!> @file biometeorology_mod.f90
!--------------------------------------------------------------------------------!
! This file is part of PALM-4U.
!
! PALM-4U is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! PALM-4U is distributed in the hope that it will be useful, but WITHOUT ANY
! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
! A PARTICULAR PURPOSE. See the GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along with
! PALM. If not, see .
!
! Copyright 2018-2018 Deutscher Wetterdienst (DWD)
! Copyright 2018-2018 Institute of Computer Science, Academy of Sciences, Prague
! Copyright 2018-2018 Leibniz Universitaet Hannover
!--------------------------------------------------------------------------------!
!
! Current revisions:
! -----------------
!
!
! Former revisions:
! -----------------
! $Id: biometeorology_mod.f90 3525 2018-11-14 16:06:14Z gronemeier $
! Clean up, renaming from "biom" to "bio", summary of thermal index calculation
! into one module (dom_dwd_user)
!
! 3479 2018-11-01 16:00:30Z gronemeier
! - reworked check for output quantities
! - assign new palm-error numbers
! - set unit according to data standard.
!
! 3475 2018-10-30 21:16:31Z kanani
! Add option for using MRT from RTM instead of simplified global value
!
! 3464 2018-10-30 18:08:55Z kanani
! From branch resler@3462, pavelkrc:
! make use of basic_constants_and_equations_mod
!
! 3448 2018-10-29 18:14:31Z kanani
! Initial revision
!
!
!
! Authors:
! --------
! @author Dominik Froehlich
! @author Jaroslav Resler
!
!
! Description:
! ------------
!> Human thermal comfort module calculating thermal perception of a sample
!> human being under the current meteorological conditions.
!>
!> @todo Alphabetical sorting of "USE ..." lists, "ONLY" list, variable declarations
!> (per subroutine: first all CHARACTERs, then INTEGERs, LOGICALs, REALs, )
!> @todo Comments start with capital letter --> "!-- Include..."
!> @todo Variable and routine names strictly in lowercase letters and in English
!>
!> @note nothing now
!>
!> @bug no known bugs by now
!------------------------------------------------------------------------------!
MODULE biometeorology_mod
USE arrays_3d, &
ONLY: pt, p, u, v, w, q
USE averaging, &
ONLY: pt_av, q_av, u_av, v_av, w_av
USE basic_constants_and_equations_mod, &
ONLY: c_p, degc_to_k, l_v, magnus, sigma_sb
USE control_parameters, &
ONLY: average_count_3d, biometeorology, dz, dz_stretch_factor, &
dz_stretch_level, humidity, initializing_actions, nz_do3d, &
simulated_time, surface_pressure
USE grid_variables, &
ONLY: ddx, dx, ddy, dy
USE indices, &
ONLY: nxl, nxr, nys, nyn, nzb, nzt, nys, nyn, nxl, nxr, nxlg, nxrg, &
nysg, nyng
USE kinds !< Set precision of INTEGER and REAL arrays according to PALM
!-- Import radiation model to obtain input for mean radiant temperature
USE radiation_model_mod, &
ONLY: ix, iy, iz, id, mrt_nlevels, mrt_include_sw, &
mrtinsw, mrtinlw, mrtbl, nmrtbl, radiation, &
radiation_interactions, rad_sw_in, &
rad_sw_out, rad_lw_in, rad_lw_out
USE surface_mod, &
ONLY: get_topography_top_index_ji
IMPLICIT NONE
PRIVATE
!-- Declare all global variables within the module (alphabetical order)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tmrt_grid !< tmrt results (°C)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: perct !< PT results (°C)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: utci_grid !< UTCI results (°C)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pet_grid !< PET results (°C)
!-- Grids for averaged thermal indices
REAL(wp), DIMENSION(:), ALLOCATABLE :: mrt_av_grid !< time average mean
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: perct_av !< PT results (aver. input) (°C)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: utci_av_grid !< UTCI results (aver. input) (°C)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pet_av_grid !< PET results (aver. input) (°C)
INTEGER( iwp ) :: bio_cell_level !< cell level biom calculates for
REAL ( wp ) :: bio_output_height !< height output is calculated in m
REAL ( wp ) :: time_bio_results !< the time, the last set of biom results have been calculated for
REAL ( wp ), PARAMETER :: human_absorb = 0.7_wp !< SW absorbtivity of a human body (Fanger 1972)
REAL ( wp ), PARAMETER :: human_emiss = 0.97_wp !< LW emissivity of a human body after (Fanger 1972)
!--
LOGICAL :: aver_perct = .FALSE. !< switch: do perct averaging in this module? (if .FALSE. this is done globally)
LOGICAL :: aver_q = .FALSE. !< switch: do e averaging in this module?
LOGICAL :: aver_u = .FALSE. !< switch: do u averaging in this module?
