SUBROUTINE boundary_conds !--------------------------------------------------------------------------------! ! This file is part of PALM. ! ! PALM is free software: you can redistribute it and/or modify it under the terms ! of the GNU General Public License as published by the Free Software Foundation, ! either version 3 of the License, or (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2014 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: boundary_conds.f90 1362 2014-04-16 15:19:12Z raasch $ ! ! 1361 2014-04-16 15:17:48Z hoffmann ! Bottom and top boundary conditions of rain water content (qr) and ! rain drop concentration (nr) changed to Dirichlet ! ! 1353 2014-04-08 15:21:23Z heinze ! REAL constants provided with KIND-attribute ! ! 1320 2014-03-20 08:40:49Z raasch ! ONLY-attribute added to USE-statements, ! kind-parameters added to all INTEGER and REAL declaration statements, ! kinds are defined in new module kinds, ! revision history before 2012 removed, ! comment fields (!:) to be used for variable explanations added to ! all variable declaration statements ! ! 1257 2013-11-08 15:18:40Z raasch ! loop independent clauses added ! ! 1241 2013-10-30 11:36:58Z heinze ! Adjust ug and vg at each timestep in case of large_scale_forcing ! ! 1159 2013-05-21 11:58:22Z fricke ! Bugfix: Neumann boundary conditions for the velocity components at the ! outflow are in fact radiation boundary conditions using the maximum phase ! velocity that ensures numerical stability (CFL-condition). ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by ! u_p, v_p, w_p ! ! 1115 2013-03-26 18:16:16Z hoffmann ! boundary conditions of two-moment cloud scheme are restricted to Neumann- ! boundary-conditions ! ! 1113 2013-03-10 02:48:14Z raasch ! GPU-porting ! dummy argument "range" removed ! Bugfix: wrong index in loops of radiation boundary condition ! ! 1053 2012-11-13 17:11:03Z hoffmann ! boundary conditions for the two new prognostic equations (nr, qr) of the ! two-moment cloud scheme ! ! 1036 2012-10-22 13:43:42Z raasch ! code put under GPL (PALM 3.9) ! ! 996 2012-09-07 10:41:47Z raasch ! little reformatting ! ! 978 2012-08-09 08:28:32Z fricke ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. ! Outflow boundary conditions for the velocity components can be set to Neumann ! conditions or to radiation conditions with a horizontal averaged phase ! velocity. ! ! 875 2012-04-02 15:35:15Z gryschka ! Bugfix in case of dirichlet inflow bc at the right or north boundary ! ! Revision 1.1 1997/09/12 06:21:34 raasch ! Initial revision ! ! ! Description: ! ------------ ! Boundary conditions for the prognostic quantities. ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly ! handled in routine exchange_horiz. Pressure boundary conditions are ! explicitly set in routines pres, poisfft, poismg and sor. !------------------------------------------------------------------------------! USE arrays_3d, & ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & dzu, e_p, nr_p, pt, pt_p, q, q_p, qr_p, sa, sa_p, & u, ug, u_init, u_m_l, u_m_n, u_m_r, u_m_s, u_p, & v, vg, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & w, w_p, w_m_l, w_m_n, w_m_r, w_m_s USE control_parameters, & ONLY: bc_pt_t_val, bc_q_t_val, constant_diffusion, & cloud_physics, dt_3d, humidity, & ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_sa_t, ibc_uv_b, ibc_uv_t, & icloud_scheme, inflow_l, inflow_n, inflow_r, inflow_s, & intermediate_timestep_count, large_scale_forcing, ocean, & outflow_l, outflow_n, outflow_r, outflow_s, passive_scalar, & precipitation, tsc, use_cmax USE grid_variables, & ONLY: ddx, ddy, dx, dy USE indices, & ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & nzb, nzb_s_inner, nzb_w_inner, nzt USE kinds USE pegrid IMPLICIT NONE INTEGER(iwp) :: i !: INTEGER(iwp) :: j !: INTEGER(iwp) :: k !: REAL(wp) :: c_max !: REAL(wp) :: denom !: ! !-- Bottom boundary IF ( ibc_uv_b == 1 ) THEN !$acc kernels present( u_p, v_p ) u_p(nzb,:,:) = u_p(nzb+1,:,:) v_p(nzb,:,:) = v_p(nzb+1,:,:) !$acc end kernels ENDIF !$acc kernels present( nzb_w_inner, w_p ) DO i = nxlg, nxrg DO j = nysg, nyng w_p(nzb_w_inner(j,i),j,i) = 0.0_wp ENDDO ENDDO !$acc end kernels ! !-- Top boundary IF ( ibc_uv_t == 0 ) THEN !$acc kernels present( u_init, u_p, v_init, v_p ) u_p(nzt+1,:,:) = u_init(nzt+1) v_p(nzt+1,:,:) = v_init(nzt+1) IF ( large_scale_forcing) THEN u_p(nzt+1,:,:) = ug(nzt+1) v_p(nzt+1,:,:) = vg(nzt+1) END IF !$acc end kernels ELSE !$acc kernels present( u_p, v_p ) u_p(nzt+1,:,:) = u_p(nzt,:,:) v_p(nzt+1,:,:) = v_p(nzt,:,:) !$acc end kernels ENDIF !$acc kernels present( w_p ) w_p(nzt:nzt+1,:,:) = 0.0_wp ! nzt is not a prognostic level (but cf. pres) !$acc end kernels ! !-- Temperature at bottom boundary. !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by !-- the sea surface temperature of the coupled ocean model. IF ( ibc_pt_b == 0 ) THEN !$acc kernels present( nzb_s_inner, pt, pt_p ) !$acc loop independent DO i = nxlg, nxrg !$acc loop independent DO j = nysg, nyng pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) ENDDO ENDDO !$acc end kernels ELSEIF ( ibc_pt_b == 1 ) THEN !$acc kernels present( nzb_s_inner, pt_p ) !$acc loop independent DO i = nxlg, nxrg !$acc loop independent DO j = nysg, nyng pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) ENDDO ENDDO !$acc end kernels ENDIF ! !-- Temperature at top boundary IF ( ibc_pt_t == 0 ) THEN !$acc kernels present( pt, pt_p ) pt_p(nzt+1,:,:) = pt(nzt+1,:,:) !$acc end kernels ELSEIF ( ibc_pt_t == 1 ) THEN !$acc kernels present( pt_p ) pt_p(nzt+1,:,:) = pt_p(nzt,:,:) !$acc end kernels ELSEIF ( ibc_pt_t == 2 ) THEN !$acc kernels present( dzu, pt_p ) pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) !$acc end kernels ENDIF ! !-- Boundary conditions for TKE !-- Generally Neumann conditions with de/dz=0 are assumed IF ( .NOT. constant_diffusion ) THEN !$acc kernels present( e_p, nzb_s_inner ) !$acc loop independent DO i = nxlg, nxrg !$acc loop independent DO j = nysg, nyng e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) ENDDO ENDDO e_p(nzt+1,:,:) = e_p(nzt,:,:) !$acc end kernels ENDIF ! !-- Boundary conditions for salinity IF ( ocean ) THEN ! !-- Bottom boundary: Neumann condition because salinity flux is always !-- given DO i = nxlg, nxrg DO j = nysg, nyng sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) ENDDO ENDDO ! !-- Top boundary: Dirichlet or Neumann IF ( ibc_sa_t == 0 ) THEN sa_p(nzt+1,:,:) = sa(nzt+1,:,:) ELSEIF ( ibc_sa_t == 1 ) THEN sa_p(nzt+1,:,:) = sa_p(nzt,:,:) ENDIF ENDIF ! !-- Boundary conditions for total water content or scalar, !-- bottom and top boundary (see also temperature) IF ( humidity .OR. passive_scalar ) THEN ! !