[1113] | 1 | SUBROUTINE boundary_conds |
---|
[1] | 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1160] | 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: boundary_conds.f90 1160 2013-05-21 12:06:24Z kanani $ |
---|
| 27 | ! |
---|
| 28 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
[1159] | 29 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
| 30 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
| 31 | ! velocity that ensures numerical stability (CFL-condition). |
---|
| 32 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
| 33 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
| 34 | ! u_p, v_p, w_p |
---|
[1116] | 35 | ! |
---|
| 36 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 37 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
| 38 | ! boundary-conditions |
---|
| 39 | ! |
---|
[1114] | 40 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 41 | ! GPU-porting |
---|
| 42 | ! dummy argument "range" removed |
---|
| 43 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
[1113] | 44 | ! |
---|
[1054] | 45 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 46 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
| 47 | ! two-moment cloud scheme |
---|
| 48 | ! |
---|
[1037] | 49 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 50 | ! code put under GPL (PALM 3.9) |
---|
| 51 | ! |
---|
[997] | 52 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 53 | ! little reformatting |
---|
| 54 | ! |
---|
[979] | 55 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 56 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 57 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 58 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 59 | ! velocity. |
---|
| 60 | ! |
---|
[876] | 61 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 62 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 63 | ! |
---|
[768] | 64 | ! 767 2011-10-14 06:39:12Z raasch |
---|
| 65 | ! ug,vg replaced by u_init,v_init as the Dirichlet top boundary condition |
---|
| 66 | ! |
---|
[668] | 67 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 68 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng |
---|
| 69 | ! Removed mirror boundary conditions for u and v at the bottom in case of |
---|
| 70 | ! ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set |
---|
| 71 | ! in init_3d_model |
---|
| 72 | ! |
---|
[110] | 73 | ! 107 2007-08-17 13:54:45Z raasch |
---|
| 74 | ! Boundary conditions for temperature adjusted for coupled runs, |
---|
| 75 | ! bugfixes for the radiation boundary conditions at the outflow: radiation |
---|
| 76 | ! conditions are used for every substep, phase speeds are calculated for the |
---|
| 77 | ! first Runge-Kutta substep only and then reused, several index values changed |
---|
| 78 | ! |
---|
[98] | 79 | ! 95 2007-06-02 16:48:38Z raasch |
---|
| 80 | ! Boundary conditions for salinity added |
---|
| 81 | ! |
---|
[77] | 82 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 83 | ! The "main" part sets conditions for time level t+dt instead of level t, |
---|
| 84 | ! outflow boundary conditions changed from Neumann to radiation condition, |
---|
| 85 | ! uxrp, vynp eliminated, moisture renamed humidity |
---|
| 86 | ! |
---|
[39] | 87 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 88 | ! Boundary conditions for e(nzt), pt(nzt), and q(nzt) removed because these |
---|
| 89 | ! gridpoints are now calculated by the prognostic equation, |
---|
| 90 | ! Dirichlet and zero gradient condition for pt established at top boundary |
---|
| 91 | ! |
---|
[3] | 92 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 93 | ! |
---|
[1] | 94 | ! Revision 1.15 2006/02/23 09:54:55 raasch |
---|
| 95 | ! Surface boundary conditions in case of topography: nzb replaced by |
---|
| 96 | ! 2d-k-index-arrays (nzb_w_inner, etc.). Conditions for u and v remain |
---|
| 97 | ! unchanged (still using nzb) because a non-flat topography must use a |
---|
| 98 | ! Prandtl-layer, which don't requires explicit setting of the surface values. |
---|
| 99 | ! |
---|
| 100 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 101 | ! Initial revision |
---|
| 102 | ! |
---|
| 103 | ! |
---|
| 104 | ! Description: |
---|
| 105 | ! ------------ |
---|
[1159] | 106 | ! Boundary conditions for the prognostic quantities. |
---|