LOGICAL :: aver_v = .FALSE. !< switch: do v averaging in this module?
LOGICAL :: aver_w = .FALSE. !< switch: do w averaging in this module?
LOGICAL :: aver_mrt = .FALSE. !< switch: do mrt averaging in this module?
LOGICAL :: average_trigger_perct = .FALSE. !< update averaged input on call to bio_perct?
LOGICAL :: average_trigger_utci = .FALSE. !< update averaged input on call to bio_utci?
LOGICAL :: average_trigger_pet = .FALSE. !< update averaged input on call to bio_pet?
LOGICAL :: bio_perct = .TRUE. !< Turn index PT (instant. input) on or off
LOGICAL :: bio_perct_av = .TRUE. !< Turn index PT (averaged input) on or off
LOGICAL :: bio_pet = .TRUE. !< Turn index PET (instant. input) on or off
LOGICAL :: bio_pet_av = .TRUE. !< Turn index PET (averaged input) on or off
LOGICAL :: bio_utci = .TRUE. !< Turn index UTCI (instant. input) on or off
LOGICAL :: bio_utci_av = .TRUE. !< Turn index UTCI (averaged input) on or off
!
!-- INTERFACES that must be available to other modules (alphabetical order)
PUBLIC bio_3d_data_averaging, bio_check_data_output, &
bio_calculate_mrt_grid, bio_calculate_thermal_index_maps, bio_calc_ipt, &
bio_check_parameters, bio_data_output_3d, bio_data_output_2d, &
bio_define_netcdf_grid, bio_get_thermal_index_input_ij, bio_header, &
bio_init, bio_init_arrays, bio_parin, bio_perct, bio_perct_av, bio_pet, &
bio_pet_av, bio_utci, bio_utci_av, time_bio_results
!
!-- PALM interfaces:
!
!-- 3D averaging for HTCM _INPUT_ variables
INTERFACE bio_3d_data_averaging
MODULE PROCEDURE bio_3d_data_averaging
END INTERFACE bio_3d_data_averaging
!-- Calculate mtr from rtm fluxes and assign into 2D grid
INTERFACE bio_calculate_mrt_grid
MODULE PROCEDURE bio_calculate_mrt_grid
END INTERFACE bio_calculate_mrt_grid
!-- Calculate static thermal indices PT, UTCI and/or PET
INTERFACE bio_calculate_thermal_index_maps
MODULE PROCEDURE bio_calculate_thermal_index_maps
END INTERFACE bio_calculate_thermal_index_maps
!-- Calculate the dynamic index iPT (to be caled by the agent model)
INTERFACE bio_calc_ipt
MODULE PROCEDURE bio_calc_ipt
END INTERFACE bio_calc_ipt
!-- Data output checks for 2D/3D data to be done in check_parameters
INTERFACE bio_check_data_output
MODULE PROCEDURE bio_check_data_output
END INTERFACE bio_check_data_output
!-- Input parameter checks to be done in check_parameters
INTERFACE bio_check_parameters
MODULE PROCEDURE bio_check_parameters
END INTERFACE bio_check_parameters
!-- Data output of 2D quantities
INTERFACE bio_data_output_2d
MODULE PROCEDURE bio_data_output_2d
END INTERFACE bio_data_output_2d
!-- no 3D data, thus, no averaging of 3D data, removed
INTERFACE bio_data_output_3d
MODULE PROCEDURE bio_data_output_3d
END INTERFACE bio_data_output_3d
!-- Definition of data output quantities
INTERFACE bio_define_netcdf_grid
MODULE PROCEDURE bio_define_netcdf_grid
END INTERFACE bio_define_netcdf_grid
!-- Obtains all relevant input values to estimate local thermal comfort/stress
INTERFACE bio_get_thermal_index_input_ij
MODULE PROCEDURE bio_get_thermal_index_input_ij
END INTERFACE bio_get_thermal_index_input_ij
!-- Output of information to the header file
INTERFACE bio_header
MODULE PROCEDURE bio_header
END INTERFACE bio_header
!-- Initialization actions
INTERFACE bio_init
MODULE PROCEDURE bio_init
END INTERFACE bio_init
!-- Initialization of arrays
INTERFACE bio_init_arrays
MODULE PROCEDURE bio_init_arrays
END INTERFACE bio_init_arrays
!-- Reading of NAMELIST parameters
INTERFACE bio_parin
MODULE PROCEDURE bio_parin
END INTERFACE bio_parin
CONTAINS
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Sum up and time-average biom input quantities as well as allocate
!> the array necessary for storing the average.
!------------------------------------------------------------------------------!