-- Surface conditions for constant_humidity_flux IF ( ibc_q_b == 0 ) THEN DO i = nxlg, nxrg DO j = nysg, nyng q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) ENDDO ENDDO ELSE DO i = nxlg, nxrg DO j = nysg, nyng q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) ENDDO ENDDO ENDIF ! !-- Top boundary q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN ! !-- Surface conditions rain water (Dirichlet) DO i = nxlg, nxrg DO j = nysg, nyng qr_p(nzb_s_inner(j,i),j,i) = 0.0_wp nr_p(nzb_s_inner(j,i),j,i) = 0.0_wp ENDDO ENDDO ! !-- Top boundary condition for rain water (Dirichlet) qr_p(nzt+1,:,:) = 0.0_wp nr_p(nzt+1,:,:) = 0.0_wp ENDIF ! !-- In case of inflow at the south boundary the boundary for v is at nys !-- and in case of inflow at the left boundary the boundary for u is at nxl. !-- Since in prognostic_equations (cache optimized version) these levels are !-- handled as a prognostic level, boundary values have to be restored here. !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. IF ( inflow_s ) THEN v_p(:,nys,:) = v_p(:,nys-1,:) IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) ELSEIF ( inflow_n ) THEN IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) ELSEIF ( inflow_l ) THEN u_p(:,:,nxl) = u_p(:,:,nxl-1) IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) ELSEIF ( inflow_r ) THEN IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) ENDIF ! !-- Lateral boundary conditions for scalar quantities at the outflow IF ( outflow_s ) THEN pt_p(:,nys-1,:) = pt_p(:,nys,:) IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) IF ( humidity .OR. passive_scalar ) THEN q_p(:,nys-1,:) = q_p(:,nys,:) IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & precipitation) THEN qr_p(:,nys-1,:) = qr_p(:,nys,:) nr_p(:,nys-1,:) = nr_p(:,nys,:) ENDIF ENDIF ELSEIF ( outflow_n ) THEN pt_p(:,nyn+1,:) = pt_p(:,nyn,:) IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) IF ( humidity .OR. passive_scalar ) THEN q_p(:,nyn+1,:) = q_p(:,nyn,:) IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & precipitation ) THEN qr_p(:,nyn+1,:) = qr_p(:,nyn,:) nr_p(:,nyn+1,:) = nr_p(:,nyn,:) ENDIF ENDIF ELSEIF ( outflow_l ) THEN pt_p(:,:,nxl-1) = pt_p(:,:,nxl) IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) IF ( humidity .OR. passive_scalar ) THEN q_p(:,:,nxl-1) = q_p(:,:,nxl) IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & precipitation ) THEN qr_p(:,:,nxl-1) = qr_p(:,:,nxl) nr_p(:,:,nxl-1) = nr_p(:,:,nxl) ENDIF ENDIF ELSEIF ( outflow_r ) THEN pt_p(:,:,nxr+1) = pt_p(:,:,nxr) IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) IF ( humidity .OR. passive_scalar ) THEN q_p(:,:,nxr+1) = q_p(:,:,nxr) IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN qr_p(:,:,nxr+1) = qr_p(:,:,nxr) nr_p(:,:,nxr+1) = nr_p(:,:,nxr) ENDIF ENDIF ENDIF ENDIF ! !-- Radiation boundary conditions for the velocities at the respective outflow. !-- The phase velocity is either assumed to the maximum phase velocity that !-- ensures numerical stability (CFL-condition) or calculated after !-- Orlanski(1976) and averaged along the outflow boundary. IF ( outflow_s ) THEN IF ( use_cmax ) THEN u_p(:,-1,:) = u(:,0,:) v_p(:,0,:) = v(:,1,:) w_p(:,-1,:) = w(:,0,:) ELSEIF ( .NOT. use_cmax ) THEN c_max = dy / dt_3d c_u_m_l = 0.0_wp c_v_m_l = 0.0_wp c_w_m_l = 0.0_wp c_u_m = 0.0_wp c_v_m = 0.0_wp c_w_m = 0.0_wp ! !-- Calculate the phase speeds for u, v, and w, first local and then !