1 | SUBROUTINE boundary_conds( range ) |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! |
---|
9 | ! Former revisions: |
---|
10 | ! ----------------- |
---|
11 | ! $Id: boundary_conds.f90 876 2012-04-02 15:38:07Z gryschka $ |
---|
12 | ! |
---|
13 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
14 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
15 | ! |
---|
16 | ! 767 2011-10-14 06:39:12Z raasch |
---|
17 | ! ug,vg replaced by u_init,v_init as the Dirichlet top boundary condition |
---|
18 | ! |
---|
19 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
20 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng |
---|
21 | ! Removed mirror boundary conditions for u and v at the bottom in case of |
---|
22 | ! ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set |
---|
23 | ! in init_3d_model |
---|
24 | ! |
---|
25 | ! 107 2007-08-17 13:54:45Z raasch |
---|
26 | ! Boundary conditions for temperature adjusted for coupled runs, |
---|
27 | ! bugfixes for the radiation boundary conditions at the outflow: radiation |
---|
28 | ! conditions are used for every substep, phase speeds are calculated for the |
---|
29 | ! first Runge-Kutta substep only and then reused, several index values changed |
---|
30 | ! |
---|
31 | ! 95 2007-06-02 16:48:38Z raasch |
---|
32 | ! Boundary conditions for salinity added |
---|
33 | ! |
---|
34 | ! 75 2007-03-22 09:54:05Z raasch |
---|
35 | ! The "main" part sets conditions for time level t+dt instead of level t, |
---|
36 | ! outflow boundary conditions changed from Neumann to radiation condition, |
---|
37 | ! uxrp, vynp eliminated, moisture renamed humidity |
---|
38 | ! |
---|
39 | ! 19 2007-02-23 04:53:48Z raasch |
---|
40 | ! Boundary conditions for e(nzt), pt(nzt), and q(nzt) removed because these |
---|
41 | ! gridpoints are now calculated by the prognostic equation, |
---|
42 | ! Dirichlet and zero gradient condition for pt established at top boundary |
---|
43 | ! |
---|
44 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
45 | ! |
---|
46 | ! Revision 1.15 2006/02/23 09:54:55 raasch |
---|
47 | ! Surface boundary conditions in case of topography: nzb replaced by |
---|
48 | ! 2d-k-index-arrays (nzb_w_inner, etc.). Conditions for u and v remain |
---|
49 | ! unchanged (still using nzb) because a non-flat topography must use a |
---|
50 | ! Prandtl-layer, which don't requires explicit setting of the surface values. |
---|
51 | ! |
---|
52 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
53 | ! Initial revision |
---|
54 | ! |
---|
55 | ! |
---|
56 | ! Description: |
---|
57 | ! ------------ |
---|
58 | ! Boundary conditions for the prognostic quantities (range='main'). |
---|
59 | ! In case of non-cyclic lateral boundaries the conditions for velocities at |
---|
60 | ! the outflow are set after the pressure solver has been called (range= |
---|
61 | ! 'outflow_uvw'). |
---|
62 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
63 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
64 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
65 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
66 | !------------------------------------------------------------------------------! |
---|
67 | |
---|
68 | USE arrays_3d |
---|
69 | USE control_parameters |
---|
70 | USE grid_variables |
---|
71 | USE indices |
---|
72 | USE pegrid |
---|
73 | |
---|
74 | IMPLICIT NONE |
---|
75 | |
---|
76 | CHARACTER (LEN=*) :: range |
---|
77 | |
---|
78 | INTEGER :: i, j, k |
---|
79 | |
---|
80 | REAL :: c_max, denom |
---|
81 | |
---|
82 | |
---|
83 | IF ( range == 'main') THEN |
---|
84 | ! |
---|
85 | !-- Bottom boundary |
---|
86 | IF ( ibc_uv_b == 1 ) THEN |
---|
87 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
88 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
89 | ENDIF |
---|
90 | DO i = nxlg, nxrg |
---|
91 | DO j = nysg, nyng |
---|
92 | w_p(nzb_w_inner(j,i),j,i) = 0.0 |
---|
93 | ENDDO |
---|
94 | ENDDO |
---|
95 | |
---|
96 | ! |
---|
97 | !-- Top boundary |
---|
98 | IF ( ibc_uv_t == 0 ) THEN |
---|
99 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
100 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
101 | ELSE |
---|
102 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
103 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
104 | ENDIF |
---|
105 | w_p(nzt:nzt+1,:,:) = 0.0 ! nzt is not a prognostic level (but cf. pres) |
---|
106 | |
---|
107 | ! |
---|
108 | !-- Temperature at bottom boundary. |
---|
109 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