[1] | 107 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 108 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 109 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 110 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 111 | !------------------------------------------------------------------------------! |
---|
| 112 | |
---|
| 113 | USE arrays_3d |
---|
| 114 | USE control_parameters |
---|
| 115 | USE grid_variables |
---|
| 116 | USE indices |
---|
| 117 | USE pegrid |
---|
| 118 | |
---|
| 119 | IMPLICIT NONE |
---|
| 120 | |
---|
| 121 | INTEGER :: i, j, k |
---|
| 122 | |
---|
[106] | 123 | REAL :: c_max, denom |
---|
[1] | 124 | |
---|
[73] | 125 | |
---|
[1] | 126 | ! |
---|
[1113] | 127 | !-- Bottom boundary |
---|
| 128 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 129 | !$acc kernels present( u_p, v_p ) |
---|
| 130 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 131 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
| 132 | !$acc end kernels |
---|
| 133 | ENDIF |
---|
| 134 | |
---|
| 135 | !$acc kernels present( nzb_w_inner, w_p ) |
---|
| 136 | DO i = nxlg, nxrg |
---|
| 137 | DO j = nysg, nyng |
---|
| 138 | w_p(nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 139 | ENDDO |
---|
| 140 | ENDDO |
---|
| 141 | !$acc end kernels |
---|
| 142 | |
---|
| 143 | ! |
---|
| 144 | !-- Top boundary |
---|
| 145 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 146 | !$acc kernels present( u_init, u_p, v_init, v_p ) |
---|
| 147 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 148 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
| 149 | !$acc end kernels |
---|
| 150 | ELSE |
---|
| 151 | !$acc kernels present( u_p, v_p ) |
---|
| 152 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 153 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
| 154 | !$acc end kernels |
---|
| 155 | ENDIF |
---|
| 156 | !$acc kernels present( w_p ) |
---|
| 157 | w_p(nzt:nzt+1,:,:) = 0.0 ! nzt is not a prognostic level (but cf. pres) |
---|
| 158 | !$acc end kernels |
---|
| 159 | |
---|
| 160 | ! |
---|
| 161 | !-- Temperature at bottom boundary. |
---|
| 162 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 163 | !-- the sea surface temperature of the coupled ocean model. |
---|
| 164 | IF ( ibc_pt_b == 0 ) THEN |
---|
| 165 | !$acc kernels present( nzb_s_inner, pt, pt_p ) |
---|
[667] | 166 | DO i = nxlg, nxrg |
---|
| 167 | DO j = nysg, nyng |
---|
[1113] | 168 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
[1] | 169 | ENDDO |
---|
| 170 | ENDDO |
---|
[1113] | 171 | !$acc end kernels |
---|
| 172 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
| 173 | !$acc kernels present( nzb_s_inner, pt_p ) |
---|
| 174 | DO i = nxlg, nxrg |
---|
| 175 | DO j = nysg, nyng |
---|
| 176 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 177 | ENDDO |
---|
| 178 | ENDDO |
---|
| 179 | !$acc end kernels |
---|
| 180 | ENDIF |
---|
[1] | 181 | |
---|
| 182 | ! |
---|
[1113] | 183 | !-- Temperature at top boundary |
---|
| 184 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 185 | !$acc kernels present( pt, pt_p ) |
---|
| 186 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
| 187 | !$acc end kernels |
---|
| 188 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 189 | !$acc kernels present( pt_p ) |
---|
| 190 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
| 191 | !$acc end kernels |
---|
| 192 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 193 | !$acc kernels present( dzu, pt_p ) |
---|
| 194 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
| 195 | !$acc end kernels |
---|
| 196 | ENDIF |
---|
[1] | 197 | |
---|
| 198 | ! |
---|
[1113] | 199 | !-- Boundary conditions for TKE |
---|
| 200 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
| 201 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 202 | !$acc kernels present( e_p, nzb_s_inner ) |
---|
| 203 | DO i = nxlg, nxrg |
---|
| 204 | DO j = nysg, nyng |
---|
| 205 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
[73] | 206 | ENDDO |
---|
[1113] | 207 | ENDDO |
---|
| 208 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
| 209 | !$acc end kernels |
---|
| 210 | ENDIF |
---|
| 211 | |
---|
| 212 | ! |
---|
| 213 | !-- Boundary conditions for salinity |
---|
| 214 | IF ( ocean ) THEN |
---|
| 215 | ! |
---|
| 216 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
| 217 | !-- given |
---|
| 218 | DO i = nxlg, nxrg |
---|
| 219 | DO j = nysg, nyng |
---|
| 220 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 221 | ENDDO |
---|
[1113] | 222 | ENDDO |
---|
[1] | 223 | |
---|
