!> @file chemistry_model_mod.f90
!------------------------------------------------------------------------------!
! This file is part of the PALM model system.
!
! PALM is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
! A PARTICULAR PURPOSE. See the GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along with
! PALM. If not, see .
!
! Copyright 2017-2019 Leibniz Universitaet Hannover
! Copyright 2017-2019 Karlsruhe Institute of Technology
! Copyright 2017-2019 Freie Universitaet Berlin
!------------------------------------------------------------------------------!
!
! Current revisions:
! -----------------
!
!
! Former revisions:
! -----------------
! $Id: chemistry_model_mod.f90 4167 2019-08-16 11:01:48Z suehring $
! Changed behaviour of masked output over surface to follow terrain and ignore
! buildings (J.Resler, T.Gronemeier)
!
!
! 4166 2019-08-16 07:54:21Z resler
! Bugfix in decycling
!
! 4115 2019-07-24 12:50:49Z suehring
! Fix faulty IF statement in decycling initialization
!
! 4110 2019-07-22 17:05:21Z suehring
! - Decycling boundary conditions are only set at the ghost points not on the
! prognostic grid points
! - Allocation and initialization of special advection flags cs_advc_flags_s
! used for chemistry. These are exclusively used for chemical species in
! order to distinguish from the usually-used flags which might be different
! when decycling is applied in combination with cyclic boundary conditions.
! Moreover, cs_advc_flags_s considers extended zones around buildings where
! first-order upwind scheme is applied for the horizontal advection terms,
! in order to overcome high concentration peaks due to stationary numerical
! oscillations caused by horizontal advection discretization.
!
! 4109 2019-07-22 17:00:34Z suehring
! Slightly revise setting of boundary conditions at horizontal walls, use
! data-structure offset index instead of pre-calculate it for each facing
!
! 4080 2019-07-09 18:17:37Z suehring
! Restore accidantly removed limitation to positive values
!
! 4079 2019-07-09 18:04:41Z suehring
! Application of monotonic flux limiter for the vertical scalar advection
! up to the topography top (only for the cache-optimized version at the
! moment).
!
! 4069 2019-07-01 14:05:51Z Giersch
! Masked output running index mid has been introduced as a local variable to
! avoid runtime error (Loop variable has been modified) in time_integration
!
! 4029 2019-06-14 14:04:35Z raasch
! nest_chemistry option removed
!
! 4004 2019-05-24 11:32:38Z suehring
! in subroutine chem_parin check emiss_lod / mod_emis only
! when emissions_anthropogenic is activated in namelist (E.C. Chan)
!
! 3968 2019-05-13 11:04:01Z suehring
! - added "emiss_lod" which serves the same function as "mode_emis"
! both will be synchronized with emiss_lod having pirority over
! mode_emis (see informational messages)
! - modified existing error message and introduced new informational messages
! - CM0436 - now also applies to invalid LOD settings
! - CM0463 - emiss_lod take precedence in case of conflict with mod_emis
! - CM0464 - emiss_lod valued assigned based on mode_emis if undefined
!
! 3930 2019-04-24 14:57:18Z forkel
! Changed chem_non_transport_physics to chem_non_advective_processes
!
!
! 3929 2019-04-24 12:52:08Z banzhafs
! Correct/complete module_interface introduction for chemistry model
! Add subroutine chem_exchange_horiz_bounds
! Bug fix deposition
!
! 3784 2019-03-05 14:16:20Z banzhafs
! 2D output of emission fluxes
!
! 3784 2019-03-05 14:16:20Z banzhafs
! Bugfix, uncomment erroneous commented variable used for dry deposition.
! Bugfix in 3D emission output.
!
! 3784 2019-03-05 14:16:20Z banzhafs
! Changes related to global restructuring of location messages and introduction
! of additional debug messages
!
! 3784 2019-03-05 14:16:20Z banzhafs
! some formatting of the deposition code
!
! 3784 2019-03-05 14:16:20Z banzhafs
! some formatting
!
! 3784 2019-03-05 14:16:20Z banzhafs
! added cs_mech to USE chem_gasphase_mod
!
! 3784 2019-03-05 14:16:20Z banzhafs
! renamed get_mechanismname to get_mechanism_name
! renamed do_emiss to emissions_anthropogenic and do_depo to deposition_dry (ecc)
!
! 3784 2019-03-05 14:16:20Z banzhafs
! Unused variables removed/taken care of
!
!
! 3784 2019-03-05 14:16:20Z forkel
! Replaced READ from unit 10 by CALL get_mechanismname also in chem_header
!
!
! 3783 2019-03-05 13:23:50Z forkel
! Removed forgotte write statements an some unused variables (did not touch the
! parts related to deposition)
!
!
! 3780 2019-03-05 11:19:45Z forkel
! Removed READ from unit 10, added CALL get_mechanismname
!
!
! 3767 2019-02-27 08:18:02Z raasch
! unused variable for file index removed from rrd-subroutines parameter list
!
! 3738 2019-02-12 17:00:45Z suehring
! Clean-up debug prints
!
! 3737 2019-02-12 16:57:06Z suehring
! Enable mesoscale offline nesting for chemistry variables as well as
! initialization of chemistry via dynamic input file.
!
! 3719 2019-02-06 13:10:18Z kanani
! Resolved cpu logpoint overlap with all progn.equations, moved cpu_log call
! to prognostic_equations for better overview
!
! 3700 2019-01-26 17:03:42Z knoop
! Some interface calls moved to module_interface + cleanup
!
! 3664 2019-01-09 14:00:37Z forkel
! Replaced misplaced location message by @todo
!
!
! 3654 2019-01-07 16:31:57Z suehring
! Disable misplaced location message
!
! 3652 2019-01-07 15:29:59Z forkel
! Checks added for chemistry mechanism, parameter chem_mechanism added (basit)
!
!
! 3646 2018-12-28 17:58:49Z kanani
! Bugfix: use time_since_reference_point instead of simulated_time (relevant
! when using wall/soil spinup)
!
! 3643 2018-12-24 13:16:19Z knoop
! Bugfix: set found logical correct in chem_data_output_2d
!
! 3638 2018-12-20 13:18:23Z forkel
! Added missing conversion factor fr2ppm for qvap
!
!
! 3637 2018-12-20 01:51:36Z knoop
! Implementation of the PALM module interface
!
! 3636 2018-12-19 13:48:34Z raasch
! nopointer option removed
!
! 3611 2018-12-07 14:14:11Z banzhafs
! Minor formatting
!
! 3600 2018-12-04 13:49:07Z banzhafs
! Code update to comply PALM coding rules
! Bug fix in par_dir_diff subroutine
! Small fixes (corrected 'conastant', added 'Unused')
!
! 3586 2018-11-30 13:20:29Z dom_dwd_user
! Changed character lenth of name in species_def and photols_def to 15
!
! 3570 2018-11-27 17:44:21Z kanani
! resler:
! Break lines at 132 characters
!
! 3543 2018-11-20 17:06:15Z suehring
! Remove tabs
!
! 3542 2018-11-20 17:04:13Z suehring
! working precision added to make code Fortran 2008 conform
!
! 3458 2018-10-30 14:51:23Z kanani
! from chemistry branch r3443, banzhafs, basit:
! replace surf_lsm_h%qv1(m) by q(k,j,i) for mixing ratio in chem_depo
!
! bug fix in chem_depo: allow different surface fractions for one
! surface element and set lai to zero for non vegetated surfaces
! bug fixed in chem_data_output_2d
! bug fix in chem_depo subroutine
! added code on deposition of gases and particles
! removed cs_profile_name from chem_parin
! bug fixed in output profiles and code cleaned
!
! 3449 2018-10-29 19:36:56Z suehring
! additional output - merged from branch resler
!
! 3438 2018-10-28 19:31:42Z pavelkrc
! Add terrain-following masked output
!
! 3373 2018-10-18 15:25:56Z kanani
! Remove MPI_Abort, replace by message
!
! 3318 2018-10-08 11:43:01Z sward
! Fixed faulty syntax of message string
!
! 3298 2018-10-02 12:21:11Z kanani
! Add remarks (kanani)
! Merge with trunk, replaced cloud_physics by bulk_cloud_model 28.09.2018 forkel
! Subroutines header and chem_check_parameters added 25.09.2018 basit
! Removed chem_emission routine now declared in chem_emissions.f90 30.07.2018 ERUSSO
! Introduced emissions namelist parameters 30.07.2018 ERUSSO
!
! Timestep steering added in subroutine chem_integrate_ij and
! output of chosen solver in chem_parin added 30.07.2018 ketelsen
!
! chem_check_data_output_pr: added unit for PM compounds 20.07.2018 forkel
! replaced : by nzb+1:nzt for pt,q,ql (found by kk) 18.07.2018 forkel
! debugged restart run for chem species 06.07.2018 basit
! reorganized subroutines in alphabetical order. 27.06.2018 basit
! subroutine chem_parin updated for profile output 27.06.2018 basit
! Added humidity arrays to USE section and tmp_qvap in chem_integrate 26.6.2018 forkel
! Merged chemistry with with trunk (nzb_do and nzt_do in 3d output) 26.6.2018 forkel
!
! reorganized subroutines in alphabetical order. basit 22.06.2018
! subroutine chem_parin updated for profile output basit 22.06.2018
! subroutine chem_statistics added
! subroutine chem_check_data_output_pr add 21.06.2018 basit
! subroutine chem_data_output_mask added 20.05.2018 basit
! subroutine chem_data_output_2d added 20.05.2018 basit
! subroutine chem_statistics added 04.06.2018 basit
! subroutine chem_emissions: Set cssws to zero before setting values 20.03.2018 forkel
! subroutine chem_emissions: Introduced different conversion factors
! for PM and gaseous compounds 15.03.2018 forkel
! subroutine chem_emissions updated to take variable number of chem_spcs and
! emission factors. 13.03.2018 basit
! chem_boundary_conds_decycle improved. 05.03.2018 basit
! chem_boundary_conds_decycle subroutine added 21.02.2018 basit
! chem_init_profiles subroutines re-activated after correction 21.02.2018 basit
!
!
! 3293 2018-09-28 12:45:20Z forkel
! Modularization of all bulk cloud physics code components
!
! 3248 2018-09-14 09:42:06Z sward
! Minor formating changes
!
! 3246 2018-09-13 15:14:50Z sward
! Added error handling for input namelist via parin_fail_message
!
! 3241 2018-09-12 15:02:00Z raasch
! +nest_chemistry
!
! 3209 2018-08-27 16:58:37Z suehring
! Rename flags indicating outflow boundary conditions
!
! 3182 2018-07-27 13:36:03Z suehring
! Revise output of surface quantities in case of overhanging structures
!
! 3045 2018-05-28 07:55:41Z Giersch
! error messages revised
!
! 3014 2018-05-09 08:42:38Z maronga
! Bugfix: nzb_do and nzt_do were not used for 3d data output
!
! 3004 2018-04-27 12:33:25Z Giersch
! Comment concerning averaged data output added
!
! 2932 2018-03-26 09:39:22Z maronga
! renamed chemistry_par to chemistry_parameters
!
! 2894 2018-03-15 09:17:58Z Giersch
! Calculations of the index range of the subdomain on file which overlaps with
! the current subdomain are already done in read_restart_data_mod,
! chem_last_actions was renamed to chem_wrd_local, chem_read_restart_data was
! renamed to chem_rrd_local, chem_write_var_list was renamed to
! chem_wrd_global, chem_read_var_list was renamed to chem_rrd_global,
! chem_skip_var_list has been removed, variable named found has been
! introduced for checking if restart data was found, reading of restart strings
! has been moved completely to read_restart_data_mod, chem_rrd_local is already
! inside the overlap loop programmed in read_restart_data_mod, todo list has
! bees extended, redundant characters in chem_wrd_local have been removed,
! the marker *** end chemistry *** is not necessary anymore, strings and their
! respective lengths are written out and read now in case of restart runs to
! get rid of prescribed character lengths
!
! 2815 2018-02-19 11:29:57Z suehring
! Bugfix in restart mechanism,
! rename chem_tendency to chem_prognostic_equations,
! implement vector-optimized version of chem_prognostic_equations,
! some clean up (incl. todo list)
!
! 2773 2018-01-30 14:12:54Z suehring
! Declare variables required for nesting as public
!
! 2772 2018-01-29 13:10:35Z suehring
! Bugfix in string handling
!
! 2768 2018-01-24 15:38:29Z kanani
! Shorten lines to maximum length of 132 characters
!
! 2766 2018-01-22 17:17:47Z kanani
! Removed preprocessor directive __chem
!
! 2756 2018-01-16 18:11:14Z suehring
! Fill values in 3D output introduced.
!
! 2718 2018-01-02 08:49:38Z maronga
! Initial revision
!
!
!
!
! Authors:
! --------
! @author Renate Forkel
! @author Farah Kanani-Suehring
! @author Klaus Ketelsen
! @author Basit Khan
! @author Sabine Banzhaf
!
!
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Chemistry model for PALM-4U
!> @todo Extend chem_species type by nspec and nvar as addititional elements (RF)
!> @todo Check possibility to reduce dimension of chem_species%conc from nspec to nvar (RF)
!> @todo Adjust chem_rrd_local to CASE structure of others modules. It is not
!> allowed to use the chemistry model in a precursor run and additionally
!> not using it in a main run
!> @todo Implement turbulent inflow of chem spcs in inflow_turbulence.
!> @todo Separate boundary conditions for each chem spcs to be implemented
!> @todo Currently only total concentration are calculated. Resolved, parameterized
!> and chemistry fluxes although partially and some completely coded but
!> are not operational/activated in this version. bK.
!> @todo slight differences in passive scalar and chem spcs when chem reactions
!> turned off. Need to be fixed. bK
!> @todo test nesting for chem spcs, was implemented by suehring (kanani)
!> @todo chemistry error messages
!
!------------------------------------------------------------------------------!
MODULE chemistry_model_mod
USE advec_s_pw_mod, &
ONLY: advec_s_pw
USE advec_s_up_mod, &
ONLY: advec_s_up
USE advec_ws, &
ONLY: advec_s_ws, ws_init_flags_scalar
USE diffusion_s_mod, &
ONLY: diffusion_s
USE kinds, &
ONLY: iwp, wp
USE indices, &
ONLY: advc_flags_s, &
nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nz, nzb, nzt, wall_flags_0
USE pegrid, &
ONLY: myid, threads_per_task
USE bulk_cloud_model_mod, &
ONLY: bulk_cloud_model
USE control_parameters, &
ONLY: bc_lr_cyc, bc_ns_cyc, &
bc_dirichlet_l, &
bc_dirichlet_n, &
bc_dirichlet_r, &
bc_dirichlet_s, &
bc_radiation_l, &
bc_radiation_n, &
bc_radiation_r, &
bc_radiation_s, &
debug_output, &
dt_3d, humidity, initializing_actions, message_string, &
omega, tsc, intermediate_timestep_count, intermediate_timestep_count_max, &
max_pr_user, &
monotonic_limiter_z, &
scalar_advec, &
timestep_scheme, use_prescribed_profile_data, ws_scheme_sca, air_chemistry
USE arrays_3d, &
ONLY: exner, hyp, pt, q, ql, rdf_sc, tend, zu
USE chem_gasphase_mod, &
ONLY: atol, chem_gasphase_integrate, cs_mech, get_mechanism_name, nkppctrl, &
nmaxfixsteps, nphot, nreact, nspec, nvar, phot_names, rtol, spc_names, t_steps, vl_dim
USE chem_modules
USE chem_photolysis_mod, &
ONLY: photolysis_control
USE cpulog, &
ONLY: cpu_log, log_point_s
USE statistics
USE surface_mod, &
ONLY: surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, surf_usm_v
IMPLICIT NONE
PRIVATE
SAVE
REAL(kind=wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: spec_conc_1 !< pointer for swapping of timelevels for conc
REAL(kind=wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: spec_conc_2 !< pointer for swapping of timelevels for conc
REAL(kind=wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: spec_conc_3 !< pointer for swapping of timelevels for conc
REAL(kind=wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: spec_conc_av !< averaged concentrations of chemical species
REAL(kind=wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: freq_1 !< pointer for phtolysis frequncies
!< (only 1 timelevel required)
INTEGER, DIMENSION(nkppctrl) :: icntrl !< 20 integer parameters for fine tuning KPP code
!< (e.g. solver type)
REAL(kind=wp), DIMENSION(nkppctrl) :: rcntrl !< 20 real parameters for fine tuning of KPP code
!< (e.g starting internal timestep of solver)
!
!-- Decycling of chemistry variables: Dirichlet BCs with cyclic is frequently not
!-- approproate for chemicals compounds since they may accumulate too much.
!-- If no proper boundary conditions from a DYNAMIC input file are available,
!-- de-cycling applies the initial profiles at the inflow boundaries for
!-- Dirichlet boundary conditions
LOGICAL :: decycle_chem_lr = .FALSE. !< switch for setting decycling in left-right direction
LOGICAL :: decycle_chem_ns = .FALSE. !< switch for setting decycling in south-norht direction
CHARACTER (LEN=20), DIMENSION(4) :: decycle_method = &
(/'dirichlet','dirichlet','dirichlet','dirichlet'/)
!< Decycling method at horizontal boundaries,
!< 1=left, 2=right, 3=south, 4=north
!< dirichlet = initial size distribution and
!< chemical composition set for the ghost and
!< first three layers
!< neumann = zero gradient
REAL(kind=wp), PUBLIC :: cs_time_step = 0._wp
!
!-- Parameter needed for Deposition calculation using DEPAC model (van Zanten et al., 2010)
!
INTEGER(iwp), PARAMETER :: nlu_dep = 15 !< Number of DEPAC landuse classes (lu's)
INTEGER(iwp), PARAMETER :: ncmp = 10 !< Number of DEPAC gas components
INTEGER(iwp), PARAMETER :: nposp = 69 !< Number of possible species for deposition
!
!-- DEPAC landuse classes as defined in LOTOS-EUROS model v2.1
INTEGER(iwp) :: ilu_grass = 1
INTEGER(iwp) :: ilu_arable = 2
INTEGER(iwp) :: ilu_permanent_crops = 3
INTEGER(iwp) :: ilu_coniferous_forest = 4
INTEGER(iwp) :: ilu_deciduous_forest = 5
INTEGER(iwp) :: ilu_water_sea = 6
INTEGER(iwp) :: ilu_urban = 7
INTEGER(iwp) :: ilu_other = 8
INTEGER(iwp) :: ilu_desert = 9
INTEGER(iwp) :: ilu_ice = 10
INTEGER(iwp) :: ilu_savanna = 11
INTEGER(iwp) :: ilu_tropical_forest = 12
INTEGER(iwp) :: ilu_water_inland = 13
INTEGER(iwp) :: ilu_mediterrean_scrub = 14
INTEGER(iwp) :: ilu_semi_natural_veg = 15
!
!-- NH3/SO2 ratio regimes:
INTEGER(iwp), PARAMETER :: iratns_low = 1 !< low ratio NH3/SO2
INTEGER(iwp), PARAMETER :: iratns_high = 2 !< high ratio NH3/SO2
INTEGER(iwp), PARAMETER :: iratns_very_low = 3 !< very low ratio NH3/SO2
!
!-- Default:
INTEGER, PARAMETER :: iratns_default = iratns_low
!
!-- Set alpha for f_light (4.57 is conversion factor from 1./(mumol m-2 s-1) to W m-2
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: alpha =(/ 0.009, 0.009, 0.009, 0.006, 0.006, -999., -999., 0.009, -999., &
-999., 0.009, 0.006, -999., 0.009, 0.008/)*4.57
!
!-- Set temperatures per land use for f_temp
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: tmin = (/ 12.0, 12.0, 12.0, 0.0, 0.0, -999., -999., 12.0, -999., -999., &
12.0, 0.0, -999., 12.0, 8.0/)
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: topt = (/ 26.0, 26.0, 26.0, 18.0, 20.0, -999., -999., 26.0, -999., -999., &
26.0, 20.0, -999., 26.0, 24.0 /)
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: tmax = (/ 40.0, 40.0, 40.0, 36.0, 35.0, -999., -999., 40.0, -999., -999., &
40.0, 35.0, -999., 40.0, 39.0 /)
!
!-- Set f_min:
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: f_min = (/ 0.01, 0.01, 0.01, 0.1, 0.1, -999., -999., 0.01, -999., -999., 0.01, &
0.1, -999., 0.01, 0.04/)
!
!-- Set maximal conductance (m/s)
!-- (R T/P) = 1/41000 mmol/m3 is given for 20 deg C to go from mmol O3/m2/s to m/s
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: g_max = (/ 270., 300., 300., 140., 150., -999., -999., 270., -999., -999., &
270., 150., -999., 300., 422./)/41000.
!
!-- Set max, min for vapour pressure deficit vpd
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: vpd_max = (/1.3, 0.9, 0.9, 0.5, 1.0, -999., -999., 1.3, -999., -999., 1.3, &
1.0, -999., 0.9, 2.8/)
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: vpd_min = (/3.0, 2.8, 2.8, 3.0, 3.25, -999., -999., 3.0, -999., -999., 3.0, &
3.25, -999., 2.8, 4.5/)
PUBLIC nreact
PUBLIC nspec !< number of gas phase chemical species including constant compound (e.g. N2)
PUBLIC nvar !< number of variable gas phase chemical species (nvar <= nspec)
PUBLIC spc_names !< names of gas phase chemical species (come from KPP) (come from KPP)
PUBLIC spec_conc_2
!
!-- Interface section
INTERFACE chem_3d_data_averaging
MODULE PROCEDURE chem_3d_data_averaging
END INTERFACE chem_3d_data_averaging
INTERFACE chem_boundary_conds
MODULE PROCEDURE chem_boundary_conds
MODULE PROCEDURE chem_boundary_conds_decycle
END INTERFACE chem_boundary_conds
INTERFACE chem_check_data_output
MODULE PROCEDURE chem_check_data_output
END INTERFACE chem_check_data_output
INTERFACE chem_data_output_2d
MODULE PROCEDURE chem_data_output_2d
END INTERFACE chem_data_output_2d
INTERFACE chem_data_output_3d
MODULE PROCEDURE chem_data_output_3d
END INTERFACE chem_data_output_3d
INTERFACE chem_data_output_mask
MODULE PROCEDURE chem_data_output_mask
END INTERFACE chem_data_output_mask
INTERFACE chem_check_data_output_pr
MODULE PROCEDURE chem_check_data_output_pr
END INTERFACE chem_check_data_output_pr
INTERFACE chem_check_parameters
MODULE PROCEDURE chem_check_parameters
END INTERFACE chem_check_parameters
INTERFACE chem_define_netcdf_grid
MODULE PROCEDURE chem_define_netcdf_grid
END INTERFACE chem_define_netcdf_grid
INTERFACE chem_header
MODULE PROCEDURE chem_header
END INTERFACE chem_header
INTERFACE chem_init_arrays
MODULE PROCEDURE chem_init_arrays
END INTERFACE chem_init_arrays
INTERFACE chem_init
MODULE PROCEDURE chem_init
END INTERFACE chem_init
INTERFACE chem_init_profiles
MODULE PROCEDURE chem_init_profiles
END INTERFACE chem_init_profiles
INTERFACE chem_integrate
MODULE PROCEDURE chem_integrate_ij
END INTERFACE chem_integrate
INTERFACE chem_parin
MODULE PROCEDURE chem_parin
END INTERFACE chem_parin
INTERFACE chem_actions
MODULE PROCEDURE chem_actions
MODULE PROCEDURE chem_actions_ij
END INTERFACE chem_actions
INTERFACE chem_non_advective_processes
MODULE PROCEDURE chem_non_advective_processes
MODULE PROCEDURE chem_non_advective_processes_ij
END INTERFACE chem_non_advective_processes
INTERFACE chem_exchange_horiz_bounds
MODULE PROCEDURE chem_exchange_horiz_bounds
END INTERFACE chem_exchange_horiz_bounds
INTERFACE chem_prognostic_equations
MODULE PROCEDURE chem_prognostic_equations
MODULE PROCEDURE chem_prognostic_equations_ij
END INTERFACE chem_prognostic_equations
INTERFACE chem_rrd_local
MODULE PROCEDURE chem_rrd_local
END INTERFACE chem_rrd_local
INTERFACE chem_statistics
MODULE PROCEDURE chem_statistics
END INTERFACE chem_statistics
INTERFACE chem_swap_timelevel
MODULE PROCEDURE chem_swap_timelevel
END INTERFACE chem_swap_timelevel
INTERFACE chem_wrd_local
MODULE PROCEDURE chem_wrd_local
END INTERFACE chem_wrd_local
INTERFACE chem_depo
MODULE PROCEDURE chem_depo
END INTERFACE chem_depo
INTERFACE drydepos_gas_depac
MODULE PROCEDURE drydepos_gas_depac
END INTERFACE drydepos_gas_depac
INTERFACE rc_special
MODULE PROCEDURE rc_special
END INTERFACE rc_special
INTERFACE rc_gw
MODULE PROCEDURE rc_gw
END INTERFACE rc_gw
INTERFACE rw_so2
MODULE PROCEDURE rw_so2
END INTERFACE rw_so2
INTERFACE rw_nh3_sutton
MODULE PROCEDURE rw_nh3_sutton
END INTERFACE rw_nh3_sutton
INTERFACE rw_constant
MODULE PROCEDURE rw_constant
END INTERFACE rw_constant
INTERFACE rc_gstom
MODULE PROCEDURE rc_gstom
END INTERFACE rc_gstom
INTERFACE rc_gstom_emb
MODULE PROCEDURE rc_gstom_emb
END INTERFACE rc_gstom_emb
INTERFACE par_dir_diff
MODULE PROCEDURE par_dir_diff
END INTERFACE par_dir_diff
INTERFACE rc_get_vpd
MODULE PROCEDURE rc_get_vpd
END INTERFACE rc_get_vpd
INTERFACE rc_gsoil_eff
MODULE PROCEDURE rc_gsoil_eff
END INTERFACE rc_gsoil_eff
INTERFACE rc_rinc
MODULE PROCEDURE rc_rinc
END INTERFACE rc_rinc
INTERFACE rc_rctot
MODULE PROCEDURE rc_rctot
END INTERFACE rc_rctot
! INTERFACE rc_comp_point_rc_eff
! MODULE PROCEDURE rc_comp_point_rc_eff
! END INTERFACE rc_comp_point_rc_eff
INTERFACE drydepo_aero_zhang_vd
MODULE PROCEDURE drydepo_aero_zhang_vd
END INTERFACE drydepo_aero_zhang_vd
INTERFACE get_rb_cell
MODULE PROCEDURE get_rb_cell
END INTERFACE get_rb_cell
PUBLIC chem_3d_data_averaging, chem_boundary_conds, &
chem_boundary_conds_decycle, chem_check_data_output, &
chem_check_data_output_pr, chem_check_parameters, &
chem_data_output_2d, chem_data_output_3d, chem_data_output_mask, &
chem_define_netcdf_grid, chem_header, chem_init, chem_init_arrays, &
chem_init_profiles, chem_integrate, chem_parin, &
chem_actions, chem_prognostic_equations, chem_rrd_local, &
chem_statistics, chem_swap_timelevel, chem_wrd_local, chem_depo, &
chem_non_advective_processes, chem_exchange_horiz_bounds
CONTAINS
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine for averaging 3D data of chemical species. Due to the fact that
!> the averaged chem arrays are allocated in chem_init, no if-query concerning
!> the allocation is required (in any mode). Attention: If you just specify an
!> averaged output quantity in the _p3dr file during restarts the first output
!> includes the time between the beginning of the restart run and the first
!> output time (not necessarily the whole averaging_interval you have
!> specified in your _p3d/_p3dr file )
!------------------------------------------------------------------------------!