SUBROUTINE bio_3d_data_averaging( mode, variable )
IMPLICIT NONE
CHARACTER (LEN=*) :: mode !< averaging mode: allocate, sum, or average
CHARACTER (LEN=*) :: variable !< The variable in question
INTEGER(iwp) :: i !< Running index, x-dir
INTEGER(iwp) :: j !< Running index, y-dir
INTEGER(iwp) :: k !< Running index, z-dir
IF ( mode == 'allocate' ) THEN
SELECT CASE ( TRIM( variable ) )
CASE ( 'bio_mrt' )
IF ( .NOT. ALLOCATED( mrt_av_grid ) ) THEN
ALLOCATE( mrt_av_grid(nmrtbl) )
ENDIF
mrt_av_grid = 0.0_wp
CASE ( 'bio_perct*', 'bio_utci*', 'bio_pet*' )
!-- Indices in unknown order as depending on input file, determine
! first index to average und update only once
IF ( .NOT. average_trigger_perct .AND. .NOT. average_trigger_utci &
.AND. .NOT. average_trigger_pet ) THEN
IF ( TRIM( variable ) == 'bio_perct*' ) THEN
average_trigger_perct = .TRUE.
ENDIF
IF ( TRIM( variable ) == 'bio_utci*' ) THEN
average_trigger_utci = .TRUE.
ENDIF
IF ( TRIM( variable ) == 'bio_pet*' ) THEN
average_trigger_pet = .TRUE.
ENDIF
ENDIF
!-- Only continue if updateindex
IF ( average_trigger_perct .AND. TRIM( variable ) /= 'bio_perct*') RETURN
IF ( average_trigger_utci .AND. TRIM( variable ) /= 'bio_utci*') RETURN
IF ( average_trigger_pet .AND. TRIM( variable ) /= 'bio_pet*') RETURN
!-- Set averaging switch to .TRUE. if not done by other module before!
IF ( .NOT. ALLOCATED( pt_av ) ) THEN
ALLOCATE( pt_av(nzb:nzt+1,nys:nyn,nxl:nxr) )
aver_perct = .TRUE.
ENDIF
pt_av = 0.0_wp
IF ( .NOT. ALLOCATED( q_av ) ) THEN
ALLOCATE( q_av(nzb:nzt+1,nys:nyn,nxl:nxr) )
aver_q = .TRUE.
ENDIF
q_av = 0.0_wp
IF ( .NOT. ALLOCATED( u_av ) ) THEN
ALLOCATE( u_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
aver_u = .TRUE.
ENDIF
u_av = 0.0_wp
IF ( .NOT. ALLOCATED( v_av ) ) THEN
ALLOCATE( v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
aver_v = .TRUE.
ENDIF
v_av = 0.0_wp
IF ( .NOT. ALLOCATED( w_av ) ) THEN
ALLOCATE( w_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
aver_w = .TRUE.
ENDIF
w_av = 0.0_wp
CASE DEFAULT
CONTINUE
END SELECT
ELSEIF ( mode == 'sum' ) THEN
SELECT CASE ( TRIM( variable ) )
CASE ( 'bio_mrt' )
IF ( ALLOCATED( mrt_av_grid ) ) THEN
IF ( mrt_include_sw ) THEN
mrt_av_grid(:) = mrt_av_grid(:) + &
(( human_absorb * mrtinsw(:) + human_emiss * mrtinlw(:)) &
/ (human_emiss * sigma_sb)) ** .25_wp - degc_to_k
ELSE
mrt_av_grid(:) = mrt_av_grid(:) + &
(human_emiss * mrtinlw(:) / sigma_sb) ** .25_wp &
- degc_to_k
ENDIF
ENDIF
CASE ( 'bio_perct*', 'bio_utci*', 'bio_pet*' )
!-- Only continue if updateindex
IF ( average_trigger_perct .AND. TRIM( variable ) /= 'bio_perct*') &
RETURN
IF ( average_trigger_utci .AND. TRIM( variable ) /= 'bio_utci*') &
RETURN
IF ( average_trigger_pet .AND. TRIM( variable ) /= 'bio_pet*') &
RETURN
IF ( ALLOCATED( pt_av ) .AND. aver_perct ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt+1
pt_av(k,j,i) = pt_av(k,j,i) + pt(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( ALLOCATED( q_av ) .AND. aver_q ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt+1
q_av(k,j,i) = q_av(k,j,i) + q(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( ALLOCATED( u_av ) .AND. aver_u ) THEN
DO i = nxlg, nxrg !< yes, ghost points are required here!
DO j = nysg, nyng
DO k = nzb, nzt+1
u_av(k,j,i) = u_av(k,j,i) + u(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( ALLOCATED( v_av ) .AND. aver_v ) THEN
DO i = nxlg, nxrg !< yes, ghost points are required here!
