myid == 0 ) THEN ! !-- Local array can be relocated directly. IF ( ( section(is,s_ind) >= nxl .AND. section(is,s_ind) <= nxr ) .OR. & ( section(is,s_ind) == -1 .AND. nxl-1 == -1 ) ) THEN total_2d(nys:nyn,nzb_do:nzt_do) = local_2d ENDIF ! !-- Receive data from all other PEs. DO n = 1, numprocs-1 ! !-- Receive index limits first, then array. !-- Index limits are received in arbitrary order from the PEs. CALL MPI_RECV( ind(1), 4, MPI_INTEGER, MPI_ANY_SOURCE, 0, comm2d, & status, ierr ) ! !-- Not all PEs have data for YZ-cross-section. IF ( ind(1) /= -9999 ) THEN sender = status(MPI_SOURCE) DEALLOCATE( local_2d ) ALLOCATE( local_2d(ind(1):ind(2), ind(3):ind(4)) ) CALL MPI_RECV( local_2d(ind(1),ind(3)), ngp, MPI_REAL, sender, 1,& comm2d, status, ierr ) total_2d(ind(1):ind(2),ind(3):ind(4)) = local_2d ENDIF ENDDO ! !-- Relocate the local array for the next loop increment DEALLOCATE( local_2d ) ALLOCATE( local_2d(nys:nyn,nzb_do:nzt_do) ) #if defined( __netcdf ) nc_stat = NF90_PUT_VAR( id_set_yz(av), & id_var_do2d(av,ivar), & total_2d(0:ny,nzb_do:nzt_do), & start = (/ is, 1, 1, do2d_yz_time_count(av) /),& count = (/ 1, ny+1, nzt_do-nzb_do+1, 1 /) ) CALL netcdf_handle_error( 'data_output_2d', 61 ) #endif ELSE ! !-- If the cross section resides on the PE, send the !-- local index limits, otherwise send -9999 to PE0. IF ( ( section(is,s_ind) >= nxl .AND. section(is,s_ind) <= nxr ) .OR. & ( section(is,s_ind) == -1 .AND. nxl-1 == -1 ) ) THEN ind(1) = nys; ind(2) = nyn ind(3) = nzb_do; ind(4) = nzt_do ELSE ind(1) = -9999; ind(2) = -9999 ind(3) = -9999; ind(4) = -9999 ENDIF CALL MPI_SEND( ind(1), 4, MPI_INTEGER, 0, 0, comm2d, ierr ) ! !-- If applicable, send data to PE0. IF ( ind(1) /= -9999 ) THEN CALL MPI_SEND( local_2d(nys,nzb_do), ngp, MPI_REAL, 0, 1, comm2d, & ierr ) ENDIF ENDIF ! !-- A barrier has to be set, because otherwise some PEs may proceed too fast so !-- that PE0 may receive wrong data on tag 0 CALL MPI_BARRIER( comm2d, ierr ) ENDIF ENDIF #else #if defined( __netcdf ) nc_stat = NF90_PUT_VAR( id_set_yz(av), & id_var_do2d(av,ivar), & local_2d(nys:nyn,nzb_do:nzt_do), & start = (/ is, 1, 1, do2d_xz_time_count(av) /), & count = (/ 1, ny+1, nzt_do-nzb_do+1, 1 /) ) CALL netcdf_handle_error( 'data_output_2d', 452 ) #endif #endif END SELECT is = is + 1 ENDDO loop1 ! !-- For parallel output, all data were collected before on a local array and are written now !-- to the netcdf file. This must be done to increase the performance of the parallel output. #if defined( __netcdf ) IF ( netcdf_data_format > 4 ) THEN SELECT CASE ( mode ) CASE ( 'xy' ) IF ( two_d ) THEN nis = 1 two_d = .FALSE. ELSE nis = ns ENDIF ! !-- Do not output redundant ghost point data except for the boundaries of the !-- total domain. ! IF ( nxr == nx .AND. nyn /= ny ) THEN ! nc_stat = NF90_PUT_VAR( id_set_xy(av), & ! id_var_do2d(av,ivar), & ! local_2d_sections(nxl:nxr+1, & ! nys:nyn,1:nis), & ! start = (/ nxl+1, nys+1, 1, & ! do2d_xy_time_count(av) /), & ! count = (/ nxr-nxl+2, & ! nyn-nys+1, nis, 1 & ! /) ) ! ELSEIF ( nxr /= nx .AND. nyn == ny ) THEN ! nc_stat = NF90_PUT_VAR( id_set_xy(av), & ! id_var_do2d(av,ivar), & ! local_2d_sections(nxl:nxr, & ! nys:nyn+1,1:nis), & ! start = (/ nxl+1, nys+1, 1, & ! do2d_xy_time_count(av) /), & ! count = (/ nxr-nxl+1, & ! nyn-nys+2, nis, 1 & ! /) ) ! ELSEIF ( nxr == nx .AND. nyn == ny ) THEN ! nc_stat = NF90_PUT_VAR( id_set_xy(av), & ! id_var_do2d(av,ivar), & ! local_2d_sections(nxl:nxr+1, & ! nys:nyn+1,1:nis), & ! start = (/ nxl+1, nys+1, 1, & ! do2d_xy_time_count(av) /), & ! count = (/ nxr-nxl+2, & ! nyn-nys+2, nis, 1 & ! /) ) ! ELSE nc_stat = NF90_PUT_VAR( id_set_xy(av), & id_var_do2d(av,ivar), & local_2d_sections(nxl:nxr, nys:nyn,1:nis), & start = (/ nxl+1, nys+1, 1, & do2d_xy_time_count(av) /), & count = (/ nxr-nxl+1, nyn-nys+1, nis, 1 /) ) ! ENDIF CALL netcdf_handle_error( 'data_output_2d', 55 ) CASE ( 'xz' ) ! !-- First, all PEs get the information of all cross-sections. !