| 224 | ! |
---|
[1113] | 225 | !-- Top boundary: Dirichlet or Neumann |
---|
| 226 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 227 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 228 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 229 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[1] | 230 | ENDIF |
---|
| 231 | |
---|
[1113] | 232 | ENDIF |
---|
| 233 | |
---|
[1] | 234 | ! |
---|
[1113] | 235 | !-- Boundary conditions for total water content or scalar, |
---|
| 236 | !-- bottom and top boundary (see also temperature) |
---|
| 237 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 238 | ! |
---|
| 239 | !-- Surface conditions for constant_humidity_flux |
---|
| 240 | IF ( ibc_q_b == 0 ) THEN |
---|
[667] | 241 | DO i = nxlg, nxrg |
---|
| 242 | DO j = nysg, nyng |
---|
[1113] | 243 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
[1] | 244 | ENDDO |
---|
| 245 | ENDDO |
---|
[1113] | 246 | ELSE |
---|
[667] | 247 | DO i = nxlg, nxrg |
---|
| 248 | DO j = nysg, nyng |
---|
[1113] | 249 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
[95] | 250 | ENDDO |
---|
| 251 | ENDDO |
---|
[1113] | 252 | ENDIF |
---|
[95] | 253 | ! |
---|
[1113] | 254 | !-- Top boundary |
---|
| 255 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[95] | 256 | |
---|
[1115] | 257 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 258 | precipitation ) THEN |
---|
[1113] | 259 | ! |
---|
[1115] | 260 | !-- Surface conditions rain water (Neumann) |
---|
| 261 | DO i = nxlg, nxrg |
---|
| 262 | DO j = nysg, nyng |
---|
| 263 | qr_p(nzb_s_inner(j,i),j,i) = qr_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 264 | nr_p(nzb_s_inner(j,i),j,i) = nr_p(nzb_s_inner(j,i)+1,j,i) |
---|
[73] | 265 | ENDDO |
---|
[1115] | 266 | ENDDO |
---|
[1] | 267 | ! |
---|
[1115] | 268 | !-- Top boundary condition for rain water (Neumann) |
---|
| 269 | qr_p(nzt+1,:,:) = qr_p(nzt,:,:) |
---|
| 270 | nr_p(nzt+1,:,:) = nr_p(nzt,:,:) |
---|
| 271 | |
---|
[1] | 272 | ENDIF |
---|
| 273 | ! |
---|
[875] | 274 | !-- In case of inflow at the south boundary the boundary for v is at nys |
---|
| 275 | !-- and in case of inflow at the left boundary the boundary for u is at nxl. |
---|
| 276 | !-- Since in prognostic_equations (cache optimized version) these levels are |
---|
| 277 | !-- handled as a prognostic level, boundary values have to be restored here. |
---|
[978] | 278 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
[1] | 279 | IF ( inflow_s ) THEN |
---|
[73] | 280 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
[978] | 281 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 282 | ELSEIF ( inflow_n ) THEN |
---|
| 283 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[1] | 284 | ELSEIF ( inflow_l ) THEN |
---|
[73] | 285 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
[978] | 286 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 287 | ELSEIF ( inflow_r ) THEN |
---|
| 288 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[1] | 289 | ENDIF |
---|
| 290 | |
---|
| 291 | ! |
---|
| 292 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 293 | IF ( outflow_s ) THEN |
---|
[73] | 294 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
| 295 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[1115] | 296 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1053] | 297 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[1115] | 298 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 299 | precipitation) THEN |
---|
[1053] | 300 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 301 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
| 302 | ENDIF |
---|
| 303 | ENDIF |
---|
[1] | 304 | ELSEIF ( outflow_n ) THEN |
---|
[73] | 305 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
| 306 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[1115] | 307 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1053] | 308 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[1115] | 309 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 310 | precipitation ) THEN |
---|
[1053] | 311 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 312 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
| 313 | ENDIF |
---|
| 314 | ENDIF |
---|
[1] | 315 | ELSEIF ( outflow_l ) THEN |
---|
[73] | 316 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
| 317 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
