!> @file data_output_2d.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2018 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: data_output_2d.f90 3525 2018-11-14 16:06:14Z suehring $ ! Changes related to clean-up of biometeorology (dom_dwd_user) ! ! 3467 2018-10-30 19:05:21Z suehring ! Implementation of a new aerosol module salsa. ! ! 3448 2018-10-29 18:14:31Z kanani ! Add biometeorology ! ! 3421 2018-10-24 18:39:32Z gronemeier ! Renamed output variables ! ! 3419 2018-10-24 17:27:31Z gronemeier ! minor formatting (kanani) ! chem_data_output_2d subroutine added (basit) ! ! 3294 2018-10-01 02:37:10Z raasch ! changes concerning modularization of ocean option ! ! 3274 2018-09-24 15:42:55Z knoop ! Modularization of all bulk cloud physics code components ! ! 3241 2018-09-12 15:02:00Z raasch ! unused variables removed ! ! 3176 2018-07-26 17:12:48Z suehring ! Remove output of latent heat flux at urban-surfaces and set fill values ! instead ! ! 3052 2018-05-31 06:11:20Z raasch ! Do not open FORTRAN binary files in case of parallel netCDF I/O ! ! 3049 2018-05-29 13:52:36Z Giersch ! Error messages revised ! ! 3045 2018-05-28 07:55:41Z Giersch ! Error messages revised ! ! 3014 2018-05-09 08:42:38Z maronga ! Added nzb_do and nzt_do for some modules for 2d output ! ! 3004 2018-04-27 12:33:25Z Giersch ! precipitation_rate removed, case prr*_xy removed, to_be_resorted have to point ! to ql_vp_av and not to ql_vp, allocation checks implemented (averaged data ! will be assigned to fill values if no allocation happened so far) ! ! 2963 2018-04-12 14:47:44Z suehring ! Introduce index for vegetation/wall, pavement/green-wall and water/window ! surfaces, for clearer access of surface fraction, albedo, emissivity, etc. . ! ! 2817 2018-02-19 16:32:21Z knoop ! Preliminary gust module interface implemented ! ! 2805 2018-02-14 17:00:09Z suehring ! Consider also default-type surfaces for surface temperature output. ! ! 2797 2018-02-08 13:24:35Z suehring ! Enable output of ground-heat flux also at urban surfaces. ! ! 2743 2018-01-12 16:03:39Z suehring ! In case of natural- and urban-type surfaces output surfaces fluxes in W/m2. ! ! 2742 2018-01-12 14:59:47Z suehring ! Enable output of surface temperature ! ! 2735 2018-01-11 12:01:27Z suehring ! output of r_a moved from land-surface to consider also urban-type surfaces ! ! 2718 2018-01-02 08:49:38Z maronga ! Corrected "Former revisions" section ! ! 2696 2017-12-14 17:12:51Z kanani ! Change in file header (GPL part) ! Implementation of uv exposure model (FK) ! Implementation of turbulence_closure_mod (TG) ! Set fill values at topography grid points or e.g. non-natural-type surface ! in case of LSM output (MS) ! ! 2512 2017-10-04 08:26:59Z raasch ! upper bounds of cross section output changed from nx+1,ny+1 to nx,ny ! no output of ghost layer data ! ! 2292 2017-06-20 09:51:42Z schwenkel ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' ! includes two more prognostic equations for cloud drop concentration (nc) ! and cloud water content (qc). ! ! 2277 2017-06-12 10:47:51Z kanani ! Removed unused variables do2d_xy_n, do2d_xz_n, do2d_yz_n ! ! 2233 2017-05-30 18:08:54Z suehring ! ! 2232 2017-05-30 17:47:52Z suehring ! Adjustments to new surface concept ! ! ! 2190 2017-03-21 12:16:43Z raasch ! bugfix for r2031: string rho replaced by rho_ocean ! ! 2031 2016-10-21 15:11:58Z knoop ! renamed variable rho to rho_ocean and rho_av to rho_ocean_av ! ! 2000 2016-08-20 18:09:15Z knoop ! Forced header and separation lines into 80 columns ! ! 1980 2016-07-29 15:51:57Z suehring ! Bugfix, in order to steer user-defined output, setting flag found explicitly ! to .F. ! ! 1976 2016-07-27 13:28:04Z maronga ! Output of radiation quantities is now done directly in the respective module ! ! 1972 2016-07-26 07:52:02Z maronga ! Output of land surface quantities is now done directly in the respective ! module ! ! 1960 2016-07-12 16:34:24Z suehring ! Scalar surface flux added ! Rename INTEGER variable s into s_ind, as s is already assigned to scalar ! ! 1849 2016-04-08 11:33:18Z hoffmann ! precipitation_amount, precipitation_rate, prr moved to arrays_3d ! ! 1822 2016-04-07 07:49:42Z hoffmann ! Output of bulk cloud physics simplified. ! ! 1788 2016-03-10 11:01:04Z maronga ! Added output of z0q ! ! 1783 2016-03-06 18:36:17Z raasch ! name change of netcdf routines and module + related changes ! ! 1745 2016-02-05 13:06:51Z gronemeier ! Bugfix: test if time axis limit exceeds moved to point after call of check_open ! ! 1703 2015-11-02 12:38:44Z raasch ! bugfix for output of single (*) xy-sections in case of parallel netcdf I/O ! ! 1701 2015-11-02 07:43:04Z maronga ! Bugfix in output of RRTGM data ! ! 1691 2015-10-26 16:17:44Z maronga ! Added output of Obukhov length (ol) and radiative heating rates for RRTMG. ! Formatting corrections. ! ! 1682 2015-10-07 23:56:08Z knoop ! Code annotations made doxygen readable ! ! 1585 2015-04-30 07:05:52Z maronga ! Added support for RRTMG ! ! 1555 2015-03-04 17:44:27Z maronga ! Added output of r_a and r_s ! ! 1551 2015-03-03 14:18:16Z maronga ! Added suppport for land surface model and radiation model output. In the course ! of this action, the limits for vertical loops have been changed (from nzb and ! nzt+1 to nzb_do and nzt_do, respectively in order to allow soil model output). ! Moreover, a new vertical grid zs was introduced. ! ! 1359 2014-04-11 17:15:14Z hoffmann ! New particle structure integrated. ! ! 1353 2014-04-08 15:21:23Z heinze ! REAL constants provided with KIND-attribute ! ! 1327 2014-03-21 11:00:16Z raasch ! parts concerning iso2d output removed, ! -netcdf output queries ! ! 1320 2014-03-20 08:40:49Z raasch ! ONLY-attribute added to USE-statements, ! kind-parameters added to all INTEGER and REAL declaration statements, ! kinds are defined in new module kinds, ! revision history before 2012 removed, ! comment fields (!:) to be used for variable explanations added to ! all variable declaration statements ! ! 1318 2014-03-17 13:35:16Z raasch ! barrier argument removed from cpu_log. ! module interfaces removed ! ! 1311 2014-03-14 12:13:39Z heinze ! bugfix: close #if defined( __netcdf ) ! ! 1308 2014-03-13 14:58:42Z fricke ! +local_2d_sections, local_2d_sections_l, ns ! Check, if the limit of the time dimension is exceeded for parallel output ! To increase the performance for parallel output, the following is done: ! - Update of time axis is only done by PE0 ! - Cross sections are first stored on a local array and are written ! collectively to the output file by all PEs. ! ! 1115 2013-03-26 18:16:16Z hoffmann ! ql is calculated by calc_liquid_water_content ! ! 1076 2012-12-05 08:30:18Z hoffmann ! Bugfix in output of ql ! ! 1065 2012-11-22 17:42:36Z hoffmann ! Bugfix: Output of cross sections of ql ! ! 1053 2012-11-13 17:11:03Z hoffmann ! +qr, nr, qc and cross sections ! ! 