SUBROUTINE chem_3d_data_averaging( mode, variable )
USE control_parameters
CHARACTER (LEN=*) :: mode !<
CHARACTER (LEN=*) :: variable !<
LOGICAL :: match_def !< flag indicating default-type surface
LOGICAL :: match_lsm !< flag indicating natural-type surface
LOGICAL :: match_usm !< flag indicating urban-type surface
INTEGER(iwp) :: i !< grid index x direction
INTEGER(iwp) :: j !< grid index y direction
INTEGER(iwp) :: k !< grid index z direction
INTEGER(iwp) :: m !< running index surface type
INTEGER(iwp) :: lsp !< running index for chem spcs
IF ( (variable(1:3) == 'kc_' .OR. variable(1:3) == 'em_') ) THEN
IF ( mode == 'allocate' ) THEN
DO lsp = 1, nspec
IF ( TRIM( variable(1:3) ) == 'kc_' .AND. &
TRIM( variable(4:) ) == TRIM( chem_species(lsp)%name ) ) THEN
chem_species(lsp)%conc_av = 0.0_wp
ENDIF
ENDDO
ELSEIF ( mode == 'sum' ) THEN
DO lsp = 1, nspec
IF ( TRIM( variable(1:3) ) == 'kc_' .AND. &
TRIM( variable(4:) ) == TRIM( chem_species(lsp)%name ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
chem_species(lsp)%conc_av(k,j,i) = &
chem_species(lsp)%conc_av(k,j,i) + &
chem_species(lsp)%conc(k,j,i)
ENDDO
ENDDO
ENDDO
ELSEIF ( TRIM( variable(4:) ) == TRIM( 'cssws*' ) ) THEN
DO i = nxl, nxr
DO j = nys, nyn
match_def = surf_def_h(0)%start_index(j,i) <= &
surf_def_h(0)%end_index(j,i)
match_lsm = surf_lsm_h%start_index(j,i) <= &
surf_lsm_h%end_index(j,i)
match_usm = surf_usm_h%start_index(j,i) <= &
surf_usm_h%end_index(j,i)
IF ( match_def ) THEN
m = surf_def_h(0)%end_index(j,i)
chem_species(lsp)%cssws_av(j,i) = &
chem_species(lsp)%cssws_av(j,i) + &
surf_def_h(0)%cssws(lsp,m)
ELSEIF ( match_lsm .AND. .NOT. match_usm ) THEN
m = surf_lsm_h%end_index(j,i)
chem_species(lsp)%cssws_av(j,i) = &
chem_species(lsp)%cssws_av(j,i) + &
surf_lsm_h%cssws(lsp,m)
ELSEIF ( match_usm ) THEN
m = surf_usm_h%end_index(j,i)
chem_species(lsp)%cssws_av(j,i) = &
chem_species(lsp)%cssws_av(j,i) + &
surf_usm_h%cssws(lsp,m)
ENDIF
ENDDO
ENDDO
ENDIF
ENDDO
ELSEIF ( mode == 'average' ) THEN
DO lsp = 1, nspec
IF ( TRIM( variable(1:3) ) == 'kc_' .AND. &
TRIM( variable(4:) ) == TRIM( chem_species(lsp)%name ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
chem_species(lsp)%conc_av(k,j,i) = &
chem_species(lsp)%conc_av(k,j,i) / &
REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDDO
ELSEIF ( TRIM( variable(4:) ) == TRIM( 'cssws*' ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
chem_species(lsp)%cssws_av(j,i) = &
chem_species(lsp)%cssws_av(j,i) / REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
CALL exchange_horiz_2d( chem_species(lsp)%cssws_av, nbgp )
ENDIF
ENDDO
ENDIF
ENDIF
END SUBROUTINE chem_3d_data_averaging
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to initialize and set all boundary conditions for chemical species
!------------------------------------------------------------------------------!
SUBROUTINE chem_boundary_conds( mode )
USE control_parameters, &
ONLY: bc_radiation_l, bc_radiation_n, bc_radiation_r, bc_radiation_s
USE arrays_3d, &
ONLY: dzu
USE surface_mod, &
ONLY: bc_h
CHARACTER (LEN=*), INTENT(IN) :: mode
INTEGER(iwp) :: i !< grid index x direction.
INTEGER(iwp) :: j !< grid index y direction.
INTEGER(iwp) :: k !< grid index z direction.
INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls.
INTEGER(iwp) :: m !< running index surface elements.
INTEGER(iwp) :: lsp !< running index for chem spcs.
SELECT CASE ( TRIM( mode ) )
CASE ( 'init' )
IF ( bc_cs_b == 'dirichlet' ) THEN
ibc_cs_b = 0
ELSEIF ( bc_cs_b == 'neumann' ) THEN
ibc_cs_b = 1
ELSE
message_string = 'unknown boundary condition: bc_cs_b ="' // TRIM( bc_cs_b ) // '"'
CALL message( 'chem_boundary_conds', 'CM0429', 1, 2, 0, 6, 0 )
ENDIF
!
!-- Set Integer flags and check for possible erroneous settings for top
!-- boundary condition.
IF ( bc_cs_t == 'dirichlet' ) THEN
ibc_cs_t = 0
ELSEIF ( bc_cs_t == 'neumann' ) THEN
ibc_cs_t = 1
ELSEIF ( bc_cs_t == 'initial_gradient' ) THEN
ibc_cs_t = 2
ELSEIF ( bc_cs_t == 'nested' ) THEN
ibc_cs_t = 3
ELSE
message_string = 'unknown boundary condition: bc_c_t ="' // TRIM( bc_cs_t ) // '"'
CALL message( 'check_parameters', 'CM0430', 1, 2, 0, 6, 0 )
ENDIF
CASE ( 'set_bc_bottomtop' )
!
!-- Boundary condtions for chemical species at horizontal walls
DO lsp = 1, nspec
IF ( ibc_cs_b == 0 ) THEN
DO l = 0, 1
!$OMP PARALLEL DO PRIVATE( i, j, k )
DO m = 1, bc_h(l)%ns
i = bc_h(l)%i(m)
j = bc_h(l)%j(m)
k = bc_h(l)%k(m)
chem_species(lsp)%conc_p(k+bc_h(l)%koff,j,i) = &
chem_species(lsp)%conc(k+bc_h(l)%koff,j,i)
ENDDO
ENDDO
ELSEIF ( ibc_cs_b == 1 ) THEN
!
!-- in boundary_conds there is som extra loop over m here for passive tracer
DO l = 0, 1
!$OMP PARALLEL DO PRIVATE( i, j, k )
DO m = 1, bc_h(l)%ns
i = bc_h(l)%i(m)
j = bc_h(l)%j(m)
k = bc_h(l)%k(m)
chem_species(lsp)%conc_p(k+bc_h(l)%koff,j,i) = &
chem_species(lsp)%conc_p(k,j,i)
ENDDO
ENDDO
ENDIF
ENDDO ! end lsp loop
!
!-- Top boundary conditions for chemical species - Should this not be done for all species?
IF ( ibc_cs_t == 0 ) THEN
DO lsp = 1, nspec
chem_species(lsp)%conc_p(nzt+1,:,:) = chem_species(lsp)%conc(nzt+1,:,:)
ENDDO
ELSEIF ( ibc_cs_t == 1 ) THEN
DO lsp = 1, nspec
chem_species(lsp)%conc_p(nzt+1,:,:) = chem_species(lsp)%conc_p(nzt,:,:)
ENDDO
ELSEIF ( ibc_cs_t == 2 ) THEN
DO lsp = 1, nspec
chem_species(lsp)%conc_p(nzt+1,:,:) = chem_species(lsp)%conc_p(nzt,:,:) + bc_cs_t_val(lsp) * dzu(nzt+1)
ENDDO
ENDIF
CASE ( 'set_bc_lateral' )
!
!-- Lateral boundary conditions for chem species at inflow boundary
!-- are automatically set when chem_species concentration is
!-- initialized. The initially set value at the inflow boundary is not
!-- touched during time integration, hence, this boundary value remains
!-- at a constant value, which is the concentration that flows into the
!-- domain.
!-- Lateral boundary conditions for chem species at outflow boundary
IF ( bc_radiation_s ) THEN
DO lsp = 1, nspec
chem_species(lsp)%conc_p(:,nys-1,:) = chem_species(lsp)%conc_p(:,nys,:)
ENDDO
ELSEIF ( bc_radiation_n ) THEN
DO lsp = 1, nspec
chem_species(lsp)%conc_p(:,nyn+1,:) = chem_species(lsp)%conc_p(:,nyn,:)
ENDDO
ELSEIF ( bc_radiation_l ) THEN
DO lsp = 1, nspec
chem_species(lsp)%conc_p(:,:,nxl-1) = chem_species(lsp)%conc_p(:,:,nxl)
ENDDO
ELSEIF ( bc_radiation_r ) THEN
DO lsp = 1, nspec
chem_species(lsp)%conc_p(:,:,nxr+1) = chem_species(lsp)%conc_p(:,:,nxr)
ENDDO
ENDIF
END SELECT
END SUBROUTINE chem_boundary_conds
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Boundary conditions for prognostic variables in chemistry: decycling in the
!> x-direction-
!> Decycling of chemistry variables: Dirichlet BCs with cyclic is frequently not
!> approproate for chemicals compounds since they may accumulate too much.
!> If no proper boundary conditions from a DYNAMIC input file are available,
!> de-cycling applies the initial profiles at the inflow boundaries for
!> Dirichlet boundary conditions
!------------------------------------------------------------------------------!
SUBROUTINE chem_boundary_conds_decycle( cs_3d, cs_pr_init )
INTEGER(iwp) :: boundary !<
INTEGER(iwp) :: ee !<
INTEGER(iwp) :: copied !<
INTEGER(iwp) :: i !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: k !<
INTEGER(iwp) :: ss !<
REAL(wp), DIMENSION(nzb:nzt+1) :: cs_pr_init
REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: cs_3d
REAL(wp) :: flag !< flag to mask topography grid points
flag = 0.0_wp
!
!-- Left and right boundaries
IF ( decycle_chem_lr .AND. bc_lr_cyc ) THEN
DO boundary = 1, 2
IF ( decycle_method(boundary) == 'dirichlet' ) THEN
!
!-- Initial profile is copied to ghost and first three layers
ss = 1
ee = 0
IF ( boundary == 1 .AND. nxl == 0 ) THEN
ss = nxlg
ee = nxl-1
ELSEIF ( boundary == 2 .AND. nxr == nx ) THEN
ss = nxr+1
ee = nxrg
ENDIF
DO i = ss, ee
DO j = nysg, nyng
DO k = nzb+1, nzt
flag = MERGE( 1.0_wp, 0.0_wp, &
BTEST( wall_flags_0(k,j,i), 0 ) )
cs_3d(k,j,i) = cs_pr_init(k) * flag
ENDDO
ENDDO
ENDDO
ELSEIF ( decycle_method(boundary) == 'neumann' ) THEN
!
!-- The value at the boundary is copied to the ghost layers to simulate
!-- an outlet with zero gradient
ss = 1
ee = 0
IF ( boundary == 1 .AND. nxl == 0 ) THEN
ss = nxlg
ee = nxl-1
copied = nxl
ELSEIF ( boundary == 2 .AND. nxr == nx ) THEN
ss = nxr+1
ee = nxrg
copied = nxr
ENDIF
DO i = ss, ee
DO j = nysg, nyng
DO k = nzb+1, nzt
flag = MERGE( 1.0_wp, 0.0_wp, &
BTEST( wall_flags_0(k,j,i), 0 ) )
cs_3d(k,j,i) = cs_3d(k,j,copied) * flag
ENDDO
ENDDO
ENDDO
ELSE
WRITE(message_string,*) &
'unknown decycling method: decycle_method (', &
boundary, ') ="' // TRIM( decycle_method(boundary) ) // '"'
CALL message( 'chem_boundary_conds_decycle', 'CM0431', &
1, 2, 0, 6, 0 )
ENDIF
ENDDO
ENDIF
!
!-- South and north boundaries
IF ( decycle_chem_ns .AND. bc_ns_cyc ) THEN
DO boundary = 3, 4
IF ( decycle_method(boundary) == 'dirichlet' ) THEN
!
!-- Initial profile is copied to ghost and first three layers
ss = 1
ee = 0
IF ( boundary == 3 .AND. nys == 0 ) THEN
ss = nysg
ee = nys-1
ELSEIF ( boundary == 4 .AND. nyn == ny ) THEN
ss = nyn+1
ee = nyng
ENDIF
DO i = nxlg, nxrg
DO j = ss, ee
DO k = nzb+1, nzt
flag = MERGE( 1.0_wp, 0.0_wp, &
BTEST( wall_flags_0(k,j,i), 0 ) )
cs_3d(k,j,i) = cs_pr_init(k) * flag
ENDDO
ENDDO
ENDDO
ELSEIF ( decycle_method(boundary) == 'neumann' ) THEN
!
!-- The value at the boundary is copied to the ghost layers to simulate
!-- an outlet with zero gradient
ss = 1
ee = 0
IF ( boundary == 3 .AND. nys == 0 ) THEN
ss = nysg
ee = nys-1
copied = nys
ELSEIF ( boundary == 4 .AND. nyn == ny ) THEN
ss = nyn+1
ee = nyng
copied = nyn
ENDIF
DO i = nxlg, nxrg
DO j = ss, ee
DO k = nzb+1, nzt
flag = MERGE( 1.0_wp, 0.0_wp, &
BTEST( wall_flags_0(k,j,i), 0 ) )
cs_3d(k,j,i) = cs_3d(k,copied,i) * flag
ENDDO
ENDDO
ENDDO
ELSE
WRITE(message_string,*) &
'unknown decycling method: decycle_method (', &
boundary, ') ="' // TRIM( decycle_method(boundary) ) // '"'
CALL message( 'chem_boundary_conds_decycle', 'CM0432', &
1, 2, 0, 6, 0 )
ENDIF
ENDDO
ENDIF
END SUBROUTINE chem_boundary_conds_decycle
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine for checking data output for chemical species
!------------------------------------------------------------------------------!
SUBROUTINE chem_check_data_output( var, unit, i, ilen, k )
CHARACTER (LEN=*) :: unit !<
CHARACTER (LEN=*) :: var !<
INTEGER(iwp) :: i
INTEGER(iwp) :: lsp
INTEGER(iwp) :: ilen
INTEGER(iwp) :: k
CHARACTER(LEN=16) :: spec_name
!
!-- Next statement is to avoid compiler warnings about unused variables
IF ( ( i + ilen + k ) > 0 .OR. var(1:1) == ' ' ) CONTINUE
unit = 'illegal'
spec_name = TRIM( var(4:) ) !< var 1:3 is 'kc_' or 'em_'.
IF ( TRIM( var(1:3) ) == 'em_' ) THEN
DO lsp=1,nspec
IF (TRIM( spec_name ) == TRIM( chem_species(lsp)%name ) ) THEN
unit = 'mol m-2 s-1'
ENDIF
!
!-- It is possible to plant PM10 and PM25 into the gasphase chemistry code
!-- as passive species (e.g. 'passive' in GASPHASE_PREPROC/mechanisms):
!-- set unit to micrograms per m**3 for PM10 and PM25 (PM2.5)
IF (spec_name(1:2) == 'PM') THEN
unit = 'kg m-2 s-1'
ENDIF
ENDDO
ELSE
DO lsp=1,nspec
IF (TRIM( spec_name ) == TRIM( chem_species(lsp)%name ) ) THEN
unit = 'ppm'
ENDIF
!
!-- It is possible to plant PM10 and PM25 into the gasphase chemistry code
!-- as passive species (e.g. 'passive' in GASPHASE_PREPROC/mechanisms):
!-- set unit to kilograms per m**3 for PM10 and PM25 (PM2.5)
IF (spec_name(1:2) == 'PM') THEN
unit = 'kg m-3'
ENDIF
ENDDO
DO lsp=1,nphot
IF (TRIM( spec_name ) == TRIM( phot_frequen(lsp)%name ) ) THEN
unit = 'sec-1'
ENDIF
ENDDO
ENDIF
RETURN
END SUBROUTINE chem_check_data_output
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine for checking data output of profiles for chemistry model
!------------------------------------------------------------------------------!
SUBROUTINE chem_check_data_output_pr( variable, var_count, unit, dopr_unit )
USE arrays_3d
USE control_parameters, &
ONLY: data_output_pr, message_string
USE profil_parameter
USE statistics
CHARACTER (LEN=*) :: unit !<
CHARACTER (LEN=*) :: variable !<
CHARACTER (LEN=*) :: dopr_unit
CHARACTER (LEN=16) :: spec_name
INTEGER(iwp) :: var_count, lsp !<
spec_name = TRIM( variable(4:) )
IF ( .NOT. air_chemistry ) THEN
message_string = 'data_output_pr = ' // &
TRIM( data_output_pr(var_count) ) // ' is not imp' // &
'lemented for air_chemistry = .FALSE.'
CALL message( 'chem_check_parameters', 'CM0433', 1, 2, 0, 6, 0 )
ELSE
DO lsp = 1, nspec
IF (TRIM( spec_name ) == TRIM( chem_species(lsp)%name ) ) THEN
cs_pr_count = cs_pr_count+1
cs_pr_index(cs_pr_count) = lsp
dopr_index(var_count) = pr_palm+cs_pr_count
dopr_unit = 'ppm'
IF (spec_name(1:2) == 'PM') THEN
dopr_unit = 'kg m-3'
ENDIF
hom(:,2, dopr_index(var_count),:) = SPREAD( zu, 2, statistic_regions+1 )
unit = dopr_unit
ENDIF
ENDDO
ENDIF
END SUBROUTINE chem_check_data_output_pr
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Check parameters routine for chemistry_model_mod
!------------------------------------------------------------------------------!
SUBROUTINE chem_check_parameters
LOGICAL :: found
INTEGER (iwp) :: lsp_usr !< running index for user defined chem spcs
INTEGER (iwp) :: lsp !< running index for chem spcs.
!
!-- check for chemical reactions status
IF ( chem_gasphase_on ) THEN
message_string = 'Chemical reactions: ON'
CALL message( 'chem_check_parameters', 'CM0421', 0, 0, 0, 6, 0 )
ELSEIF ( .NOT. (chem_gasphase_on) ) THEN
message_string = 'Chemical reactions: OFF'
CALL message( 'chem_check_parameters', 'CM0422', 0, 0, 0, 6, 0 )
ENDIF
!
!-- check for chemistry time-step
IF ( call_chem_at_all_substeps ) THEN
message_string = 'Chemistry is calculated at all meteorology time-step'
CALL message( 'chem_check_parameters', 'CM0423', 0, 0, 0, 6, 0 )
ELSEIF ( .not. (call_chem_at_all_substeps) ) THEN
message_string = 'Sub-time-steps are skipped for chemistry time-steps'
CALL message( 'chem_check_parameters', 'CM0424', 0, 0, 0, 6, 0 )
ENDIF
!
!-- check for photolysis scheme
IF ( (photolysis_scheme /= 'simple') .AND. (photolysis_scheme /= 'constant') ) THEN
message_string = 'Incorrect photolysis scheme selected, please check spelling'
CALL message( 'chem_check_parameters', 'CM0425', 1, 2, 0, 6, 0 )
ENDIF
!
!-- check for decycling of chem species
IF ( (.NOT. any(decycle_method == 'neumann') ) .AND. (.NOT. any(decycle_method == 'dirichlet') ) ) THEN
message_string = 'Incorrect boundary conditions. Only neumann or ' &
// 'dirichlet &available for decycling chemical species '
CALL message( 'chem_check_parameters', 'CM0426', 1, 2, 0, 6, 0 )
ENDIF
!
!-- check for chemical mechanism used
CALL get_mechanism_name
IF ( chem_mechanism /= TRIM( cs_mech ) ) THEN
message_string = 'Incorrect chemistry mechanism selected, check spelling in namelist and/or chem_gasphase_mod'
CALL message( 'chem_check_parameters', 'CM0462', 1, 2, 0, 6, 0 )
ENDIF
!
!-- chem_check_parameters is called before the array chem_species is allocated!
!-- temporary switch of this part of the check
! RETURN !bK commented
CALL chem_init_internal
!
!-- check for initial chem species input
lsp_usr = 1
lsp = 1
DO WHILE ( cs_name (lsp_usr) /= 'novalue')
found = .FALSE.
DO lsp = 1, nvar
IF ( TRIM( cs_name (lsp_usr) ) == TRIM( chem_species(lsp)%name) ) THEN
found = .TRUE.
EXIT
ENDIF
ENDDO
IF ( .NOT. found ) THEN
message_string = 'Unused/incorrect input for initial surface value: ' // &
TRIM( cs_name(lsp_usr) )
CALL message( 'chem_check_parameters', 'CM0427', 1, 2, 0, 6, 0 )
ENDIF
lsp_usr = lsp_usr + 1
ENDDO
!
!-- check for surface emission flux chem species
lsp_usr = 1
lsp = 1
DO WHILE ( surface_csflux_name (lsp_usr) /= 'novalue')
found = .FALSE.
DO lsp = 1, nvar
IF ( TRIM( surface_csflux_name (lsp_usr) ) == TRIM( chem_species(lsp)%name ) ) THEN
found = .TRUE.
EXIT
ENDIF
ENDDO
IF ( .NOT. found ) THEN
message_string = 'Unused/incorrect input of chemical species for surface emission fluxes: ' &
// TRIM( surface_csflux_name(lsp_usr) )
CALL message( 'chem_check_parameters', 'CM0428', 1, 2, 0, 6, 0 )
ENDIF
lsp_usr = lsp_usr + 1
ENDDO
END SUBROUTINE chem_check_parameters
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining 2D output variables for chemical species
!> @todo: Remove "mode" from argument list, not used.
!------------------------------------------------------------------------------!
SUBROUTINE chem_data_output_2d( av, variable, found, grid, mode, local_pf, &
two_d, nzb_do, nzt_do, fill_value )
CHARACTER (LEN=*) :: grid !<
CHARACTER (LEN=*) :: mode !<
CHARACTER (LEN=*) :: variable !<
INTEGER(iwp) :: av !< flag to control data output of instantaneous or time-averaged data
INTEGER(iwp) :: nzb_do !< lower limit of the domain (usually nzb)
INTEGER(iwp) :: nzt_do !< upper limit of the domain (usually nzt+1)
LOGICAL :: found !<
LOGICAL :: two_d !< flag parameter that indicates 2D variables (horizontal cross sections)
REAL(wp) :: fill_value
REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb:nzt+1) :: local_pf
!
!-- local variables.
CHARACTER(LEN=16) :: spec_name
INTEGER(iwp) :: lsp
INTEGER(iwp) :: i !< grid index along x-direction
INTEGER(iwp) :: j !< grid index along y-direction
INTEGER(iwp) :: k !< grid index along z-direction
INTEGER(iwp) :: m !< running indices for surfaces
INTEGER(iwp) :: char_len !< length of a character string
!
!-- Next statement is to avoid compiler warnings about unused variables
IF ( mode(1:1) == ' ' .OR. two_d ) CONTINUE
found = .FALSE.
char_len = LEN_TRIM( variable )
spec_name = TRIM( variable(4:char_len-3) )
!
!-- Output of emission values, i.e. surface fluxes cssws.
IF ( variable(1:3) == 'em_' ) THEN
local_pf = 0.0_wp
DO lsp = 1, nvar
IF ( TRIM( spec_name ) == TRIM( chem_species(lsp)%name) ) THEN
!
!-- No average output for now.
DO m = 1, surf_lsm_h%ns
local_pf(surf_lsm_h%i(m),surf_lsm_h%j(m),nzb+1) = &
local_pf(surf_lsm_h%i(m),surf_lsm_h%j(m),nzb+1) &
+ surf_lsm_h%cssws(lsp,m)
ENDDO
DO m = 1, surf_usm_h%ns
local_pf(surf_usm_h%i(m),surf_usm_h%j(m),nzb+1) = &
local_pf(surf_usm_h%i(m),surf_usm_h%j(m),nzb+1) &
+ surf_usm_h%cssws(lsp,m)
ENDDO
grid = 'zu'
found = .TRUE.
ENDIF
ENDDO
ELSE
DO lsp=1,nspec
IF (TRIM( spec_name ) == TRIM( chem_species(lsp)%name ) .AND. &
( (variable(char_len-2:) == '_xy') .OR. &
(variable(char_len-2:) == '_xz') .OR. &
(variable(char_len-2:) == '_yz') ) ) THEN
!
!-- todo: remove or replace by "CALL message" mechanism (kanani)
! IF(myid == 0) WRITE(6,*) 'Output of species ' // TRIM( variable ) // &
! TRIM( chem_species(lsp)%name )
IF (av == 0) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = MERGE( &
chem_species(lsp)%conc(k,j,i), &
REAL( fill_value, KIND = wp ), &
BTEST( wall_flags_0(k,j,i), 0 ) )
ENDDO
ENDDO
ENDDO
ELSE
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = MERGE( &
chem_species(lsp)%conc_av(k,j,i), &
REAL( fill_value, KIND = wp ), &
BTEST( wall_flags_0(k,j,i), 0 ) )
ENDDO
ENDDO
ENDDO
ENDIF
grid = 'zu'
found = .TRUE.
ENDIF
ENDDO
ENDIF
RETURN
END SUBROUTINE chem_data_output_2d
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining 3D output variables for chemical species
!------------------------------------------------------------------------------!
SUBROUTINE chem_data_output_3d( av, variable, found, local_pf, fill_value, nzb_do, nzt_do )
USE surface_mod
CHARACTER (LEN=*) :: variable !<
INTEGER(iwp) :: av !<
INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0)
INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d)
LOGICAL :: found !<
REAL(wp) :: fill_value !<
REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf
!
!-- local variables
CHARACTER(LEN=16) :: spec_name
INTEGER(iwp) :: i
INTEGER(iwp) :: j
INTEGER(iwp) :: k
INTEGER(iwp) :: m !< running indices for surfaces
INTEGER(iwp) :: l
INTEGER(iwp) :: lsp !< running index for chem spcs
found = .FALSE.
IF ( .NOT. (variable(1:3) == 'kc_' .OR. variable(1:3) == 'em_' ) ) THEN
RETURN
ENDIF
spec_name = TRIM( variable(4:) )
IF ( variable(1:3) == 'em_' ) THEN
DO lsp = 1, nvar !!! cssws - nvar species, chem_species - nspec species !!!
IF ( TRIM( spec_name ) == TRIM( chem_species(lsp)%name) ) THEN
local_pf = 0.0_wp
!