[1115] | 318 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1053] | 319 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[1115] | 320 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 321 | precipitation ) THEN |
---|
[1053] | 322 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 323 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
| 324 | ENDIF |
---|
| 325 | ENDIF |
---|
[1] | 326 | ELSEIF ( outflow_r ) THEN |
---|
[73] | 327 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
| 328 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[1053] | 329 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 330 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[1115] | 331 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
[1053] | 332 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 333 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
| 334 | ENDIF |
---|
| 335 | ENDIF |
---|
[1] | 336 | ENDIF |
---|
| 337 | |
---|
| 338 | ENDIF |
---|
| 339 | |
---|
| 340 | ! |
---|
[1159] | 341 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
| 342 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
| 343 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
| 344 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
[106] | 345 | IF ( outflow_s ) THEN |
---|
[75] | 346 | |
---|
[1159] | 347 | IF ( use_cmax ) THEN |
---|
| 348 | u_p(:,-1,:) = u(:,0,:) |
---|
| 349 | v_p(:,0,:) = v(:,1,:) |
---|
| 350 | w_p(:,-1,:) = w(:,0,:) |
---|
| 351 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 352 | |
---|
[978] | 353 | c_max = dy / dt_3d |
---|
[75] | 354 | |
---|
[978] | 355 | c_u_m_l = 0.0 |
---|
| 356 | c_v_m_l = 0.0 |
---|
| 357 | c_w_m_l = 0.0 |
---|
| 358 | |
---|
| 359 | c_u_m = 0.0 |
---|
| 360 | c_v_m = 0.0 |
---|
| 361 | c_w_m = 0.0 |
---|
| 362 | |
---|
[75] | 363 | ! |
---|
[996] | 364 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 365 | !-- average along the outflow boundary. |
---|
| 366 | DO k = nzb+1, nzt+1 |
---|
| 367 | DO i = nxl, nxr |
---|
[75] | 368 | |
---|
[106] | 369 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 370 | |
---|
| 371 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 372 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[106] | 373 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
| 374 | c_u(k,i) = 0.0 |
---|
| 375 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 376 | c_u(k,i) = c_max |
---|
| 377 | ENDIF |
---|
| 378 | ELSE |
---|
| 379 | c_u(k,i) = c_max |
---|
[75] | 380 | ENDIF |
---|
| 381 | |
---|
[106] | 382 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 383 | |
---|
| 384 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 385 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[106] | 386 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
| 387 | c_v(k,i) = 0.0 |
---|
| 388 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 389 | c_v(k,i) = c_max |
---|
| 390 | ENDIF |
---|
| 391 | ELSE |
---|
| 392 | c_v(k,i) = c_max |
---|
[75] | 393 | ENDIF |
---|
| 394 | |
---|
[106] | 395 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 396 | |
---|
[106] | 397 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 398 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[106] | 399 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
| 400 | c_w(k,i) = 0.0 |
---|
| 401 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 402 | c_w(k,i) = c_max |
---|
| 403 | ENDIF |
---|
| 404 | ELSE |
---|
| 405 | c_w(k,i) = c_max |
---|
[75] | 406 | ENDIF |
---|
[106] | 407 | |
---|
[978] | 408 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 409 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 410 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 411 | |
---|
[978] | 412 | ENDDO |
---|
| 413 | ENDDO |
---|
[75] | 414 | |
---|
[978] | 415 | #if defined( __parallel ) |
---|
| 416 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 417 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 418 | MPI_SUM, comm1dx, ierr ) |
---|
| 419 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 420 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 421 | MPI_SUM, comm1dx, ierr ) |
---|
| 422 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 423 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 424 | MPI_SUM, comm1dx, ierr ) |
---|
| 425 | #else |
---|
| 426 | c_u_m = c_u_m_l |
---|
| 427 | c_v_m = c_v_m_l |
---|
| 428 | c_w_m = c_w_m_l |
---|
| 429 | #endif |
---|
| 430 | |
---|
| 431 | c_u_m = c_u_m / (nx+1) |
---|
| 432 | c_v_m = c_v_m / (nx+1) |