1036 2012-10-22 13:43:42Z raasch ! code put under GPL (PALM 3.9) ! ! 1031 2012-10-19 14:35:30Z raasch ! netCDF4 without parallel file support implemented ! ! 1007 2012-09-19 14:30:36Z franke ! Bugfix: missing calculation of ql_vp added ! ! 978 2012-08-09 08:28:32Z fricke ! +z0h ! ! Revision 1.1 1997/08/11 06:24:09 raasch ! Initial revision ! ! ! Description: ! ------------ !> Data output of cross-sections in netCDF format or binary format !> to be later converted to NetCDF by helper routine combine_plot_fields. !> Attention: The position of the sectional planes is still not always computed !> --------- correctly. (zu is used always)! !------------------------------------------------------------------------------! SUBROUTINE data_output_2d( mode, av ) USE arrays_3d, & ONLY: dzw, e, heatflux_output_conversion, nc, nr, p, pt, & precipitation_amount, prr, q, qc, ql, ql_c, ql_v, qr, s, tend, & u, v, vpt, w, zu, zw, waterflux_output_conversion, hyrho, d_exner USE averaging USE basic_constants_and_equations_mod, & ONLY: c_p, lv_d_cp, l_v USE biometeorology_mod, & ONLY: bio_data_output_2d USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model, bcm_data_output_2d USE chemistry_model_mod, & ONLY: chem_data_output_2d USE control_parameters, & ONLY: air_chemistry, biometeorology, data_output_2d_on_each_pe, & data_output_xy, data_output_xz, data_output_yz, do2d, & do2d_xy_last_time, do2d_xy_time_count, & do2d_xz_last_time, do2d_xz_time_count, & do2d_yz_last_time, do2d_yz_time_count, & ibc_uv_b, io_blocks, io_group, land_surface, message_string, & ntdim_2d_xy, ntdim_2d_xz, ntdim_2d_yz, & ocean_mode, psolver, section, simulated_time, & time_since_reference_point, uv_exposure USE cpulog, & ONLY: cpu_log, log_point USE gust_mod, & ONLY: gust_data_output_2d, gust_module_enabled USE indices, & ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & nzb, nzt, wall_flags_0 USE kinds USE land_surface_model_mod, & ONLY: lsm_data_output_2d, zs #if defined( __netcdf ) USE NETCDF #endif USE netcdf_interface, & ONLY: fill_value, id_set_xy, id_set_xz, id_set_yz, id_var_do2d, & id_var_time_xy, id_var_time_xz, id_var_time_yz, nc_stat, & netcdf_data_format, netcdf_handle_error USE ocean_mod, & ONLY: ocean_data_output_2d USE particle_attributes, & ONLY: grid_particles, number_of_particles, particle_advection_start, & particles, prt_count USE pegrid USE radiation_model_mod, & ONLY: radiation, radiation_data_output_2d USE salsa_mod, & ONLY: salsa, salsa_data_output_2d USE surface_mod, & ONLY: ind_pav_green, ind_veg_wall, ind_wat_win, surf_def_h, & surf_lsm_h, surf_usm_h USE turbulence_closure_mod, & ONLY: tcm_data_output_2d USE uv_exposure_model_mod, & ONLY: uvem_data_output_2d IMPLICIT NONE CHARACTER (LEN=2) :: do2d_mode !< CHARACTER (LEN=2) :: mode !< CHARACTER (LEN=4) :: grid !< CHARACTER (LEN=50) :: rtext !< INTEGER(iwp) :: av !< INTEGER(iwp) :: ngp !< INTEGER(iwp) :: file_id !< INTEGER(iwp) :: flag_nr !< number of masking flag INTEGER(iwp) :: i !< INTEGER(iwp) :: if !< INTEGER(iwp) :: is !< INTEGER(iwp) :: iis !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< INTEGER(iwp) :: l !< INTEGER(iwp) :: layer_xy !< INTEGER(iwp) :: m !< INTEGER(iwp) :: n !< INTEGER(iwp) :: nis !< INTEGER(iwp) :: ns !< INTEGER(iwp) :: nzb_do !< lower limit of the data field (usually nzb) INTEGER(iwp) :: nzt_do !< upper limit of the data field (usually nzt+1) INTEGER(iwp) :: s_ind !< INTEGER(iwp) :: sender !< INTEGER(iwp) :: ind(4) !< LOGICAL :: found !< LOGICAL :: resorted !< LOGICAL :: two_d !< REAL(wp) :: mean_r !< REAL(wp) :: s_r2 !< REAL(wp) :: s_r3 !< REAL(wp), DIMENSION(:), ALLOCATABLE :: level_z !< REAL(wp), DIMENSION(:,:), ALLOCATABLE :: local_2d !< REAL(wp), DIMENSION(:,:), ALLOCATABLE :: local_2d_l !< REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: local_pf !< REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: local_2d_sections !< REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: local_2d_sections_l !< #if defined( __parallel ) REAL(wp), DIMENSION(:,:), ALLOCATABLE :: total_2d !< #endif REAL(wp), DIMENSION(:,:,:), POINTER :: to_be_resorted !< NAMELIST /LOCAL/ rtext ! !-- Immediate return, if no output is requested (no respective sections !-- found in parameter data_output) IF ( mode == 'xy' .AND. .NOT. data_output_xy(av) ) RETURN IF ( mode == 'xz' .AND. .NOT. data_output_xz(av) ) RETURN IF ( mode == 'yz' .AND. .NOT. data_output_yz(av) ) RETURN CALL cpu_log (log_point(3),'data_output_2d','start') two_d = .FALSE. ! local variable to distinguish between output of pure 2D ! arrays and cross-sections of 3D arrays. ! !-- Depending on the orientation of the cross-section, the respective output !-- files have to be opened. SELECT CASE ( mode ) CASE ( 'xy' ) s_ind = 1 ALLOCATE( level_z(nzb:nzt+1), local_2d(nxl:nxr,nys:nyn) ) IF ( netcdf_data_format > 4 ) THEN ns = 1 DO WHILE ( section(ns,s_ind) /= -9999 .AND. ns <= 100 ) ns = ns + 1 ENDDO ns = ns - 1 ALLOCATE( local_2d_sections(nxl:nxr,nys:nyn,1:ns) ) local_2d_sections = 0.0_wp ENDIF ! !-- Parallel netCDF4/HDF5 output is done on all PEs, all other on PE0 only IF ( myid == 0 .OR. netcdf_data_format > 4 ) THEN CALL check_open( 101+av*10 ) ENDIF IF ( data_output_2d_on_each_pe .AND. netcdf_data_format < 5 ) THEN CALL check_open( 21 ) ELSE IF ( myid == 0 ) THEN #if defined( __parallel ) ALLOCATE( total_2d(0:nx,0:ny) ) #endif ENDIF ENDIF CASE ( 'xz' ) s_ind = 2 ALLOCATE( local_2d(nxl:nxr,nzb:nzt+1) ) IF ( netcdf_data_format > 4 ) THEN ns = 1 DO WHILE ( section(ns,s_ind) /= -9999 .AND. ns <= 100 ) ns = ns + 1 ENDDO ns = ns - 1 ALLOCATE( local_2d_sections(nxl:nxr,1:ns,nzb:nzt+1) ) ALLOCATE( local_2d_sections_l(nxl:nxr,1:ns,nzb:nzt+1) ) local_2d_sections = 0.0_wp; local_2d_sections_l = 0.0_wp ENDIF ! !-- Parallel netCDF4/HDF5 output is done on all PEs, all other on PE0 only IF ( myid == 0 .OR. netcdf_data_format > 4 ) THEN CALL check_open( 102+av*10 ) ENDIF IF ( data_output_2d_on_each_pe .AND. netcdf_data_format < 5 ) THEN CALL check_open( 22 ) ELSE IF ( myid == 0 ) THEN #if defined( __parallel ) ALLOCATE( total_2d(0:nx,nzb:nzt+1) ) #endif ENDIF ENDIF CASE ( 'yz' ) s_ind = 3 ALLOCATE( local_2d(nys:nyn,nzb:nzt+1) ) IF ( netcdf_data_format > 4 ) THEN ns = 1 DO WHILE ( section(ns,s_ind) /= -9999 .AND. ns <= 100 ) ns = ns + 1 ENDDO ns = ns - 1 ALLOCATE( local_2d_sections(1:ns,nys:nyn,nzb:nzt+1) ) ALLOCATE( local_2d_sections_l(1:ns,nys:nyn,nzb:nzt+1) ) local_2d_sections = 0.0_wp; local_2d_sections_l = 0.0_wp ENDIF ! !-- Parallel netCDF4/HDF5 output is done on all PEs, all other on PE0 only IF ( myid == 0 .OR. netcdf_data_format > 4 ) THEN CALL check_open( 103+av*10 ) ENDIF IF ( data_output_2d_on_each_pe .AND. netcdf_data_format < 5 ) THEN CALL check_open( 23 ) ELSE IF ( myid == 0 ) THEN #if defined( __parallel ) ALLOCATE( total_2d(0:ny,nzb:nzt+1) ) #endif ENDIF ENDIF CASE DEFAULT message_string = 'unknown cross-section: ' // TRIM( mode ) CALL message( 'data_output_2d', 'PA0180', 1, 2, 0, 6, 0 ) END SELECT ! !