!-- no average for now
DO m = 1, surf_usm_h%ns
local_pf(surf_usm_h%i(m),surf_usm_h%j(m),surf_usm_h%k(m)) = &
local_pf(surf_usm_h%i(m),surf_usm_h%j(m),surf_usm_h%k(m)) + surf_usm_h%cssws(lsp,m)
ENDDO
DO m = 1, surf_lsm_h%ns
local_pf(surf_lsm_h%i(m),surf_lsm_h%j(m),surf_lsm_h%k(m)) = &
local_pf(surf_lsm_h%i(m),surf_lsm_h%j(m),surf_lsm_h%k(m)) + surf_lsm_h%cssws(lsp,m)
ENDDO
DO l = 0, 3
DO m = 1, surf_usm_v(l)%ns
local_pf(surf_usm_v(l)%i(m),surf_usm_v(l)%j(m),surf_usm_v(l)%k(m)) = &
local_pf(surf_usm_v(l)%i(m),surf_usm_v(l)%j(m),surf_usm_v(l)%k(m)) + surf_usm_v(l)%cssws(lsp,m)
ENDDO
DO m = 1, surf_lsm_v(l)%ns
local_pf(surf_lsm_v(l)%i(m),surf_lsm_v(l)%j(m),surf_lsm_v(l)%k(m)) = &
local_pf(surf_lsm_v(l)%i(m),surf_lsm_v(l)%j(m),surf_lsm_v(l)%k(m)) + surf_lsm_v(l)%cssws(lsp,m)
ENDDO
ENDDO
found = .TRUE.
ENDIF
ENDDO
ELSE
DO lsp = 1, nspec
IF (TRIM( spec_name ) == TRIM( chem_species(lsp)%name) ) THEN
!
!-- todo: remove or replace by "CALL message" mechanism (kanani)
! IF(myid == 0 .AND. chem_debug0 ) WRITE(6,*) 'Output of species ' // TRIM( variable ) // &
! TRIM( chem_species(lsp)%name )
IF (av == 0) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = MERGE( &
chem_species(lsp)%conc(k,j,i), &
REAL( fill_value, KIND = wp ), &
BTEST( wall_flags_0(k,j,i), 0 ) )
ENDDO
ENDDO
ENDDO
ELSE
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = MERGE( &
chem_species(lsp)%conc_av(k,j,i),&
REAL( fill_value, KIND = wp ), &
BTEST( wall_flags_0(k,j,i), 0 ) )
ENDDO
ENDDO
ENDDO
ENDIF
found = .TRUE.
ENDIF
ENDDO
ENDIF
RETURN
END SUBROUTINE chem_data_output_3d
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining mask output variables for chemical species
!------------------------------------------------------------------------------!
SUBROUTINE chem_data_output_mask( av, variable, found, local_pf, mid )
USE control_parameters
CHARACTER(LEN=16) :: spec_name
CHARACTER(LEN=*) :: variable !<
INTEGER(iwp) :: av !< flag to control data output of instantaneous or time-averaged data
INTEGER(iwp) :: lsp
INTEGER(iwp) :: i !< grid index along x-direction
INTEGER(iwp) :: j !< grid index along y-direction
INTEGER(iwp) :: k !< grid index along z-direction
INTEGER(iwp) :: im !< loop index for masked variables
INTEGER(iwp) :: jm !< loop index for masked variables
INTEGER(iwp) :: kk !< masked output index along z-direction
INTEGER(iwp) :: mid !< masked output running index
INTEGER(iwp) :: ktt !< k index of highest terrain surface
LOGICAL :: found
REAL(wp), DIMENSION(mask_size_l(mid,1),mask_size_l(mid,2),mask_size_l(mid,3)) :: &
local_pf !<
REAL(wp), PARAMETER :: fill_value = -9999.0_wp !< value for the _FillValue attribute
!
!-- local variables.
spec_name = TRIM( variable(4:) )
found = .FALSE.
DO lsp=1,nspec
IF (TRIM( spec_name ) == TRIM( chem_species(lsp)%name) ) THEN
!
!-- todo: remove or replace by "CALL message" mechanism (kanani)
! IF(myid == 0 .AND. chem_debug0 ) WRITE(6,*) 'Output of species ' // TRIM( variable ) // &
! TRIM( chem_species(lsp)%name )
IF (av == 0) THEN
IF ( .NOT. mask_surface(mid) ) THEN
DO i = 1, mask_size_l(mid,1)
DO j = 1, mask_size_l(mid,2)
DO k = 1, mask_size(mid,3)
local_pf(i,j,k) = chem_species(lsp)%conc( &
mask_k(mid,k), &
mask_j(mid,j), &
mask_i(mid,i) )
ENDDO
ENDDO
ENDDO
ELSE
!
!-- Terrain-following masked output
DO i = 1, mask_size_l(mid,1)
DO j = 1, mask_size_l(mid,2)
!-- Get k index of the highest terraing surface
im = mask_i(mid,i)
jm = mask_j(mid,j)
ktt = MINLOC( MERGE( 1, 0, BTEST( wall_flags_0(:,jm,im), 5 )), DIM = 1 ) - 1
DO k = 1, mask_size_l(mid,3)
kk = MIN( ktt+mask_k(mid,k), nzt+1 )
!-- Set value if not in building
IF ( BTEST( wall_flags_0(kk,jm,im), 6 ) ) THEN
local_pf(i,j,k) = fill_value
ELSE
local_pf(i,j,k) = chem_species(lsp)%conc(kk,jm,im)
ENDIF
ENDDO
ENDDO
ENDDO
ENDIF
ELSE
IF ( .NOT. mask_surface(mid) ) THEN
DO i = 1, mask_size_l(mid,1)
DO j = 1, mask_size_l(mid,2)
DO k = 1, mask_size_l(mid,3)
local_pf(i,j,k) = chem_species(lsp)%conc_av( &
mask_k(mid,k), &
mask_j(mid,j), &
mask_i(mid,i) )
ENDDO
ENDDO
ENDDO
ELSE
!
!-- Terrain-following masked output
DO i = 1, mask_size_l(mid,1)
DO j = 1, mask_size_l(mid,2)
!-- Get k index of the highest terraing surface
im = mask_i(mid,i)
jm = mask_j(mid,j)
ktt = MINLOC( MERGE( 1, 0, BTEST( wall_flags_0(:,jm,im), 5 )), DIM = 1 ) - 1
DO k = 1, mask_size_l(mid,3)
kk = MIN( ktt+mask_k(mid,k), nzt+1 )
!-- Set value if not in building
IF ( BTEST( wall_flags_0(kk,jm,im), 6 ) ) THEN
local_pf(i,j,k) = fill_value
ELSE
local_pf(i,j,k) = chem_species(lsp)%conc_av(kk,jm,im)
ENDIF
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
found = .TRUE.
EXIT
ENDIF
ENDDO
RETURN
END SUBROUTINE chem_data_output_mask
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining appropriate grid for netcdf variables.
!> It is called out from subroutine netcdf.
!------------------------------------------------------------------------------!
SUBROUTINE chem_define_netcdf_grid( var, found, grid_x, grid_y, grid_z )
CHARACTER (LEN=*), INTENT(IN) :: var !<
LOGICAL, INTENT(OUT) :: found !<
CHARACTER (LEN=*), INTENT(OUT) :: grid_x !<
CHARACTER (LEN=*), INTENT(OUT) :: grid_y !<
CHARACTER (LEN=*), INTENT(OUT) :: grid_z !<
found = .TRUE.
IF ( var(1:3) == 'kc_' .OR. var(1:3) == 'em_' ) THEN !< always the same grid for chemistry variables
grid_x = 'x'
grid_y = 'y'
grid_z = 'zu'
ELSE
found = .FALSE.
grid_x = 'none'
grid_y = 'none'
grid_z = 'none'
ENDIF
END SUBROUTINE chem_define_netcdf_grid
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining header output for chemistry model
!------------------------------------------------------------------------------!
SUBROUTINE chem_header( io )
INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file
INTEGER(iwp) :: lsp !< running index for chem spcs
INTEGER(iwp) :: cs_fixed
CHARACTER (LEN=80) :: docsflux_chr
CHARACTER (LEN=80) :: docsinit_chr
!
! Get name of chemical mechanism from chem_gasphase_mod
CALL get_mechanism_name
!
!-- Write chemistry model header
WRITE( io, 1 )
!
!-- Gasphase reaction status
IF ( chem_gasphase_on ) THEN
WRITE( io, 2 )
ELSE
WRITE( io, 3 )
ENDIF
!
!-- Chemistry time-step
WRITE ( io, 4 ) cs_time_step
!
!-- Emission mode info
!-- At the moment the evaluation is done with both emiss_lod and mode_emis
!-- but once salsa has been migrated to emiss_lod the .OR. mode_emis
!-- conditions can be removed (ecc 20190513)
IF ( (emiss_lod == 1) .OR. (mode_emis == 'DEFAULT') ) THEN
WRITE ( io, 5 )
ELSEIF ( (emiss_lod == 0) .OR. (mode_emis == 'PARAMETERIZED') ) THEN
WRITE ( io, 6 )
ELSEIF ( (emiss_lod == 2) .OR. (mode_emis == 'PRE-PROCESSED') ) THEN
WRITE ( io, 7 )
ENDIF
!
!-- Photolysis scheme info
IF ( photolysis_scheme == "simple" ) THEN
WRITE( io, 8 )
ELSEIF (photolysis_scheme == "constant" ) THEN
WRITE( io, 9 )
ENDIF
!
!-- Emission flux info
lsp = 1
docsflux_chr ='Chemical species for surface emission flux: '
DO WHILE ( surface_csflux_name(lsp) /= 'novalue' )
docsflux_chr = TRIM( docsflux_chr ) // ' ' // TRIM( surface_csflux_name(lsp) ) // ','
IF ( LEN_TRIM( docsflux_chr ) >= 75 ) THEN
WRITE ( io, 10 ) docsflux_chr
docsflux_chr = ' '
ENDIF
lsp = lsp + 1
ENDDO
IF ( docsflux_chr /= '' ) THEN
WRITE ( io, 10 ) docsflux_chr
ENDIF
!
!-- initializatoin of Surface and profile chemical species
lsp = 1
docsinit_chr ='Chemical species for initial surface and profile emissions: '
DO WHILE ( cs_name(lsp) /= 'novalue' )
docsinit_chr = TRIM( docsinit_chr ) // ' ' // TRIM( cs_name(lsp) ) // ','
IF ( LEN_TRIM( docsinit_chr ) >= 75 ) THEN
WRITE ( io, 11 ) docsinit_chr
docsinit_chr = ' '
ENDIF
lsp = lsp + 1
ENDDO
IF ( docsinit_chr /= '' ) THEN
WRITE ( io, 11 ) docsinit_chr
ENDIF
!
!-- number of variable and fix chemical species and number of reactions
cs_fixed = nspec - nvar
WRITE ( io, * ) ' --> Chemical Mechanism : ', cs_mech
WRITE ( io, * ) ' --> Chemical species, variable: ', nvar
WRITE ( io, * ) ' --> Chemical species, fixed : ', cs_fixed
WRITE ( io, * ) ' --> Total number of reactions : ', nreact
1 FORMAT (//' Chemistry model information:'/ &
' ----------------------------'/)
2 FORMAT (' --> Chemical reactions are turned on')
3 FORMAT (' --> Chemical reactions are turned off')
4 FORMAT (' --> Time-step for chemical species: ',F6.2, ' s')
5 FORMAT (' --> Emission mode = DEFAULT ')
6 FORMAT (' --> Emission mode = PARAMETERIZED ')
7 FORMAT (' --> Emission mode = PRE-PROCESSED ')
8 FORMAT (' --> Photolysis scheme used = simple ')
9 FORMAT (' --> Photolysis scheme used = constant ')
10 FORMAT (/' ',A)
11 FORMAT (/' ',A)
!
!
END SUBROUTINE chem_header
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine initializating chemistry_model_mod specific arrays
!------------------------------------------------------------------------------!
SUBROUTINE chem_init_arrays
!
!-- Please use this place to allocate required arrays
END SUBROUTINE chem_init_arrays
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine initializating chemistry_model_mod
!------------------------------------------------------------------------------!
SUBROUTINE chem_init
USE chem_emissions_mod, &
ONLY: chem_emissions_init
USE netcdf_data_input_mod, &
ONLY: init_3d
INTEGER(iwp) :: i !< running index x dimension
INTEGER(iwp) :: j !< running index y dimension
INTEGER(iwp) :: n !< running index for chemical species
IF ( debug_output ) CALL debug_message( 'chem_init', 'start' )
!
!-- Next statement is to avoid compiler warning about unused variables
IF ( ( ilu_arable + ilu_coniferous_forest + ilu_deciduous_forest + ilu_mediterrean_scrub + &
ilu_permanent_crops + ilu_savanna + ilu_semi_natural_veg + ilu_tropical_forest + &
ilu_urban ) == 0 ) CONTINUE
IF ( emissions_anthropogenic ) CALL chem_emissions_init
!
!-- Chemistry variables will be initialized if availabe from dynamic
!-- input file. Note, it is possible to initialize only part of the chemistry
!-- variables from dynamic input.
IF ( INDEX( initializing_actions, 'inifor' ) /= 0 ) THEN
DO n = 1, nspec
IF ( init_3d%from_file_chem(n) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
chem_species(n)%conc(:,j,i) = init_3d%chem_init(:,n)
ENDDO
ENDDO
ENDIF
ENDDO
ENDIF
IF ( debug_output ) CALL debug_message( 'chem_init', 'end' )
END SUBROUTINE chem_init
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine initializating chemistry_model_mod
!> internal workaround for chem_species dependency in chem_check_parameters
!------------------------------------------------------------------------------!
SUBROUTINE chem_init_internal
USE pegrid
USE netcdf_data_input_mod, &
ONLY: chem_emis, chem_emis_att, input_pids_dynamic, init_3d, &
netcdf_data_input_chemistry_data
!
!-- Local variables
INTEGER(iwp) :: i !< running index for for horiz numerical grid points
INTEGER(iwp) :: j !< running index for for horiz numerical grid points
INTEGER(iwp) :: lsp !< running index for chem spcs
INTEGER(iwp) :: lpr_lev !< running index for chem spcs profile level
IF ( emissions_anthropogenic ) THEN
CALL netcdf_data_input_chemistry_data( chem_emis_att, chem_emis )
ENDIF
!
!-- Allocate memory for chemical species
ALLOCATE( chem_species(nspec) )
ALLOCATE( spec_conc_1 (nzb:nzt+1,nysg:nyng,nxlg:nxrg,nspec) )
ALLOCATE( spec_conc_2 (nzb:nzt+1,nysg:nyng,nxlg:nxrg,nspec) )
ALLOCATE( spec_conc_3 (nzb:nzt+1,nysg:nyng,nxlg:nxrg,nspec) )
ALLOCATE( spec_conc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nspec) )
ALLOCATE( phot_frequen(nphot) )
ALLOCATE( freq_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nphot) )
ALLOCATE( bc_cs_t_val(nspec) )
!
!-- Initialize arrays
spec_conc_1 (:,:,:,:) = 0.0_wp
spec_conc_2 (:,:,:,:) = 0.0_wp
spec_conc_3 (:,:,:,:) = 0.0_wp
spec_conc_av(:,:,:,:) = 0.0_wp
DO lsp = 1, nspec
chem_species(lsp)%name = spc_names(lsp)
chem_species(lsp)%conc (nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_1 (:,:,:,lsp)
chem_species(lsp)%conc_p (nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_2 (:,:,:,lsp)
chem_species(lsp)%tconc_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_3 (:,:,:,lsp)
chem_species(lsp)%conc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_av(:,:,:,lsp)
ALLOCATE (chem_species(lsp)%cssws_av(nysg:nyng,nxlg:nxrg))
chem_species(lsp)%cssws_av = 0.0_wp
!
!-- The following block can be useful when emission module is not applied. &
!-- if emission module is applied the following block will be overwritten.
ALLOCATE (chem_species(lsp)%flux_s_cs(nzb+1:nzt,0:threads_per_task-1))
ALLOCATE (chem_species(lsp)%diss_s_cs(nzb+1:nzt,0:threads_per_task-1))
ALLOCATE (chem_species(lsp)%flux_l_cs(nzb+1:nzt,nys:nyn,0:threads_per_task-1))
ALLOCATE (chem_species(lsp)%diss_l_cs(nzb+1:nzt,nys:nyn,0:threads_per_task-1))
chem_species(lsp)%flux_s_cs = 0.0_wp
chem_species(lsp)%flux_l_cs = 0.0_wp
chem_species(lsp)%diss_s_cs = 0.0_wp
chem_species(lsp)%diss_l_cs = 0.0_wp
!
!-- Allocate memory for initial concentration profiles
!-- (concentration values come from namelist)
!-- (@todo (FK): Because of this, chem_init is called in palm before
!-- check_parameters, since conc_pr_init is used there.
!-- We have to find another solution since chem_init should
!-- eventually be called from init_3d_model!!)
ALLOCATE ( chem_species(lsp)%conc_pr_init(0:nz+1) )
chem_species(lsp)%conc_pr_init(:) = 0.0_wp
ENDDO
!
!-- Set control flags for decycling only at lateral boundary cores, within the
!-- inner cores the decycle flag is set to .False.. Even though it does not
!-- affect the setting of chemistry boundary conditions, this flag is used to
!-- set advection control flags appropriately.
decycle_chem_lr = MERGE( decycle_chem_lr, .FALSE., &
nxl == 0 .OR. nxr == nx )
decycle_chem_ns = MERGE( decycle_chem_ns, .FALSE., &
nys == 0 .OR. nyn == ny )
!
!-- For some passive scalars decycling may be enabled. This case, the lateral
!-- boundary conditions are non-cyclic for these scalars (chemical species
!-- and aerosols), while the other scalars may have
!-- cyclic boundary conditions. However, large gradients near the boundaries
!-- may produce stationary numerical oscillations near the lateral boundaries
!-- when a higher-order scheme is applied near these boundaries.
!-- To get rid-off this, set-up additional flags that control the order of the
!-- scalar advection scheme near the lateral boundaries for passive scalars
!-- with decycling.
IF ( scalar_advec == 'ws-scheme' ) THEN
ALLOCATE( cs_advc_flags_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
!
!-- In case of decyling, set Neumann boundary conditions for wall_flags_0
!-- bit 31 instead of cyclic boundary conditions.
!-- Bit 31 is used to identify extended degradation zones (please see
!-- following comment).
!-- Note, since several also other modules like Salsa or other future
!-- one may access this bit but may have other boundary conditions, the
!-- original value of wall_flags_0 bit 31 must not be modified. Hence,
!-- store the boundary conditions directly on cs_advc_flags_s.
!-- cs_advc_flags_s will be later overwritten in ws_init_flags_scalar and
!-- bit 31 won't be used to control the numerical order.
!-- Initialize with flag 31 only.
cs_advc_flags_s = 0
cs_advc_flags_s = MERGE( IBSET( cs_advc_flags_s, 31 ), 0, &
BTEST( wall_flags_0, 31 ) )
IF ( decycle_chem_ns ) THEN
IF ( nys == 0 ) THEN
DO i = 1, nbgp
cs_advc_flags_s(:,nys-i,:) = MERGE( &
IBSET( cs_advc_flags_s(:,nys,:), 31 ), &
IBCLR( cs_advc_flags_s(:,nys,:), 31 ), &
BTEST( cs_advc_flags_s(:,nys,:), 31 ) &
)
ENDDO
ENDIF
IF ( nyn == ny ) THEN
DO i = 1, nbgp
cs_advc_flags_s(:,nyn+i,:) = MERGE( &
IBSET( cs_advc_flags_s(:,nyn,:), 31 ), &
IBCLR( cs_advc_flags_s(:,nyn,:), 31 ), &
BTEST( cs_advc_flags_s(:,nyn,:), 31 ) &
)
ENDDO
ENDIF
ENDIF
IF ( decycle_chem_lr ) THEN
IF ( nxl == 0 ) THEN
DO i = 1, nbgp
cs_advc_flags_s(:,:,nxl-i) = MERGE( &
IBSET( cs_advc_flags_s(:,:,nxl), 31 ), &
IBCLR( cs_advc_flags_s(:,:,nxl), 31 ), &
BTEST( cs_advc_flags_s(:,:,nxl), 31 ) &
)
ENDDO
ENDIF
IF ( nxr == nx ) THEN
DO i = 1, nbgp
cs_advc_flags_s(:,:,nxr+i) = MERGE( &
IBSET( cs_advc_flags_s(:,:,nxr), 31 ), &
IBCLR( cs_advc_flags_s(:,:,nxr), 31 ), &
BTEST( cs_advc_flags_s(:,:,nxr), 31 ) &
)
ENDDO
ENDIF
ENDIF
!
!-- To initialize advection flags appropriately, pass the boundary flags.
!-- The last argument indicates that a passive scalar is treated, where
!-- the horizontal advection terms are degraded already 2 grid points before
!-- the lateral boundary to avoid stationary oscillations at large-gradients.
!-- Also, extended degradation zones are applied, where horizontal advection of
!-- passive scalars is discretized by first-order scheme at all grid points
!-- that in the vicinity of buildings (<= 3 grid points). Even though no
!-- building is within the numerical stencil, first-order scheme is used.
!-- At fourth and fifth grid point the order of the horizontal advection scheme
!-- is successively upgraded.
!-- These extended degradation zones are used to avoid stationary numerical
!-- oscillations, which are responsible for high concentration maxima that may
!-- appear under shear-free stable conditions.
CALL ws_init_flags_scalar( &
bc_dirichlet_l .OR. bc_radiation_l .OR. decycle_chem_lr, &
bc_dirichlet_n .OR. bc_radiation_n .OR. decycle_chem_ns, &
bc_dirichlet_r .OR. bc_radiation_r .OR. decycle_chem_lr, &
bc_dirichlet_s .OR. bc_radiation_s .OR. decycle_chem_ns, &
cs_advc_flags_s, .TRUE. )
ENDIF
!
!-- Initial concentration of profiles is prescribed by parameters cs_profile
!-- and cs_heights in the namelist &chemistry_parameters
CALL chem_init_profiles
!
!-- In case there is dynamic input file, create a list of names for chemistry
!-- initial input files. Also, initialize array that indicates whether the
!-- respective variable is on file or not.
IF ( input_pids_dynamic ) THEN
ALLOCATE( init_3d%var_names_chem(1:nspec) )
ALLOCATE( init_3d%from_file_chem(1:nspec) )
init_3d%from_file_chem(:) = .FALSE.
DO lsp = 1, nspec
init_3d%var_names_chem(lsp) = init_3d%init_char // TRIM( chem_species(lsp)%name )
ENDDO
ENDIF
!
!-- Initialize model variables
IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. &
TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN
!
!-- First model run of a possible job queue.
!-- Initial profiles of the variables must be computed.
IF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN
!
!-- Transfer initial profiles to the arrays of the 3D model
DO lsp = 1, nspec
DO i = nxlg, nxrg
DO j = nysg, nyng
DO lpr_lev = 1, nz + 1
chem_species(lsp)%conc(lpr_lev,j,i) = chem_species(lsp)%conc_pr_init(lpr_lev)
ENDDO
ENDDO
ENDDO
ENDDO
ELSEIF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) &
THEN
DO lsp = 1, nspec
DO i = nxlg, nxrg
DO j = nysg, nyng
chem_species(lsp)%conc(:,j,i) = chem_species(lsp)%conc_pr_init
ENDDO
ENDDO
ENDDO
ENDIF
!
!-- If required, change the surface chem spcs at the start of the 3D run
IF ( cs_surface_initial_change(1) /= 0.0_wp ) THEN
DO lsp = 1, nspec
chem_species(lsp)%conc(nzb,:,:) = chem_species(lsp)%conc(nzb,:,:) + &
cs_surface_initial_change(lsp)
ENDDO
ENDIF
!
!-- Initiale old and new time levels.
DO lsp = 1, nvar
chem_species(lsp)%tconc_m = 0.0_wp
chem_species(lsp)%conc_p = chem_species(lsp)%conc
ENDDO
ENDIF
DO lsp = 1, nphot
phot_frequen(lsp)%name = phot_names(lsp)
!
!-- todo: remove or replace by "CALL message" mechanism (kanani)
!-- IF( myid == 0 ) THEN
!-- WRITE(6,'(a,i4,3x,a)') 'Photolysis: ',lsp,TRIM( phot_names(lsp) )
!-- ENDIF
phot_frequen(lsp)%freq(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => freq_1(:,:,:,lsp)
ENDDO
! CALL photolysis_init ! probably also required for restart
RETURN
END SUBROUTINE chem_init_internal
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining initial vertical profiles of chemical species (given by
!> namelist parameters chem_profiles and chem_heights) --> which should work
!> analogue to parameters u_profile, v_profile and uv_heights)
!------------------------------------------------------------------------------!
SUBROUTINE chem_init_profiles
!
!-- SUBROUTINE is called from chem_init in case of TRIM( initializing_actions ) /= 'read_restart_data'
!< We still need to see what has to be done in case of restart run
USE chem_modules
!
!-- Local variables
INTEGER :: lsp !< running index for number of species in derived data type species_def
INTEGER :: lsp_usr !< running index for number of species (user defined) in cs_names, cs_profiles etc
INTEGER :: lpr_lev !< running index for profile level for each chem spcs.
INTEGER :: npr_lev !< the next available profile lev
!
!-- Parameter "cs_profile" and "cs_heights" are used to prescribe user defined initial profiles
!-- and heights. If parameter "cs_profile" is not prescribed then initial surface values
!-- "cs_surface" are used as constant initial profiles for each species. If "cs_profile" and
!-- "cs_heights" are prescribed, their values will!override the constant profile given by
!-- "cs_surface".
IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN
lsp_usr = 1
DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' ) !'novalue' is the default
DO lsp = 1, nspec !
!
!-- create initial profile (conc_pr_init) for each chemical species
IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) ) THEN !
IF ( cs_profile(lsp_usr,1) == 9999999.9_wp ) THEN
!
!-- set a vertically constant profile based on the surface conc (cs_surface(lsp_usr)) of each species
DO lpr_lev = 0, nzt+1
chem_species(lsp)%conc_pr_init(lpr_lev) = cs_surface(lsp_usr)
ENDDO
ELSE
IF ( cs_heights(1,1) /= 0.0_wp ) THEN
message_string = 'The surface value of cs_heights must be 0.0'
CALL message( 'chem_check_parameters', 'CM0434', 1, 2, 0, 6, 0 )
ENDIF
use_prescribed_profile_data = .TRUE.
npr_lev = 1
! chem_species(lsp)%conc_pr_init(0) = 0.0_wp
DO lpr_lev = 1, nz+1
IF ( npr_lev < 100 ) THEN
DO WHILE ( cs_heights(lsp_usr, npr_lev+1) <= zu(lpr_lev) )
npr_lev = npr_lev + 1
IF ( npr_lev == 100 ) THEN
message_string = 'number of chem spcs exceeding the limit'
CALL message( 'chem_check_parameters', 'CM0435', 1, 2, 0, 6, 0 )
EXIT
ENDIF
ENDDO
ENDIF
IF ( npr_lev < 100 .AND. cs_heights(lsp_usr,npr_lev+1) /= 9999999.9_wp ) THEN
chem_species(lsp)%conc_pr_init(lpr_lev) = cs_profile(lsp_usr, npr_lev) + &
( zu(lpr_lev) - cs_heights(lsp_usr, npr_lev) ) / &
( cs_heights(lsp_usr, (npr_lev + 1)) - cs_heights(lsp_usr, npr_lev ) ) * &
( cs_profile(lsp_usr, (npr_lev + 1)) - cs_profile(lsp_usr, npr_lev ) )
ELSE
chem_species(lsp)%conc_pr_init(lpr_lev) = cs_profile(lsp_usr, npr_lev)
ENDIF
ENDDO
ENDIF
!