-- average along the outflow boundary. DO k = nzb+1, nzt+1 DO i = nxl, nxr denom = u_m_s(k,0,i) - u_m_s(k,1,i) IF ( denom /= 0.0_wp ) THEN c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) IF ( c_u(k,i) < 0.0_wp ) THEN c_u(k,i) = 0.0_wp ELSEIF ( c_u(k,i) > c_max ) THEN c_u(k,i) = c_max ENDIF ELSE c_u(k,i) = c_max ENDIF denom = v_m_s(k,1,i) - v_m_s(k,2,i) IF ( denom /= 0.0_wp ) THEN c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) IF ( c_v(k,i) < 0.0_wp ) THEN c_v(k,i) = 0.0_wp ELSEIF ( c_v(k,i) > c_max ) THEN c_v(k,i) = c_max ENDIF ELSE c_v(k,i) = c_max ENDIF denom = w_m_s(k,0,i) - w_m_s(k,1,i) IF ( denom /= 0.0_wp ) THEN c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) IF ( c_w(k,i) < 0.0_wp ) THEN c_w(k,i) = 0.0_wp ELSEIF ( c_w(k,i) > c_max ) THEN c_w(k,i) = c_max ENDIF ELSE c_w(k,i) = c_max ENDIF c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) ENDDO ENDDO #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & MPI_SUM, comm1dx, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & MPI_SUM, comm1dx, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & MPI_SUM, comm1dx, ierr ) #else c_u_m = c_u_m_l c_v_m = c_v_m_l c_w_m = c_w_m_l #endif c_u_m = c_u_m / (nx+1) c_v_m = c_v_m / (nx+1) c_w_m = c_w_m / (nx+1) ! !-- Save old timelevels for the next timestep IF ( intermediate_timestep_count == 1 ) THEN u_m_s(:,:,:) = u(:,0:1,:) v_m_s(:,:,:) = v(:,1:2,:) w_m_s(:,:,:) = w(:,0:1,:) ENDIF ! !-- Calculate the new velocities DO k = nzb+1, nzt+1 DO i = nxlg, nxrg u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & ( u(k,-1,i) - u(k,0,i) ) * ddy v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & ( v(k,0,i) - v(k,1,i) ) * ddy w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & ( w(k,-1,i) - w(k,0,i) ) * ddy ENDDO ENDDO ! !-- Bottom boundary at the outflow IF ( ibc_uv_b == 0 ) THEN u_p(nzb,-1,:) = 0.0_wp v_p(nzb,0,:) = 0.0_wp ELSE u_p(nzb,-1,:) = u_p(nzb+1,-1,:) v_p(nzb,0,:) = v_p(nzb+1,0,:) ENDIF w_p(nzb,-1,:) = 0.0_wp ! !-- Top boundary at the outflow IF ( ibc_uv_t == 0 ) THEN u_p(nzt+1,-1,:) = u_init(nzt+1) v_p(nzt+1,0,:) = v_init(nzt+1) ELSE u_p(nzt+1,-1,:) = u(nzt,-1,:) v_p(nzt+1,0,:) = v(nzt,0,:) ENDIF w_p(nzt:nzt+1,-1,:) = 0.0_wp ENDIF ENDIF IF ( outflow_n ) THEN IF ( use_cmax ) THEN u_p(:,ny+1,:) = u(:,ny,:) v_p(:,ny+1,:) = v(:,ny,:) w_p(:,ny+1,:) = w(:,ny,:) ELSEIF ( .NOT. use_cmax ) THEN c_max = dy / dt_3d c_u_m_l = 0.0_wp c_v_m_l = 0.0_wp c_w_m_l = 0.0_wp c_u_m = 0.0_wp c_v_m = 0.0_wp c_w_m = 0.0_wp ! !-- Calculate the phase speeds for u, v, and w, first local and then !-- average along the outflow boundary. DO k = nzb+1, nzt+1 DO i = nxl, nxr denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) IF ( denom /= 0.0_wp ) THEN c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) IF ( c_u(k,i) < 0.0_wp ) THEN c_u(k,i) = 0.0_wp ELSEIF ( c_u(k,i) > c_max ) THEN c_u(k,i) = c_max ENDIF ELSE c_u(k,i) = c_max ENDIF denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) IF ( denom /= 0.0_wp ) THEN c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) IF ( c_v(k,i) < 0.0_wp ) THEN c_v(k,i) = 0.0_wp ELSEIF ( c_v(k,i) > c_max ) THEN c_v(k,i) = c_max ENDIF ELSE c_v(k,i) = c_max ENDIF denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) IF ( denom /= 0.0_wp ) THEN c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) IF ( c_w(k,i) < 0.0_wp ) THEN