-- For parallel netcdf output the time axis must be limited. Return, if this !-- limit is exceeded. This could be the case, if the simulated time exceeds !-- the given end time by the length of the given output interval. IF ( netcdf_data_format > 4 ) THEN IF ( mode == 'xy' .AND. do2d_xy_time_count(av) + 1 > & ntdim_2d_xy(av) ) THEN WRITE ( message_string, * ) 'Output of xy cross-sections is not ', & 'given at t=', simulated_time, '&because the', & ' maximum number of output time levels is exceeded.' CALL message( 'data_output_2d', 'PA0384', 0, 1, 0, 6, 0 ) CALL cpu_log( log_point(3), 'data_output_2d', 'stop' ) RETURN ENDIF IF ( mode == 'xz' .AND. do2d_xz_time_count(av) + 1 > & ntdim_2d_xz(av) ) THEN WRITE ( message_string, * ) 'Output of xz cross-sections is not ', & 'given at t=', simulated_time, '&because the', & ' maximum number of output time levels is exceeded.' CALL message( 'data_output_2d', 'PA0385', 0, 1, 0, 6, 0 ) CALL cpu_log( log_point(3), 'data_output_2d', 'stop' ) RETURN ENDIF IF ( mode == 'yz' .AND. do2d_yz_time_count(av) + 1 > & ntdim_2d_yz(av) ) THEN WRITE ( message_string, * ) 'Output of yz cross-sections is not ', & 'given at t=', simulated_time, '&because the', & ' maximum number of output time levels is exceeded.' CALL message( 'data_output_2d', 'PA0386', 0, 1, 0, 6, 0 ) CALL cpu_log( log_point(3), 'data_output_2d', 'stop' ) RETURN ENDIF ENDIF ! !-- Allocate a temporary array for resorting (kji -> ijk). ALLOCATE( local_pf(nxl:nxr,nys:nyn,nzb:nzt+1) ) local_pf = 0.0 ! !-- Loop of all variables to be written. !-- Output dimensions chosen if = 1 l = MAX( 2, LEN_TRIM( do2d(av,if) ) ) do2d_mode = do2d(av,if)(l-1:l) DO WHILE ( do2d(av,if)(1:1) /= ' ' ) IF ( do2d_mode == mode ) THEN ! !-- Set flag to steer output of radiation, land-surface, or user-defined !-- quantities found = .FALSE. nzb_do = nzb nzt_do = nzt+1 ! !-- Before each output, set array local_pf to fill value local_pf = fill_value ! !-- Set masking flag for topography for not resorted arrays flag_nr = 0 ! !-- Store the array chosen on the temporary array. resorted = .FALSE. SELECT CASE ( TRIM( do2d(av,if) ) ) CASE ( 'e_xy', 'e_xz', 'e_yz' ) IF ( av == 0 ) THEN to_be_resorted => e ELSE IF ( .NOT. ALLOCATED( e_av ) ) THEN ALLOCATE( e_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) e_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => e_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'thetal_xy', 'thetal_xz', 'thetal_yz' ) IF ( av == 0 ) THEN to_be_resorted => pt ELSE IF ( .NOT. ALLOCATED( lpt_av ) ) THEN ALLOCATE( lpt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) lpt_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => lpt_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'lwp*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = SUM( ql(nzb:nzt,j,i) * & dzw(1:nzt+1) ) ENDDO ENDDO ELSE IF ( .NOT. ALLOCATED( lwp_av ) ) THEN ALLOCATE( lwp_av(nysg:nyng,nxlg:nxrg) ) lwp_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = lwp_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'ghf*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_lsm_h%ns i = surf_lsm_h%i(m) j = surf_lsm_h%j(m) local_pf(i,j,nzb+1) = surf_lsm_h%ghf(m) ENDDO DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) local_pf(i,j,nzb+1) = surf_usm_h%frac(ind_veg_wall,m) * & surf_usm_h%wghf_eb(m) + & surf_usm_h%frac(ind_pav_green,m) * & surf_usm_h%wghf_eb_green(m) + & surf_usm_h%frac(ind_wat_win,m) * & surf_usm_h%wghf_eb_window(m) ENDDO ELSE IF ( .NOT. ALLOCATED( ghf_av ) ) THEN ALLOCATE( ghf_av(nysg:nyng,nxlg:nxrg) ) ghf_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = ghf_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'ol*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) local_pf(i,j,nzb+1) = surf_def_h(0)%ol(m) ENDDO DO m = 1, surf_lsm_h%ns i = surf_lsm_h%i(m) j = surf_lsm_h%j(m) local_pf(i,j,nzb+1) = surf_lsm_h%ol(m) ENDDO DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) local_pf(i,j,nzb+1) = surf_usm_h%ol(m) ENDDO ELSE IF ( .NOT. ALLOCATED( ol_av ) ) THEN ALLOCATE( ol_av(nysg:nyng,nxlg:nxrg) ) ol_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = ol_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'p_xy', 'p_xz', 'p_yz' ) IF ( av == 0 ) THEN IF ( psolver /= 'sor' ) CALL exchange_horiz( p, nbgp ) to_be_resorted => p ELSE IF ( .NOT. ALLOCATED( p_av ) ) THEN ALLOCATE( p_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) p_av = REAL( fill_value, KIND = wp ) ENDIF IF ( psolver /= 'sor' ) CALL exchange_horiz( p_av, nbgp ) to_be_resorted => p_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'pc_xy', 'pc_xz', 'pc_yz' ) ! particle concentration IF ( av == 0 ) THEN IF ( simulated_time >= particle_advection_start ) THEN tend = prt_count ! CALL exchange_horiz( tend, nbgp ) ELSE tend = 0.0_wp ENDIF DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 local_pf(i,j,k) = tend(k,j,i) ENDDO ENDDO ENDDO resorted = .TRUE. ELSE IF ( .NOT. ALLOCATED( pc_av ) ) THEN ALLOCATE( pc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) pc_av = REAL( fill_value, KIND = wp ) ENDIF ! CALL exchange_horiz( pc_av, nbgp ) to_be_resorted => pc_av ENDIF CASE ( 'pr_xy', 'pr_xz', 'pr_yz' ) ! mean particle radius (effective radius) IF ( av == 0 ) THEN IF ( simulated_time >= particle_advection_start ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 number_of_particles = prt_count(k,j,i) IF (number_of_particles <= 0) CYCLE particles => grid_particles(k,j,i)%particles(1:number_of_particles) s_r2 = 0.0_wp s_r3 = 0.0_wp DO n = 1, number_of_particles IF ( particles(n)%particle_mask ) THEN s_r2 = s_r2 + particles(n)%radius**2 * & particles(n)%weight_factor s_r3 = s_r3 + particles(n)%radius**3 * & particles(n)%weight_factor ENDIF ENDDO IF ( s_r2 > 0.0_wp ) THEN mean_r = s_r3 / s_r2 ELSE mean_r = 0.0_wp ENDIF tend(k,j,i) = mean_r ENDDO ENDDO ENDDO ! CALL exchange_horiz( tend, nbgp ) ELSE tend = 0.0_wp ENDIF DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 local_pf(i,j,k) = tend(k,j,i) ENDDO ENDDO ENDDO resorted = .TRUE. ELSE IF ( .NOT. ALLOCATED( pr_av ) ) THEN ALLOCATE( pr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) pr_av = REAL( fill_value, KIND = wp ) ENDIF ! CALL exchange_horiz( pr_av, nbgp ) to_be_resorted => pr_av ENDIF CASE ( 'theta_xy', 'theta_xz', 'theta_yz' ) IF ( av == 0 ) THEN IF ( .NOT. bulk_cloud_model ) THEN to_be_resorted => pt ELSE DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 local_pf(i,j,k) = pt(k,j,i) + lv_d_cp * & d_exner(k) * & ql(k,j,i) ENDDO ENDDO ENDDO resorted = .TRUE. ENDIF ELSE IF ( .NOT. ALLOCATED( pt_av ) ) THEN ALLOCATE( pt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) pt_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => pt_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'q_xy', 