!-- If a profile is prescribed explicity using cs_profiles and cs_heights, then
!-- chem_species(lsp)%conc_pr_init is populated with the specific "lsp" based
!-- on the cs_profiles(lsp_usr,:) and cs_heights(lsp_usr,:).
ENDIF
ENDDO
lsp_usr = lsp_usr + 1
ENDDO
ENDIF
END SUBROUTINE chem_init_profiles
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to integrate chemical species in the given chemical mechanism
!------------------------------------------------------------------------------!
SUBROUTINE chem_integrate_ij( i, j )
USE statistics, &
ONLY: weight_pres
USE control_parameters, &
ONLY: dt_3d, intermediate_timestep_count, time_since_reference_point
INTEGER,INTENT(IN) :: i
INTEGER,INTENT(IN) :: j
!
!-- local variables
INTEGER(iwp) :: lsp !< running index for chem spcs.
INTEGER(iwp) :: lph !< running index for photolysis frequencies
INTEGER, DIMENSION(20) :: istatus
REAL(kind=wp), DIMENSION(nzb+1:nzt,nspec) :: tmp_conc
REAL(kind=wp), DIMENSION(nzb+1:nzt) :: tmp_temp
REAL(kind=wp), DIMENSION(nzb+1:nzt) :: tmp_qvap
REAL(kind=wp), DIMENSION(nzb+1:nzt,nphot) :: tmp_phot
REAL(kind=wp), DIMENSION(nzb+1:nzt) :: tmp_fact
REAL(kind=wp), DIMENSION(nzb+1:nzt) :: tmp_fact_i !< conversion factor between
!< molecules cm^{-3} and ppm
INTEGER,DIMENSION(nzb+1:nzt) :: nacc !< Number of accepted steps
INTEGER,DIMENSION(nzb+1:nzt) :: nrej !< Number of rejected steps
REAL(wp) :: conv !< conversion factor
REAL(wp), PARAMETER :: ppm2fr = 1.0e-6_wp !< Conversion factor ppm to fraction
REAL(wp), PARAMETER :: fr2ppm = 1.0e6_wp !< Conversion factor fraction to ppm
! REAL(wp), PARAMETER :: xm_air = 28.96_wp !< Mole mass of dry air
! REAL(wp), PARAMETER :: xm_h2o = 18.01528_wp !< Mole mass of water vapor
REAL(wp), PARAMETER :: t_std = 273.15_wp !< standard pressure (Pa)
REAL(wp), PARAMETER :: p_std = 101325.0_wp !< standard pressure (Pa)
REAL(wp), PARAMETER :: vmolcm = 22.414e3_wp !< Mole volume (22.414 l) in cm^3
REAL(wp), PARAMETER :: xna = 6.022e23_wp !< Avogadro number (molecules/mol)
REAL(wp),DIMENSION(size(rcntrl)) :: rcntrl_local
REAL(kind=wp) :: dt_chem
!
!-- Set chem_gasphase_on to .FALSE. if you want to skip computation of gas phase chemistry
IF (chem_gasphase_on) THEN
nacc = 0
nrej = 0
tmp_temp(:) = pt(nzb+1:nzt,j,i) * exner(nzb+1:nzt)
!
!-- convert ppm to molecules/cm**3
!-- tmp_fact = 1.e-6_wp*6.022e23_wp/(22.414_wp*1000._wp) * 273.15_wp *
!-- hyp(nzb+1:nzt)/( 101300.0_wp * tmp_temp )
conv = ppm2fr * xna / vmolcm
tmp_fact(:) = conv * t_std * hyp(nzb+1:nzt) / (tmp_temp(:) * p_std)
tmp_fact_i = 1.0_wp/tmp_fact
IF ( humidity ) THEN
IF ( bulk_cloud_model ) THEN
tmp_qvap(:) = ( q(nzb+1:nzt,j,i) - ql(nzb+1:nzt,j,i) ) * &
xm_air/xm_h2o * fr2ppm * tmp_fact(:)
ELSE
tmp_qvap(:) = q(nzb+1:nzt,j,i) * xm_air/xm_h2o * fr2ppm * tmp_fact(:)
ENDIF
ELSE
tmp_qvap(:) = 0.01 * xm_air/xm_h2o * fr2ppm * tmp_fact(:) !< Constant value for q if water vapor is not computed
ENDIF
DO lsp = 1,nspec
tmp_conc(:,lsp) = chem_species(lsp)%conc(nzb+1:nzt,j,i) * tmp_fact(:)
ENDDO
DO lph = 1,nphot
tmp_phot(:,lph) = phot_frequen(lph)%freq(nzb+1:nzt,j,i)
ENDDO
!
!-- Compute length of time step
IF ( call_chem_at_all_substeps ) THEN
dt_chem = dt_3d * weight_pres(intermediate_timestep_count)
ELSE
dt_chem = dt_3d
ENDIF
cs_time_step = dt_chem
IF(maxval(rcntrl) > 0.0) THEN ! Only if rcntrl is set
IF( time_since_reference_point <= 2*dt_3d) THEN
rcntrl_local = 0
ELSE
rcntrl_local = rcntrl
ENDIF
ELSE
rcntrl_local = 0
END IF
CALL chem_gasphase_integrate ( dt_chem, tmp_conc, tmp_temp, tmp_qvap, tmp_fact, tmp_phot, &
icntrl_i = icntrl, rcntrl_i = rcntrl_local, xnacc = nacc, xnrej = nrej, istatus=istatus )
DO lsp = 1,nspec
chem_species(lsp)%conc (nzb+1:nzt,j,i) = tmp_conc(:,lsp) * tmp_fact_i(:)
ENDDO
ENDIF
RETURN
END SUBROUTINE chem_integrate_ij
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining parin for &chemistry_parameters for chemistry model
!------------------------------------------------------------------------------!
SUBROUTINE chem_parin
USE chem_modules
USE control_parameters
USE pegrid
USE statistics
CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file
REAL(wp), DIMENSION(nmaxfixsteps) :: my_steps !< List of fixed timesteps my_step(1) = 0.0 automatic stepping
INTEGER(iwp) :: i !<
INTEGER(iwp) :: max_pr_cs_tmp !<
NAMELIST /chemistry_parameters/ bc_cs_b, &
bc_cs_t, &
call_chem_at_all_substeps, &
chem_debug0, &
chem_debug1, &
chem_debug2, &
chem_gasphase_on, &
chem_mechanism, &
cs_heights, &
cs_name, &
cs_profile, &
cs_surface, &
cs_surface_initial_change, &
cs_vertical_gradient_level, &
daytype_mdh, &
decycle_chem_lr, &
decycle_chem_ns, &
decycle_method, &
deposition_dry, &
emissions_anthropogenic, &
emiss_lod, &
emiss_factor_main, &
emiss_factor_side, &
icntrl, &
main_street_id, &
max_street_id, &
mode_emis, &
my_steps, &
rcntrl, &
side_street_id, &
photolysis_scheme, &
wall_csflux, &
cs_vertical_gradient, &
top_csflux, &
surface_csflux, &
surface_csflux_name, &
time_fac_type
!
!-- analogue to chem_names(nspj) we could invent chem_surfaceflux(nspj) and chem_topflux(nspj)
!-- so this way we could prescribe a specific flux value for each species
!> chemistry_parameters for initial profiles
!> cs_names = 'O3', 'NO2', 'NO', ... to set initial profiles)
!> cs_heights(1,:) = 0.0, 100.0, 500.0, 2000.0, .... (height levels where concs will be prescribed for O3)
!> cs_heights(2,:) = 0.0, 200.0, 400.0, 1000.0, .... (same for NO2 etc.)
!> cs_profiles(1,:) = 10.0, 20.0, 20.0, 30.0, ..... (chem spcs conc at height lvls chem_heights(1,:)) etc.
!> If the respective concentration profile should be constant with height, then use "cs_surface( number of spcs)"
!> then write these cs_surface values to chem_species(lsp)%conc_pr_init(:)
!
!-- Read chem namelist
CHARACTER(LEN=8) :: solver_type
icntrl = 0
rcntrl = 0.0_wp
my_steps = 0.0_wp
photolysis_scheme = 'simple'
atol = 1.0_wp
rtol = 0.01_wp
!
!-- Try to find chemistry package
REWIND ( 11 )
line = ' '
DO WHILE ( INDEX( line, '&chemistry_parameters' ) == 0 )
READ ( 11, '(A)', END=20 ) line
ENDDO
BACKSPACE ( 11 )
!
!-- Read chemistry namelist
READ ( 11, chemistry_parameters, ERR = 10, END = 20 )
!
!-- Enable chemistry model
air_chemistry = .TRUE.
GOTO 20
10 BACKSPACE( 11 )
READ( 11 , '(A)') line
CALL parin_fail_message( 'chemistry_parameters', line )
20 CONTINUE
!
!-- synchronize emiss_lod and mod_emis only if emissions_anthropogenic
!-- is activated in the namelist. Otherwise their values are "don't care"
IF ( emissions_anthropogenic ) THEN
!
!-- check for emission mode for chem species
IF ( emiss_lod < 0 ) THEN !- if LOD not defined in namelist
IF ( ( mode_emis /= 'PARAMETERIZED' ) .AND. &
( mode_emis /= 'DEFAULT' ) .AND. &
( mode_emis /= 'PRE-PROCESSED' ) ) THEN
message_string = 'Incorrect mode_emiss option select. Please check spelling'
CALL message( 'chem_check_parameters', 'CM0436', 1, 2, 0, 6, 0 )
ENDIF
ELSE
IF ( ( emiss_lod /= 0 ) .AND. &
( emiss_lod /= 1 ) .AND. &
( emiss_lod /= 2 ) ) THEN
message_string = 'Invalid value for emiss_lod (0, 1, or 2)'
CALL message( 'chem_check_parameters', 'CM0436', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
!
! for reference (ecc)
! IF ( (mode_emis /= 'PARAMETERIZED') .AND. ( mode_emis /= 'DEFAULT' ) .AND. ( mode_emis /= 'PRE-PROCESSED' ) ) THEN
! message_string = 'Incorrect mode_emiss option select. Please check spelling'
! CALL message( 'chem_check_parameters', 'CM0436', 1, 2, 0, 6, 0 )
! ENDIF
!
!-- conflict resolution for emiss_lod and mode_emis
!-- 1) if emiss_lod is defined, have mode_emis assume same setting as emiss_lod
!-- 2) if emiss_lod it not defined, have emiss_lod assuem same setting as mode_emis
!-- this check is in place to retain backward compatibility with salsa until the
!-- code is migrated completed to emiss_lod
!-- note that
IF ( emiss_lod >= 0 ) THEN
SELECT CASE ( emiss_lod )
CASE (0) !- parameterized mode
mode_emis = 'PARAMETERIZED'
CASE (1) !- default mode
mode_emis = 'DEFAULT'
CASE (2) !- preprocessed mode
mode_emis = 'PRE-PROCESSED'
END SELECT
message_string = 'Synchronizing mode_emis to defined emiss_lod' // &
CHAR(10) // ' ' // &
'NOTE - mode_emis will be depreciated in future releases' // &
CHAR(10) // ' ' // &
'please use emiss_lod to define emission mode'
CALL message ( 'parin_chem', 'CM0463', 0, 0, 0, 6, 0 )
ELSE ! if emiss_lod is not set
SELECT CASE ( mode_emis )
CASE ('PARAMETERIZED')
emiss_lod = 0
CASE ('DEFAULT')
emiss_lod = 1
CASE ('PRE-PROCESSED')
emiss_lod = 2
END SELECT
message_string = 'emiss_lod undefined. Using existing mod_emiss setting' // &
CHAR(10) // ' ' // &
'NOTE - mode_emis will be depreciated in future releases' // &
CHAR(10) // ' ' // &
' please use emiss_lod to define emission mode'
CALL message ( 'parin_chem', 'CM0464', 0, 0, 0, 6, 0 )
ENDIF
ENDIF ! if emissions_anthropengic
t_steps = my_steps
!
!-- Determine the number of user-defined profiles and append them to the
!-- standard data output (data_output_pr)
max_pr_cs_tmp = 0
i = 1
DO WHILE ( data_output_pr(i) /= ' ' .AND. i <= 100 )
IF ( TRIM( data_output_pr(i)(1:3) ) == 'kc_' ) THEN
max_pr_cs_tmp = max_pr_cs_tmp+1
ENDIF
i = i +1
ENDDO
IF ( max_pr_cs_tmp > 0 ) THEN
cs_pr_namelist_found = .TRUE.
max_pr_cs = max_pr_cs_tmp
ENDIF
! Set Solver Type
IF(icntrl(3) == 0) THEN
solver_type = 'rodas3' !Default
ELSE IF(icntrl(3) == 1) THEN
solver_type = 'ros2'
ELSE IF(icntrl(3) == 2) THEN
solver_type = 'ros3'
ELSE IF(icntrl(3) == 3) THEN
solver_type = 'ro4'
ELSE IF(icntrl(3) == 4) THEN
solver_type = 'rodas3'
ELSE IF(icntrl(3) == 5) THEN
solver_type = 'rodas4'
ELSE IF(icntrl(3) == 6) THEN
solver_type = 'Rang3'
ELSE
message_string = 'illegal solver type'
CALL message( 'chem_parin', 'PA0506', 1, 2, 0, 6, 0 )
END IF
!
!-- todo: remove or replace by "CALL message" mechanism (kanani)
! write(text,*) 'gas_phase chemistry: solver_type = ',TRIM( solver_type )
!kk Has to be changed to right calling sequence
! IF(myid == 0) THEN
! write(9,*) ' '
! write(9,*) 'kpp setup '
! write(9,*) ' '
! write(9,*) ' gas_phase chemistry: solver_type = ',TRIM( solver_type )
! write(9,*) ' '
! write(9,*) ' Hstart = ',rcntrl(3)
! write(9,*) ' FacMin = ',rcntrl(4)
! write(9,*) ' FacMax = ',rcntrl(5)
! write(9,*) ' '
! IF(vl_dim > 1) THEN
! write(9,*) ' Vector mode vektor length = ',vl_dim
! ELSE
! write(9,*) ' Scalar mode'
! ENDIF
! write(9,*) ' '
! END IF
RETURN
END SUBROUTINE chem_parin
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Call for all grid points
!------------------------------------------------------------------------------!
SUBROUTINE chem_actions( location )
CHARACTER (LEN=*), INTENT(IN) :: location !< call location string
SELECT CASE ( location )
CASE ( 'before_prognostic_equations' )
!
!-- Chemical reactions and deposition
IF ( chem_gasphase_on ) THEN
!
!-- If required, calculate photolysis frequencies -
!-- UNFINISHED: Why not before the intermediate timestep loop?
IF ( intermediate_timestep_count == 1 ) THEN
CALL photolysis_control
ENDIF
ENDIF
CASE DEFAULT
CONTINUE
END SELECT
END SUBROUTINE chem_actions
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Call for grid points i,j
!------------------------------------------------------------------------------!
SUBROUTINE chem_actions_ij( i, j, location )
INTEGER(iwp), INTENT(IN) :: i !< grid index in x-direction
INTEGER(iwp), INTENT(IN) :: j !< grid index in y-direction
CHARACTER (LEN=*), INTENT(IN) :: location !< call location string
INTEGER(iwp) :: dummy !< call location string
IF ( air_chemistry ) dummy = i + j
SELECT CASE ( location )
CASE DEFAULT
CONTINUE
END SELECT
END SUBROUTINE chem_actions_ij
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Call for all grid points
!------------------------------------------------------------------------------!
SUBROUTINE chem_non_advective_processes()
INTEGER(iwp) :: i !<
INTEGER(iwp) :: j !<
!
!-- Calculation of chemical reactions and deposition.
IF ( intermediate_timestep_count == 1 .OR. call_chem_at_all_substeps ) THEN
IF ( chem_gasphase_on ) THEN
CALL cpu_log( log_point_s(19), 'chem.reactions', 'start' )
!$OMP PARALLEL PRIVATE (i,j)
!$OMP DO schedule(static,1)
DO i = nxl, nxr
DO j = nys, nyn
CALL chem_integrate( i, j )
ENDDO
ENDDO
!$OMP END PARALLEL
CALL cpu_log( log_point_s(19), 'chem.reactions', 'stop' )
ENDIF
IF ( deposition_dry ) THEN
CALL cpu_log( log_point_s(24), 'chem.deposition', 'start' )
DO i = nxl, nxr
DO j = nys, nyn
CALL chem_depo( i, j )
ENDDO
ENDDO
CALL cpu_log( log_point_s(24), 'chem.deposition', 'stop' )
ENDIF
ENDIF
END SUBROUTINE chem_non_advective_processes
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Call for grid points i,j
!------------------------------------------------------------------------------!
SUBROUTINE chem_non_advective_processes_ij( i, j )
INTEGER(iwp), INTENT(IN) :: i !< grid index in x-direction
INTEGER(iwp), INTENT(IN) :: j !< grid index in y-direction
!
!-- Calculation of chemical reactions and deposition.
IF ( intermediate_timestep_count == 1 .OR. call_chem_at_all_substeps ) THEN
IF ( chem_gasphase_on ) THEN
CALL cpu_log( log_point_s(19), 'chem.reactions', 'start' )
CALL chem_integrate( i, j )
CALL cpu_log( log_point_s(19), 'chem.reactions', 'stop' )
ENDIF
IF ( deposition_dry ) THEN
CALL cpu_log( log_point_s(24), 'chem.deposition', 'start' )
CALL chem_depo( i, j )
CALL cpu_log( log_point_s(24), 'chem.deposition', 'stop' )
ENDIF
ENDIF
END SUBROUTINE chem_non_advective_processes_ij
!------------------------------------------------------------------------------!
! Description:
! ------------
!> routine for exchange horiz of chemical quantities
!------------------------------------------------------------------------------!
SUBROUTINE chem_exchange_horiz_bounds
INTEGER(iwp) :: lsp !<
INTEGER(iwp) :: lsp_usr !<
!
!-- Loop over chemical species
CALL cpu_log( log_point_s(84), 'chem.exch-horiz', 'start' )
DO lsp = 1, nvar
CALL exchange_horiz( chem_species(lsp)%conc, nbgp )
lsp_usr = 1
DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) ) THEN
!
!-- As chem_exchange_horiz_bounds is called at the beginning
!-- of prognostic_equations, boundary conditions are set on
!-- %conc.
CALL chem_boundary_conds( chem_species(lsp)%conc, &
chem_species(lsp)%conc_pr_init )
ENDIF
lsp_usr = lsp_usr + 1
ENDDO
ENDDO
CALL cpu_log( log_point_s(84), 'chem.exch-horiz', 'stop' )
END SUBROUTINE chem_exchange_horiz_bounds
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine calculating prognostic equations for chemical species
!> (vector-optimized).
!> Routine is called separately for each chemical species over a loop from
!> prognostic_equations.
!------------------------------------------------------------------------------!
SUBROUTINE chem_prognostic_equations()
INTEGER :: i !< running index
INTEGER :: j !< running index
INTEGER :: k !< running index
INTEGER(iwp) :: ilsp !<
CALL cpu_log( log_point_s(25), 'chem.advec+diff+prog', 'start' )
DO ilsp = 1, nvar
!
!-- Tendency terms for chemical species
tend = 0.0_wp
!
!-- Advection terms
IF ( timestep_scheme(1:5) == 'runge' ) THEN
IF ( ws_scheme_sca ) THEN
CALL advec_s_ws( cs_advc_flags_s, chem_species(ilsp)%conc, 'kc', &
bc_dirichlet_l .OR. bc_radiation_l .OR. decycle_chem_lr, &
bc_dirichlet_n .OR. bc_radiation_n .OR. decycle_chem_ns, &
bc_dirichlet_r .OR. bc_radiation_r .OR. decycle_chem_lr, &
bc_dirichlet_s .OR. bc_radiation_s .OR. decycle_chem_ns )
ELSE
CALL advec_s_pw( chem_species(ilsp)%conc )
ENDIF
ELSE
CALL advec_s_up( chem_species(ilsp)%conc )
ENDIF
!
!-- Diffusion terms (the last three arguments are zero)
CALL diffusion_s( chem_species(ilsp)%conc, &
surf_def_h(0)%cssws(ilsp,:), &
surf_def_h(1)%cssws(ilsp,:), &
surf_def_h(2)%cssws(ilsp,:), &
surf_lsm_h%cssws(ilsp,:), &
surf_usm_h%cssws(ilsp,:), &
surf_def_v(0)%cssws(ilsp,:), &
surf_def_v(1)%cssws(ilsp,:), &
surf_def_v(2)%cssws(ilsp,:), &
surf_def_v(3)%cssws(ilsp,:), &
surf_lsm_v(0)%cssws(ilsp,:), &
surf_lsm_v(1)%cssws(ilsp,:), &
surf_lsm_v(2)%cssws(ilsp,:), &
surf_lsm_v(3)%cssws(ilsp,:), &
surf_usm_v(0)%cssws(ilsp,:), &
surf_usm_v(1)%cssws(ilsp,:), &
surf_usm_v(2)%cssws(ilsp,:), &
surf_usm_v(3)%cssws(ilsp,:) )
!
!-- Prognostic equation for chemical species
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt
chem_species(ilsp)%conc_p(k,j,i) = chem_species(ilsp)%conc(k,j,i) &
+ ( dt_3d * &
( tsc(2) * tend(k,j,i) &
+ tsc(3) * chem_species(ilsp)%tconc_m(k,j,i) &
) &
- tsc(5) * rdf_sc(k) &
* ( chem_species(ilsp)%conc(k,j,i) - chem_species(ilsp)%conc_pr_init(k) ) &
) &
* MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) )
IF ( chem_species(ilsp)%conc_p(k,j,i) < 0.0_wp ) THEN
chem_species(ilsp)%conc_p(k,j,i) = 0.1_wp * chem_species(ilsp)%conc(k,j,i)
ENDIF
ENDDO
ENDDO
ENDDO
!
!-- Calculate tendencies for the next Runge-Kutta step
IF ( timestep_scheme(1:5) == 'runge' ) THEN
IF ( intermediate_timestep_count == 1 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt
chem_species(ilsp)%tconc_m(k,j,i) = tend(k,j,i)
ENDDO
ENDDO
ENDDO
ELSEIF ( intermediate_timestep_count < &
intermediate_timestep_count_max ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt
chem_species(ilsp)%tconc_m(k,j,i) = - 9.5625_wp * tend(k,j,i) &
+ 5.3125_wp * chem_species(ilsp)%tconc_m(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
ENDDO
CALL cpu_log( log_point_s(25), 'chem.advec+diff+prog', 'stop' )
END SUBROUTINE chem_prognostic_equations
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine calculating prognostic equations for chemical species
!> (cache-optimized).
!> Routine is called separately for each chemical species over a loop from
!> prognostic_equations.
!------------------------------------------------------------------------------!
SUBROUTINE chem_prognostic_equations_ij( i, j, i_omp_start, tn )
INTEGER(iwp),INTENT(IN) :: i, j, i_omp_start, tn
INTEGER(iwp) :: ilsp
!
!-- local variables
INTEGER :: k
DO ilsp = 1, nvar
!
!-- Tendency-terms for chem spcs.
tend(:,j,i) = 0.0_wp
!
!-- Advection terms
IF ( timestep_scheme(1:5) == 'runge' ) THEN
IF ( ws_scheme_sca ) THEN
CALL advec_s_ws( cs_advc_flags_s, &
i, &
j, &
chem_species(ilsp)%conc, &
'kc', &
chem_species(ilsp)%flux_s_cs, &
chem_species(ilsp)%diss_s_cs, &
chem_species(ilsp)%flux_l_cs, &
chem_species(ilsp)%diss_l_cs, &
i_omp_start, &
tn, &
bc_dirichlet_l .OR. bc_radiation_l .OR. decycle_chem_lr, &
bc_dirichlet_n .OR. bc_radiation_n .OR. decycle_chem_ns, &
bc_dirichlet_r .OR. bc_radiation_r .OR. decycle_chem_lr, &
bc_dirichlet_s .OR. bc_radiation_s .OR. decycle_chem_ns, &
monotonic_limiter_z )
ELSE
CALL advec_s_pw( i, j, chem_species(ilsp)%conc )
ENDIF
ELSE
CALL advec_s_up( i, j, chem_species(ilsp)%conc )
ENDIF
!
!-- Diffusion terms (the last three arguments are zero)
CALL diffusion_s( i, j, chem_species(ilsp)%conc, &
surf_def_h(0)%cssws(ilsp,:), surf_def_h(1)%cssws(ilsp,:), &
surf_def_h(2)%cssws(ilsp,:), &
surf_lsm_h%cssws(ilsp,:), surf_usm_h%cssws(ilsp,:), &
surf_def_v(0)%cssws(ilsp,:), surf_def_v(1)%cssws(ilsp,:), &
surf_def_v(2)%cssws(ilsp,:), surf_def_v(3)%cssws(ilsp,:), &
surf_lsm_v(0)%cssws(ilsp,:), surf_lsm_v(1)%cssws(ilsp,:), &
surf_lsm_v(2)%cssws(ilsp,:), surf_lsm_v(3)%cssws(ilsp,:), &
surf_usm_v(0)%cssws(ilsp,:), surf_usm_v(1)%cssws(ilsp,:), &
surf_usm_v(2)%cssws(ilsp,:), surf_usm_v(3)%cssws(ilsp,:) )
!
!-- Prognostic equation for chem spcs
DO k = nzb+1, nzt
chem_species(ilsp)%conc_p(k,j,i) = chem_species(ilsp)%conc(k,j,i) + ( dt_3d * &
( tsc(2) * tend(k,j,i) + &
tsc(3) * chem_species(ilsp)%tconc_m(k,j,i) ) &
- tsc(5) * rdf_sc(k) &
* ( chem_species(ilsp)%conc(k,j,i) - chem_species(ilsp)%conc_pr_init(k) ) &
) &
* MERGE( 1.0_wp, 0.0_wp, &
BTEST( wall_flags_0(k,j,i), 0 ) &
)
IF ( chem_species(ilsp)%conc_p(k,j,i) < 0.0_wp ) THEN
chem_species(ilsp)%conc_p(k,j,i) = 0.1_wp * chem_species(ilsp)%conc(k,j,i) !FKS6
ENDIF
ENDDO
!