-- Then the data are written to the output file by all PEs while NF90_COLLECTIVE !-- is set in subroutine define_netcdf_header. Although redundant information are !-- written to the output file in that case, the performance is significantly !-- better compared to the case where only the first row of PEs in x-direction !-- (myidx = 0) is given the output while NF90_INDEPENDENT is set. IF ( npey /= 1 ) THEN #if defined( __parallel ) ! !-- Distribute data over all PEs along y ngp = ( nxr-nxl+1 ) * ( nzt_do-nzb_do+1 ) * ns IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( local_2d_sections_l(nxl,1,nzb_do), & local_2d_sections(nxl,1,nzb_do), & ngp, MPI_REAL, MPI_SUM, comm1dy, ierr ) #else local_2d_sections = local_2d_sections_l #endif ENDIF ! !-- Do not output redundant ghost point data except for the boundaries of the !-- total domain. ! IF ( nxr == nx ) THEN ! nc_stat = NF90_PUT_VAR( id_set_xz(av), & ! id_var_do2d(av,ivar), & ! local_2d_sections(nxl:nxr+1,1:ns, & ! nzb_do:nzt_do), & ! start = (/ nxl+1, 1, 1, & ! do2d_xz_time_count(av) /), & ! count = (/ nxr-nxl+2, ns, nzt_do-nzb_do+1, & ! 1 /) ) ! ELSE nc_stat = NF90_PUT_VAR( id_set_xz(av), & id_var_do2d(av,ivar), & local_2d_sections(nxl:nxr,1:ns, nzb_do:nzt_do), & start = (/ nxl+1, 1, 1, do2d_xz_time_count(av) /),& count = (/ nxr-nxl+1, ns, nzt_do-nzb_do+1, 1 /) ) ! ENDIF CALL netcdf_handle_error( 'data_output_2d', 57 ) CASE ( 'yz' ) ! !-- First, all PEs get the information of all cross-sections. !-- Then the data are written to the output file by all PEs while NF90_COLLECTIVE !-- is set in subroutine define_netcdf_header. Although redundant information are !-- written to the output file in that case, the performance is significantly !-- better compared to the case where only the first row of PEs in y-direction !-- (myidy = 0) is given the output while NF90_INDEPENDENT is set. IF ( npex /= 1 ) THEN #if defined( __parallel ) ! !-- Distribute data over all PEs along x ngp = ( nyn-nys+1 ) * ( nzt-nzb + 2 ) * ns IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( local_2d_sections_l(1,nys,nzb_do), & local_2d_sections(1,nys,nzb_do), & ngp, MPI_REAL, MPI_SUM, comm1dx, ierr ) #else local_2d_sections = local_2d_sections_l #endif ENDIF ! !-- Do not output redundant ghost point data except for the boundaries of the !-- total domain. ! IF ( nyn == ny ) THEN ! nc_stat = NF90_PUT_VAR( id_set_yz(av), & ! id_var_do2d(av,ivar), & ! local_2d_sections(1:ns, & ! nys:nyn+1,nzb_do:nzt_do), & ! start = (/ 1, nys+1, 1, & ! do2d_yz_time_count(av) /), & ! count = (/ ns, nyn-nys+2, & ! nzt_do-nzb_do+1, 1 /) ) ! ELSE nc_stat = NF90_PUT_VAR( id_set_yz(av), & id_var_do2d(av,ivar), & local_2d_sections(1:ns,nys:nyn, nzb_do:nzt_do), & start = (/ 1, nys+1, 1, do2d_yz_time_count(av) /),& count = (/ ns, nyn-nys+1, nzt_do-nzb_do+1, 1 /) ) ! ENDIF CALL netcdf_handle_error( 'data_output_2d', 60 ) CASE DEFAULT message_string = 'unknown cross-section: ' // TRIM( mode ) CALL message( 'data_output_2d', 'PA0180', 1, 2, 0, 6, 0 ) END SELECT ENDIF #endif ENDIF ivar = ivar + 1 l = MAX( 2, LEN_TRIM( do2d(av,ivar) ) ) do2d_mode = do2d(av,ivar)(l-1:l) ENDDO ! !-- Deallocate temporary arrays. IF ( ALLOCATED( level_z ) ) DEALLOCATE( level_z ) IF ( netcdf_data_format > 4 ) THEN DEALLOCATE( local_pf, local_2d, local_2d_sections ) IF( mode == 'xz' .OR. mode == 'yz' ) DEALLOCATE( local_2d_sections_l ) ENDIF #if defined( __parallel ) IF ( .NOT. data_output_2d_on_each_pe .AND. myid == 0 ) THEN DEALLOCATE( total_2d ) ENDIF #endif ! !-- Close plot output file. file_id = 20 + s_ind IF ( data_output_2d_on_each_pe ) THEN DO i = 0, io_blocks-1 IF ( i == io_group ) THEN CALL close_file( file_id ) ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ELSE IF ( myid == 0 ) CALL close_file( file_id ) ENDIF CALL cpu_log( log_point(3), 'data_output_2d', 'stop' ) IF ( debug_output_timestep ) CALL debug_message( 'data_output_2d', 'end' ) END SUBROUTINE data_output_2d