---|
| 433 | c_w_m = c_w_m / (nx+1) |
---|
| 434 | |
---|
[75] | 435 | ! |
---|
[978] | 436 | !-- Save old timelevels for the next timestep |
---|
| 437 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 438 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 439 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 440 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 441 | ENDIF |
---|
| 442 | |
---|
| 443 | ! |
---|
| 444 | !-- Calculate the new velocities |
---|
[996] | 445 | DO k = nzb+1, nzt+1 |
---|
| 446 | DO i = nxlg, nxrg |
---|
[978] | 447 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 448 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 449 | |
---|
[978] | 450 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 451 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 452 | |
---|
[978] | 453 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 454 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 455 | ENDDO |
---|
[75] | 456 | ENDDO |
---|
| 457 | |
---|
| 458 | ! |
---|
[978] | 459 | !-- Bottom boundary at the outflow |
---|
| 460 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 461 | u_p(nzb,-1,:) = 0.0 |
---|
| 462 | v_p(nzb,0,:) = 0.0 |
---|
| 463 | ELSE |
---|
| 464 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 465 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 466 | ENDIF |
---|
| 467 | w_p(nzb,-1,:) = 0.0 |
---|
[73] | 468 | |
---|
[75] | 469 | ! |
---|
[978] | 470 | !-- Top boundary at the outflow |
---|
| 471 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 472 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 473 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 474 | ELSE |
---|
| 475 | u_p(nzt+1,-1,:) = u(nzt,-1,:) |
---|
| 476 | v_p(nzt+1,0,:) = v(nzt,0,:) |
---|
| 477 | ENDIF |
---|
| 478 | w_p(nzt:nzt+1,-1,:) = 0.0 |
---|
| 479 | |
---|
[75] | 480 | ENDIF |
---|
[73] | 481 | |
---|
[75] | 482 | ENDIF |
---|
[73] | 483 | |
---|
[106] | 484 | IF ( outflow_n ) THEN |
---|
[73] | 485 | |
---|
[1159] | 486 | IF ( use_cmax ) THEN |
---|
| 487 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
| 488 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
| 489 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
| 490 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 491 | |
---|
[978] | 492 | c_max = dy / dt_3d |
---|
[75] | 493 | |
---|
[978] | 494 | c_u_m_l = 0.0 |
---|
| 495 | c_v_m_l = 0.0 |
---|
| 496 | c_w_m_l = 0.0 |
---|
| 497 | |
---|
| 498 | c_u_m = 0.0 |
---|
| 499 | c_v_m = 0.0 |
---|
| 500 | c_w_m = 0.0 |
---|
| 501 | |
---|
[1] | 502 | ! |
---|
[996] | 503 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 504 | !-- average along the outflow boundary. |
---|
| 505 | DO k = nzb+1, nzt+1 |
---|
| 506 | DO i = nxl, nxr |
---|
[73] | 507 | |
---|
[106] | 508 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 509 | |
---|
| 510 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 511 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[106] | 512 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
| 513 | c_u(k,i) = 0.0 |
---|
| 514 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 515 | c_u(k,i) = c_max |
---|
| 516 | ENDIF |
---|
| 517 | ELSE |
---|
| 518 | c_u(k,i) = c_max |
---|
[73] | 519 | ENDIF |
---|
| 520 | |
---|
[106] | 521 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 522 | |
---|
[106] | 523 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 524 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[106] | 525 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
| 526 | c_v(k,i) = 0.0 |
---|
| 527 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 528 | c_v(k,i) = c_max |
---|
| 529 | ENDIF |
---|
| 530 | ELSE |
---|
| 531 | c_v(k,i) = c_max |
---|
[73] | 532 | ENDIF |
---|
| 533 | |
---|
[106] | 534 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 535 | |
---|
[106] | 536 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 537 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[106] | 538 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
| 539 | c_w(k,i) = 0.0 |
---|
| 540 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 541 | c_w(k,i) = c_max |
---|
| 542 | ENDIF |
---|
| 543 | ELSE |
---|
| 544 | c_w(k,i) = c_max |
---|
[73] | 545 | ENDIF |
---|
[106] | 546 | |
---|
[978] | 547 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 548 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 549 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 550 | |