!-- Calculate tendencies for the next Runge-Kutta step
IF ( timestep_scheme(1:5) == 'runge' ) THEN
IF ( intermediate_timestep_count == 1 ) THEN
DO k = nzb+1, nzt
chem_species(ilsp)%tconc_m(k,j,i) = tend(k,j,i)
ENDDO
ELSEIF ( intermediate_timestep_count < &
intermediate_timestep_count_max ) THEN
DO k = nzb+1, nzt
chem_species(ilsp)%tconc_m(k,j,i) = -9.5625_wp * tend(k,j,i) + &
5.3125_wp * chem_species(ilsp)%tconc_m(k,j,i)
ENDDO
ENDIF
ENDIF
ENDDO
END SUBROUTINE chem_prognostic_equations_ij
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to read restart data of chemical species
!------------------------------------------------------------------------------!
SUBROUTINE chem_rrd_local( k, nxlf, nxlc, nxl_on_file, nxrf, nxrc, &
nxr_on_file, nynf, nync, nyn_on_file, nysf, nysc, &
nys_on_file, tmp_3d, found )
USE control_parameters
CHARACTER (LEN=20) :: spc_name_av !<
INTEGER(iwp) :: lsp !<
INTEGER(iwp) :: k !<
INTEGER(iwp) :: nxlc !<
INTEGER(iwp) :: nxlf !<
INTEGER(iwp) :: nxl_on_file !<
INTEGER(iwp) :: nxrc !<
INTEGER(iwp) :: nxrf !<
INTEGER(iwp) :: nxr_on_file !<
INTEGER(iwp) :: nync !<
INTEGER(iwp) :: nynf !<
INTEGER(iwp) :: nyn_on_file !<
INTEGER(iwp) :: nysc !<
INTEGER(iwp) :: nysf !<
INTEGER(iwp) :: nys_on_file !<
LOGICAL, INTENT(OUT) :: found
REAL(wp), DIMENSION(nzb:nzt+1,nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d !< 3D array to temp store data
found = .FALSE.
IF ( ALLOCATED(chem_species) ) THEN
DO lsp = 1, nspec
!< for time-averaged chemical conc.
spc_name_av = TRIM( chem_species(lsp)%name )//'_av'
IF ( restart_string(1:length) == TRIM( chem_species(lsp)%name) ) &
THEN
!< read data into tmp_3d
IF ( k == 1 ) READ ( 13 ) tmp_3d
!< fill ..%conc in the restart run
chem_species(lsp)%conc(:,nysc-nbgp:nync+nbgp, &
nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
found = .TRUE.
ELSEIF (restart_string(1:length) == spc_name_av ) THEN
IF ( k == 1 ) READ ( 13 ) tmp_3d
chem_species(lsp)%conc_av(:,nysc-nbgp:nync+nbgp, &
nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
found = .TRUE.
ENDIF
ENDDO
ENDIF
END SUBROUTINE chem_rrd_local
!-------------------------------------------------------------------------------!
!> Description:
!> Calculation of horizontally averaged profiles
!> This routine is called for every statistic region (sr) defined by the user,
!> but at least for the region "total domain" (sr=0).
!> quantities.
!-------------------------------------------------------------------------------!
SUBROUTINE chem_statistics( mode, sr, tn )
USE arrays_3d
USE statistics
CHARACTER (LEN=*) :: mode !<
INTEGER(iwp) :: i !< running index on x-axis
INTEGER(iwp) :: j !< running index on y-axis
INTEGER(iwp) :: k !< vertical index counter
INTEGER(iwp) :: sr !< statistical region
INTEGER(iwp) :: tn !< thread number
INTEGER(iwp) :: lpr !< running index chem spcs
IF ( mode == 'profiles' ) THEN
!
!
!-- Sample on how to calculate horizontally averaged profiles of user-
!-- defined quantities. Each quantity is identified by the index
!-- "pr_palm+#" where "#" is an integer starting from 1. These
!-- user-profile-numbers must also be assigned to the respective strings
!-- given by data_output_pr_cs in routine user_check_data_output_pr.
!-- hom(:,:,:,:) = dim-1 = vertical level, dim-2= 1: met-species,2:zu/zw, dim-3 = quantity( e.g.
!-- w*pt*), dim-4 = statistical region.
!$OMP DO
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt+1
DO lpr = 1, cs_pr_count
sums_l(k,pr_palm+max_pr_user+lpr,tn) = sums_l(k,pr_palm+max_pr_user+lpr,tn) + &
chem_species(cs_pr_index(lpr))%conc(k,j,i) * &
rmask(j,i,sr) * &
MERGE( 1.0_wp, 0.0_wp, &
BTEST( wall_flags_0(k,j,i), 22 ) )
ENDDO
ENDDO
ENDDO
ENDDO
ELSEIF ( mode == 'time_series' ) THEN
! @todo
ENDIF
END SUBROUTINE chem_statistics
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine for swapping of timelevels for chemical species
!> called out from subroutine swap_timelevel
!------------------------------------------------------------------------------!
SUBROUTINE chem_swap_timelevel( level )
INTEGER(iwp), INTENT(IN) :: level
!
!-- local variables
INTEGER(iwp) :: lsp
IF ( level == 0 ) THEN
DO lsp=1, nvar
chem_species(lsp)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_1(:,:,:,lsp)
chem_species(lsp)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_2(:,:,:,lsp)
ENDDO
ELSE
DO lsp=1, nvar
chem_species(lsp)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_2(:,:,:,lsp)
chem_species(lsp)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_1(:,:,:,lsp)
ENDDO
ENDIF
RETURN
END SUBROUTINE chem_swap_timelevel
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to write restart data for chemistry model
!------------------------------------------------------------------------------!
SUBROUTINE chem_wrd_local
INTEGER(iwp) :: lsp !< running index for chem spcs.
DO lsp = 1, nspec
CALL wrd_write_string( TRIM( chem_species(lsp)%name ) )
WRITE ( 14 ) chem_species(lsp)%conc
CALL wrd_write_string( TRIM( chem_species(lsp)%name )//'_av' )
WRITE ( 14 ) chem_species(lsp)%conc_av
ENDDO
END SUBROUTINE chem_wrd_local
!-------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to calculate the deposition of gases and PMs. For now deposition
!> only takes place on lsm and usm horizontal surfaces. Default surfaces are NOT
!> considered. The deposition of particles is derived following Zhang et al.,
!> 2001, gases are deposited using the DEPAC module (van Zanten et al., 2010).
!>
!> @TODO: Consider deposition on vertical surfaces
!> @TODO: Consider overlaying horizontal surfaces
!> @TODO: Consider resolved vegetation
!> @TODO: Check error messages
!-------------------------------------------------------------------------------!
SUBROUTINE chem_depo( i, j )
USE control_parameters, &
ONLY: dt_3d, intermediate_timestep_count, latitude
USE arrays_3d, &
ONLY: dzw, rho_air_zw
USE date_and_time_mod, &
ONLY: day_of_year
USE surface_mod, &
ONLY: ind_pav_green, ind_veg_wall, ind_wat_win, surf_lsm_h, &
surf_type, surf_usm_h
USE radiation_model_mod, &
ONLY: cos_zenith
INTEGER(iwp), INTENT(IN) :: i
INTEGER(iwp), INTENT(IN) :: j
INTEGER(iwp) :: k !< matching k to surface m at i,j
INTEGER(iwp) :: lsp !< running index for chem spcs.
INTEGER(iwp) :: luv_palm !< index of PALM LSM vegetation_type at current surface element
INTEGER(iwp) :: lup_palm !< index of PALM LSM pavement_type at current surface element
INTEGER(iwp) :: luw_palm !< index of PALM LSM water_type at current surface element
INTEGER(iwp) :: luu_palm !< index of PALM USM walls/roofs at current surface element
INTEGER(iwp) :: lug_palm !< index of PALM USM green walls/roofs at current surface element
INTEGER(iwp) :: lud_palm !< index of PALM USM windows at current surface element
INTEGER(iwp) :: luv_dep !< matching DEPAC LU to luv_palm
INTEGER(iwp) :: lup_dep !< matching DEPAC LU to lup_palm
INTEGER(iwp) :: luw_dep !< matching DEPAC LU to luw_palm
INTEGER(iwp) :: luu_dep !< matching DEPAC LU to luu_palm
INTEGER(iwp) :: lug_dep !< matching DEPAC LU to lug_palm
INTEGER(iwp) :: lud_dep !< matching DEPAC LU to lud_palm
INTEGER(iwp) :: m !< index for horizontal surfaces
INTEGER(iwp) :: pspec !< running index
INTEGER(iwp) :: i_pspec !< index for matching depac gas component
!
!-- Vegetation !< Assign PALM classes to DEPAC land use classes
INTEGER(iwp) :: ind_luv_user = 0 !< ERROR as no class given in PALM
INTEGER(iwp) :: ind_luv_b_soil = 1 !< assigned to ilu_desert
INTEGER(iwp) :: ind_luv_mixed_crops = 2 !< assigned to ilu_arable
INTEGER(iwp) :: ind_luv_s_grass = 3 !< assigned to ilu_grass
INTEGER(iwp) :: ind_luv_ev_needle_trees = 4 !< assigned to ilu_coniferous_forest
INTEGER(iwp) :: ind_luv_de_needle_trees = 5 !< assigned to ilu_coniferous_forest
INTEGER(iwp) :: ind_luv_ev_broad_trees = 6 !< assigned to ilu_tropical_forest
INTEGER(iwp) :: ind_luv_de_broad_trees = 7 !< assigned to ilu_deciduous_forest
INTEGER(iwp) :: ind_luv_t_grass = 8 !< assigned to ilu_grass
INTEGER(iwp) :: ind_luv_desert = 9 !< assigned to ilu_desert
INTEGER(iwp) :: ind_luv_tundra = 10 !< assigned to ilu_other
INTEGER(iwp) :: ind_luv_irr_crops = 11 !< assigned to ilu_arable
INTEGER(iwp) :: ind_luv_semidesert = 12 !< assigned to ilu_other
INTEGER(iwp) :: ind_luv_ice = 13 !< assigned to ilu_ice
INTEGER(iwp) :: ind_luv_marsh = 14 !< assigned to ilu_other
INTEGER(iwp) :: ind_luv_ev_shrubs = 15 !< assigned to ilu_mediterrean_scrub
INTEGER(iwp) :: ind_luv_de_shrubs = 16 !< assigned to ilu_mediterrean_scrub
INTEGER(iwp) :: ind_luv_mixed_forest = 17 !< assigned to ilu_coniferous_forest (ave(decid+conif))
INTEGER(iwp) :: ind_luv_intrup_forest = 18 !< assigned to ilu_other (ave(other+decid))
!
!-- Water
INTEGER(iwp) :: ind_luw_user = 0 !< ERROR as no class given in PALM
INTEGER(iwp) :: ind_luw_lake = 1 !< assigned to ilu_water_inland
INTEGER(iwp) :: ind_luw_river = 2 !< assigned to ilu_water_inland
INTEGER(iwp) :: ind_luw_ocean = 3 !< assigned to ilu_water_sea
INTEGER(iwp) :: ind_luw_pond = 4 !< assigned to ilu_water_inland
INTEGER(iwp) :: ind_luw_fountain = 5 !< assigned to ilu_water_inland
!
!-- Pavement
INTEGER(iwp) :: ind_lup_user = 0 !< ERROR as no class given in PALM
INTEGER(iwp) :: ind_lup_asph_conc = 1 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_asph = 2 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_conc = 3 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_sett = 4 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_pav_stones = 5 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_cobblest = 6 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_metal = 7 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_wood = 8 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_gravel = 9 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_f_gravel = 10 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_pebblest = 11 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_woodchips = 12 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_tartan = 13 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_art_turf = 14 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_clay = 15 !< assigned to ilu_desert
!
!-- Particle parameters according to the respective aerosol classes (PM25, PM10)
INTEGER(iwp) :: ind_p_size = 1 !< index for partsize in particle_pars
INTEGER(iwp) :: ind_p_dens = 2 !< index for rhopart in particle_pars
INTEGER(iwp) :: ind_p_slip = 3 !< index for slipcor in particle_pars
INTEGER(iwp) :: part_type !< index for particle type (PM10 or PM25) in particle_pars
INTEGER(iwp) :: nwet !< wetness indicator dor DEPAC; nwet=0 -> dry; nwet=1 -> wet; nwet=9 -> snow
REAL(wp) :: dt_chem !< length of chem time step
REAL(wp) :: dh !< vertical grid size
REAL(wp) :: inv_dh !< inverse of vertical grid size
REAL(wp) :: dt_dh !< dt_chem/dh
REAL(wp) :: dens !< density at layer k at i,j
REAL(wp) :: r_aero_surf !< aerodynamic resistance (s/m) at current surface element
REAL(wp) :: ustar_surf !< ustar at current surface element
REAL(wp) :: z0h_surf !< roughness length for heat at current surface element
REAL(wp) :: solar_rad !< solar radiation, direct and diffuse, at current surface element
REAL(wp) :: ppm2ugm3 !< conversion factor from ppm to ug/m3
REAL(wp) :: rh_surf !< relative humidity at current surface element
REAL(wp) :: lai !< leaf area index at current surface element
REAL(wp) :: sai !< surface area index at current surface element assumed to be lai + 1
REAL(wp) :: slinnfac
REAL(wp) :: visc !< Viscosity
REAL(wp) :: vs !< Sedimentation velocity
REAL(wp) :: vd_lu !< deposition velocity (m/s)
REAL(wp) :: rs !< Sedimentaion resistance (s/m)
REAL(wp) :: rb !< quasi-laminar boundary layer resistance (s/m)
REAL(wp) :: rc_tot !< total canopy resistance (s/m)
REAL(wp) :: conc_ijk_ugm3 !< concentration at i, j, k in ug/m3
REAL(wp) :: diffusivity !< diffusivity
REAL(wp), DIMENSION(nspec) :: bud_luv !< budget for LSM vegetation type at current surface element
REAL(wp), DIMENSION(nspec) :: bud_lup !< budget for LSM pavement type at current surface element
REAL(wp), DIMENSION(nspec) :: bud_luw !< budget for LSM water type at current surface element
REAL(wp), DIMENSION(nspec) :: bud_luu !< budget for USM walls/roofs at current surface element
REAL(wp), DIMENSION(nspec) :: bud_lug !< budget for USM green surfaces at current surface element
REAL(wp), DIMENSION(nspec) :: bud_lud !< budget for USM windows at current surface element
REAL(wp), DIMENSION(nspec) :: bud !< overall budget at current surface element
REAL(wp), DIMENSION(nspec) :: conc_ijk !< concentration at i,j,k
REAL(wp), DIMENSION(nspec) :: ccomp_tot !< total compensation point (ug/m3), for now kept to zero for all species!
REAL(wp) :: temp_tmp !< temperatur at i,j,k
REAL(wp) :: ts !< surface temperatur in degrees celsius
REAL(wp) :: qv_tmp !< surface mixing ratio at current surface element
!
!-- Particle parameters (PM10 (1), PM25 (2))
!-- partsize (diameter in m), rhopart (density in kg/m3), slipcor
!-- (slip correction factor dimensionless, Seinfeld and Pandis 2006, Table 9.3)
REAL(wp), DIMENSION(1:3,1:2), PARAMETER :: particle_pars = RESHAPE( (/ &
8.0e-6_wp, 1.14e3_wp, 1.016_wp, & !< 1
0.7e-6_wp, 1.14e3_wp, 1.082_wp & !< 2
/), (/ 3, 2 /) )
LOGICAL :: match_lsm !< flag indicating natural-type surface
LOGICAL :: match_usm !< flag indicating urban-type surface
!
!-- List of names of possible tracers
CHARACTER(LEN=*), PARAMETER :: pspecnames(nposp) = (/ &
'NO2 ', & !< NO2
'NO ', & !< NO
'O3 ', & !< O3
'CO ', & !< CO
'form ', & !< FORM
'ald ', & !< ALD
'pan ', & !< PAN
'mgly ', & !< MGLY
'par ', & !< PAR
'ole ', & !< OLE
'eth ', & !< ETH
'tol ', & !< TOL
'cres ', & !< CRES
'xyl ', & !< XYL
'SO4a_f ', & !< SO4a_f
'SO2 ', & !< SO2
'HNO2 ', & !< HNO2
'CH4 ', & !< CH4
'NH3 ', & !< NH3
'NO3 ', & !< NO3
'OH ', & !< OH
'HO2 ', & !< HO2
'N2O5 ', & !< N2O5
'SO4a_c ', & !< SO4a_c
'NH4a_f ', & !< NH4a_f
'NO3a_f ', & !< NO3a_f
'NO3a_c ', & !< NO3a_c
'C2O3 ', & !< C2O3
'XO2 ', & !< XO2
'XO2N ', & !< XO2N
'cro ', & !< CRO
'HNO3 ', & !< HNO3
'H2O2 ', & !< H2O2
'iso ', & !< ISO
'ispd ', & !< ISPD
'to2 ', & !< TO2
'open ', & !< OPEN
'terp ', & !< TERP
'ec_f ', & !< EC_f
'ec_c ', & !< EC_c
'pom_f ', & !< POM_f
'pom_c ', & !< POM_c
'ppm_f ', & !< PPM_f
'ppm_c ', & !< PPM_c
'na_ff ', & !< Na_ff
'na_f ', & !< Na_f
'na_c ', & !< Na_c
'na_cc ', & !< Na_cc
'na_ccc ', & !< Na_ccc
'dust_ff ', & !< dust_ff
'dust_f ', & !< dust_f
'dust_c ', & !< dust_c
'dust_cc ', & !< dust_cc
'dust_ccc ', & !< dust_ccc
'tpm10 ', & !< tpm10
'tpm25 ', & !< tpm25
'tss ', & !< tss
'tdust ', & !< tdust
'tc ', & !< tc
'tcg ', & !< tcg
'tsoa ', & !< tsoa
'tnmvoc ', & !< tnmvoc
'SOxa ', & !< SOxa
'NOya ', & !< NOya
'NHxa ', & !< NHxa
'NO2_obs ', & !< NO2_obs
'tpm10_biascorr', & !< tpm10_biascorr
'tpm25_biascorr', & !< tpm25_biascorr
'O3_biascorr ' /) !< o3_biascorr
!
!-- tracer mole mass:
REAL(wp), PARAMETER :: specmolm(nposp) = (/ &
xm_O * 2 + xm_N, & !< NO2
xm_O + xm_N, & !< NO
xm_O * 3, & !< O3
xm_C + xm_O, & !< CO
xm_H * 2 + xm_C + xm_O, & !< FORM
xm_H * 3 + xm_C * 2 + xm_O, & !< ALD
xm_H * 3 + xm_C * 2 + xm_O * 5 + xm_N, & !< PAN
xm_H * 4 + xm_C * 3 + xm_O * 2, & !< MGLY
xm_H * 3 + xm_C, & !< PAR
xm_H * 3 + xm_C * 2, & !< OLE
xm_H * 4 + xm_C * 2, & !< ETH
xm_H * 8 + xm_C * 7, & !< TOL
xm_H * 8 + xm_C * 7 + xm_O, & !< CRES
xm_H * 10 + xm_C * 8, & !< XYL
xm_S + xm_O * 4, & !< SO4a_f
xm_S + xm_O * 2, & !< SO2
xm_H + xm_O * 2 + xm_N, & !< HNO2
xm_H * 4 + xm_C, & !< CH4
xm_H * 3 + xm_N, & !< NH3
xm_O * 3 + xm_N, & !< NO3
xm_H + xm_O, & !< OH
xm_H + xm_O * 2, & !< HO2
xm_O * 5 + xm_N * 2, & !< N2O5
xm_S + xm_O * 4, & !< SO4a_c
xm_H * 4 + xm_N, & !< NH4a_f
xm_O * 3 + xm_N, & !< NO3a_f
xm_O * 3 + xm_N, & !< NO3a_c
xm_C * 2 + xm_O * 3, & !< C2O3
xm_dummy, & !< XO2
xm_dummy, & !< XO2N
xm_dummy, & !< CRO
xm_H + xm_O * 3 + xm_N, & !< HNO3
xm_H * 2 + xm_O * 2, & !< H2O2
xm_H * 8 + xm_C * 5, & !< ISO
xm_dummy, & !< ISPD
xm_dummy, & !< TO2
xm_dummy, & !< OPEN
xm_H * 16 + xm_C * 10, & !< TERP
xm_dummy, & !< EC_f
xm_dummy, & !< EC_c
xm_dummy, & !< POM_f
xm_dummy, & !< POM_c
xm_dummy, & !< PPM_f
xm_dummy, & !< PPM_c
xm_Na, & !< Na_ff
xm_Na, & !< Na_f
xm_Na, & !< Na_c
xm_Na, & !< Na_cc
xm_Na, & !< Na_ccc
xm_dummy, & !< dust_ff
xm_dummy, & !< dust_f
xm_dummy, & !< dust_c
xm_dummy, & !< dust_cc
xm_dummy, & !< dust_ccc
xm_dummy, & !< tpm10
xm_dummy, & !< tpm25
xm_dummy, & !< tss
xm_dummy, & !< tdust
xm_dummy, & !< tc
xm_dummy, & !< tcg
xm_dummy, & !< tsoa
xm_dummy, & !< tnmvoc
xm_dummy, & !< SOxa
xm_dummy, & !< NOya
xm_dummy, & !< NHxa
xm_O * 2 + xm_N, & !< NO2_obs
xm_dummy, & !< tpm10_biascorr
xm_dummy, & !< tpm25_biascorr
xm_O * 3 /) !< o3_biascorr
!
!-- Initialize surface element m
m = 0
k = 0
!
!-- LSM or USM surface present at i,j:
!-- Default surfaces are NOT considered for deposition
match_lsm = surf_lsm_h%start_index(j,i) <= surf_lsm_h%end_index(j,i)
match_usm = surf_usm_h%start_index(j,i) <= surf_usm_h%end_index(j,i)
!
!--For LSM surfaces
IF ( match_lsm ) THEN
!
!-- Get surface element information at i,j:
m = surf_lsm_h%start_index(j,i)
k = surf_lsm_h%k(m)
!
!-- Get needed variables for surface element m
ustar_surf = surf_lsm_h%us(m)
z0h_surf = surf_lsm_h%z0h(m)
r_aero_surf = surf_lsm_h%r_a(m)
solar_rad = surf_lsm_h%rad_sw_dir(m) + surf_lsm_h%rad_sw_dif(m)
lai = surf_lsm_h%lai(m)
sai = lai + 1
!
!-- For small grid spacing neglect R_a
IF ( dzw(k) <= 1.0 ) THEN
r_aero_surf = 0.0_wp
ENDIF
!
!-- Initialize lu's
luv_palm = 0
luv_dep = 0
lup_palm = 0
lup_dep = 0
luw_palm = 0
luw_dep = 0
!
!-- Initialize budgets
bud_luv = 0.0_wp
bud_lup = 0.0_wp
bud_luw = 0.0_wp
!
!-- Get land use for i,j and assign to DEPAC lu
IF ( surf_lsm_h%frac(ind_veg_wall,m) > 0 ) THEN
luv_palm = surf_lsm_h%vegetation_type(m)
IF ( luv_palm == ind_luv_user ) THEN
message_string = 'No vegetation type defined. Please define vegetation type to enable deposition calculation'
CALL message( 'chem_depo', 'CM0451', 1, 2, 0, 6, 0 )
ELSEIF ( luv_palm == ind_luv_b_soil ) THEN
luv_dep = 9
ELSEIF ( luv_palm == ind_luv_mixed_crops ) THEN
luv_dep = 2
ELSEIF ( luv_palm == ind_luv_s_grass ) THEN
luv_dep = 1
ELSEIF ( luv_palm == ind_luv_ev_needle_trees ) THEN
luv_dep = 4
ELSEIF ( luv_palm == ind_luv_de_needle_trees ) THEN
luv_dep = 4
ELSEIF ( luv_palm == ind_luv_ev_broad_trees ) THEN
luv_dep = 12
ELSEIF ( luv_palm == ind_luv_de_broad_trees ) THEN
luv_dep = 5
ELSEIF ( luv_palm == ind_luv_t_grass ) THEN
luv_dep = 1
ELSEIF ( luv_palm == ind_luv_desert ) THEN
luv_dep = 9
ELSEIF ( luv_palm == ind_luv_tundra ) THEN
luv_dep = 8
ELSEIF ( luv_palm == ind_luv_irr_crops ) THEN
luv_dep = 2
ELSEIF ( luv_palm == ind_luv_semidesert ) THEN
luv_dep = 8
ELSEIF ( luv_palm == ind_luv_ice ) THEN
luv_dep = 10
ELSEIF ( luv_palm == ind_luv_marsh ) THEN
luv_dep = 8
ELSEIF ( luv_palm == ind_luv_ev_shrubs ) THEN
luv_dep = 14
ELSEIF ( luv_palm == ind_luv_de_shrubs ) THEN
luv_dep = 14
ELSEIF ( luv_palm == ind_luv_mixed_forest ) THEN
luv_dep = 4
ELSEIF ( luv_palm == ind_luv_intrup_forest ) THEN
luv_dep = 8
ENDIF
ENDIF
IF ( surf_lsm_h%frac(ind_pav_green,m) > 0 ) THEN
lup_palm = surf_lsm_h%pavement_type(m)
IF ( lup_palm == ind_lup_user ) THEN
message_string = 'No pavement type defined. Please define pavement type to enable deposition calculation'
CALL message( 'chem_depo', 'CM0452', 1, 2, 0, 6, 0 )
ELSEIF ( lup_palm == ind_lup_asph_conc ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_asph ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_conc ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_sett ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_pav_stones ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_cobblest ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_metal ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_wood ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_gravel ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_f_gravel ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_pebblest ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_woodchips ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_tartan ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_art_turf ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_clay ) THEN
lup_dep = 9
ENDIF
ENDIF
IF ( surf_lsm_h%frac(ind_wat_win,m) > 0 ) THEN
luw_palm = surf_lsm_h%water_type(m)
IF ( luw_palm == ind_luw_user ) THEN
message_string = 'No water type defined. Please define water type to enable deposition calculation'
CALL message( 'chem_depo', 'CM0453', 1, 2, 0, 6, 0 )
ELSEIF ( luw_palm == ind_luw_lake ) THEN
luw_dep = 13
ELSEIF ( luw_palm == ind_luw_river ) THEN
luw_dep = 13
ELSEIF ( luw_palm == ind_luw_ocean ) THEN
luw_dep = 6
ELSEIF ( luw_palm == ind_luw_pond ) THEN
luw_dep = 13
ELSEIF ( luw_palm == ind_luw_fountain ) THEN
luw_dep = 13
ENDIF
ENDIF
!
!-- Set wetness indicator to dry or wet for lsm vegetation or pavement
IF ( surf_lsm_h%c_liq(m) > 0 ) THEN
nwet = 1
ELSE
nwet = 0
ENDIF
!
!-- Compute length of time step
IF ( call_chem_at_all_substeps ) THEN
dt_chem = dt_3d * weight_pres(intermediate_timestep_count)
ELSE
dt_chem = dt_3d
ENDIF
dh = dzw(k)
inv_dh = 1.0_wp / dh
dt_dh = dt_chem/dh
!
!-- Concentration at i,j,k
DO lsp = 1, nspec
conc_ijk(lsp) = chem_species(lsp)%conc(k,j,i)
ENDDO
!-- Temperature at i,j,k
temp_tmp = pt(k,j,i) * ( hyp(k) / 100000.0_wp )**0.286_wp
ts = temp_tmp - 273.15 !< in degrees celcius
!