c_w(k,i) = 0.0_wp ELSEIF ( c_w(k,i) > c_max ) THEN c_w(k,i) = c_max ENDIF ELSE c_w(k,i) = c_max ENDIF c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) ENDDO ENDDO #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & MPI_SUM, comm1dx, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & MPI_SUM, comm1dx, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & MPI_SUM, comm1dx, ierr ) #else c_u_m = c_u_m_l c_v_m = c_v_m_l c_w_m = c_w_m_l #endif c_u_m = c_u_m / (nx+1) c_v_m = c_v_m / (nx+1) c_w_m = c_w_m / (nx+1) ! !-- Save old timelevels for the next timestep IF ( intermediate_timestep_count == 1 ) THEN u_m_n(:,:,:) = u(:,ny-1:ny,:) v_m_n(:,:,:) = v(:,ny-1:ny,:) w_m_n(:,:,:) = w(:,ny-1:ny,:) ENDIF ! !-- Calculate the new velocities DO k = nzb+1, nzt+1 DO i = nxlg, nxrg u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & ( u(k,ny+1,i) - u(k,ny,i) ) * ddy v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & ( v(k,ny+1,i) - v(k,ny,i) ) * ddy w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & ( w(k,ny+1,i) - w(k,ny,i) ) * ddy ENDDO ENDDO ! !-- Bottom boundary at the outflow IF ( ibc_uv_b == 0 ) THEN u_p(nzb,ny+1,:) = 0.0_wp v_p(nzb,ny+1,:) = 0.0_wp ELSE u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) ENDIF w_p(nzb,ny+1,:) = 0.0_wp ! !-- Top boundary at the outflow IF ( ibc_uv_t == 0 ) THEN u_p(nzt+1,ny+1,:) = u_init(nzt+1) v_p(nzt+1,ny+1,:) = v_init(nzt+1) ELSE u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) ENDIF w_p(nzt:nzt+1,ny+1,:) = 0.0_wp ENDIF ENDIF IF ( outflow_l ) THEN IF ( use_cmax ) THEN u_p(:,:,-1) = u(:,:,0) v_p(:,:,0) = v(:,:,1) w_p(:,:,-1) = w(:,:,0) ELSEIF ( .NOT. use_cmax ) THEN c_max = dx / dt_3d c_u_m_l = 0.0_wp c_v_m_l = 0.0_wp c_w_m_l = 0.0_wp c_u_m = 0.0_wp c_v_m = 0.0_wp c_w_m = 0.0_wp ! !-- Calculate the phase speeds for u, v, and w, first local and then !-- average along the outflow boundary. DO k = nzb+1, nzt+1 DO j = nys, nyn denom = u_m_l(k,j,1) - u_m_l(k,j,2) IF ( denom /= 0.0_wp ) THEN c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) IF ( c_u(k,j) < 0.0_wp ) THEN c_u(k,j) = 0.0_wp ELSEIF ( c_u(k,j) > c_max ) THEN c_u(k,j) = c_max ENDIF ELSE c_u(k,j) = c_max ENDIF denom = v_m_l(k,j,0) - v_m_l(k,j,1) IF ( denom /= 0.0_wp ) THEN c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) IF ( c_v(k,j) < 0.0_wp ) THEN c_v(k,j) = 0.0_wp ELSEIF ( c_v(k,j) > c_max ) THEN c_v(k,j) = c_max ENDIF ELSE c_v(k,j) = c_max ENDIF denom = w_m_l(k,j,0) - w_m_l(k,j,1) IF ( denom /= 0.0_wp ) THEN c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) IF ( c_w(k,j) < 0.0_wp ) THEN c_w(k,j) = 0.0_wp ELSEIF ( c_w(k,j) > c_max ) THEN c_w(k,j) = c_max ENDIF ELSE c_w(k,j) = c_max ENDIF c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) ENDDO ENDDO #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & MPI_SUM, comm1dy, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & MPI_SUM, comm1dy, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & MPI_SUM, comm1dy, ierr ) #else c_u_m = c_u_m_l c_v_m = c_v_m_l c_w_m = c_w_m_l #endif c_u_m = c_u_m / (ny+1) c_v_m = c_v_m / (ny+1) c_w_m = c_w_m / (ny+1) ! !-- Save old timelevels for the next timestep IF ( intermediate_timestep_count == 1 ) THEN u_m_l(:,:,:) = u(:,:,1:2) v_m_l(:,:,:) = v(:,:,0:1) w_m_l(:,:,:) = w(:,:,0:1) ENDIF ! !