---|
[978] | 551 | ENDDO |
---|
| 552 | ENDDO |
---|
[73] | 553 | |
---|
[978] | 554 | #if defined( __parallel ) |
---|
| 555 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 556 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 557 | MPI_SUM, comm1dx, ierr ) |
---|
| 558 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 559 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 560 | MPI_SUM, comm1dx, ierr ) |
---|
| 561 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 562 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 563 | MPI_SUM, comm1dx, ierr ) |
---|
| 564 | #else |
---|
| 565 | c_u_m = c_u_m_l |
---|
| 566 | c_v_m = c_v_m_l |
---|
| 567 | c_w_m = c_w_m_l |
---|
| 568 | #endif |
---|
| 569 | |
---|
| 570 | c_u_m = c_u_m / (nx+1) |
---|
| 571 | c_v_m = c_v_m / (nx+1) |
---|
| 572 | c_w_m = c_w_m / (nx+1) |
---|
| 573 | |
---|
[73] | 574 | ! |
---|
[978] | 575 | !-- Save old timelevels for the next timestep |
---|
| 576 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 577 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 578 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 579 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 580 | ENDIF |
---|
[73] | 581 | |
---|
[978] | 582 | ! |
---|
| 583 | !-- Calculate the new velocities |
---|
[996] | 584 | DO k = nzb+1, nzt+1 |
---|
| 585 | DO i = nxlg, nxrg |
---|
[978] | 586 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 587 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 588 | |
---|
[978] | 589 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 590 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 591 | |
---|
[978] | 592 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 593 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 594 | ENDDO |
---|
[1] | 595 | ENDDO |
---|
| 596 | |
---|
| 597 | ! |
---|
[978] | 598 | !-- Bottom boundary at the outflow |
---|
| 599 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 600 | u_p(nzb,ny+1,:) = 0.0 |
---|
| 601 | v_p(nzb,ny+1,:) = 0.0 |
---|
| 602 | ELSE |
---|
| 603 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 604 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 605 | ENDIF |
---|
| 606 | w_p(nzb,ny+1,:) = 0.0 |
---|
[73] | 607 | |
---|
| 608 | ! |
---|
[978] | 609 | !-- Top boundary at the outflow |
---|
| 610 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 611 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 612 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 613 | ELSE |
---|
| 614 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 615 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 616 | ENDIF |
---|
| 617 | w_p(nzt:nzt+1,ny+1,:) = 0.0 |
---|
| 618 | |
---|
[1] | 619 | ENDIF |
---|
| 620 | |
---|
[75] | 621 | ENDIF |
---|
| 622 | |
---|
[106] | 623 | IF ( outflow_l ) THEN |
---|
[75] | 624 | |
---|
[1159] | 625 | IF ( use_cmax ) THEN |
---|
| 626 | u_p(:,:,-1) = u(:,:,0) |
---|
| 627 | v_p(:,:,0) = v(:,:,1) |
---|
| 628 | w_p(:,:,-1) = w(:,:,0) |
---|
| 629 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 630 | |
---|
[978] | 631 | c_max = dx / dt_3d |
---|
[75] | 632 | |
---|
[978] | 633 | c_u_m_l = 0.0 |
---|
| 634 | c_v_m_l = 0.0 |
---|
| 635 | c_w_m_l = 0.0 |
---|
| 636 | |
---|
| 637 | c_u_m = 0.0 |
---|
| 638 | c_v_m = 0.0 |
---|
| 639 | c_w_m = 0.0 |
---|
| 640 | |
---|
[1] | 641 | ! |
---|
[996] | 642 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 643 | !-- average along the outflow boundary. |
---|
| 644 | DO k = nzb+1, nzt+1 |
---|
| 645 | DO j = nys, nyn |
---|
[75] | 646 | |
---|
[106] | 647 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 648 | |
---|
| 649 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 650 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[107] | 651 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
[106] | 652 | c_u(k,j) = 0.0 |
---|
[107] | 653 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 654 | c_u(k,j) = c_max |
---|
[106] | 655 | ENDIF |
---|
| 656 | ELSE |
---|
[107] | 657 | c_u(k,j) = c_max |
---|
[75] | 658 | ENDIF |
---|
| 659 | |
---|
[106] | 660 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 661 | |
---|
[106] | 662 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 663 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[106] | 664 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
| 665 | c_v(k,j) = 0.0 |
---|
| 666 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 667 | c_v(k,j) = c_max |