!-- Viscosity of air
visc = 1.496e-6 * temp_tmp**1.5 / (temp_tmp + 120.0)
!
!-- Air density at k
dens = rho_air_zw(k)
!
!-- Calculate relative humidity from specific humidity for DEPAC
qv_tmp = MAX(q(k,j,i),0.0_wp)
rh_surf = relativehumidity_from_specifichumidity(qv_tmp, temp_tmp, hyp(k) )
!
!-- Check if surface fraction (vegetation, pavement or water) > 0 and calculate vd and budget
!-- for each surface fraction. Then derive overall budget taking into account the surface fractions.
!
!-- Vegetation
IF ( surf_lsm_h%frac(ind_veg_wall,m) > 0 ) THEN
!
!-- No vegetation on bare soil, desert or ice:
IF ( ( luv_palm == ind_luv_b_soil ) .OR. &
( luv_palm == ind_luv_desert ) .OR. &
( luv_palm == ind_luv_ice ) ) THEN
lai = 0.0_wp
sai = 0.0_wp
ENDIF
slinnfac = 1.0_wp
!
!-- Get deposition velocity vd
DO lsp = 1, nvar
!
!-- Initialize
vs = 0.0_wp
vd_lu = 0.0_wp
rs = 0.0_wp
rb = 0.0_wp
rc_tot = 0.0_wp
IF ( spc_names(lsp) == 'PM10' ) THEN
part_type = 1
!
!-- Sedimentation velocity
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
luv_dep, &
r_aero_surf, ustar_surf )
bud_luv(lsp) = - conc_ijk(lsp) * &
(1.0_wp - exp(-vd_lu * dt_dh )) * dh
ELSEIF ( spc_names(lsp) == 'PM25' ) THEN
part_type = 2
!
!-- Sedimentation velocity
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
luv_dep , &
r_aero_surf, ustar_surf )
bud_luv(lsp) = - conc_ijk(lsp) * &
(1.0_wp - exp(-vd_lu * dt_dh )) * dh
ELSE !< GASES
!
!-- Read spc_name of current species for gas parameter
IF ( ANY( pspecnames(:) == spc_names(lsp) ) ) THEN
i_pspec = 0
DO pspec = 1, nposp
IF ( pspecnames(pspec) == spc_names(lsp) ) THEN
i_pspec = pspec
END IF
ENDDO
ELSE
!
!-- For now species not deposited
CYCLE
ENDIF
!
!-- Factor used for conversion from ppb to ug/m3 :
!-- ppb (mole tr)/(mole air)/ppb (kg tr)/(mole tr) (ug tr)/(kg tr) &
!-- (mole air)/(kg air) (kg air)/(m3 air) (kg air(ug/m3)/ppb/(kg/mole) = / (kg/mole)
!-- c 1e-9 xm_tracer 1e9 / xm_air dens
!-- thus:
!-- c_in_ppb * xm_tracer * [ dens / xm_air ] = c_in_ugm3
!-- Use density at k:
ppm2ugm3 = (dens/xm_air) * 0.001_wp !< (mole air)/m3
!
!-- Atmospheric concentration in DEPAC is requested in ug/m3:
! ug/m3 ppm (ug/m3)/ppm/(kg/mole) kg/mole
conc_ijk_ugm3 = conc_ijk(lsp) * ppm2ugm3 * specmolm(i_pspec) ! in ug/m3
!
!-- Diffusivity for DEPAC relevant gases
!-- Use default value
diffusivity = 0.11e-4
!
!-- overwrite with known coefficients of diffusivity from Massman (1998)
IF ( spc_names(lsp) == 'NO2' ) diffusivity = 0.136e-4
IF ( spc_names(lsp) == 'NO' ) diffusivity = 0.199e-4
IF ( spc_names(lsp) == 'O3' ) diffusivity = 0.144e-4
IF ( spc_names(lsp) == 'CO' ) diffusivity = 0.176e-4
IF ( spc_names(lsp) == 'SO2' ) diffusivity = 0.112e-4
IF ( spc_names(lsp) == 'CH4' ) diffusivity = 0.191e-4
IF ( spc_names(lsp) == 'NH3' ) diffusivity = 0.191e-4
!
!-- Get quasi-laminar boundary layer resistance rb:
CALL get_rb_cell( (luv_dep == ilu_water_sea) .OR. (luv_dep == ilu_water_inland), &
z0h_surf, ustar_surf, diffusivity, &
rb )
!
!-- Get rc_tot
CALL drydepos_gas_depac( spc_names(lsp), day_of_year, latitude, ts, ustar_surf, solar_rad, cos_zenith, &
rh_surf, lai, sai, nwet, luv_dep, 2, rc_tot, ccomp_tot(lsp), hyp(nzb), conc_ijk_ugm3, diffusivity, &
r_aero_surf , rb )
!
!-- Calculate budget
IF ( rc_tot <= 0.0 ) THEN
bud_luv(lsp) = 0.0_wp
ELSE
vd_lu = 1.0_wp / (r_aero_surf + rb + rc_tot )
bud_luv(lsp) = - (conc_ijk(lsp) - ccomp_tot(lsp)) * &
(1.0_wp - exp(-vd_lu * dt_dh )) * dh
ENDIF
ENDIF
ENDDO
ENDIF
!
!-- Pavement
IF ( surf_lsm_h%frac(ind_pav_green,m) > 0 ) THEN
!
!-- No vegetation on pavements:
lai = 0.0_wp
sai = 0.0_wp
slinnfac = 1.0_wp
!
!-- Get vd
DO lsp = 1, nvar
!
!-- Initialize
vs = 0.0_wp
vd_lu = 0.0_wp
rs = 0.0_wp
rb = 0.0_wp
rc_tot = 0.0_wp
IF ( spc_names(lsp) == 'PM10' ) THEN
part_type = 1
!
!-- Sedimentation velocity:
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
lup_dep, &
r_aero_surf, ustar_surf )
bud_lup(lsp) = - conc_ijk(lsp) * &
(1.0_wp - exp(-vd_lu * dt_dh )) * dh
ELSEIF ( spc_names(lsp) == 'PM25' ) THEN
part_type = 2
!
!-- Sedimentation velocity:
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
lup_dep, &
r_aero_surf, ustar_surf )
bud_lup(lsp) = - conc_ijk(lsp) * &
(1.0_wp - exp(-vd_lu * dt_dh )) * dh
ELSE ! 0 ) THEN
!
!-- No vegetation on water:
lai = 0.0_wp
sai = 0.0_wp
slinnfac = 1.0_wp
!
!-- Get vd
DO lsp = 1, nvar
!
!-- Initialize
vs = 0.0_wp
vd_lu = 0.0_wp
rs = 0.0_wp
rb = 0.0_wp
rc_tot = 0.0_wp
IF ( spc_names(lsp) == 'PM10' ) THEN
part_type = 1
!
!-- Sedimentation velocity:
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
luw_dep, &
r_aero_surf, ustar_surf )
bud_luw(lsp) = - conc_ijk(lsp) * &
(1.0_wp - exp(-vd_lu * dt_dh )) * dh
ELSEIF ( spc_names(lsp) == 'PM25' ) THEN
part_type = 2
!
!-- Sedimentation velocity:
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
luw_dep, &
r_aero_surf, ustar_surf )
bud_luw(lsp) = - conc_ijk(lsp) * &
(1.0_wp - exp(-vd_lu * dt_dh )) * dh
ELSE ! 0 ) THEN
!
!-- For green urban surfaces (e.g. green roofs
!-- assume LU short grass
lug_palm = ind_luv_s_grass
IF ( lug_palm == ind_luv_user ) THEN
message_string = 'No vegetation type defined. Please define vegetation type to enable deposition calculation'
CALL message( 'chem_depo', 'CM0454', 1, 2, 0, 6, 0 )
ELSEIF ( lug_palm == ind_luv_b_soil ) THEN
lug_dep = 9
ELSEIF ( lug_palm == ind_luv_mixed_crops ) THEN
lug_dep = 2
ELSEIF ( lug_palm == ind_luv_s_grass ) THEN
lug_dep = 1
ELSEIF ( lug_palm == ind_luv_ev_needle_trees ) THEN
lug_dep = 4
ELSEIF ( lug_palm == ind_luv_de_needle_trees ) THEN
lug_dep = 4
ELSEIF ( lug_palm == ind_luv_ev_broad_trees ) THEN
lug_dep = 12
ELSEIF ( lug_palm == ind_luv_de_broad_trees ) THEN
lug_dep = 5
ELSEIF ( lug_palm == ind_luv_t_grass ) THEN
lug_dep = 1
ELSEIF ( lug_palm == ind_luv_desert ) THEN
lug_dep = 9
ELSEIF ( lug_palm == ind_luv_tundra ) THEN
lug_dep = 8
ELSEIF ( lug_palm == ind_luv_irr_crops ) THEN
lug_dep = 2
ELSEIF ( lug_palm == ind_luv_semidesert ) THEN
lug_dep = 8
ELSEIF ( lug_palm == ind_luv_ice ) THEN
lug_dep = 10
ELSEIF ( lug_palm == ind_luv_marsh ) THEN
lug_dep = 8
ELSEIF ( lug_palm == ind_luv_ev_shrubs ) THEN
lug_dep = 14
ELSEIF ( lug_palm == ind_luv_de_shrubs ) THEN
lug_dep = 14
ELSEIF ( lug_palm == ind_luv_mixed_forest ) THEN
lug_dep = 4
ELSEIF ( lug_palm == ind_luv_intrup_forest ) THEN
lug_dep = 8
ENDIF
ENDIF
IF ( surf_usm_h%frac(ind_veg_wall,m) > 0 ) THEN
!
!-- For walls in USM assume concrete walls/roofs,
!-- assumed LU class desert as also assumed for
!-- pavements in LSM
luu_palm = ind_lup_conc
IF ( luu_palm == ind_lup_user ) THEN
message_string = 'No pavement type defined. Please define pavement type to enable deposition calculation'
CALL message( 'chem_depo', 'CM0455', 1, 2, 0, 6, 0 )
ELSEIF ( luu_palm == ind_lup_asph_conc ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_asph ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_conc ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_sett ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_pav_stones ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_cobblest ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_metal ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_wood ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_gravel ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_f_gravel ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_pebblest ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_woodchips ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_tartan ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_art_turf ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_clay ) THEN
luu_dep = 9
ENDIF
ENDIF
IF ( surf_usm_h%frac(ind_wat_win,m) > 0 ) THEN
!
!-- For windows in USM assume metal as this is
!-- as close as we get, assumed LU class desert
!-- as also assumed for pavements in LSM
lud_palm = ind_lup_metal
IF ( lud_palm == ind_lup_user ) THEN
message_string = 'No pavement type defined. Please define pavement type to enable deposition calculation'
CALL message( 'chem_depo', 'CM0456', 1, 2, 0, 6, 0 )
ELSEIF ( lud_palm == ind_lup_asph_conc ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_asph ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_conc ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_sett ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_pav_stones ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_cobblest ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_metal ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_wood ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_gravel ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_f_gravel ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_pebblest ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_woodchips ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_tartan ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_art_turf ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_clay ) THEN
lud_dep = 9
ENDIF
ENDIF
!
!-- @TODO: Activate these lines as soon as new ebsolver branch is merged:
!-- Set wetness indicator to dry or wet for usm vegetation or pavement
!IF ( surf_usm_h%c_liq(m) > 0 ) THEN
! nwet = 1
!ELSE
nwet = 0
!ENDIF
!
!-- Compute length of time step
IF ( call_chem_at_all_substeps ) THEN
dt_chem = dt_3d * weight_pres(intermediate_timestep_count)
ELSE
dt_chem = dt_3d
ENDIF
dh = dzw(k)
inv_dh = 1.0_wp / dh
dt_dh = dt_chem/dh
!
!-- Concentration at i,j,k
DO lsp = 1, nspec
conc_ijk(lsp) = chem_species(lsp)%conc(k,j,i)
ENDDO
!
!-- Temperature at i,j,k
temp_tmp = pt(k,j,i) * ( hyp(k) / 100000.0_wp )**0.286_wp
ts = temp_tmp - 273.15 !< in degrees celcius
!
!-- Viscosity of air
visc = 1.496e-6 * temp_tmp**1.5 / (temp_tmp + 120.0)
!
!-- Air density at k
dens = rho_air_zw(k)
!
!-- Calculate relative humidity from specific humidity for DEPAC
qv_tmp = MAX(q(k,j,i),0.0_wp)
rh_surf = relativehumidity_from_specifichumidity(qv_tmp, temp_tmp, hyp(k) )
!
!-- Check if surface fraction (vegetation, pavement or water) > 0 and calculate vd and budget
!-- for each surface fraction. Then derive overall budget taking into account the surface fractions.
!
!-- Walls/roofs
IF ( surf_usm_h%frac(ind_veg_wall,m) > 0 ) THEN
!
!-- No vegetation on non-green walls:
lai = 0.0_wp
sai = 0.0_wp
slinnfac = 1.0_wp
!
!-- Get vd
DO lsp = 1, nvar
!
!-- Initialize
vs = 0.0_wp
vd_lu = 0.0_wp
rs = 0.0_wp
rb = 0.0_wp
rc_tot = 0.0_wp
IF (spc_names(lsp) == 'PM10' ) THEN
part_type = 1
!
!-- Sedimentation velocity
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
luu_dep, &
r_aero_surf, ustar_surf )
bud_luu(lsp) = - conc_ijk(lsp) * &
(1.0_wp - exp(-vd_lu * dt_dh )) * dh
ELSEIF ( spc_names(lsp) == 'PM25' ) THEN
part_type = 2
!
!-- Sedimentation velocity
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
luu_dep , &
r_aero_surf, ustar_surf )
bud_luu(lsp) = - conc_ijk(lsp) * &
(1.0_wp - exp(-vd_lu * dt_dh )) * dh
ELSE !< GASES
!
!-- Read spc_name of current species for gas parameter
IF ( ANY( pspecnames(:) == spc_names(lsp) ) ) THEN
i_pspec = 0
DO pspec = 1, nposp
IF ( pspecnames(pspec) == spc_names(lsp) ) THEN
i_pspec = pspec
END IF
ENDDO
ELSE
!
!-- For now species not deposited
CYCLE
ENDIF
!
!-- Factor used for conversion from ppb to ug/m3 :
!-- ppb (mole tr)/(mole air)/ppb (kg tr)/(mole tr) (ug tr)/(kg tr) &
!-- (mole air)/(kg air) (kg air)/(m3 air) (kg air(ug/m3)/ppb/(kg/mole) = / (kg/mole)
!-- c 1e-9 xm_tracer 1e9 / xm_air dens
!-- thus:
!-- c_in_ppb * xm_tracer * [ dens / xm_air ] = c_in_ugm3
!-- Use density at k:
ppm2ugm3 = (dens/xm_air) * 0.001_wp !< (mole air)/m3
!
!-- Atmospheric concentration in DEPAC is requested in ug/m3:
!-- ug/m3 ppm (ug/m3)/ppm/(kg/mole) kg/mole
conc_ijk_ugm3 = conc_ijk(lsp) * ppm2ugm3 * specmolm(i_pspec) ! in ug/m3
!
!-- Diffusivity for DEPAC relevant gases
!-- Use default value
diffusivity = 0.11e-4
!
!-- overwrite with known coefficients of diffusivity from Massman (1998)
IF ( spc_names(lsp) == 'NO2' ) diffusivity = 0.136e-4
IF ( spc_names(lsp) == 'NO' ) diffusivity = 0.199e-4
IF ( spc_names(lsp) == 'O3' ) diffusivity = 0.144e-4
IF ( spc_names(lsp) == 'CO' ) diffusivity = 0.176e-4
IF ( spc_names(lsp) == 'SO2' ) diffusivity = 0.112e-4
IF ( spc_names(lsp) == 'CH4' ) diffusivity = 0.191e-4
IF ( spc_names(lsp) == 'NH3' ) diffusivity = 0.191e-4
!
!-- Get quasi-laminar boundary layer resistance rb:
CALL get_rb_cell( (luu_dep == ilu_water_sea) .OR. (luu_dep == ilu_water_inland), &
z0h_surf, ustar_surf, diffusivity, &
rb )
!
!-- Get rc_tot
CALL drydepos_gas_depac( spc_names(lsp), day_of_year, latitude, ts, ustar_surf, &
solar_rad, cos_zenith, rh_surf, lai, sai, nwet, luu_dep, 2, &
rc_tot, ccomp_tot(lsp), hyp(nzb), conc_ijk_ugm3, diffusivity, &
r_aero_surf, rb )
!
!-- Calculate budget
IF ( rc_tot <= 0.0 ) THEN
bud_luu(lsp) = 0.0_wp
ELSE
vd_lu = 1.0_wp / (r_aero_surf + rb + rc_tot )
bud_luu(lsp) = - (conc_ijk(lsp) - ccomp_tot(lsp)) * &
(1.0_wp - exp(-vd_lu * dt_dh )) * dh
ENDIF
ENDIF
ENDDO
ENDIF
!
!-- Green usm surfaces
IF ( surf_usm_h%frac(ind_pav_green,m) > 0 ) THEN
!
!-- No vegetation on bare soil, desert or ice:
IF ( ( lug_palm == ind_luv_b_soil ) .OR. &
( lug_palm == ind_luv_desert ) .OR. &
( lug_palm == ind_luv_ice ) ) THEN
lai = 0.0_wp
sai = 0.0_wp
ENDIF
slinnfac = 1.0_wp
!
!-- Get vd
DO lsp = 1, nvar
!
!-- Initialize
vs = 0.0_wp
vd_lu = 0.0_wp
rs = 0.0_wp
rb = 0.0_wp
rc_tot = 0.0_wp
IF ( spc_names(lsp) == 'PM10' ) THEN
part_type = 1
!
!-- Sedimentation velocity
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
lug_dep, &
r_aero_surf, ustar_surf )
bud_lug(lsp) = - conc_ijk(lsp) * &
(1.0_wp - exp(-vd_lu * dt_dh )) * dh
ELSEIF ( spc_names(lsp) == 'PM25' ) THEN
part_type = 2
!
!-- Sedimentation velocity
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
lug_dep, &
r_aero_surf, ustar_surf )
bud_lug(lsp) = - conc_ijk(lsp) * &
(1.0_wp - exp(-vd_lu * dt_dh )) * dh
ELSE !< GASES
!
!-- Read spc_name of current species for gas parameter
IF ( ANY( pspecnames(:) == spc_names(lsp) ) ) THEN
i_pspec = 0
DO pspec = 1, nposp
IF ( pspecnames(pspec) == spc_names(lsp) ) THEN
i_pspec = pspec
END IF
ENDDO
ELSE
!
!-- For now species not deposited
CYCLE
ENDIF
!
!-- Factor used for conversion from ppb to ug/m3 :
!-- ppb (mole tr)/(mole air)/ppb (kg tr)/(mole tr) (ug tr)/(kg tr) &
!-- (mole air)/(kg air) (kg air)/(m3 air) (kg air(ug/m3)/ppb/(kg/mole) = / (kg/mole)
!-- c 1e-9 xm_tracer 1e9 / xm_air dens
!-- thus:
!-- c_in_ppb * xm_tracer * [ dens / xm_air ] = c_in_ugm3
!-- Use density at k:
ppm2ugm3 = (dens/xm_air) * 0.001_wp ! (mole air)/m3
!
!-- Atmospheric concentration in DEPAC is requested in ug/m3:
! ug/m3 ppm (ug/m3)/ppm/(kg/mole) kg/mole
conc_ijk_ugm3 = conc_ijk(lsp) * ppm2ugm3 * specmolm(i_pspec) ! in ug/m3
!
!-- Diffusivity for DEPAC relevant gases
!-- Use default value
diffusivity = 0.11e-4
!
!-- overwrite with known coefficients of diffusivity from Massman (1998)
IF ( spc_names(lsp) == 'NO2' ) diffusivity = 0.136e-4
IF ( spc_names(lsp) == 'NO' ) diffusivity = 0.199e-4
IF ( spc_names(lsp) == 'O3' ) diffusivity = 0.144e-4
IF ( spc_names(lsp) == 'CO' ) diffusivity = 0.176e-4
IF ( spc_names(lsp) == 'SO2' ) diffusivity = 0.112e-4
IF ( spc_names(lsp) == 'CH4' ) diffusivity = 0.191e-4
IF ( spc_names(lsp) == 'NH3' ) diffusivity = 0.191e-4
!
!-- Get quasi-laminar boundary layer resistance rb:
CALL get_rb_cell( (lug_dep == ilu_water_sea) .OR. (lug_dep == ilu_water_inland), &
z0h_surf, ustar_surf, diffusivity, &
rb )
!
!-- Get rc_tot
CALL drydepos_gas_depac( spc_names(lsp), day_of_year, latitude, ts, ustar_surf, &
solar_rad, cos_zenith, rh_surf, lai, sai, nwet, lug_dep, 2, &
rc_tot, ccomp_tot(lsp), hyp(nzb), conc_ijk_ugm3, diffusivity, &
r_aero_surf , rb )
!
!-- Calculate budget
IF ( rc_tot <= 0.0 ) THEN
bud_lug(lsp) = 0.0_wp
ELSE
vd_lu = 1.0_wp / (r_aero_surf + rb + rc_tot )
bud_lug(lsp) = - (conc_ijk(lsp) - ccomp_tot(lsp)) * &
(1.0_wp - exp(-vd_lu * dt_dh )) * dh
ENDIF
ENDIF
ENDDO
ENDIF
!
!-- Windows
IF ( surf_usm_h%frac(ind_wat_win,m) > 0 ) THEN
!
!-- No vegetation on windows:
lai = 0.0_wp
sai = 0.0_wp
slinnfac = 1.0_wp
!
!-- Get vd
DO lsp = 1, nvar
!
!-- Initialize
vs = 0.0_wp
vd_lu = 0.0_wp
rs = 0.0_wp
rb = 0.0_wp
rc_tot = 0.0_wp
IF ( spc_names(lsp) == 'PM10' ) THEN
part_type = 1
!
!-- Sedimentation velocity
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
lud_dep, r_aero_surf, ustar_surf )
bud_lud(lsp) = - conc_ijk(lsp) * &
(1.0_wp - exp(-vd_lu * dt_dh )) * dh
ELSEIF ( spc_names(lsp) == 'PM25' ) THEN
part_type = 2
!
!-- Sedimentation velocity
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
lud_dep, &
r_aero_surf, ustar_surf )
bud_lud(lsp) = - conc_ijk(lsp) * &
(1.0_wp - exp(-vd_lu * dt_dh )) * dh
ELSE !< GASES
!
!-- Read spc_name of current species for gas PARAMETER
IF ( ANY( pspecnames(:) == spc_names(lsp) ) ) THEN
i_pspec = 0
DO pspec = 1, nposp
IF ( pspecnames(pspec) == spc_names(lsp) ) THEN
i_pspec = pspec
END IF
ENDDO
ELSE
!
!-- For now species not deposited
CYCLE
ENDIF
!
!-- Factor used for conversion from ppb to ug/m3 :
!-- ppb (mole tr)/(mole air)/ppb (kg tr)/(mole tr) (ug tr)/(kg tr) &
!-- (mole air)/(kg air) (kg air)/(m3 air) (kg air(ug/m3)/ppb/(kg/mole) = / (kg/mole)
!-- c 1e-9 xm_tracer 1e9 / xm_air dens
!-- thus:
!-- c_in_ppb * xm_tracer * [ dens / xm_air ] = c_in_ugm3
!-- Use density at k:
ppm2ugm3 = (dens/xm_air) * 0.001_wp ! (mole air)/m3
!
!-- Atmospheric concentration in DEPAC is requested in ug/m3:
!-- ug/m3 ppm (ug/m3)/ppm/(kg/mole) kg/mole
conc_ijk_ugm3 = conc_ijk(lsp) * ppm2ugm3 * specmolm(i_pspec) ! in ug/m3
!
!-- Diffusivity for DEPAC relevant gases
!-- Use default value
diffusivity = 0.11e-4
!
!-- overwrite with known coefficients of diffusivity from Massman (1998)
IF ( spc_names(lsp) == 'NO2' ) diffusivity = 0.136e-4
IF ( spc_names(lsp) == 'NO' ) diffusivity = 0.199e-4
IF ( spc_names(lsp) == 'O3' ) diffusivity = 0.144e-4
IF ( spc_names(lsp) == 'CO' ) diffusivity = 0.176e-4
IF ( spc_names(lsp) == 'SO2' ) diffusivity = 0.112e-4
IF ( spc_names(lsp) == 'CH4' ) diffusivity = 0.191e-4
IF ( spc_names(lsp) == 'NH3' ) diffusivity = 0.191e-4
!
!-- Get quasi-laminar boundary layer resistance rb:
CALL get_rb_cell( (lud_dep == ilu_water_sea) .OR. (lud_dep == ilu_water_inland), &
z0h_surf, ustar_surf, diffusivity, rb )
!
!-- Get rc_tot
CALL drydepos_gas_depac( spc_names(lsp), day_of_year, latitude, ts, ustar_surf, &
solar_rad, cos_zenith, rh_surf, lai, sai, nwet, lud_dep, 2, &
rc_tot, ccomp_tot(lsp), hyp(nzb), conc_ijk_ugm3, diffusivity, &
r_aero_surf , rb )
!
!-- Calculate budget
IF ( rc_tot <= 0.0 ) THEN
bud_lud(lsp) = 0.0_wp
ELSE
vd_lu = 1.0_wp / (r_aero_surf + rb + rc_tot )
bud_lud(lsp) = - (conc_ijk(lsp) - ccomp_tot(lsp)) * &
(1.0_wp - exp(-vd_lu * dt_dh )) * dh
ENDIF
ENDIF
ENDDO
ENDIF
bud = 0.0_wp
!
!-- Calculate overall budget for surface m and adapt concentration
DO lsp = 1, nspec
bud(lsp) = surf_usm_h%frac(ind_veg_wall,m) * bud_luu(lsp) + &
surf_usm_h%frac(ind_pav_green,m) * bud_lug(lsp) + &
surf_usm_h%frac(ind_wat_win,m) * bud_lud(lsp)
!
!-- Compute new concentration
conc_ijk(lsp) = conc_ijk(lsp) + bud(lsp) * inv_dh
chem_species(lsp)%conc(k,j,i) = MAX( 0.0_wp, conc_ijk(lsp) )
ENDDO
ENDIF
END SUBROUTINE chem_depo
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to compute total canopy (or surface) resistance Rc for gases
!>
!> DEPAC:
!> Code of the DEPAC routine and corresponding subroutines below from the DEPAC
!> module of the LOTOS-EUROS model (Manders et al., 2017)
!>
!> Original DEPAC routines by RIVM and TNO (2015), for Documentation see
!> van Zanten et al., 2010.
!------------------------------------------------------------------------------!
SUBROUTINE drydepos_gas_depac( compnam, day_of_year, lat, t, ust, solar_rad, sinphi, &
rh, lai, sai, nwet, lu, iratns, rc_tot, ccomp_tot, p, conc_ijk_ugm3, diffusivity, &
ra, rb )
!