'q_xz', 'q_yz' ) IF ( av == 0 ) THEN to_be_resorted => q ELSE IF ( .NOT. ALLOCATED( q_av ) ) THEN ALLOCATE( q_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) q_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => q_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'ql_xy', 'ql_xz', 'ql_yz' ) IF ( av == 0 ) THEN to_be_resorted => ql ELSE IF ( .NOT. ALLOCATED( ql_av ) ) THEN ALLOCATE( ql_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ql_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => ql_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'ql_c_xy', 'ql_c_xz', 'ql_c_yz' ) IF ( av == 0 ) THEN to_be_resorted => ql_c ELSE IF ( .NOT. ALLOCATED( ql_c_av ) ) THEN ALLOCATE( ql_c_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ql_c_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => ql_c_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'ql_v_xy', 'ql_v_xz', 'ql_v_yz' ) IF ( av == 0 ) THEN to_be_resorted => ql_v ELSE IF ( .NOT. ALLOCATED( ql_v_av ) ) THEN ALLOCATE( ql_v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ql_v_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => ql_v_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'ql_vp_xy', 'ql_vp_xz', 'ql_vp_yz' ) IF ( av == 0 ) THEN IF ( simulated_time >= particle_advection_start ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 number_of_particles = prt_count(k,j,i) IF (number_of_particles <= 0) CYCLE particles => grid_particles(k,j,i)%particles(1:number_of_particles) DO n = 1, number_of_particles IF ( particles(n)%particle_mask ) THEN tend(k,j,i) = tend(k,j,i) + & particles(n)%weight_factor / & prt_count(k,j,i) ENDIF ENDDO ENDDO ENDDO ENDDO ! CALL exchange_horiz( tend, nbgp ) ELSE tend = 0.0_wp ENDIF DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 local_pf(i,j,k) = tend(k,j,i) ENDDO ENDDO ENDDO resorted = .TRUE. ELSE IF ( .NOT. ALLOCATED( ql_vp_av ) ) THEN ALLOCATE( ql_vp_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ql_vp_av = REAL( fill_value, KIND = wp ) ENDIF ! CALL exchange_horiz( ql_vp_av, nbgp ) to_be_resorted => ql_vp_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'qsws*_xy' ) ! 2d-array IF ( av == 0 ) THEN local_pf(:,:,nzb+1) = REAL( fill_value, KIND = wp ) ! !-- In case of default surfaces, clean-up flux by density. !-- In case of land-surfaces, convert fluxes into !-- dynamic units DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) k = surf_def_h(0)%k(m) local_pf(i,j,nzb+1) = surf_def_h(0)%qsws(m) * & waterflux_output_conversion(k) ENDDO DO m = 1, surf_lsm_h%ns i = surf_lsm_h%i(m) j = surf_lsm_h%j(m) k = surf_lsm_h%k(m) local_pf(i,j,nzb+1) = surf_lsm_h%qsws(m) * l_v ENDDO ELSE IF ( .NOT. ALLOCATED( qsws_av ) ) THEN ALLOCATE( qsws_av(nysg:nyng,nxlg:nxrg) ) qsws_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = qsws_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'qv_xy', 'qv_xz', 'qv_yz' ) IF ( av == 0 ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 local_pf(i,j,k) = q(k,j,i) - ql(k,j,i) ENDDO ENDDO ENDDO resorted = .TRUE. ELSE IF ( .NOT. ALLOCATED( qv_av ) ) THEN ALLOCATE( qv_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) qv_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => qv_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'r_a*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_lsm_h%ns i = surf_lsm_h%i(m) j = surf_lsm_h%j(m) local_pf(i,j,nzb+1) = surf_lsm_h%r_a(m) ENDDO DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) local_pf(i,j,nzb+1) = & ( surf_usm_h%frac(ind_veg_wall,m) * & surf_usm_h%r_a(m) + & surf_usm_h%frac(ind_pav_green,m) * & surf_usm_h%r_a_green(m) + & surf_usm_h%frac(ind_wat_win,m) * & surf_usm_h%r_a_window(m) ) ENDDO ELSE IF ( .NOT. ALLOCATED( r_a_av ) ) THEN ALLOCATE( r_a_av(nysg:nyng,nxlg:nxrg) ) r_a_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = r_a_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 's_xy', 's_xz', 's_yz' ) IF ( av == 0 ) THEN to_be_resorted => s ELSE IF ( .NOT. ALLOCATED( s_av ) ) THEN ALLOCATE( s_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) s_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => s_av ENDIF CASE ( 'shf*_xy' ) ! 2d-array IF ( av == 0 ) THEN ! !-- In case of default surfaces, clean-up flux by density. !-- In case of land- and urban-surfaces, convert fluxes into !-- dynamic units. DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) k = surf_def_h(0)%k(m) local_pf(i,j,nzb+1) = surf_def_h(0)%shf(m) * & heatflux_output_conversion(k) ENDDO DO m = 1, surf_lsm_h%ns i = surf_lsm_h%i(m) j = surf_lsm_h%j(m) k = surf_lsm_h%k(m) local_pf(i,j,nzb+1) = surf_lsm_h%shf(m) * c_p ENDDO DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) local_pf(i,j,nzb+1) = surf_usm_h%shf(m) * c_p ENDDO ELSE IF ( .NOT. ALLOCATED( shf_av ) ) THEN ALLOCATE( shf_av(nysg:nyng,nxlg:nxrg) ) shf_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = shf_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'ssws*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) local_pf(i,j,nzb+1) = surf_def_h(0)%ssws(m) ENDDO DO m = 1, surf_lsm_h%ns i = surf_lsm_h%i(m) j = surf_lsm_h%j(m) local_pf(i,j,nzb+1) = surf_lsm_h%ssws(m) ENDDO DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) local_pf(i,j,nzb+1) = surf_usm_h%ssws(m) ENDDO ELSE IF ( .NOT. ALLOCATED( ssws_av ) ) THEN ALLOCATE( ssws_av(nysg:nyng,nxlg:nxrg) ) ssws_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = ssws_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 't*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) local_pf(i,j,nzb+1) = surf_def_h(0)%ts(m) ENDDO DO m = 1, surf_lsm_h%ns i = surf_lsm_h%i(m) j = surf_lsm_h%j(m) local_pf(i,j,nzb+1) = surf_lsm_h%ts(m) ENDDO DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) local_pf(i,j,nzb+1) = surf_usm_h%ts(m) ENDDO ELSE IF ( .NOT. ALLOCATED( ts_av ) ) THEN ALLOCATE( ts_av(nysg:nyng,nxlg:nxrg) ) ts_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = ts_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'tsurf*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) local_pf(i,j,nzb+1) = surf_def_h(0)%pt_surface(m) ENDDO DO m = 1, surf_lsm_h%ns i = surf_lsm_h%i(m) j = surf_lsm_h%j(m) local_pf(i,j,nzb+1) = surf_lsm_h%pt_surface(m) ENDDO DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) local_pf(i,j,nzb+1) = surf_usm_h%pt_surface(m) ENDDO ELSE IF ( .NOT. ALLOCATED( tsurf_av ) ) THEN ALLOCATE( tsurf_av(nysg:nyng,nxlg:nxrg) ) tsurf_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = tsurf_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'u_xy', 'u_xz', 'u_yz' ) flag_nr = 1 IF ( av == 0 ) THEN to_be_resorted => u ELSE IF ( .NOT. ALLOCATED( u_av ) ) THEN ALLOCATE( u_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) u_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => u_av ENDIF IF ( mode == 'xy' ) level_z = zu ! !