110 | !-- the sea surface temperature of the coupled ocean model. |
---|
111 | IF ( ibc_pt_b == 0 ) THEN |
---|
112 | DO i = nxlg, nxrg |
---|
113 | DO j = nysg, nyng |
---|
114 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
115 | ENDDO |
---|
116 | ENDDO |
---|
117 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
118 | DO i = nxlg, nxrg |
---|
119 | DO j = nysg, nyng |
---|
120 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
121 | ENDDO |
---|
122 | ENDDO |
---|
123 | ENDIF |
---|
124 | |
---|
125 | ! |
---|
126 | !-- Temperature at top boundary |
---|
127 | IF ( ibc_pt_t == 0 ) THEN |
---|
128 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
129 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
130 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
131 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
132 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
133 | ENDIF |
---|
134 | |
---|
135 | ! |
---|
136 | !-- Boundary conditions for TKE |
---|
137 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
138 | IF ( .NOT. constant_diffusion ) THEN |
---|
139 | DO i = nxlg, nxrg |
---|
140 | DO j = nysg, nyng |
---|
141 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
142 | ENDDO |
---|
143 | ENDDO |
---|
144 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
145 | ENDIF |
---|
146 | |
---|
147 | ! |
---|
148 | !-- Boundary conditions for salinity |
---|
149 | IF ( ocean ) THEN |
---|
150 | ! |
---|
151 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
152 | !-- given |
---|
153 | DO i = nxlg, nxrg |
---|
154 | DO j = nysg, nyng |
---|
155 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
156 | ENDDO |
---|
157 | ENDDO |
---|
158 | |
---|
159 | ! |
---|
160 | !-- Top boundary: Dirichlet or Neumann |
---|
161 | IF ( ibc_sa_t == 0 ) THEN |
---|
162 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
163 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
164 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
165 | ENDIF |
---|
166 | |
---|
167 | ENDIF |
---|
168 | |
---|
169 | ! |
---|
170 | !-- Boundary conditions for total water content or scalar, |
---|
171 | !-- bottom and top boundary (see also temperature) |
---|
172 | IF ( humidity .OR. passive_scalar ) THEN |
---|
173 | ! |
---|
174 | !-- Surface conditions for constant_humidity_flux |
---|
175 | IF ( ibc_q_b == 0 ) THEN |
---|
176 | DO i = nxlg, nxrg |
---|
177 | DO j = nysg, nyng |
---|
178 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
179 | ENDDO |
---|
180 | ENDDO |
---|
181 | ELSE |
---|
182 | DO i = nxlg, nxrg |
---|
183 | DO j = nysg, nyng |
---|
184 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
185 | ENDDO |
---|
186 | ENDDO |
---|
187 | ENDIF |
---|
188 | ! |
---|
189 | !-- Top boundary |
---|
190 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
191 | |
---|
192 | |
---|
193 | ENDIF |
---|
194 | |
---|
195 | ! |
---|
196 | !-- In case of inflow at the south boundary the boundary for v is at nys |
---|
197 | !-- and in case of inflow at the left boundary the boundary for u is at nxl. |
---|
198 | !-- Since in prognostic_equations (cache optimized version) these levels are |
---|
199 | !-- handled as a prognostic level, boundary values have to be restored here. |
---|
200 | IF ( inflow_s ) THEN |
---|
201 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
202 | ELSEIF ( inflow_l ) THEN |
---|
203 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
204 | ENDIF |
---|
205 | |
---|
206 | ! |
---|
207 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
208 | IF ( outflow_s ) THEN |
---|
209 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
210 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
211 | IF ( humidity .OR. passive_scalar ) q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
212 | ELSEIF ( outflow_n ) THEN |
---|
213 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
214 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
215 | IF ( humidity .OR. passive_scalar ) q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
216 | ELSEIF ( outflow_l ) THEN |
---|
217 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
218 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
219 | IF ( humidity .OR. passive_scalar ) q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
220 | ELSEIF ( outflow_r ) THEN |
---|
221 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
222 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
223 | IF ( humidity .OR. passive_scalar ) q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
224 | ENDIF |
---|
225 | |
---|
226 | ENDIF |
---|