!-- Some of depac arguments are OPTIONAL:
!-- A. compute Rc_tot without compensation points (ccomp_tot will be zero):
!-- CALL depac (compnam, day_of_year, lat, t, ust, glrad, sinphi, rh, nwet, lu, iratns, rc_tot, ccomp_tot, [smi])
!-- B. compute Rc_tot with compensation points (used for LOTOS-EUROS):
!-- CALL depac (compnam, day_of_year, lat, t, ust, glrad, sinphi, rh, nwet, lu, iratns, rc_tot, ccomp_tot, [smi], &
!-- c_ave_prev_nh3, c_ave_prev_so2, catm, gamma_soil_water)
!--
!-- C. compute effective Rc based on compensation points (used for OPS):
!-- CALL depac (compnam, day_of_year, lat, t, ust, glrad, sinphi, rh, nwet, lu, iratns, rc_tot, ccomp_tot, [smi], &
!-- c_ave_prev_nh3, c_ave_prev_so2, catm, gamma_soil_water, &
!-- ra, rb, rc_eff)
!-- X1. Extra (OPTIONAL) output variables:
!-- CALL depac (compnam, day_of_year, lat, t, ust, glrad, sinphi, rh, nwet, lu, iratns, rc_tot, ccomp_tot, [smi], &
!-- c_ave_prev_nh3, c_ave_prev_so2, catm, gamma_soil_water, &
!-- ra, rb, rc_eff, &
!-- gw_out, gstom_out, gsoil_eff_out, cw_out, cstom_out, csoil_out, lai_out, sai_out)
!-- X2. Extra (OPTIONAL) needed for stomatal ozone flux calculation (only sunlit leaves):
!-- CALL depac (compnam, day_of_year, lat, t, ust, glrad, sinphi, rh, nwet, lu, iratns, rc_tot, ccomp_tot, [smi], &
!-- c_ave_prev_nh3, c_ave_prev_so2, catm, gamma_soil_water, &
!-- ra, rb, rc_eff, &
!-- gw_out, gstom_out, gsoil_eff_out, cw_out, cstom_out, csoil_out, lai_out, sai_out, &
!-- calc_stom_o3flux, frac_sto_o3_lu, fac_surface_area_2_PLA)
CHARACTER(LEN=*), INTENT(IN) :: compnam !< component name
!< 'HNO3','NO','NO2','O3','SO2','NH3'
INTEGER(iwp), INTENT(IN) :: day_of_year !< day of year, 1 ... 365 (366)
INTEGER(iwp), INTENT(IN) :: nwet !< wetness indicator; nwet=0 -> dry; nwet=1 -> wet; nwet=9 -> snow
INTEGER(iwp), INTENT(IN) :: lu !< land use type, lu = 1,...,nlu
INTEGER(iwp), INTENT(IN) :: iratns !< index for NH3/SO2 ratio used for SO2:
!< iratns = 1: low NH3/SO2
!< iratns = 2: high NH3/SO2
!< iratns = 3: very low NH3/SO2
REAL(wp), INTENT(IN) :: lat !< latitude Northern hemisphere (degrees) (S. hemisphere not possible)
REAL(wp), INTENT(IN) :: t !< temperature (C)
REAL(wp), INTENT(IN) :: ust !< friction velocity (m/s)
REAL(wp), INTENT(IN) :: solar_rad !< solar radiation, dirict+diffuse (W/m2)
REAL(wp), INTENT(IN) :: sinphi !< sin of solar elevation angle
REAL(wp), INTENT(IN) :: rh !< relative humidity (%)
REAL(wp), INTENT(IN) :: lai !< one-sidedleaf area index (-)
REAL(wp), INTENT(IN) :: sai !< surface area index (-) (lai + branches and stems)
REAL(wp), INTENT(IN) :: diffusivity !< diffusivity
REAL(wp), INTENT(IN) :: p !< pressure (Pa)
REAL(wp), INTENT(IN) :: conc_ijk_ugm3 !< actual atmospheric concentration (ug/m3), in DEPAC=Catm
REAL(wp), INTENT(IN) :: ra !< aerodynamic resistance (s/m)
REAL(wp), INTENT(IN) :: rb !< boundary layer resistance (s/m)
REAL(wp), INTENT(OUT) :: rc_tot !< total canopy resistance Rc (s/m)
REAL(wp), INTENT(OUT) :: ccomp_tot !< total compensation point (ug/m3)
! !< [= 0 for species that don't have a compensation
!-- Local variables:
!
!-- Component number taken from component name, paramteres matched with include files
INTEGER(iwp) :: icmp
!
!-- Component numbers:
INTEGER(iwp), PARAMETER :: icmp_o3 = 1
INTEGER(iwp), PARAMETER :: icmp_so2 = 2
INTEGER(iwp), PARAMETER :: icmp_no2 = 3
INTEGER(iwp), PARAMETER :: icmp_no = 4
INTEGER(iwp), PARAMETER :: icmp_nh3 = 5
INTEGER(iwp), PARAMETER :: icmp_co = 6
INTEGER(iwp), PARAMETER :: icmp_no3 = 7
INTEGER(iwp), PARAMETER :: icmp_hno3 = 8
INTEGER(iwp), PARAMETER :: icmp_n2o5 = 9
INTEGER(iwp), PARAMETER :: icmp_h2o2 = 10
LOGICAL :: ready !< Rc has been set:
!< = 1 -> constant Rc
!< = 2 -> temperature dependent Rc
!
!-- Vegetation indicators:
LOGICAL :: lai_present !< leaves are present for current land use type
LOGICAL :: sai_present !< vegetation is present for current land use type
! REAL(wp) :: laimax !< maximum leaf area index (-)
REAL(wp) :: gw !< external leaf conductance (m/s)
REAL(wp) :: gstom !< stomatal conductance (m/s)
REAL(wp) :: gsoil_eff !< effective soil conductance (m/s)
REAL(wp) :: gc_tot !< total canopy conductance (m/s)
REAL(wp) :: cw !< external leaf surface compensation point (ug/m3)
REAL(wp) :: cstom !< stomatal compensation point (ug/m3)
REAL(wp) :: csoil !< soil compensation point (ug/m3)
!
!-- Next statement is just to avoid compiler warning about unused variable
IF ( day_of_year == 0 .OR. ( conc_ijk_ugm3 + lat + ra + rb ) > 0.0_wp ) CONTINUE
!
!-- Define component number
SELECT CASE ( TRIM( compnam ) )
CASE ( 'O3', 'o3' )
icmp = icmp_o3
CASE ( 'SO2', 'so2' )
icmp = icmp_so2
CASE ( 'NO2', 'no2' )
icmp = icmp_no2
CASE ( 'NO', 'no' )
icmp = icmp_no
CASE ( 'NH3', 'nh3' )
icmp = icmp_nh3
CASE ( 'CO', 'co' )
icmp = icmp_co
CASE ( 'NO3', 'no3' )
icmp = icmp_no3
CASE ( 'HNO3', 'hno3' )
icmp = icmp_hno3
CASE ( 'N2O5', 'n2o5' )
icmp = icmp_n2o5
CASE ( 'H2O2', 'h2o2' )
icmp = icmp_h2o2
CASE default
!
!-- Component not part of DEPAC --> not deposited
RETURN
END SELECT
!
!-- Inititalize
gw = 0.0_wp
gstom = 0.0_wp
gsoil_eff = 0.0_wp
gc_tot = 0.0_wp
cw = 0.0_wp
cstom = 0.0_wp
csoil = 0.0_wp
!
!-- Check whether vegetation is present:
lai_present = ( lai > 0.0 )
sai_present = ( sai > 0.0 )
!
!-- Set Rc (i.e. rc_tot) in special cases:
CALL rc_special( icmp, compnam, lu, t, nwet, rc_tot, ready, ccomp_tot )
!
!-- If Rc is not set:
IF ( .NOT. ready ) then
!
!-- External conductance:
CALL rc_gw( compnam, iratns, t, rh, nwet, sai_present, sai,gw )
!
!-- Stomatal conductance:
CALL rc_gstom( icmp, compnam, lu, lai_present, lai, solar_rad, sinphi, t, rh, diffusivity, gstom, p )
!
!-- Effective soil conductance:
CALL rc_gsoil_eff( icmp, lu, sai, ust, nwet, t, gsoil_eff )
!
!-- Total canopy conductance (gc_tot) and resistance Rc (rc_tot):
CALL rc_rctot( gstom, gsoil_eff, gw, gc_tot, rc_tot )
!
!-- Needed to include compensation point for NH3
!-- Compensation points (always returns ccomp_tot; currently ccomp_tot != 0 only for NH3):
!-- CALL rc_comp_point( compnam,lu,day_of_year,t,gw,gstom,gsoil_eff,gc_tot,&
!-- lai_present, sai_present, &
!-- ccomp_tot, &
!-- conc_ijk_ugm3=conc_ijk_ugm3,c_ave_prev_nh3=c_ave_prev_nh3, &
!-- c_ave_prev_so2=c_ave_prev_so2,gamma_soil_water=gamma_soil_water, &
!-- tsea=tsea,cw=cw,cstom=cstom,csoil=csoil )
!
!-- Effective Rc based on compensation points:
!-- IF ( present(rc_eff) ) then
!-- check on required arguments:
!-- IF ( (.not. present(conc_ijk_ugm3)) .OR. (.not. present(ra)) .OR. (.not. present(rb)) ) then
!-- stop 'output argument rc_eff requires input arguments conc_ijk_ugm3, ra and rb'
!-- END IF
!
!-- Compute rc_eff :
! CALL rc_comp_point_rc_eff(ccomp_tot,conc_ijk_ugm3,ra,rb,rc_tot,rc_eff)
! ENDIF
ENDIF
END SUBROUTINE drydepos_gas_depac
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to compute total canopy resistance in special cases
!------------------------------------------------------------------------------!
SUBROUTINE rc_special( icmp, compnam, lu, t, nwet, rc_tot, ready, ccomp_tot )
CHARACTER(LEN=*), INTENT(IN) :: compnam !< component name
INTEGER(iwp), INTENT(IN) :: icmp !< component index
INTEGER(iwp), INTENT(IN) :: lu !< land use type, lu = 1,...,nlu
INTEGER(iwp), INTENT(IN) :: nwet !< wetness indicator; nwet=0 -> dry; nwet=1 -> wet; nwet=9 -> snow
REAL(wp), INTENT(IN) :: t !< temperature (C)
REAL(wp), INTENT(OUT) :: rc_tot !< total canopy resistance Rc (s/m)
REAL(wp), INTENT(OUT) :: ccomp_tot !< total compensation point (ug/m3)
LOGICAL, INTENT(OUT) :: ready !< Rc has been set
!< = 1 -> constant Rc
!
!-- Next line is to avoid compiler warning about unused variable
IF ( icmp == 0 ) CONTINUE
!
!-- rc_tot is not yet set:
ready = .FALSE.
!
!-- Default compensation point in special CASEs = 0:
ccomp_tot = 0.0_wp
SELECT CASE( TRIM( compnam ) )
CASE( 'HNO3', 'N2O5', 'NO3', 'H2O2' )
!
!-- No separate resistances for HNO3; just one total canopy resistance:
IF ( t < -5.0_wp .AND. nwet == 9 ) THEN
!
!-- T < 5 C and snow:
rc_tot = 50.0_wp
ELSE
!
!-- all other circumstances:
rc_tot = 10.0_wp
ENDIF
ready = .TRUE.
CASE( 'NO', 'CO' )
IF ( lu == ilu_water_sea .OR. lu == ilu_water_inland ) THEN ! water
rc_tot = 2000.0_wp
ready = .TRUE.
ELSEIF ( nwet == 1 ) THEN !< wet
rc_tot = 2000.0_wp
ready = .TRUE.
ENDIF
CASE( 'NO2', 'O3', 'SO2', 'NH3' )
!
!-- snow surface:
IF ( nwet == 9 ) THEN
!
!-- To be activated when snow is implemented
!CALL rc_snow(ipar_snow(icmp),t,rc_tot)
ready = .TRUE.
ENDIF
CASE default
message_string = 'Component '// TRIM( compnam ) // ' not supported'
CALL message( 'rc_special', 'CM0457', 1, 2, 0, 6, 0 )
END SELECT
END SUBROUTINE rc_special
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to compute external conductance
!------------------------------------------------------------------------------!
SUBROUTINE rc_gw( compnam, iratns, t, rh, nwet, sai_present, sai, gw )
!
!-- Input/output variables:
CHARACTER(LEN=*), INTENT(IN) :: compnam !< component name
INTEGER(iwp), INTENT(IN) :: nwet !< wetness indicator; nwet=0 -> dry; nwet=1 -> wet; nwet=9 -> snow
INTEGER(iwp), INTENT(IN) :: iratns !< index for NH3/SO2 ratio;
!< iratns = 1: low NH3/SO2
!< iratns = 2: high NH3/SO2
!< iratns = 3: very low NH3/SO2
LOGICAL, INTENT(IN) :: sai_present
REAL(wp), INTENT(IN) :: t !< temperature (C)
REAL(wp), INTENT(IN) :: rh !< relative humidity (%)
REAL(wp), INTENT(IN) :: sai !< one-sided leaf area index (-)
REAL(wp), INTENT(OUT) :: gw !< external leaf conductance (m/s)
SELECT CASE( TRIM( compnam ) )
CASE( 'NO2' )
CALL rw_constant( 2000.0_wp, sai_present, gw )
CASE( 'NO', 'CO' )
CALL rw_constant( -9999.0_wp, sai_present, gw ) !< see Erisman et al, 1994 section 3.2.3
CASE( 'O3' )
CALL rw_constant( 2500.0_wp, sai_present, gw )
CASE( 'SO2' )
CALL rw_so2( t, nwet, rh, iratns, sai_present, gw )
CASE( 'NH3' )
CALL rw_nh3_sutton( t, rh, sai_present, gw )
!
!-- conversion from leaf resistance to canopy resistance by multiplying with sai:
gw = sai * gw
CASE default
message_string = 'Component '// TRIM( compnam ) // ' not supported'
CALL message( 'rc_gw', 'CM0458', 1, 2, 0, 6, 0 )
END SELECT
END SUBROUTINE rc_gw
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to compute external leaf conductance for SO2
!------------------------------------------------------------------------------!
SUBROUTINE rw_so2( t, nwet, rh, iratns, sai_present, gw )
!
!-- Input/output variables:
INTEGER(iwp), INTENT(IN) :: nwet !< wetness indicator; nwet=0 -> dry; nwet=1 -> wet; nwet=9 -> snow
INTEGER(iwp), INTENT(IN) :: iratns !< index for NH3/SO2 ratio:
!< iratns = 1: low NH3/SO2
!< iratns = 2: high NH3/SO2
!< iratns = 3: very low NH3/SO2
LOGICAL, INTENT(IN) :: sai_present
REAL(wp), INTENT(IN) :: t !< temperature (C)
REAL(wp), INTENT(IN) :: rh !< relative humidity (%)
REAL(wp), INTENT(OUT) :: gw !< external leaf conductance (m/s)
!
!-- Local variables:
REAL(wp) :: rw !< external leaf resistance (s/m)
!
!-- Check if vegetation present:
IF ( sai_present ) THEN
IF ( nwet == 0 ) THEN
!
!-- ------------------------
!-- dry surface
!-- ------------------------
!-- T > -1 C
IF ( t > -1.0_wp ) THEN
IF ( rh < 81.3_wp ) THEN
rw = 25000.0_wp * exp( -0.0693_wp * rh )
ELSE
rw = 0.58e12 * exp( -0.278_wp * rh ) + 10.0_wp
ENDIF
ELSE
! -5 C < T <= -1 C
IF ( t > -5.0_wp ) THEN
rw = 200.0_wp
ELSE
! T <= -5 C
rw = 500.0_wp
ENDIF
ENDIF
ELSE
!
!-- ------------------------
!-- wet surface
!-- ------------------------
rw = 10.0_wp !see Table 5, Erisman et al, 1994 Atm. Environment, 0 is impl. as 10
ENDIF
!
!-- very low NH3/SO2 ratio:
IF ( iratns == iratns_very_low ) rw = rw + 50.0_wp
!
!-- Conductance:
gw = 1.0_wp / rw
ELSE
!
!-- no vegetation:
gw = 0.0_wp
ENDIF
END SUBROUTINE rw_so2
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to compute external leaf conductance for NH3,
!> following Sutton & Fowler, 1993
!------------------------------------------------------------------------------!
SUBROUTINE rw_nh3_sutton( tsurf, rh,sai_present, gw )
!
!-- Input/output variables:
LOGICAL, INTENT(IN) :: sai_present
REAL(wp), INTENT(IN) :: tsurf !< surface temperature (C)
REAL(wp), INTENT(IN) :: rh !< relative humidity (%)
REAL(wp), INTENT(OUT) :: gw !< external leaf conductance (m/s)
!
!-- Local variables:
REAL(wp) :: rw !< external leaf resistance (s/m)
REAL(wp) :: sai_grass_haarweg !< surface area index at experimental site Haarweg
!
!-- Fix sai_grass at value valid for Haarweg data for which gamma_w parametrization is derived
sai_grass_haarweg = 3.5_wp
!
!-- Calculation rw:
!-- 100 - rh
!-- rw = 2.0 * exp(----------)
!-- 12
IF ( sai_present ) THEN
!
!-- External resistance according to Sutton & Fowler, 1993
rw = 2.0_wp * exp( ( 100.0_wp - rh ) / 12.0_wp )
rw = sai_grass_haarweg * rw
!
!-- Frozen soil (from Depac v1):
IF ( tsurf < 0.0_wp ) rw = 200.0_wp
!
!-- Conductance:
gw = 1.0_wp / rw
ELSE
! no vegetation:
gw = 0.0_wp
ENDIF
END SUBROUTINE rw_nh3_sutton
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to compute external leaf conductance
!------------------------------------------------------------------------------!
SUBROUTINE rw_constant( rw_val, sai_present, gw )
!
!-- Input/output variables:
LOGICAL, INTENT(IN) :: sai_present
REAL(wp), INTENT(IN) :: rw_val !< constant value of Rw
REAL(wp), INTENT(OUT) :: gw !< wernal leaf conductance (m/s)
!
!-- Compute conductance:
IF ( sai_present .AND. .NOT.missing(rw_val) ) THEN
gw = 1.0_wp / rw_val
ELSE
gw = 0.0_wp
ENDIF
END SUBROUTINE rw_constant
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to compute stomatal conductance
!------------------------------------------------------------------------------!
SUBROUTINE rc_gstom( icmp, compnam, lu, lai_present, lai, solar_rad, sinphi, t, rh, diffusivity, gstom, p )
!
!-- input/output variables:
CHARACTER(LEN=*), INTENT(IN) :: compnam !< component name
INTEGER(iwp), INTENT(IN) :: icmp !< component index
INTEGER(iwp), INTENT(IN) :: lu !< land use type , lu = 1,...,nlu
LOGICAL, INTENT(IN) :: lai_present
REAL(wp), INTENT(IN) :: lai !< one-sided leaf area index
REAL(wp), INTENT(IN) :: solar_rad !< solar radiation, dirict+diffuse (W/m2)
REAL(wp), INTENT(IN) :: sinphi !< sin of solar elevation angle
REAL(wp), INTENT(IN) :: t !< temperature (C)
REAL(wp), INTENT(IN) :: rh !< relative humidity (%)
REAL(wp), INTENT(IN) :: diffusivity !< diffusion coefficient of the gas involved
REAL(wp), OPTIONAL,INTENT(IN) :: p !< pressure (Pa)
REAL(wp), INTENT(OUT) :: gstom !< stomatal conductance (m/s)
!
!-- Local variables
REAL(wp) :: vpd !< vapour pressure deficit (kPa)
REAL(wp), PARAMETER :: dO3 = 0.13e-4 !< diffusion coefficient of ozon (m2/s)
!
!-- Next line is to avoid compiler warning about unused variables
IF ( icmp == 0 ) CONTINUE
SELECT CASE( TRIM( compnam ) )
CASE( 'NO', 'CO' )
!
!-- For no stomatal uptake is neglected:
gstom = 0.0_wp
CASE( 'NO2', 'O3', 'SO2', 'NH3' )
!
!-- if vegetation present:
IF ( lai_present ) THEN
IF ( solar_rad > 0.0_wp ) THEN
CALL rc_get_vpd( t, rh, vpd )
CALL rc_gstom_emb( lu, solar_rad, t, vpd, lai_present, lai, sinphi, gstom, p )
gstom = gstom * diffusivity / dO3 !< Gstom of Emberson is derived for ozone
ELSE
gstom = 0.0_wp
ENDIF
ELSE
!
!-- no vegetation; zero conductance (infinite resistance):
gstom = 0.0_wp
ENDIF
CASE default
message_string = 'Component '// TRIM( compnam ) // ' not supported'
CALL message( 'rc_gstom', 'CM0459', 1, 2, 0, 6, 0 )
END SELECT
END SUBROUTINE rc_gstom
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to compute stomatal conductance according to Emberson
!------------------------------------------------------------------------------!
SUBROUTINE rc_gstom_emb( lu, solar_rad, T, vpd, lai_present, lai, sinp, Gsto, p )
!
!> History
!> Original code from Lotos-Euros, TNO, M. Schaap
!> 2009-08, M.C. van Zanten, Rivm
!> Updated and extended.
!> 2009-09, Arjo Segers, TNO
!> Limitted temperature influence to range to avoid
!> floating point exceptions.
!> Method
!> Code based on Emberson et al, 2000, Env. Poll., 403-413
!> Notation conform Unified EMEP Model Description Part 1, ch 8
!
!> In the calculation of f_light the modification of L. Zhang 2001, AE to the PARshade and PARsun
!> parametrizations of Norman 1982 are applied
!> f_phen and f_SWP are set to 1
!
!> Land use types DEPAC versus Emberson (Table 5.1, EMEP model description)
!> DEPAC Emberson
!> 1 = grass GR = grassland
!> 2 = arable land TC = temperate crops ( lai according to RC = rootcrops)
!> 3 = permanent crops TC = temperate crops ( lai according to RC = rootcrops)
!> 4 = coniferous forest CF = tempareate/boREAL(wp) coniferous forest
!> 5 = deciduous forest DF = temperate/boREAL(wp) deciduous forest
!> 6 = water W = water
!> 7 = urban U = urban
!> 8 = other GR = grassland
!> 9 = desert DE = desert
!
!-- Emberson specific declarations
!
!-- Input/output variables:
INTEGER(iwp), INTENT(IN) :: lu !< land use type, lu = 1,...,nlu
LOGICAL, INTENT(IN) :: lai_present
REAL(wp), INTENT(IN) :: solar_rad !< solar radiation, dirict+diffuse (W/m2)
REAL(wp), INTENT(IN) :: t !< temperature (C)
REAL(wp), INTENT(IN) :: vpd !< vapour pressure deficit (kPa)
REAL(wp), INTENT(IN) :: lai !< one-sided leaf area index
REAL(wp), INTENT(IN) :: sinp !< sin of solar elevation angle
REAL(wp), OPTIONAL, INTENT(IN) :: p !< pressure (Pa)
REAL(wp), INTENT(OUT) :: gsto !< stomatal conductance (m/s)
!
!-- Local variables:
REAL(wp) :: f_light
REAL(wp) :: f_phen
REAL(wp) :: f_temp
REAL(wp) :: f_vpd
REAL(wp) :: f_swp
REAL(wp) :: bt
REAL(wp) :: f_env
REAL(wp) :: pardir
REAL(wp) :: pardiff
REAL(wp) :: parshade
REAL(wp) :: parsun
REAL(wp) :: laisun
REAL(wp) :: laishade
REAL(wp) :: sinphi
REAL(wp) :: pres
REAL(wp), PARAMETER :: p_sealevel = 1.01325e05 !< Pa
!
!-- Check whether vegetation is present:
IF ( lai_present ) THEN
! calculation of correction factors for stomatal conductance
IF ( sinp <= 0.0_wp ) THEN
sinphi = 0.0001_wp
ELSE
sinphi = sinp
END IF
!
!-- ratio between actual and sea-level pressure is used
!-- to correct for height in the computation of par;
!-- should not exceed sea-level pressure therefore ...
IF ( present(p) ) THEN
pres = min( p, p_sealevel )
ELSE
pres = p_sealevel
ENDIF
!
!-- direct and diffuse par, Photoactive (=visible) radiation:
CALL par_dir_diff( solar_rad, sinphi, pres, p_sealevel, pardir, pardiff )
!
!-- par for shaded leaves (canopy averaged):
parshade = pardiff * exp( -0.5 * lai**0.7 ) + 0.07 * pardir * ( 1.1 - 0.1 * lai ) * exp( -sinphi ) !< Norman,1982
IF ( solar_rad > 200.0_wp .AND. lai > 2.5_wp ) THEN
parshade = pardiff * exp( -0.5 * lai**0.8 ) + 0.07 * pardir * ( 1.1 - 0.1 * lai ) * exp( -sinphi ) !< Zhang et al., 2001
END IF
!
!-- par for sunlit leaves (canopy averaged):
!-- alpha -> mean angle between leaves and the sun is fixed at 60 deg -> i.e. cos alpha = 0.5
parsun = pardir * 0.5/sinphi + parshade !< Norman, 1982
IF ( solar_rad > 200.0_wp .AND. lai > 2.5_wp ) THEN
parsun = pardir**0.8 * 0.5 / sinphi + parshade !< Zhang et al., 2001
END IF
!
!-- leaf area index for sunlit and shaded leaves:
IF ( sinphi > 0 ) THEN
laisun = 2 * sinphi * ( 1 - exp( -0.5 * lai / sinphi ) )
laishade = lai - laisun
ELSE
laisun = 0
laishade = lai
END IF
f_light = ( laisun * ( 1 - exp( -1.0_wp * alpha(lu) * parsun ) ) + &
laishade * ( 1 - exp( -1.0_wp * alpha(lu) * parshade ) ) ) / lai
f_light = MAX(f_light,f_min(lu))
!
!-- temperature influence; only non-zero within range [tmin,tmax]:
IF ( ( tmin(lu) < t ) .AND. ( t < tmax(lu) ) ) THEN
bt = ( tmax(lu) - topt(lu) ) / ( topt(lu) - tmin(lu) )
f_temp = ( ( t - tmin(lu) ) / ( topt(lu) - tmin(lu) ) ) * ( ( tmax(lu) - t ) / ( tmax(lu) - topt(lu) ) )**bt
ELSE
f_temp = 0.0_wp
END IF
f_temp = MAX( f_temp, f_min(lu) )
!
!-- vapour pressure deficit influence
f_vpd = MIN( 1.0_wp, ( ( 1.0_wp - f_min(lu) ) * ( vpd_min(lu) - vpd ) / ( vpd_min(lu) - vpd_max(lu) ) + f_min(lu) ) )
f_vpd = MAX( f_vpd, f_min(lu) )
f_swp = 1.0_wp
!
!-- influence of phenology on stom. conductance
!-- ignored for now in DEPAC since influence of f_phen on lu classes in use is negligible.
!-- When other EMEP classes (e.g. med. broadleaf) are used f_phen might be too important to ignore
f_phen = 1.0_wp
!
!-- evaluate total stomatal conductance
f_env = f_temp * f_vpd * f_swp
f_env = MAX( f_env,f_min(lu) )
gsto = g_max(lu) * f_light * f_phen * f_env
!