---|
| 668 | ENDIF |
---|
| 669 | ELSE |
---|
| 670 | c_v(k,j) = c_max |
---|
[75] | 671 | ENDIF |
---|
| 672 | |
---|
[106] | 673 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 674 | |
---|
[106] | 675 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 676 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[106] | 677 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
| 678 | c_w(k,j) = 0.0 |
---|
| 679 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 680 | c_w(k,j) = c_max |
---|
| 681 | ENDIF |
---|
| 682 | ELSE |
---|
| 683 | c_w(k,j) = c_max |
---|
[75] | 684 | ENDIF |
---|
[106] | 685 | |
---|
[978] | 686 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 687 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 688 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 689 | |
---|
[978] | 690 | ENDDO |
---|
| 691 | ENDDO |
---|
[75] | 692 | |
---|
[978] | 693 | #if defined( __parallel ) |
---|
| 694 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 695 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 696 | MPI_SUM, comm1dy, ierr ) |
---|
| 697 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 698 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 699 | MPI_SUM, comm1dy, ierr ) |
---|
| 700 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 701 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 702 | MPI_SUM, comm1dy, ierr ) |
---|
| 703 | #else |
---|
| 704 | c_u_m = c_u_m_l |
---|
| 705 | c_v_m = c_v_m_l |
---|
| 706 | c_w_m = c_w_m_l |
---|
| 707 | #endif |
---|
| 708 | |
---|
| 709 | c_u_m = c_u_m / (ny+1) |
---|
| 710 | c_v_m = c_v_m / (ny+1) |
---|
| 711 | c_w_m = c_w_m / (ny+1) |
---|
| 712 | |
---|
[73] | 713 | ! |
---|
[978] | 714 | !-- Save old timelevels for the next timestep |
---|
| 715 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 716 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 717 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 718 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 719 | ENDIF |
---|
| 720 | |
---|
| 721 | ! |
---|
| 722 | !-- Calculate the new velocities |
---|
[996] | 723 | DO k = nzb+1, nzt+1 |
---|
[1113] | 724 | DO j = nysg, nyng |
---|
[978] | 725 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 726 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 727 | |
---|
[978] | 728 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 729 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 730 | |
---|
[978] | 731 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 732 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 733 | ENDDO |
---|
[75] | 734 | ENDDO |
---|
| 735 | |
---|
| 736 | ! |
---|
[978] | 737 | !-- Bottom boundary at the outflow |
---|
| 738 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 739 | u_p(nzb,:,0) = 0.0 |
---|
| 740 | v_p(nzb,:,-1) = 0.0 |
---|
| 741 | ELSE |
---|
| 742 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 743 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 744 | ENDIF |
---|
| 745 | w_p(nzb,:,-1) = 0.0 |
---|
[1] | 746 | |
---|
[75] | 747 | ! |
---|
[978] | 748 | !-- Top boundary at the outflow |
---|
| 749 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 750 | u_p(nzt+1,:,-1) = u_init(nzt+1) |
---|
| 751 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 752 | ELSE |
---|
| 753 | u_p(nzt+1,:,-1) = u_p(nzt,:,-1) |
---|
| 754 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 755 | ENDIF |
---|
| 756 | w_p(nzt:nzt+1,:,-1) = 0.0 |
---|
| 757 | |
---|
[75] | 758 | ENDIF |
---|
[73] | 759 | |
---|
[75] | 760 | ENDIF |
---|
[73] | 761 | |
---|
[106] | 762 | IF ( outflow_r ) THEN |
---|
[73] | 763 | |
---|
[1159] | 764 | IF ( use_cmax ) THEN |
---|
| 765 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
| 766 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
| 767 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
| 768 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 769 | |
---|
[978] | 770 | c_max = dx / dt_3d |
---|
[75] | 771 | |
---|
[978] | 772 | c_u_m_l = 0.0 |
---|
| 773 | c_v_m_l = 0.0 |
---|
| 774 | c_w_m_l = 0.0 |
---|
| 775 | |
---|
| 776 | c_u_m = 0.0 |
---|
| 777 | c_v_m = 0.0 |
---|
| 778 | c_w_m = 0.0 |
---|
| 779 | |
---|
[1] | 780 | ! |
---|
[996] | 781 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 782 | !-- average along the outflow boundary. |
---|
| 783 | DO k = nzb+1, nzt+1 |
---|
| 784 | DO j = nys, nyn |
---|
[73] | 785 | |
---|
[106] | 786 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 787 | |