-- Substitute the values generated by "mirror" boundary condition !-- at the bottom boundary by the real surface values. IF ( do2d(av,if) == 'u_xz' .OR. do2d(av,if) == 'u_yz' ) THEN IF ( ibc_uv_b == 0 ) local_pf(:,:,nzb) = 0.0_wp ENDIF CASE ( 'us*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) local_pf(i,j,nzb+1) = surf_def_h(0)%us(m) ENDDO DO m = 1, surf_lsm_h%ns i = surf_lsm_h%i(m) j = surf_lsm_h%j(m) local_pf(i,j,nzb+1) = surf_lsm_h%us(m) ENDDO DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) local_pf(i,j,nzb+1) = surf_usm_h%us(m) ENDDO ELSE IF ( .NOT. ALLOCATED( us_av ) ) THEN ALLOCATE( us_av(nysg:nyng,nxlg:nxrg) ) us_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = us_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'v_xy', 'v_xz', 'v_yz' ) flag_nr = 2 IF ( av == 0 ) THEN to_be_resorted => v ELSE IF ( .NOT. ALLOCATED( v_av ) ) THEN ALLOCATE( v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) v_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => v_av ENDIF IF ( mode == 'xy' ) level_z = zu ! !-- Substitute the values generated by "mirror" boundary condition !-- at the bottom boundary by the real surface values. IF ( do2d(av,if) == 'v_xz' .OR. do2d(av,if) == 'v_yz' ) THEN IF ( ibc_uv_b == 0 ) local_pf(:,:,nzb) = 0.0_wp ENDIF CASE ( 'thetav_xy', 'thetav_xz', 'thetav_yz' ) IF ( av == 0 ) THEN to_be_resorted => vpt ELSE IF ( .NOT. ALLOCATED( vpt_av ) ) THEN ALLOCATE( vpt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) vpt_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => vpt_av ENDIF IF ( mode == 'xy' ) level_z = zu CASE ( 'w_xy', 'w_xz', 'w_yz' ) flag_nr = 3 IF ( av == 0 ) THEN to_be_resorted => w ELSE IF ( .NOT. ALLOCATED( w_av ) ) THEN ALLOCATE( w_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) w_av = REAL( fill_value, KIND = wp ) ENDIF to_be_resorted => w_av ENDIF IF ( mode == 'xy' ) level_z = zw CASE ( 'z0*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) local_pf(i,j,nzb+1) = surf_def_h(0)%z0(m) ENDDO DO m = 1, surf_lsm_h%ns i = surf_lsm_h%i(m) j = surf_lsm_h%j(m) local_pf(i,j,nzb+1) = surf_lsm_h%z0(m) ENDDO DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) local_pf(i,j,nzb+1) = surf_usm_h%z0(m) ENDDO ELSE IF ( .NOT. ALLOCATED( z0_av ) ) THEN ALLOCATE( z0_av(nysg:nyng,nxlg:nxrg) ) z0_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = z0_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'z0h*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) local_pf(i,j,nzb+1) = surf_def_h(0)%z0h(m) ENDDO DO m = 1, surf_lsm_h%ns i = surf_lsm_h%i(m) j = surf_lsm_h%j(m) local_pf(i,j,nzb+1) = surf_lsm_h%z0h(m) ENDDO DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) local_pf(i,j,nzb+1) = surf_usm_h%z0h(m) ENDDO ELSE IF ( .NOT. ALLOCATED( z0h_av ) ) THEN ALLOCATE( z0h_av(nysg:nyng,nxlg:nxrg) ) z0h_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = z0h_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE ( 'z0q*_xy' ) ! 2d-array IF ( av == 0 ) THEN DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) local_pf(i,j,nzb+1) = surf_def_h(0)%z0q(m) ENDDO DO m = 1, surf_lsm_h%ns i = surf_lsm_h%i(m) j = surf_lsm_h%j(m) local_pf(i,j,nzb+1) = surf_lsm_h%z0q(m) ENDDO DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) local_pf(i,j,nzb+1) = surf_usm_h%z0q(m) ENDDO ELSE IF ( .NOT. ALLOCATED( z0q_av ) ) THEN ALLOCATE( z0q_av(nysg:nyng,nxlg:nxrg) ) z0q_av = REAL( fill_value, KIND = wp ) ENDIF DO i = nxl, nxr DO j = nys, nyn local_pf(i,j,nzb+1) = z0q_av(j,i) ENDDO ENDDO ENDIF resorted = .TRUE. two_d = .TRUE. level_z(nzb+1) = zu(nzb+1) CASE DEFAULT ! !-- Quantities of other modules IF ( .NOT. found .AND. bulk_cloud_model ) THEN CALL bcm_data_output_2d( av, do2d(av,if), found, grid, mode,& local_pf, two_d, nzb_do, nzt_do ) ENDIF IF ( .NOT. found .AND. gust_module_enabled ) THEN CALL gust_data_output_2d( av, do2d(av,if), found, grid, & local_pf, two_d, nzb_do, nzt_do ) ENDIF IF ( .NOT. found .AND. biometeorology & .AND. mode == 'xy' ) THEN CALL bio_data_output_2d( av, do2d(av,if), found, grid, & local_pf, two_d, nzb_do, nzt_do, & fill_value ) ENDIF IF ( .NOT. found .AND. land_surface ) THEN CALL lsm_data_output_2d( av, do2d(av,if), found, grid, mode,& local_pf, two_d, nzb_do, nzt_do ) ENDIF IF ( .NOT. found .AND. ocean_mode ) THEN CALL ocean_data_output_2d( av, do2d(av,if), found, grid, & mode, local_pf, nzb_do, nzt_do ) ENDIF IF ( .NOT. found .AND. radiation ) THEN CALL radiation_data_output_2d( av, do2d(av,if), found, grid,& mode, local_pf, two_d, & nzb_do, nzt_do ) ENDIF IF ( .NOT. found .AND. salsa ) THEN CALL salsa_data_output_2d( av, do2d(av,if), found, grid, & mode, local_pf, two_d ) ENDIF IF ( .NOT. found .AND. uv_exposure ) THEN CALL uvem_data_output_2d( av, do2d(av,if), found, grid, & local_pf, two_d, nzb_do, nzt_do ) ENDIF IF ( .NOT. found .AND. air_chemistry ) THEN CALL chem_data_output_2d( av, do2d(av,if), found, grid, mode, & local_pf, two_d, nzb_do, nzt_do, fill_value ) ENDIF ! !-- User defined quantities IF ( .NOT. found ) THEN CALL user_data_output_2d( av, do2d(av,if), found, grid, & local_pf, two_d, nzb_do, nzt_do ) ENDIF resorted = .TRUE. IF ( grid == 'zu' ) THEN IF ( mode == 'xy' ) level_z = zu ELSEIF ( grid == 'zw' ) THEN IF ( mode == 'xy' ) level_z = zw ELSEIF ( grid == 'zu1' ) THEN IF ( mode == 'xy' ) level_z(nzb+1) = zu(nzb+1) ELSEIF ( grid == 'zs' ) THEN IF ( mode == 'xy' ) level_z = zs ENDIF IF ( .NOT. found ) THEN message_string = 'no output provided for: ' // & TRIM( do2d(av,if) ) CALL message( 'data_output_2d', 'PA0181', 0, 0, 0, 6, 0 ) ENDIF END SELECT ! !-- Resort the array to be output, if not done above. Flag topography !-- grid points with fill values, using the corresponding maksing flag. IF ( .NOT. resorted ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb_do, nzt_do local_pf(i,j,k) = MERGE( to_be_resorted(k,j,i), & REAL( fill_value, KIND = wp ), & BTEST( wall_flags_0(k,j,i), & flag_nr ) ) ENDDO ENDDO ENDDO ENDIF ! !-- Output of the individual cross-sections, depending on the cross- !-- section mode chosen. is = 1 loop1: DO WHILE ( section(is,s_ind) /= -9999 .OR. two_d ) SELECT CASE ( mode ) CASE ( 'xy' ) ! !-- Determine the cross section index IF ( two_d ) THEN layer_xy = nzb+1 ELSE layer_xy = section(is,s_ind) ENDIF ! !-- Exit the loop for layers beyond the data output domain !-- (used for soil model) IF ( layer_xy > nzt_do ) THEN EXIT loop1 ENDIF ! !-- Update the netCDF xy cross section time axis. !-- In case of parallel output, this is only done by PE0 !-- to increase the performance. IF ( simulated_time /= do2d_xy_last_time(av) ) THEN do2d_xy_time_count(av) = do2d_xy_time_count(av) + 1 do2d_xy_last_time(av) = simulated_time IF ( myid == 0 ) THEN IF ( .NOT. data_output_2d_on_each_pe & .OR. netcdf_data_format > 4 ) & THEN #if defined( __netcdf ) nc_stat = NF90_PUT_VAR( id_set_xy(av), & id_var_time_xy(av), & (/ time_since_reference_point /), & start = (/ do2d_xy_time_count(av) /), & count = (/ 1 /) ) CALL netcdf_handle_error( 'data_output_2d', 53 ) #endif ENDIF ENDIF ENDIF ! !