-- Calculate the new velocities DO k = nzb+1, nzt+1 DO j = nysg, nyng u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & ( u(k,j,0) - u(k,j,1) ) * ddx v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & ( v(k,j,-1) - v(k,j,0) ) * ddx w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & ( w(k,j,-1) - w(k,j,0) ) * ddx ENDDO ENDDO ! !-- Bottom boundary at the outflow IF ( ibc_uv_b == 0 ) THEN u_p(nzb,:,0) = 0.0_wp v_p(nzb,:,-1) = 0.0_wp ELSE u_p(nzb,:,0) = u_p(nzb+1,:,0) v_p(nzb,:,-1) = v_p(nzb+1,:,-1) ENDIF w_p(nzb,:,-1) = 0.0_wp ! !-- Top boundary at the outflow IF ( ibc_uv_t == 0 ) THEN u_p(nzt+1,:,-1) = u_init(nzt+1) v_p(nzt+1,:,-1) = v_init(nzt+1) ELSE u_p(nzt+1,:,-1) = u_p(nzt,:,-1) v_p(nzt+1,:,-1) = v_p(nzt,:,-1) ENDIF w_p(nzt:nzt+1,:,-1) = 0.0_wp ENDIF ENDIF IF ( outflow_r ) THEN IF ( use_cmax ) THEN u_p(:,:,nx+1) = u(:,:,nx) v_p(:,:,nx+1) = v(:,:,nx) w_p(:,:,nx+1) = w(:,:,nx) ELSEIF ( .NOT. use_cmax ) THEN c_max = dx / dt_3d c_u_m_l = 0.0_wp c_v_m_l = 0.0_wp c_w_m_l = 0.0_wp c_u_m = 0.0_wp c_v_m = 0.0_wp c_w_m = 0.0_wp ! !-- Calculate the phase speeds for u, v, and w, first local and then !-- average along the outflow boundary. DO k = nzb+1, nzt+1 DO j = nys, nyn denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) IF ( denom /= 0.0_wp ) THEN c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) IF ( c_u(k,j) < 0.0_wp ) THEN c_u(k,j) = 0.0_wp ELSEIF ( c_u(k,j) > c_max ) THEN c_u(k,j) = c_max ENDIF ELSE c_u(k,j) = c_max ENDIF denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) IF ( denom /= 0.0_wp ) THEN c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) IF ( c_v(k,j) < 0.0_wp ) THEN c_v(k,j) = 0.0_wp ELSEIF ( c_v(k,j) > c_max ) THEN c_v(k,j) = c_max ENDIF ELSE c_v(k,j) = c_max ENDIF denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) IF ( denom /= 0.0_wp ) THEN c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) IF ( c_w(k,j) < 0.0_wp ) THEN c_w(k,j) = 0.0_wp ELSEIF ( c_w(k,j) > c_max ) THEN c_w(k,j) = c_max ENDIF ELSE c_w(k,j) = c_max ENDIF c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) ENDDO ENDDO #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & MPI_SUM, comm1dy, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & MPI_SUM, comm1dy, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & MPI_SUM, comm1dy, ierr ) #else c_u_m = c_u_m_l c_v_m = c_v_m_l c_w_m = c_w_m_l #endif c_u_m = c_u_m / (ny+1) c_v_m = c_v_m / (ny+1) c_w_m = c_w_m / (ny+1) ! !-- Save old timelevels for the next timestep IF ( intermediate_timestep_count == 1 ) THEN u_m_r(:,:,:) = u(:,:,nx-1:nx) v_m_r(:,:,:) = v(:,:,nx-1:nx) w_m_r(:,:,:) = w(:,:,nx-1:nx) ENDIF ! !-- Calculate the new velocities DO k = nzb+1, nzt+1 DO j = nysg, nyng u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & ( u(k,j,nx+1) - u(k,j,nx) ) * ddx v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & ( v(k,j,nx+1) - v(k,j,nx) ) * ddx w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & ( w(k,j,nx+1) - w(k,j,nx) ) * ddx ENDDO ENDDO ! !-- Bottom boundary at the outflow IF ( ibc_uv_b == 0 ) THEN u_p(nzb,:,nx+1) = 0.0_wp v_p(nzb,:,nx+1) = 0.0_wp ELSE u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) ENDIF w_p(nzb,:,nx+1) = 0.0_wp ! !-- Top boundary at the outflow IF ( ibc_uv_t == 0 ) THEN u_p(nzt+1,:,nx+1) = u_init(nzt+1) v_p(nzt+1,:,nx+1) = v_init(nzt+1) ELSE u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) ENDIF w(nzt:nzt+1,:,nx+1) = 0.0_wp ENDIF ENDIF END SUBROUTINE boundary_conds