227 | |
---|
228 | ! |
---|
229 | !-- Radiation boundary condition for the velocities at the respective outflow |
---|
230 | IF ( outflow_s ) THEN |
---|
231 | |
---|
232 | c_max = dy / dt_3d |
---|
233 | |
---|
234 | DO i = nxlg, nxrg |
---|
235 | DO k = nzb+1, nzt+1 |
---|
236 | |
---|
237 | ! |
---|
238 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
239 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
240 | !-- reuse this values for the further substeps. |
---|
241 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
242 | |
---|
243 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
244 | |
---|
245 | IF ( denom /= 0.0 ) THEN |
---|
246 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / denom |
---|
247 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
248 | c_u(k,i) = 0.0 |
---|
249 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
250 | c_u(k,i) = c_max |
---|
251 | ENDIF |
---|
252 | ELSE |
---|
253 | c_u(k,i) = c_max |
---|
254 | ENDIF |
---|
255 | |
---|
256 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
257 | |
---|
258 | IF ( denom /= 0.0 ) THEN |
---|
259 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / denom |
---|
260 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
261 | c_v(k,i) = 0.0 |
---|
262 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
263 | c_v(k,i) = c_max |
---|
264 | ENDIF |
---|
265 | ELSE |
---|
266 | c_v(k,i) = c_max |
---|
267 | ENDIF |
---|
268 | |
---|
269 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
270 | |
---|
271 | IF ( denom /= 0.0 ) THEN |
---|
272 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / denom |
---|
273 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
274 | c_w(k,i) = 0.0 |
---|
275 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
276 | c_w(k,i) = c_max |
---|
277 | ENDIF |
---|
278 | ELSE |
---|
279 | c_w(k,i) = c_max |
---|
280 | ENDIF |
---|
281 | |
---|
282 | ! |
---|
283 | !-- Save old timelevels for the next timestep |
---|
284 | u_m_s(k,:,i) = u(k,0:1,i) |
---|
285 | v_m_s(k,:,i) = v(k,1:2,i) |
---|
286 | w_m_s(k,:,i) = w(k,0:1,i) |
---|
287 | |
---|
288 | ENDIF |
---|
289 | |
---|
290 | ! |
---|
291 | !-- Calculate the new velocities |
---|
292 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u(k,i) * & |
---|
293 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
294 | |
---|
295 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v(k,i) * & |
---|
296 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
297 | |
---|
298 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w(k,i) * & |
---|
299 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
300 | |
---|
301 | ENDDO |
---|
302 | ENDDO |
---|
303 | |
---|
304 | ! |
---|
305 | !-- Bottom boundary at the outflow |
---|
306 | IF ( ibc_uv_b == 0 ) THEN |
---|
307 | u_p(nzb,-1,:) = 0.0 |
---|
308 | v_p(nzb,0,:) = 0.0 |
---|
309 | ELSE |
---|
310 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
311 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
312 | ENDIF |
---|
313 | w_p(nzb,-1,:) = 0.0 |
---|
314 | |
---|
315 | ! |
---|
316 | !-- Top boundary at the outflow |
---|
317 | IF ( ibc_uv_t == 0 ) THEN |
---|
318 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
319 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
320 | ELSE |
---|
321 | u_p(nzt+1,-1,:) = u(nzt,-1,:) |
---|
322 | v_p(nzt+1,0,:) = v(nzt,0,:) |
---|
323 | ENDIF |
---|
324 | w_p(nzt:nzt+1,-1,:) = 0.0 |
---|
325 | |
---|
326 | ENDIF |
---|
327 | |
---|
328 | IF ( outflow_n ) THEN |
---|
329 | |
---|
330 | c_max = dy / dt_3d |
---|
331 | |
---|
332 | DO i = nxlg, nxrg |
---|
333 | DO k = nzb+1, nzt+1 |
---|
334 | |
---|
335 | ! |
---|
336 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
337 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
338 | !-- reuse this values for the further substeps. |
---|
339 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
340 | |
---|
341 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
342 | |
---|
343 | IF ( denom /= 0.0 ) THEN |
---|
344 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / denom |
---|
345 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
346 | c_u(k,i) = 0.0 |
---|
347 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
348 | c_u(k,i) = c_max |
---|
349 | ENDIF |
---|
350 | ELSE |
---|
351 | c_u(k,i) = c_max |
---|
352 | ENDIF |
---|
353 | |
---|
354 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
355 | |
---|
356 | IF ( denom /= 0.0 ) THEN |
---|
357 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / denom |
---|