-- If required, carry out averaging along z IF ( section(is,s_ind) == -1 .AND. .NOT. two_d ) THEN local_2d = 0.0_wp ! !-- Carry out the averaging (all data are on the PE) DO k = nzb_do, nzt_do DO j = nys, nyn DO i = nxl, nxr local_2d(i,j) = local_2d(i,j) + local_pf(i,j,k) ENDDO ENDDO ENDDO local_2d = local_2d / ( nzt_do - nzb_do + 1.0_wp) ELSE ! !-- Just store the respective section on the local array local_2d = local_pf(:,:,layer_xy) ENDIF #if defined( __parallel ) IF ( netcdf_data_format > 4 ) THEN ! !-- Parallel output in netCDF4/HDF5 format. IF ( two_d ) THEN iis = 1 ELSE iis = is ENDIF #if defined( __netcdf ) ! !-- For parallel output, all cross sections are first stored !-- here on a local array and will be written to the output !-- file afterwards to increase the performance. DO i = nxl, nxr DO j = nys, nyn local_2d_sections(i,j,iis) = local_2d(i,j) ENDDO ENDDO #endif ELSE IF ( data_output_2d_on_each_pe ) THEN ! !-- Output of partial arrays on each PE #if defined( __netcdf ) IF ( myid == 0 ) THEN WRITE ( 21 ) time_since_reference_point, & do2d_xy_time_count(av), av ENDIF #endif DO i = 0, io_blocks-1 IF ( i == io_group ) THEN WRITE ( 21 ) nxl, nxr, nys, nyn, nys, nyn WRITE ( 21 ) local_2d ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ELSE ! !-- PE0 receives partial arrays from all processors and !-- then outputs them. Here a barrier has to be set, !-- because otherwise "-MPI- FATAL: Remote protocol queue !-- full" may occur. CALL MPI_BARRIER( comm2d, ierr ) ngp = ( nxr-nxl+1 ) * ( nyn-nys+1 ) IF ( myid == 0 ) THEN ! !-- Local array can be relocated directly. total_2d(nxl:nxr,nys:nyn) = local_2d ! !-- Receive data from all other PEs. DO n = 1, numprocs-1 ! !-- Receive index limits first, then array. !-- Index limits are received in arbitrary order from !-- the PEs. CALL MPI_RECV( ind(1), 4, MPI_INTEGER, & MPI_ANY_SOURCE, 0, comm2d, & status, ierr ) sender = status(MPI_SOURCE) DEALLOCATE( local_2d ) ALLOCATE( local_2d(ind(1):ind(2),ind(3):ind(4)) ) CALL MPI_RECV( local_2d(ind(1),ind(3)), ngp, & MPI_REAL, sender, 1, comm2d, & status, ierr ) total_2d(ind(1):ind(2),ind(3):ind(4)) = local_2d ENDDO ! !-- Relocate the local array for the next loop increment DEALLOCATE( local_2d ) ALLOCATE( local_2d(nxl:nxr,nys:nyn) ) #if defined( __netcdf ) IF ( two_d ) THEN nc_stat = NF90_PUT_VAR( id_set_xy(av), & id_var_do2d(av,if), & total_2d(0:nx,0:ny), & start = (/ 1, 1, 1, do2d_xy_time_count(av) /), & count = (/ nx+1, ny+1, 1, 1 /) ) ELSE nc_stat = NF90_PUT_VAR( id_set_xy(av), & id_var_do2d(av,if), & total_2d(0:nx,0:ny), & start = (/ 1, 1, is, do2d_xy_time_count(av) /), & count = (/ nx+1, ny+1, 1, 1 /) ) ENDIF CALL netcdf_handle_error( 'data_output_2d', 54 ) #endif ELSE ! !-- First send the local index limits to PE0 ind(1) = nxl; ind(2) = nxr ind(3) = nys; ind(4) = nyn CALL MPI_SEND( ind(1), 4, MPI_INTEGER, 0, 0, & comm2d, ierr ) ! !-- Send data to PE0 CALL MPI_SEND( local_2d(nxl,nys), ngp, & MPI_REAL, 0, 1, comm2d, ierr ) ENDIF ! !-- A barrier has to be set, because otherwise some PEs may !-- proceed too fast so that PE0 may receive wrong data on !-- tag 0 CALL MPI_BARRIER( comm2d, ierr ) ENDIF ENDIF #else #if defined( __netcdf ) IF ( two_d ) THEN nc_stat = NF90_PUT_VAR( id_set_xy(av), & id_var_do2d(av,if), & local_2d(nxl:nxr,nys:nyn), & start = (/ 1, 1, 1, do2d_xy_time_count(av) /), & count = (/ nx+1, ny+1, 1, 1 /) ) ELSE nc_stat = NF90_PUT_VAR( id_set_xy(av), & id_var_do2d(av,if), & local_2d(nxl:nxr,nys:nyn), & start = (/ 1, 1, is, do2d_xy_time_count(av) /), & count = (/ nx+1, ny+1, 1, 1 /) ) ENDIF CALL netcdf_handle_error( 'data_output_2d', 447 ) #endif #endif ! !-- For 2D-arrays (e.g. u*) only one cross-section is available. !-- Hence exit loop of output levels. IF ( two_d ) THEN IF ( netcdf_data_format < 5 ) two_d = .FALSE. EXIT loop1 ENDIF CASE ( 'xz' ) ! !-- Update the netCDF xz cross section time axis. !-- In case of parallel output, this is only done by PE0 !-- to increase the performance. IF ( simulated_time /= do2d_xz_last_time(av) ) THEN do2d_xz_time_count(av) = do2d_xz_time_count(av) + 1 do2d_xz_last_time(av) = simulated_time IF ( myid == 0 ) THEN IF ( .NOT. data_output_2d_on_each_pe & .OR. netcdf_data_format > 4 ) & THEN #if defined( __netcdf ) nc_stat = NF90_PUT_VAR( id_set_xz(av), & id_var_time_xz(av), & (/ time_since_reference_point /), & start = (/ do2d_xz_time_count(av) /), & count = (/ 1 /) ) CALL netcdf_handle_error( 'data_output_2d', 56 ) #endif ENDIF ENDIF ENDIF ! !-- If required, carry out averaging along y IF ( section(is,s_ind) == -1 ) THEN ALLOCATE( local_2d_l(nxl:nxr,nzb_do:nzt_do) ) local_2d_l = 0.0_wp ngp = ( nxr-nxl + 1 ) * ( nzt_do-nzb_do + 1 ) ! !-- First local averaging on the PE DO k = nzb_do, nzt_do DO j = nys, nyn DO i = nxl, nxr local_2d_l(i,k) = local_2d_l(i,k) + & local_pf(i,j,k) ENDDO ENDDO ENDDO #if defined( __parallel ) ! !-- Now do the averaging over all PEs along y IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( local_2d_l(nxl,nzb_do), & local_2d(nxl,nzb_do), ngp, MPI_REAL, & MPI_SUM, comm1dy, ierr ) #else local_2d = local_2d_l #endif local_2d = local_2d / ( ny + 1.0_wp ) DEALLOCATE( local_2d_l ) ELSE ! !-- Just store the respective section on the local array !-- (but only if it is available on this PE!) IF ( section(is,s_ind) >= nys .AND. section(is,s_ind) <= nyn ) & THEN local_2d = local_pf(:,section(is,s_ind),nzb_do:nzt_do) ENDIF ENDIF #if defined( __parallel ) IF ( netcdf_data_format > 4 ) THEN ! !-- Output in netCDF4/HDF5 format. !-- Output only on those PEs where the respective cross !-- sections reside. Cross sections averaged along y are !-- output on the respective first PE along y (myidy=0). IF ( ( section(is,s_ind) >= nys .AND. & section(is,s_ind) <= nyn ) .OR. & ( section(is,s_ind) == -1 .AND. myidy == 0 ) ) THEN #if defined( __netcdf ) ! !-- For parallel output, all cross sections are first !-- stored here on a local array and will be written to the !-- output file afterwards to increase the performance. DO i = nxl, nxr DO k = nzb_do, nzt_do local_2d_sections_l(i,is,k) = local_2d(i,k) ENDDO ENDDO #endif ENDIF ELSE IF ( data_output_2d_on_each_pe ) THEN ! !-- Output of partial arrays on each PE. If the cross !-- section does not reside on the PE, output special !-- index values. #if defined( __netcdf ) IF ( myid == 0 ) THEN WRITE ( 22 ) time_since_reference_point, & do2d_xz_time_count(av), av ENDIF #endif DO i = 0, io_blocks-1 IF ( i == io_group ) THEN IF ( ( section(is,s_ind) >= nys .AND. & section(is,s_ind) <= nyn ) .OR. & ( section(is,s_ind) == -1 .AND. & nys-1 == -1 ) ) & THEN WRITE (22) nxl, nxr, nzb_do, nzt_do, nzb, nzt+1 WRITE (22) local_2d ELSE WRITE (22) -1, -1, -1, -1, -1, -1 ENDIF ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ELSE ! !