!-- gstom expressed per m2 leafarea;
!-- this is converted with lai to m2 surface.
gsto = lai * gsto ! in m/s
ELSE
gsto = 0.0_wp
ENDIF
END SUBROUTINE rc_gstom_emb
!-------------------------------------------------------------------
!> par_dir_diff
!> Weiss, A., Norman, J.M. (1985) Partitioning solar radiation into direct and
!> diffuse, visible and near-infrared components. Agric. Forest Meteorol.
!> 34, 205-213.
!> From a SUBROUTINE obtained from Leiming Zhang,
!> Meteorological Service of Canada
!> Leiming uses solar irradiance. This should be equal to global radiation and
!> Willem Asman set it to global radiation (here defined as solar radiation, dirict+diffuse)
!>
!> @todo Check/connect/replace with radiation_model_mod variables
!-------------------------------------------------------------------
SUBROUTINE par_dir_diff( solar_rad, sinphi, pres, pres_0, par_dir, par_diff )
REAL(wp), INTENT(IN) :: solar_rad !< solar radiation, dirict+diffuse (W m-2)
REAL(wp), INTENT(IN) :: sinphi !< sine of the solar elevation
REAL(wp), INTENT(IN) :: pres !< actual pressure (to correct for height) (Pa)
REAL(wp), INTENT(IN) :: pres_0 !< pressure at sea level (Pa)
REAL(wp), INTENT(OUT) :: par_dir !< par direct : visible (photoactive) direct beam radiation (W m-2)
REAL(wp), INTENT(OUT) :: par_diff !< par diffuse: visible (photoactive) diffuse radiation (W m-2)
REAL(wp) :: sv !< total visible radiation
REAL(wp) :: fv !< par direct beam fraction (dimensionless)
REAL(wp) :: ratio !< ratio measured to potential solar radiation (dimensionless)
REAL(wp) :: rdm !< potential direct beam near-infrared radiation (W m-2); "potential" means clear-sky
REAL(wp) :: rdn !< potential diffuse near-infrared radiation (W m-2)
REAL(wp) :: rdu !< visible (par) direct beam radiation (W m-2)
REAL(wp) :: rdv !< potential visible (par) diffuse radiation (W m-2)
REAL(wp) :: rn !< near-infrared radiation (W m-2)
REAL(wp) :: rv !< visible radiation (W m-2)
REAL(wp) :: ww !< water absorption in the near infrared for 10 mm of precipitable water
!
!-- Calculate visible (PAR) direct beam radiation
!-- 600 W m-2 represents average amount of par (400-700 nm wavelength)
!-- at the top of the atmosphere; this is roughly 0.45*solar constant (solar constant=1320 Wm-2)
rdu = 600.0_wp* exp( -0.185_wp * ( pres / pres_0 ) / sinphi ) * sinphi
!
!-- Calculate potential visible diffuse radiation
rdv = 0.4_wp * ( 600.0_wp - rdu ) * sinphi
!
!-- Calculate the water absorption in the-near infrared
ww = 1320 * 10**( -1.195_wp + 0.4459_wp * log10( 1.0_wp / sinphi ) - 0.0345_wp * ( log10( 1.0_wp / sinphi ) )**2 )
!
!-- Calculate potential direct beam near-infrared radiation
rdm = (720.0_wp * exp(-0.06_wp * (pres / pres_0) / sinphi ) - ww ) * sinphi !< 720 = solar constant - 600
!
!-- Calculate potential diffuse near-infrared radiation
rdn = 0.6_wp * ( 720 - rdm - ww ) * sinphi
!
!-- Compute visible and near-infrared radiation
rv = MAX( 0.1_wp, rdu + rdv )
rn = MAX( 0.01_wp, rdm + rdn )
!
!-- Compute ratio between input global radiation (here defined as solar radiation, dirict+diffuse)
!-- and total radiation computed here
ratio = MIN( 0.89_wp, solar_rad / ( rv + rn ) )
!
!-- Calculate total visible radiation
sv = ratio * rv
!
!-- Calculate fraction of par in the direct beam
fv = MIN( 0.99_wp, ( 0.9_wp - ratio ) / 0.7_wp ) !< help variable
fv = MAX( 0.01_wp, rdu / rv * ( 1.0_wp - fv**0.6667_wp ) ) !< fraction of par in the direct beam
!
!-- Compute direct and diffuse parts of par
par_dir = fv * sv
par_diff = sv - par_dir
END SUBROUTINE par_dir_diff
!-------------------------------------------------------------------
!> rc_get_vpd: get vapour pressure deficit (kPa)
!-------------------------------------------------------------------
SUBROUTINE rc_get_vpd( temp, rh, vpd )
!
!-- Input/output variables:
REAL(wp), INTENT(IN) :: temp !< temperature (C)
REAL(wp), INTENT(IN) :: rh !< relative humidity (%)
REAL(wp), INTENT(OUT) :: vpd !< vapour pressure deficit (kPa)
!
!-- Local variables:
REAL(wp) :: esat
!
!-- fit parameters:
REAL(wp), PARAMETER :: a1 = 6.113718e-01
REAL(wp), PARAMETER :: a2 = 4.43839e-02
REAL(wp), PARAMETER :: a3 = 1.39817e-03
REAL(wp), PARAMETER :: a4 = 2.9295e-05
REAL(wp), PARAMETER :: a5 = 2.16e-07
REAL(wp), PARAMETER :: a6 = 3.0e-09
!
!-- esat is saturation vapour pressure (kPa) at temp(C) following Monteith(1973)
esat = a1 + a2 * temp + a3 * temp**2 + a4 * temp**3 + a5 * temp**4 + a6 * temp**5
vpd = esat * ( 1 - rh / 100 )
END SUBROUTINE rc_get_vpd
!-------------------------------------------------------------------
!> rc_gsoil_eff: compute effective soil conductance
!-------------------------------------------------------------------
SUBROUTINE rc_gsoil_eff( icmp, lu, sai, ust, nwet, t, gsoil_eff )
!
!-- Input/output variables:
INTEGER(iwp), INTENT(IN) :: icmp !< component index
INTEGER(iwp), INTENT(IN) :: lu !< land use type, lu = 1,..., nlu
INTEGER(iwp), INTENT(IN) :: nwet !< index for wetness
!< nwet = 0 -> dry; nwet = 1 -> wet; nwet = 9 -> snow
!< N.B. this routine cannot be called with nwet = 9,
!< nwet = 9 should be handled outside this routine.
REAL(wp), INTENT(IN) :: sai !< surface area index
REAL(wp), INTENT(IN) :: ust !< friction velocity (m/s)
REAL(wp), INTENT(IN) :: t !< temperature (C)
REAL(wp), INTENT(OUT) :: gsoil_eff !< effective soil conductance (m/s)
!
!-- local variables:
REAL(wp) :: rinc !< in canopy resistance (s/m)
REAL(wp) :: rsoil_eff !< effective soil resistance (s/m)
!
!-- Soil resistance (numbers matched with lu_classes and component numbers)
! grs ara crp cnf dec wat urb oth des ice sav trf wai med sem
REAL(wp), PARAMETER :: rsoil(nlu_dep,ncmp) = reshape( (/ &
1000., 200., 200., 200., 200., 2000., 400., 1000., 2000., 2000., 1000., 200., 2000., 200., 400., & !< O3
1000., 1000., 1000., 1000., 1000., 10., 1000., 1000., 1000., 500., 1000., 1000., 10., 1000., 1000., & !< SO2
1000., 1000., 1000., 1000., 1000., 2000., 1000., 1000., 1000., 2000., 1000., 1000., 2000., 1000., 1000., & !< NO2
-999., -999., -999., -999., -999., 2000., 1000., -999., 2000., 2000., -999., -999., 2000., -999., -999., & !< NO
100., 100., 100., 100., 100., 10., 100., 100., 100., 1000., 100., 100., 10., 100., 100., & !< NH3
-999., -999., -999., -999., -999., 2000., 1000., -999., 2000., 2000., -999., -999., 2000., -999., -999., & !< CO
-999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., & !< NO3
-999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., & !< HNO3
-999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., & !< N2O5
-999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999. /),& !< H2O2
(/nlu_dep,ncmp/) )
!
!-- For o3 so2 no2 no nh3 co no3 hno3 n2o5 h2o2
REAL(wp), PARAMETER :: rsoil_wet(ncmp) = (/2000., 10. , 2000., -999., 10. , -999., -999., -999., -999., -999./)
REAL(wp), PARAMETER :: rsoil_frozen(ncmp) = (/2000., 500., 2000., -999., 1000., -999., -999., -999., -999., -999./)
!
!-- Compute in canopy (in crop) resistance:
CALL rc_rinc( lu, sai, ust, rinc )
!
!-- Check for missing deposition path:
IF ( missing(rinc) ) THEN
rsoil_eff = -9999.0_wp
ELSE
!
!-- Frozen soil (temperature below 0):
IF ( t < 0.0_wp ) THEN
IF ( missing( rsoil_frozen( icmp ) ) ) THEN
rsoil_eff = -9999.0_wp
ELSE
rsoil_eff = rsoil_frozen( icmp ) + rinc
ENDIF
ELSE
!
!-- Non-frozen soil; dry:
IF ( nwet == 0 ) THEN
IF ( missing( rsoil( lu, icmp ) ) ) THEN
rsoil_eff = -9999.0_wp
ELSE
rsoil_eff = rsoil( lu, icmp ) + rinc
ENDIF
!
!-- Non-frozen soil; wet:
ELSEIF ( nwet == 1 ) THEN
IF ( missing( rsoil_wet( icmp ) ) ) THEN
rsoil_eff = -9999.0_wp
ELSE
rsoil_eff = rsoil_wet( icmp ) + rinc
ENDIF
ELSE
message_string = 'nwet can only be 0 or 1'
CALL message( 'rc_gsoil_eff', 'CM0460', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
ENDIF
!
!-- Compute conductance:
IF ( rsoil_eff > 0.0_wp ) THEN
gsoil_eff = 1.0_wp / rsoil_eff
ELSE
gsoil_eff = 0.0_wp
ENDIF
END SUBROUTINE rc_gsoil_eff
!-------------------------------------------------------------------
!> rc_rinc: compute in canopy (or in crop) resistance
!> van Pul and Jacobs, 1993, BLM
!-------------------------------------------------------------------
SUBROUTINE rc_rinc( lu, sai, ust, rinc )
!
!-- Input/output variables:
INTEGER(iwp), INTENT(IN) :: lu !< land use class, lu = 1, ..., nlu
REAL(wp), INTENT(IN) :: sai !< surface area index
REAL(wp), INTENT(IN) :: ust !< friction velocity (m/s)
REAL(wp), INTENT(OUT) :: rinc !< in canopy resistance (s/m)
!
!-- b = empirical constant for computation of rinc (in canopy resistance) (= 14 m-1 or -999 if not applicable)
!-- h = vegetation height (m) gra ara crop con dec wat urb oth des ice sav trf wai med semi
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: b = (/ -999, 14, 14, 14, 14, -999, -999, -999, -999, -999, -999, 14, -999, &
14, 14 /)
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: h = (/ -999, 1, 1, 20, 20, -999, -999, -999, -999, -999, -999, 20, -999, &
1 , 1 /)
!
!-- Compute Rinc only for arable land, perm. crops, forest; otherwise Rinc = 0:
IF ( b(lu) > 0.0_wp ) THEN
! !
!-- Check for u* > 0 (otherwise denominator = 0):
IF ( ust > 0.0_wp ) THEN
rinc = b(lu) * h(lu) * sai/ust
ELSE
rinc = 1000.0_wp
ENDIF
ELSE
IF ( lu == ilu_grass .OR. lu == ilu_other ) THEN
rinc = -999.0_wp !< no deposition path for grass, other, and semi-natural
ELSE
rinc = 0.0_wp !< no in-canopy resistance
ENDIF
ENDIF
END SUBROUTINE rc_rinc
!-------------------------------------------------------------------
!> rc_rctot: compute total canopy (or surface) resistance Rc
!-------------------------------------------------------------------
SUBROUTINE rc_rctot( gstom, gsoil_eff, gw, gc_tot, rc_tot )
!
!-- Input/output variables:
REAL(wp), INTENT(IN) :: gstom !< stomatal conductance (s/m)
REAL(wp), INTENT(IN) :: gsoil_eff !< effective soil conductance (s/m)
REAL(wp), INTENT(IN) :: gw !< external leaf conductance (s/m)
REAL(wp), INTENT(OUT) :: gc_tot !< total canopy conductance (m/s)
REAL(wp), INTENT(OUT) :: rc_tot !< total canopy resistance Rc (s/m)
!
!-- Total conductance:
gc_tot = gstom + gsoil_eff + gw
!
!-- Total resistance (note: gw can be negative, but no total emission allowed here):
IF ( gc_tot <= 0.0_wp .OR. gw < 0.0_wp ) THEN
rc_tot = -9999.0_wp
ELSE
rc_tot = 1.0_wp / gc_tot
ENDIF
END SUBROUTINE rc_rctot
!-------------------------------------------------------------------
!> rc_comp_point_rc_eff: calculate the effective resistance Rc
!> based on one or more compensation points
!-------------------------------------------------------------------
!> NH3rc (see depac v3.6 is based on Avero workshop Marc Sutton. p. 173.
!> Sutton 1998 AE 473-480)
!>
!> Documentation by Ferd Sauter, 2008; see also documentation block in header of depac subroutine.
!> FS 2009-01-29: variable names made consistent with DEPAC
!> FS 2009-03-04: use total compensation point
!>
!> C: with total compensation point ! D: approximation of C
!> ! with classical approach
!> zr --------- Catm ! zr --------- Catm
!> | ! |
!> Ra ! Ra
!> | ! |
!> Rb ! Rb
!> | ! |
!> z0 --------- Cc ! z0 --------- Cc
!> | ! |
!> Rc ! Rc_eff
!> | ! |
!> --------- Ccomp_tot ! --------- C=0
!>
!>
!> The effective Rc is defined such that instead of using
!>
!> F = -vd*[Catm - Ccomp_tot] (1)
!>
!> we can use the 'normal' flux formula
!>
!> F = -vd'*Catm, (2)
!>
!> with vd' = 1/(Ra + Rb + Rc') (3)
!>
!> and Rc' the effective Rc (rc_eff).
!> (Catm - Ccomp_tot)
!> vd'*Catm = vd*(Catm - Ccomp_tot) <=> vd' = vd* ------------------
!> Catm
!>
!> (Catm - Ccomp_tot)
!> 1/(Ra + Rb + Rc') = (1/Ra + Rb + Rc) * ------------------
!> Catm
!>
!> Catm
!> (Ra + Rb + Rc') = (Ra + Rb + Rc) * ------------------
!> (Catm - Ccomp_tot)
!>
!> Catm
!> Rc' = (Ra + Rb + Rc) * ------------------ - Ra - Rb
!> (Catm - Ccomp_tot)
!>
!> Catm Catm
!> Rc' = (Ra + Rb) [------------------ - 1 ] + Rc * ------------------
!> (Catm - Ccomp_tot) (Catm - Ccomp_tot)
!>
!> Rc' = [(Ra + Rb)*Ccomp_tot + Rc*Catm ] / (Catm - Ccomp_tot)
!>
! -------------------------------------------------------------------------------------------
! SUBROUTINE rc_comp_point_rc_eff( ccomp_tot, conc_ijk_ugm3, ra, rb, rc_tot, rc_eff )
!
!
!!-- Input/output variables:
! REAL(wp), INTENT(IN) :: ccomp_tot !< total compensation point (weighed average of separate compensation points) (ug/m3)
! REAL(wp), INTENT(IN) :: conc_ijk_ugm3 !< atmospheric concentration (ug/m3) above Catm
! REAL(wp), INTENT(IN) :: ra !< aerodynamic resistance (s/m)
! REAL(wp), INTENT(IN) :: rb !< boundary layer resistance (s/m)
! REAL(wp), INTENT(IN) :: rc_tot !< total canopy resistance (s/m)
!
! REAL(wp), INTENT(OUT) :: rc_eff !< effective total canopy resistance (s/m)
!
! !
!!-- Compute effective resistance:
! IF ( ccomp_tot == 0.0_wp ) THEN
! !
!!-- trace with no compensiation point ( or compensation point equal to zero)
! rc_eff = rc_tot
!
! ELSE IF ( ccomp_tot > 0.0_wp .AND. ( abs( conc_ijk_ugm3 - ccomp_tot ) < 1.e-8 ) ) THEN
! !
!!-- surface concentration (almost) equal to atmospheric concentration
!!-- no exchange between surface and atmosphere, infinite RC --> vd=0
! rc_eff = 9999999999.0_wp
!
! ELSE IF ( ccomp_tot > 0.0_wp ) THEN
! !
!!-- compensation point available, calculate effective resistance
! rc_eff = ( ( ra + rb ) * ccomp_tot + rc_tot * conc_ijk_ugm3 ) / ( conc_ijk_ugm3 - ccomp_tot )
!
! ELSE
! rc_eff = -999.0_wp
! message_string = 'This should not be possible, check ccomp_tot'
! CALL message( 'rc_comp_point_rc_eff', 'CM0461', 1, 2, 0, 6, 0 )
! ENDIF
!
! RETURN
!
! END SUBROUTINE rc_comp_point_rc_eff
!-------------------------------------------------------------------
!> missing: check for data that correspond with a missing deposition path
!> this data is represented by -999
!-------------------------------------------------------------------
LOGICAL function missing( x )
REAL(wp), INTENT(IN) :: x
!
!-- bandwidth for checking (in)equalities of floats
REAL(wp), PARAMETER :: eps = 1.0e-5
missing = (abs(x + 999.0_wp) <= eps)
END function missing
ELEMENTAL FUNCTION sedimentation_velocity( rhopart, partsize, slipcor, visc ) RESULT( vs )
!
!-- in/out
REAL(wp), INTENT(IN) :: rhopart !< particle density (kg/m3)
REAL(wp), INTENT(IN) :: partsize !< particle size (m)
REAL(wp), INTENT(IN) :: slipcor !< slip correction factor (m)
REAL(wp), INTENT(IN) :: visc !< viscosity
REAL(wp) :: vs
!
!-- acceleration of gravity:
REAL(wp), PARAMETER :: grav = 9.80665 !< m/s2
!-- sedimentation velocity
vs = rhopart * ( partsize**2.0_wp ) * grav * slipcor / ( 18.0_wp * visc )
END FUNCTION sedimentation_velocity
!------------------------------------------------------------------------
!> Boundary-layer deposition resistance following Zhang (2001)
!------------------------------------------------------------------------
SUBROUTINE drydepo_aero_zhang_vd( vd, rs, vs1, partsize, slipcor, nwet, tsurf, dens1, viscos1, &
luc, ftop_lu, ustar )
!
!-- in/out
INTEGER(iwp), INTENT(IN) :: nwet !< 1=rain, 9=snowcover
INTEGER(iwp), INTENT(IN) :: luc !< DEPAC LU
REAL(wp), INTENT(IN) :: vs1 !< sedimentation velocity in lowest layer
REAL(wp), INTENT(IN) :: partsize !< particle diameter (m)
REAL(wp), INTENT(IN) :: slipcor !< slip correction factor
REAL(wp), INTENT(IN) :: tsurf !< surface temperature (K)
REAL(wp), INTENT(IN) :: dens1 !< air density (kg/m3) in lowest layer
REAL(wp), INTENT(IN) :: viscos1 !< air viscosity in lowest layer
REAL(wp), INTENT(IN) :: ftop_lu !< atmospheric resistnace Ra
REAL(wp), INTENT(IN) :: ustar !< friction velocity u*
REAL(wp), INTENT(OUT) :: vd !< deposition velocity (m/s)
REAL(wp), INTENT(OUT) :: rs !< sedimentaion resistance (s/m)
!
!-- constants
REAL(wp), PARAMETER :: grav = 9.80665 !< acceleration of gravity (m/s2)
REAL(wp), PARAMETER :: beta = 2.0
REAL(wp), PARAMETER :: epsilon0 = 3.0
REAL(wp), PARAMETER :: kb = 1.38066e-23
REAL(wp), PARAMETER :: pi = 3.141592654_wp !< pi
REAL(wp), PARAMETER :: alfa_lu(nlu_dep) = &
(/1.2, 1.2, 1.2, 1.0, 1.0, 100.0, 1.5, 1.2, 50.0, 100.0, 1.2, 1.0, 100.0, 1.2, 50.0/)
REAL(wp), PARAMETER :: gamma_lu(nlu_dep) = &
(/0.54, 0.54, 0.54, 0.56, 0.56, 0.50, 0.56, 0.54, 0.58, 0.50, 0.54, 0.56, 0.50, 0.54, 0.54/)
REAL(wp), PARAMETER ::A_lu(nlu_dep) = &
(/3.0, 3.0, 2.0, 2.0, 7.0, -99., 10.0, 3.0, -99., -99., 3.0, 7.0, -99., 2.0, -99./)
!
!-- grass arabl crops conif decid water urba othr desr ice sav trf wai med sem
!
!-- local
REAL(wp) :: kinvisc
REAL(wp) :: diff_part
REAL(wp) :: schmidt
REAL(wp) :: stokes
REAL(wp) :: Ebrown
REAL(wp) :: Eimpac
REAL(wp) :: Einterc
REAL(wp) :: Reffic
!
!-- kinetic viscosity & diffusivity
kinvisc = viscos1 / dens1 !< only needed at surface
diff_part = kb * tsurf * slipcor / ( 3 * pi * viscos1 * partsize )
!
!-- Schmidt number
schmidt = kinvisc / diff_part
!
!-- calculate collection efficiencie E
Ebrown = Schmidt**( -gamma_lu(luc) ) !< Brownian diffusion
!
!-- determine Stokes number, interception efficiency
!-- and sticking efficiency R (1 = no rebound)
IF ( luc == ilu_ice .OR. nwet==9 .OR. luc == ilu_water_sea .OR. luc == ilu_water_inland ) THEN
stokes = vs1 * ustar**2 / ( grav * kinvisc )
Einterc = 0.0_wp
Reffic = 1.0_wp
ELSE IF ( luc == ilu_other .OR. luc == ilu_desert ) THEN ! Compute quasi-laminar boundary layer resistance as a function of landuse and tracer
!> Original EMEP formulation by (Simpson et al, 2003) is used
!-------------------------------------------------------------------------------------
SUBROUTINE get_rb_cell( is_water, z0h, ustar, diffusivity, rb )
!
!-- in/out
LOGICAL , INTENT(IN) :: is_water
REAL(wp), INTENT(IN) :: z0h !< roughness length for heat
REAL(wp), INTENT(IN) :: ustar !< friction velocity
REAL(wp), INTENT(IN) :: diffusivity !< coefficient of diffusivity
REAL(wp), INTENT(OUT) :: rb !< boundary layer resistance
!
!-- const
REAL(wp), PARAMETER :: thk = 0.19e-4 !< thermal diffusivity of dry air 20 C
REAL(wp), PARAMETER :: kappa_stab = 0.35 !< von Karman constant
!
!-- Next line is to avoid compiler warning about unused variable
IF ( is_water .OR. ( z0h + kappa_stab ) > 0.0_wp ) CONTINUE
!
!-- Use Simpson et al. (2003)
!-- @TODO: Check rb over water calculation, until then leave commented lines
!-- IF ( is_water ) THEN
!-- org: rb = 1.0_wp / (kappa_stab*MAX(0.01_wp,ustar)) * log(z0h/diffusivity*kappa_stab*MAX(0.01_wp,ustar))
!-- rb = 1.0_wp / (kappa_stab*MAX(0.1_wp,ustar)) * log(z0h/diffusivity*kappa_stab*MAX(0.1_wp,ustar))
!-- ELSE
rb = 5.0_wp / MAX( 0.01_wp, ustar ) * ( thk / diffusivity )**0.67_wp
!-- END IF
END SUBROUTINE get_rb_cell
!-----------------------------------------------------------------
!> Compute water vapor partial pressure (e_w)
!> given specific humidity Q [(kg water)/(kg air)].
!>
!> Use that gas law for volume V with temperature T
!> holds for the total mixture as well as the water part:
!>
!> R T / V = p_air / n_air = p_water / n_water
!>
!> thus:
!>
!> p_water = p_air n_water / n_air
!>
!> Use:
!> n_air = m_air / xm_air
!> [kg air] / [(kg air)/(mole air)]
!> and:
!> n_water = m_air * Q / xm_water
!> [kg water] / [(kg water)/(mole water)]
!> thus:
!> p_water = p_air Q / (xm_water/xm_air)
!------------------------------------------------------------------
ELEMENTAL FUNCTION watervaporpartialpressure( q, p ) RESULT( p_w )
!
!-- in/out
REAL(wp), INTENT(IN) :: q !< specific humidity [(kg water)/(kg air)]
REAL(wp), INTENT(IN) :: p !< air pressure [Pa]
REAL(wp) :: p_w !< water vapor partial pressure [Pa]
!
!-- const
REAL(wp), PARAMETER :: eps = xm_h2o / xm_air !< mole mass ratio ~ 0.622
!
!-- partial pressure of water vapor:
p_w = p * q / eps
END function watervaporpartialpressure
!------------------------------------------------------------------
!> Saturation vapor pressure.
!> From (Stull 1988, eq. 7.5.2d):
!>
!> e_sat = p0 exp( 17.67 * (T-273.16) / (T-29.66) ) [Pa]
!>
!> where:
!> p0 = 611.2 [Pa] : reference pressure
!>
!> Arguments:
!> T [K] : air temperature
!> Result:
!> e_sat_w [Pa] : saturation vapor pressure
!>
!> References:
!> Roland B. Stull, 1988
!> An introduction to boundary layer meteorology.
!-----------------------------------------------------------------
ELEMENTAL FUNCTION saturationvaporpressure( t ) RESULT( e_sat_w )
!
!-- in/out
REAL(wp), INTENT(IN) :: t !< temperature [K]
REAL(wp) :: e_sat_w !< saturation vapor pressure [Pa]
!
!-- const
REAL(wp), PARAMETER :: p0 = 611.2 !< base pressure [Pa]
!
!-- saturation vapor pressure:
e_sat_w = p0 * exp( 17.67_wp * ( t - 273.16_wp ) / ( t - 29.66_wp ) ) !< [Pa]
END FUNCTION saturationvaporpressure
!------------------------------------------------------------------------
!> Relative humidity RH [%] is by definition:
!>
!> e_w water vapor partial pressure
!> Rh = -------- * 100
!> e_sat_w saturation vapor pressure
!------------------------------------------------------------------------
ELEMENTAL FUNCTION relativehumidity_from_specifichumidity( q, t, p ) RESULT( rh )
!
!-- in/out
REAL(wp), INTENT(IN) :: q !< specific humidity [(kg water)/(kg air)]
REAL(wp), INTENT(IN) :: t !< temperature [K]
REAL(wp), INTENT(IN) :: p !< air pressure [Pa]
REAL(wp) :: rh !< relative humidity [%]
!
!-- relative humidity:
rh = watervaporpartialpressure( q, p ) / saturationvaporpressure( t ) * 100.0_wp
END FUNCTION relativehumidity_from_specifichumidity
END MODULE chemistry_model_mod