358 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
359 | c_v(k,i) = 0.0 |
---|
360 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
361 | c_v(k,i) = c_max |
---|
362 | ENDIF |
---|
363 | ELSE |
---|
364 | c_v(k,i) = c_max |
---|
365 | ENDIF |
---|
366 | |
---|
367 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
368 | |
---|
369 | IF ( denom /= 0.0 ) THEN |
---|
370 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / denom |
---|
371 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
372 | c_w(k,i) = 0.0 |
---|
373 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
374 | c_w(k,i) = c_max |
---|
375 | ENDIF |
---|
376 | ELSE |
---|
377 | c_w(k,i) = c_max |
---|
378 | ENDIF |
---|
379 | |
---|
380 | ! |
---|
381 | !-- Swap timelevels for the next timestep |
---|
382 | u_m_n(k,:,i) = u(k,ny-1:ny,i) |
---|
383 | v_m_n(k,:,i) = v(k,ny-1:ny,i) |
---|
384 | w_m_n(k,:,i) = w(k,ny-1:ny,i) |
---|
385 | |
---|
386 | ENDIF |
---|
387 | |
---|
388 | ! |
---|
389 | !-- Calculate the new velocities |
---|
390 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u(k,i) * & |
---|
391 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
392 | |
---|
393 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v(k,i) * & |
---|
394 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
395 | |
---|
396 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w(k,i) * & |
---|
397 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
398 | |
---|
399 | ENDDO |
---|
400 | ENDDO |
---|
401 | |
---|
402 | ! |
---|
403 | !-- Bottom boundary at the outflow |
---|
404 | IF ( ibc_uv_b == 0 ) THEN |
---|
405 | u_p(nzb,ny+1,:) = 0.0 |
---|
406 | v_p(nzb,ny+1,:) = 0.0 |
---|
407 | ELSE |
---|
408 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
409 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
410 | ENDIF |
---|
411 | w_p(nzb,ny+1,:) = 0.0 |
---|
412 | |
---|
413 | ! |
---|
414 | !-- Top boundary at the outflow |
---|
415 | IF ( ibc_uv_t == 0 ) THEN |
---|
416 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
417 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
418 | ELSE |
---|
419 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
420 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
421 | ENDIF |
---|
422 | w_p(nzt:nzt+1,ny+1,:) = 0.0 |
---|
423 | |
---|
424 | ENDIF |
---|
425 | |
---|
426 | IF ( outflow_l ) THEN |
---|
427 | |
---|
428 | c_max = dx / dt_3d |
---|
429 | |
---|
430 | DO j = nysg, nyng |
---|
431 | DO k = nzb+1, nzt+1 |
---|
432 | |
---|
433 | ! |
---|
434 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
435 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
436 | !-- reuse this values for the further substeps. |
---|
437 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
438 | |
---|
439 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
440 | |
---|
441 | IF ( denom /= 0.0 ) THEN |
---|
442 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / denom |
---|
443 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
444 | c_u(k,j) = 0.0 |
---|
445 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
446 | c_u(k,j) = c_max |
---|
447 | ENDIF |
---|
448 | ELSE |
---|
449 | c_u(k,j) = c_max |
---|
450 | ENDIF |
---|
451 | |
---|
452 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
453 | |
---|
454 | IF ( denom /= 0.0 ) THEN |
---|
455 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / denom |
---|
456 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
457 | c_v(k,j) = 0.0 |
---|
458 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
459 | c_v(k,j) = c_max |
---|
460 | ENDIF |
---|
461 | ELSE |
---|
462 | c_v(k,j) = c_max |
---|
463 | ENDIF |
---|
464 | |
---|
465 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
466 | |
---|
467 | IF ( denom /= 0.0 ) THEN |
---|
468 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / denom |
---|
469 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
470 | c_w(k,j) = 0.0 |
---|
471 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
472 | c_w(k,j) = c_max |
---|
473 | ENDIF |
---|
474 | ELSE |
---|
475 | c_w(k,j) = c_max |
---|
476 | ENDIF |
---|
477 | |
---|
478 | ! |
---|
479 | !-- Swap timelevels for the next timestep |
---|
480 | u_m_l(k,j,:) = u(k,j,1:2) |
---|
481 | v_m_l(k,j,:) = v(k,j,0:1) |
---|
482 | w_m_l(k,j,:) = w(k,j,0:1) |
---|
483 | |
---|
484 | ENDIF |
---|
485 | |
---|
486 | ! |
---|
487 | !-- Calculate the new velocities |
---|
488 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u(k,j) * & |
---|
489 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
490 | |
---|