---|
| 788 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 789 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[106] | 790 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
| 791 | c_u(k,j) = 0.0 |
---|
| 792 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 793 | c_u(k,j) = c_max |
---|
| 794 | ENDIF |
---|
| 795 | ELSE |
---|
| 796 | c_u(k,j) = c_max |
---|
[73] | 797 | ENDIF |
---|
| 798 | |
---|
[106] | 799 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 800 | |
---|
[106] | 801 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 802 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[106] | 803 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
| 804 | c_v(k,j) = 0.0 |
---|
| 805 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 806 | c_v(k,j) = c_max |
---|
| 807 | ENDIF |
---|
| 808 | ELSE |
---|
| 809 | c_v(k,j) = c_max |
---|
[73] | 810 | ENDIF |
---|
| 811 | |
---|
[106] | 812 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 813 | |
---|
[106] | 814 | IF ( denom /= 0.0 ) THEN |
---|
[996] | 815 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[106] | 816 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
| 817 | c_w(k,j) = 0.0 |
---|
| 818 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 819 | c_w(k,j) = c_max |
---|
| 820 | ENDIF |
---|
| 821 | ELSE |
---|
| 822 | c_w(k,j) = c_max |
---|
[73] | 823 | ENDIF |
---|
[106] | 824 | |
---|
[978] | 825 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 826 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 827 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 828 | |
---|
[978] | 829 | ENDDO |
---|
| 830 | ENDDO |
---|
[73] | 831 | |
---|
[978] | 832 | #if defined( __parallel ) |
---|
| 833 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 834 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 835 | MPI_SUM, comm1dy, ierr ) |
---|
| 836 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 837 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 838 | MPI_SUM, comm1dy, ierr ) |
---|
| 839 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 840 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 841 | MPI_SUM, comm1dy, ierr ) |
---|
| 842 | #else |
---|
| 843 | c_u_m = c_u_m_l |
---|
| 844 | c_v_m = c_v_m_l |
---|
| 845 | c_w_m = c_w_m_l |
---|
| 846 | #endif |
---|
| 847 | |
---|
| 848 | c_u_m = c_u_m / (ny+1) |
---|
| 849 | c_v_m = c_v_m / (ny+1) |
---|
| 850 | c_w_m = c_w_m / (ny+1) |
---|
| 851 | |
---|
[73] | 852 | ! |
---|
[978] | 853 | !-- Save old timelevels for the next timestep |
---|
| 854 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 855 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 856 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 857 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 858 | ENDIF |
---|
[73] | 859 | |
---|
[978] | 860 | ! |
---|
| 861 | !-- Calculate the new velocities |
---|
[996] | 862 | DO k = nzb+1, nzt+1 |
---|
[1113] | 863 | DO j = nysg, nyng |
---|
[978] | 864 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 865 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 866 | |
---|
[978] | 867 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 868 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 869 | |
---|
[978] | 870 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 871 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 872 | ENDDO |
---|
[73] | 873 | ENDDO |
---|
| 874 | |
---|
| 875 | ! |
---|
[978] | 876 | !-- Bottom boundary at the outflow |
---|
| 877 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 878 | u_p(nzb,:,nx+1) = 0.0 |
---|
| 879 | v_p(nzb,:,nx+1) = 0.0 |
---|
| 880 | ELSE |
---|
| 881 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 882 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 883 | ENDIF |
---|
| 884 | w_p(nzb,:,nx+1) = 0.0 |
---|
[73] | 885 | |
---|
| 886 | ! |
---|
[978] | 887 | !-- Top boundary at the outflow |
---|
| 888 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 889 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 890 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 891 | ELSE |
---|
| 892 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 893 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 894 | ENDIF |
---|
| 895 | w(nzt:nzt+1,:,nx+1) = 0.0 |
---|
| 896 | |
---|
[1] | 897 | ENDIF |
---|
| 898 | |
---|
| 899 | ENDIF |
---|
| 900 | |
---|
| 901 | END SUBROUTINE boundary_conds |
---|