-- PE0 receives partial arrays from all processors of the !-- respective cross section and outputs them. Here a !-- barrier has to be set, because otherwise !-- "-MPI- FATAL: Remote protocol queue full" may occur. CALL MPI_BARRIER( comm2d, ierr ) ngp = ( nxr-nxl + 1 ) * ( nzt_do-nzb_do + 1 ) IF ( myid == 0 ) THEN ! !-- Local array can be relocated directly. IF ( ( section(is,s_ind) >= nys .AND. & section(is,s_ind) <= nyn ) .OR. & ( section(is,s_ind) == -1 .AND. & nys-1 == -1 ) ) THEN total_2d(nxl:nxr,nzb_do:nzt_do) = local_2d ENDIF ! !-- Receive data from all other PEs. DO n = 1, numprocs-1 ! !-- Receive index limits first, then array. !-- Index limits are received in arbitrary order from !-- the PEs. CALL MPI_RECV( ind(1), 4, MPI_INTEGER, & MPI_ANY_SOURCE, 0, comm2d, & status, ierr ) ! !-- Not all PEs have data for XZ-cross-section. IF ( ind(1) /= -9999 ) THEN sender = status(MPI_SOURCE) DEALLOCATE( local_2d ) ALLOCATE( local_2d(ind(1):ind(2), & ind(3):ind(4)) ) CALL MPI_RECV( local_2d(ind(1),ind(3)), ngp, & MPI_REAL, sender, 1, comm2d, & status, ierr ) total_2d(ind(1):ind(2),ind(3):ind(4)) = & local_2d ENDIF ENDDO ! !-- Relocate the local array for the next loop increment DEALLOCATE( local_2d ) ALLOCATE( local_2d(nxl:nxr,nzb_do:nzt_do) ) #if defined( __netcdf ) nc_stat = NF90_PUT_VAR( id_set_xz(av), & id_var_do2d(av,if), & total_2d(0:nx,nzb_do:nzt_do), & start = (/ 1, is, 1, do2d_xz_time_count(av) /), & count = (/ nx+1, 1, nzt_do-nzb_do+1, 1 /) ) CALL netcdf_handle_error( 'data_output_2d', 58 ) #endif ELSE ! !-- If the cross section resides on the PE, send the !-- local index limits, otherwise send -9999 to PE0. IF ( ( section(is,s_ind) >= nys .AND. & section(is,s_ind) <= nyn ) .OR. & ( section(is,s_ind) == -1 .AND. nys-1 == -1 ) ) & THEN ind(1) = nxl; ind(2) = nxr ind(3) = nzb_do; ind(4) = nzt_do ELSE ind(1) = -9999; ind(2) = -9999 ind(3) = -9999; ind(4) = -9999 ENDIF CALL MPI_SEND( ind(1), 4, MPI_INTEGER, 0, 0, & comm2d, ierr ) ! !-- If applicable, send data to PE0. IF ( ind(1) /= -9999 ) THEN CALL MPI_SEND( local_2d(nxl,nzb_do), ngp, & MPI_REAL, 0, 1, comm2d, ierr ) ENDIF ENDIF ! !-- A barrier has to be set, because otherwise some PEs may !-- proceed too fast so that PE0 may receive wrong data on !-- tag 0 CALL MPI_BARRIER( comm2d, ierr ) ENDIF ENDIF #else #if defined( __netcdf ) nc_stat = NF90_PUT_VAR( id_set_xz(av), & id_var_do2d(av,if), & local_2d(nxl:nxr,nzb_do:nzt_do), & start = (/ 1, is, 1, do2d_xz_time_count(av) /), & count = (/ nx+1, 1, nzt_do-nzb_do+1, 1 /) ) CALL netcdf_handle_error( 'data_output_2d', 451 ) #endif #endif CASE ( 'yz' ) ! !-- Update the netCDF yz cross section time axis. !-- In case of parallel output, this is only done by PE0 !-- to increase the performance. IF ( simulated_time /= do2d_yz_last_time(av) ) THEN do2d_yz_time_count(av) = do2d_yz_time_count(av) + 1 do2d_yz_last_time(av) = simulated_time IF ( myid == 0 ) THEN IF ( .NOT. data_output_2d_on_each_pe & .OR. netcdf_data_format > 4 ) & THEN #if defined( __netcdf ) nc_stat = NF90_PUT_VAR( id_set_yz(av), & id_var_time_yz(av), & (/ time_since_reference_point /), & start = (/ do2d_yz_time_count(av) /), & count = (/ 1 /) ) CALL netcdf_handle_error( 'data_output_2d', 59 ) #endif ENDIF ENDIF ENDIF ! !-- If required, carry out averaging along x IF ( section(is,s_ind) == -1 ) THEN ALLOCATE( local_2d_l(nys:nyn,nzb_do:nzt_do) ) local_2d_l = 0.0_wp ngp = ( nyn-nys+1 ) * ( nzt_do-nzb_do+1 ) ! !-- First local averaging on the PE DO k = nzb_do, nzt_do DO j = nys, nyn DO i = nxl, nxr local_2d_l(j,k) = local_2d_l(j,k) + & local_pf(i,j,k) ENDDO ENDDO ENDDO #if defined( __parallel ) ! !-- Now do the averaging over all PEs along x IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( local_2d_l(nys,nzb_do), & local_2d(nys,nzb_do), ngp, MPI_REAL, & MPI_SUM, comm1dx, ierr ) #else local_2d = local_2d_l #endif local_2d = local_2d / ( nx + 1.0_wp ) DEALLOCATE( local_2d_l ) ELSE ! !-- Just store the respective section on the local array !-- (but only if it is available on this PE!) IF ( section(is,s_ind) >= nxl .AND. section(is,s_ind) <= nxr ) & THEN local_2d = local_pf(section(is,s_ind),:,nzb_do:nzt_do) ENDIF ENDIF #if defined( __parallel ) IF ( netcdf_data_format > 4 ) THEN ! !-- Output in netCDF4/HDF5 format. !-- Output only on those PEs where the respective cross !-- sections reside. Cross sections averaged along x are !-- output on the respective first PE along x (myidx=0). IF ( ( section(is,s_ind) >= nxl .AND. & section(is,s_ind) <= nxr ) .OR. & ( section(is,s_ind) == -1 .AND. myidx == 0 ) ) THEN #if defined( __netcdf ) ! !-- For parallel output, all cross sections are first !-- stored here on a local array and will be written to the !-- output file afterwards to increase the performance. DO j = nys, nyn DO k = nzb_do, nzt_do local_2d_sections_l(is,j,k) = local_2d(j,k) ENDDO ENDDO #endif ENDIF ELSE IF ( data_output_2d_on_each_pe ) THEN ! !-- Output of partial arrays on each PE. If the cross !-- section does not reside on the PE, output special !-- index values. #if defined( __netcdf ) IF ( myid == 0 ) THEN WRITE ( 23 ) time_since_reference_point, & do2d_yz_time_count(av), av ENDIF #endif DO i = 0, io_blocks-1 IF ( i == io_group ) THEN IF ( ( section(is,s_ind) >= nxl .AND. & section(is,s_ind) <= nxr ) .OR. & ( section(is,s_ind) == -1 .AND. & nxl-1 == -1 ) ) & THEN WRITE (23) nys, nyn, nzb_do, nzt_do, nzb, nzt+1 WRITE (23) local_2d ELSE WRITE (23) -1, -1, -1, -1, -1, -1 ENDIF ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ELSE ! !-- PE0 receives partial arrays from all processors of the !-- respective cross section and outputs them. Here a !-- barrier has to be set, because otherwise !-- "-MPI- FATAL: Remote protocol queue full" may occur. CALL MPI_BARRIER( comm2d, ierr ) ngp = ( nyn-nys+1 ) * ( nzt_do-nzb_do+1 ) IF ( myid == 0 ) THEN ! !-- Local array can be relocated directly. IF ( ( section(is,s_ind) >= nxl .AND. & section(is,s_ind) <= nxr ) .OR. & ( section(is,s_ind) == -1 .AND. nxl-1 == -1 ) ) & THEN total_2d(nys:nyn,nzb_do:nzt_do) = local_2d ENDIF ! !-- Receive data from all other PEs. DO n = 1, numprocs-1 ! !-- Receive index limits first, then array. !-- Index limits are received in arbitrary order from !-- the PEs. CALL MPI_RECV( ind(1), 4, MPI_INTEGER, & MPI_ANY_SOURCE, 0, comm2d, & status, ierr ) ! !-- Not all PEs have data for YZ-cross-section. IF ( ind(1) /= -9999 ) THEN sender = status(MPI_SOURCE) DEALLOCATE( local_2d ) ALLOCATE( local_2d(ind(1):ind(2), & ind(3):ind(4)) ) CALL MPI_RECV( local_2d(ind(1),ind(3)), ngp, & MPI_REAL, sender, 1, comm2d, & status, ierr ) total_2d(ind(1):ind(2),ind(3):ind(4)) = & local_2d ENDIF ENDDO ! !