491 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v(k,j) * & |
---|
492 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
493 | |
---|
494 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w(k,j) * & |
---|
495 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
496 | |
---|
497 | ENDDO |
---|
498 | ENDDO |
---|
499 | |
---|
500 | ! |
---|
501 | !-- Bottom boundary at the outflow |
---|
502 | IF ( ibc_uv_b == 0 ) THEN |
---|
503 | u_p(nzb,:,0) = 0.0 |
---|
504 | v_p(nzb,:,-1) = 0.0 |
---|
505 | ELSE |
---|
506 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
507 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
508 | ENDIF |
---|
509 | w_p(nzb,:,-1) = 0.0 |
---|
510 | |
---|
511 | ! |
---|
512 | !-- Top boundary at the outflow |
---|
513 | IF ( ibc_uv_t == 0 ) THEN |
---|
514 | u_p(nzt+1,:,-1) = u_init(nzt+1) |
---|
515 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
516 | ELSE |
---|
517 | u_p(nzt+1,:,-1) = u_p(nzt,:,-1) |
---|
518 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
519 | ENDIF |
---|
520 | w_p(nzt:nzt+1,:,-1) = 0.0 |
---|
521 | |
---|
522 | ENDIF |
---|
523 | |
---|
524 | IF ( outflow_r ) THEN |
---|
525 | |
---|
526 | c_max = dx / dt_3d |
---|
527 | |
---|
528 | DO j = nysg, nyng |
---|
529 | DO k = nzb+1, nzt+1 |
---|
530 | |
---|
531 | ! |
---|
532 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
533 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
534 | !-- reuse this values for the further substeps. |
---|
535 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
536 | |
---|
537 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
538 | |
---|
539 | IF ( denom /= 0.0 ) THEN |
---|
540 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / denom |
---|
541 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
542 | c_u(k,j) = 0.0 |
---|
543 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
544 | c_u(k,j) = c_max |
---|
545 | ENDIF |
---|
546 | ELSE |
---|
547 | c_u(k,j) = c_max |
---|
548 | ENDIF |
---|
549 | |
---|
550 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
551 | |
---|
552 | IF ( denom /= 0.0 ) THEN |
---|
553 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / denom |
---|
554 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
555 | c_v(k,j) = 0.0 |
---|
556 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
557 | c_v(k,j) = c_max |
---|
558 | ENDIF |
---|
559 | ELSE |
---|
560 | c_v(k,j) = c_max |
---|
561 | ENDIF |
---|
562 | |
---|
563 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
564 | |
---|
565 | IF ( denom /= 0.0 ) THEN |
---|
566 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / denom |
---|
567 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
568 | c_w(k,j) = 0.0 |
---|
569 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
570 | c_w(k,j) = c_max |
---|
571 | ENDIF |
---|
572 | ELSE |
---|
573 | c_w(k,j) = c_max |
---|
574 | ENDIF |
---|
575 | |
---|
576 | ! |
---|
577 | !-- Swap timelevels for the next timestep |
---|
578 | u_m_r(k,j,:) = u(k,j,nx-1:nx) |
---|
579 | v_m_r(k,j,:) = v(k,j,nx-1:nx) |
---|
580 | w_m_r(k,j,:) = w(k,j,nx-1:nx) |
---|
581 | |
---|
582 | ENDIF |
---|
583 | |
---|
584 | ! |
---|
585 | !-- Calculate the new velocities |
---|
586 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u(k,j) * & |
---|
587 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
588 | |
---|
589 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v(k,j) * & |
---|
590 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
591 | |
---|
592 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w(k,j) * & |
---|
593 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
594 | |
---|
595 | ENDDO |
---|
596 | ENDDO |
---|
597 | |
---|
598 | ! |
---|
599 | !-- Bottom boundary at the outflow |
---|
600 | IF ( ibc_uv_b == 0 ) THEN |
---|
601 | u_p(nzb,:,nx+1) = 0.0 |
---|
602 | v_p(nzb,:,nx+1) = 0.0 |
---|
603 | ELSE |
---|
604 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
605 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
606 | ENDIF |
---|
607 | w_p(nzb,:,nx+1) = 0.0 |
---|
608 | |
---|
609 | ! |
---|
610 | !-- Top boundary at the outflow |
---|
611 | IF ( ibc_uv_t == 0 ) THEN |
---|
612 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
613 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
614 | ELSE |
---|
615 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
616 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
617 | ENDIF |
---|
618 | w(nzt:nzt+1,:,nx+1) = 0.0 |
---|
619 | |
---|
620 | ENDIF |
---|
621 | |
---|
622 | |
---|
623 | END SUBROUTINE boundary_conds |
---|