-- Relocate the local array for the next loop increment DEALLOCATE( local_2d ) ALLOCATE( local_2d(nys:nyn,nzb_do:nzt_do) ) #if defined( __netcdf ) nc_stat = NF90_PUT_VAR( id_set_yz(av), & id_var_do2d(av,if), & total_2d(0:ny,nzb_do:nzt_do), & start = (/ is, 1, 1, do2d_yz_time_count(av) /), & count = (/ 1, ny+1, nzt_do-nzb_do+1, 1 /) ) CALL netcdf_handle_error( 'data_output_2d', 61 ) #endif ELSE ! !-- If the cross section resides on the PE, send the !-- local index limits, otherwise send -9999 to PE0. IF ( ( section(is,s_ind) >= nxl .AND. & section(is,s_ind) <= nxr ) .OR. & ( section(is,s_ind) == -1 .AND. nxl-1 == -1 ) ) & THEN ind(1) = nys; ind(2) = nyn ind(3) = nzb_do; ind(4) = nzt_do ELSE ind(1) = -9999; ind(2) = -9999 ind(3) = -9999; ind(4) = -9999 ENDIF CALL MPI_SEND( ind(1), 4, MPI_INTEGER, 0, 0, & comm2d, ierr ) ! !-- If applicable, send data to PE0. IF ( ind(1) /= -9999 ) THEN CALL MPI_SEND( local_2d(nys,nzb_do), ngp, & MPI_REAL, 0, 1, comm2d, ierr ) ENDIF ENDIF ! !-- A barrier has to be set, because otherwise some PEs may !-- proceed too fast so that PE0 may receive wrong data on !-- tag 0 CALL MPI_BARRIER( comm2d, ierr ) ENDIF ENDIF #else #if defined( __netcdf ) nc_stat = NF90_PUT_VAR( id_set_yz(av), & id_var_do2d(av,if), & local_2d(nys:nyn,nzb_do:nzt_do), & start = (/ is, 1, 1, do2d_xz_time_count(av) /), & count = (/ 1, ny+1, nzt_do-nzb_do+1, 1 /) ) CALL netcdf_handle_error( 'data_output_2d', 452 ) #endif #endif END SELECT is = is + 1 ENDDO loop1 ! !-- For parallel output, all data were collected before on a local array !-- and are written now to the netcdf file. This must be done to increase !-- the performance of the parallel output. #if defined( __netcdf ) IF ( netcdf_data_format > 4 ) THEN SELECT CASE ( mode ) CASE ( 'xy' ) IF ( two_d ) THEN nis = 1 two_d = .FALSE. ELSE nis = ns ENDIF ! !-- Do not output redundant ghost point data except for the !-- boundaries of the total domain. ! IF ( nxr == nx .AND. nyn /= ny ) THEN ! nc_stat = NF90_PUT_VAR( id_set_xy(av), & ! id_var_do2d(av,if), & ! local_2d_sections(nxl:nxr+1, & ! nys:nyn,1:nis), & ! start = (/ nxl+1, nys+1, 1, & ! do2d_xy_time_count(av) /), & ! count = (/ nxr-nxl+2, & ! nyn-nys+1, nis, 1 & ! /) ) ! ELSEIF ( nxr /= nx .AND. nyn == ny ) THEN ! nc_stat = NF90_PUT_VAR( id_set_xy(av), & ! id_var_do2d(av,if), & ! local_2d_sections(nxl:nxr, & ! nys:nyn+1,1:nis), & ! start = (/ nxl+1, nys+1, 1, & ! do2d_xy_time_count(av) /), & ! count = (/ nxr-nxl+1, & ! nyn-nys+2, nis, 1 & ! /) ) ! ELSEIF ( nxr == nx .AND. nyn == ny ) THEN ! nc_stat = NF90_PUT_VAR( id_set_xy(av), & ! id_var_do2d(av,if), & ! local_2d_sections(nxl:nxr+1, & ! nys:nyn+1,1:nis), & ! start = (/ nxl+1, nys+1, 1, & ! do2d_xy_time_count(av) /), & ! count = (/ nxr-nxl+2, & ! nyn-nys+2, nis, 1 & ! /) ) ! ELSE nc_stat = NF90_PUT_VAR( id_set_xy(av), & id_var_do2d(av,if), & local_2d_sections(nxl:nxr, & nys:nyn,1:nis), & start = (/ nxl+1, nys+1, 1, & do2d_xy_time_count(av) /), & count = (/ nxr-nxl+1, & nyn-nys+1, nis, 1 & /) ) ! ENDIF CALL netcdf_handle_error( 'data_output_2d', 55 ) CASE ( 'xz' ) ! !-- First, all PEs get the information of all cross-sections. !-- Then the data are written to the output file by all PEs !-- while NF90_COLLECTIVE is set in subroutine !-- define_netcdf_header. Although redundant information are !-- written to the output file in that case, the performance !-- is significantly better compared to the case where only !-- the first row of PEs in x-direction (myidx = 0) is given !-- the output while NF90_INDEPENDENT is set. IF ( npey /= 1 ) THEN #if defined( __parallel ) ! !-- Distribute data over all PEs along y ngp = ( nxr-nxl+1 ) * ( nzt_do-nzb_do+1 ) * ns IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( local_2d_sections_l(nxl,1,nzb_do), & local_2d_sections(nxl,1,nzb_do), & ngp, MPI_REAL, MPI_SUM, comm1dy, & ierr ) #else local_2d_sections = local_2d_sections_l #endif ENDIF ! !-- Do not output redundant ghost point data except for the !-- boundaries of the total domain. ! IF ( nxr == nx ) THEN ! nc_stat = NF90_PUT_VAR( id_set_xz(av), & ! id_var_do2d(av,if), & ! local_2d_sections(nxl:nxr+1,1:ns, & ! nzb_do:nzt_do), & ! start = (/ nxl+1, 1, 1, & ! do2d_xz_time_count(av) /), & ! count = (/ nxr-nxl+2, ns, nzt_do-nzb_do+1, & ! 1 /) ) ! ELSE nc_stat = NF90_PUT_VAR( id_set_xz(av), & id_var_do2d(av,if), & local_2d_sections(nxl:nxr,1:ns, & nzb_do:nzt_do), & start = (/ nxl+1, 1, 1, & do2d_xz_time_count(av) /), & count = (/ nxr-nxl+1, ns, nzt_do-nzb_do+1, & 1 /) ) ! ENDIF CALL netcdf_handle_error( 'data_output_2d', 57 ) CASE ( 'yz' ) ! !-- First, all PEs get the information of all cross-sections. !-- Then the data are written to the output file by all PEs !-- while NF90_COLLECTIVE is set in subroutine !-- define_netcdf_header. Although redundant information are !-- written to the output file in that case, the performance !-- is significantly better compared to the case where only !-- the first row of PEs in y-direction (myidy = 0) is given !-- the output while NF90_INDEPENDENT is set. IF ( npex /= 1 ) THEN #if defined( __parallel ) ! !-- Distribute data over all PEs along x ngp = ( nyn-nys+1 ) * ( nzt-nzb + 2 ) * ns IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( local_2d_sections_l(1,nys,nzb_do), & local_2d_sections(1,nys,nzb_do), & ngp, MPI_REAL, MPI_SUM, comm1dx, & ierr ) #else local_2d_sections = local_2d_sections_l #endif ENDIF ! !-- Do not output redundant ghost point data except for the !-- boundaries of the total domain. ! IF ( nyn == ny ) THEN ! nc_stat = NF90_PUT_VAR( id_set_yz(av), & ! id_var_do2d(av,if), & ! local_2d_sections(1:ns, & ! nys:nyn+1,nzb_do:nzt_do), & ! start = (/ 1, nys+1, 1, & ! do2d_yz_time_count(av) /), & ! count = (/ ns, nyn-nys+2, & ! nzt_do-nzb_do+1, 1 /) ) ! ELSE nc_stat = NF90_PUT_VAR( id_set_yz(av), & id_var_do2d(av,if), & local_2d_sections(1:ns,nys:nyn, & nzb_do:nzt_do), & start = (/ 1, nys+1, 1, & do2d_yz_time_count(av) /), & count = (/ ns, nyn-nys+1, & nzt_do-nzb_do+1, 1 /) ) ! ENDIF CALL netcdf_handle_error( 'data_output_2d', 60 ) CASE DEFAULT message_string = 'unknown cross-section: ' // TRIM( mode ) CALL message( 'data_output_2d', 'PA0180', 1, 2, 0, 6, 0 ) END SELECT ENDIF #endif ENDIF if = if + 1 l = MAX( 2, LEN_TRIM( do2d(av,if) ) ) do2d_mode = do2d(av,if)(l-1:l) ENDDO ! !-- Deallocate temporary arrays. IF ( ALLOCATED( level_z ) ) DEALLOCATE( level_z ) IF ( netcdf_data_format > 4 ) THEN DEALLOCATE( local_pf, local_2d, local_2d_sections ) IF( mode == 'xz' .OR. mode == 'yz' ) DEALLOCATE( local_2d_sections_l ) ENDIF #if defined( __parallel ) IF ( .NOT. data_output_2d_on_each_pe .AND. myid == 0 ) THEN DEALLOCATE( total_2d ) ENDIF #endif ! !-- Close plot output file. file_id = 20 + s_ind IF ( data_output_2d_on_each_pe ) THEN DO i = 0, io_blocks-1 IF ( i == io_group ) THEN CALL close_file( file_id ) ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ELSE IF ( myid == 0 ) CALL close_file( file_id ) ENDIF CALL cpu_log( log_point(3), 'data_output_2d', 'stop' ) END SUBROUTINE data_output_2d