DO j = nysg, nyng
DO k = nzb, nzt+1
v_av(k,j,i) = v_av(k,j,i) + v(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( ALLOCATED( w_av ) .AND. aver_w ) THEN
DO i = nxlg, nxrg !< yes, ghost points are required here!
DO j = nysg, nyng
DO k = nzb, nzt+1
w_av(k,j,i) = w_av(k,j,i) + w(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
CASE DEFAULT
CONTINUE
END SELECT
ELSEIF ( mode == 'average' ) THEN
SELECT CASE ( TRIM( variable ) )
CASE ( 'bio_mrt' )
IF ( ALLOCATED( mrt_av_grid ) ) THEN
mrt_av_grid(:) = mrt_av_grid(:) / REAL( average_count_3d, KIND=wp )
ENDIF
CASE ( 'bio_perct*', 'bio_utci*', 'bio_pet*' )
!-- Only continue if update index
IF ( average_trigger_perct .AND. TRIM( variable ) /= 'bio_perct*') &
RETURN
IF ( average_trigger_utci .AND. TRIM( variable ) /= 'bio_utci*') &
RETURN
IF ( average_trigger_pet .AND. TRIM( variable ) /= 'bio_pet*') &
RETURN
IF ( ALLOCATED( pt_av ) .AND. aver_perct ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt+1
pt_av(k,j,i) = pt_av(k,j,i) / REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDDO
ENDIF
IF ( ALLOCATED( q_av ) .AND. aver_q ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt+1
q_av(k,j,i) = q_av(k,j,i) / REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDDO
ENDIF
IF ( ALLOCATED( u_av ) .AND. aver_u ) THEN
DO i = nxlg, nxrg !< yes, ghost points are required here!
DO j = nysg, nyng
DO k = nzb, nzt+1
u_av(k,j,i) = u_av(k,j,i) / REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDDO
ENDIF
IF ( ALLOCATED( v_av ) .AND. aver_v ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
v_av(k,j,i) = v_av(k,j,i) / REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDDO
ENDIF
IF ( ALLOCATED( w_av ) .AND. aver_w ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
w_av(k,j,i) = w_av(k,j,i) / REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDDO
ENDIF
!-- Udate thermal indices with derived averages
CALL bio_calculate_thermal_index_maps ( .TRUE. )
END SELECT
ENDIF
END SUBROUTINE bio_3d_data_averaging
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Check data output for biometeorology model
!------------------------------------------------------------------------------!
SUBROUTINE bio_check_data_output( var, unit )
USE control_parameters, &
ONLY: data_output, message_string
IMPLICIT NONE
CHARACTER (LEN=*) :: unit !< The unit for the variable var
CHARACTER (LEN=*) :: var !< The variable in question
SELECT CASE ( TRIM( var ) )
CASE( 'bio_mrt', 'bio_pet*', 'bio_perct*', 'bio_utci*' )
unit = 'degree_C'
CASE DEFAULT
unit = 'illegal'
END SELECT
IF ( unit /= 'illegal' ) THEN
!
!-- Futher checks if output belongs to biometeorology
IF ( .NOT. radiation ) THEN
message_string = 'output of "' // TRIM( var ) // '" require' &
// 's radiation = .TRUE.'
CALL message( 'check_parameters', 'PA0509', 1, 2, 0, 6, 0 )
unit = 'illegal'
ENDIF
IF ( mrt_nlevels == 0 ) THEN
message_string = 'output of "' // TRIM( var ) // '" require' &
// 's mrt_nlevels > 0'
CALL message( 'check_parameters', 'PA0510', 1, 2, 0, 6, 0 )
unit = 'illegal'
ENDIF
ENDIF
END SUBROUTINE bio_check_data_output
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Check parameters routine for biom module
!> check_parameters 1302
!------------------------------------------------------------------------------!
SUBROUTINE bio_check_parameters
USE control_parameters, &
ONLY: message_string
IMPLICIT NONE
!-- Disabled as long as radiation model not available
IF ( .NOT. humidity ) THEN
message_string = 'The estimation of thermal comfort requires ' // &
'air humidity information, but humidity module ' // &
'is disabled!'
CALL message( 'check_parameters', 'PA0561', 0, 0, 0, 6, 0 )
ENDIF
END SUBROUTINE bio_check_parameters
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Subroutine defining 2D output variables
!> data_output_2d 1188ff
!------------------------------------------------------------------------------!
SUBROUTINE bio_data_output_2d( av, variable, found, grid, local_pf, &
two_d, nzb_do, nzt_do, fill_value )
USE indices, &
ONLY: nxl, nxl, nxr, nxr, nyn, nyn, nys, nys, nzb, nzt
USE kinds
IMPLICIT NONE
!-- Input variables
CHARACTER (LEN=*), INTENT(IN) :: variable !< Char identifier to select var for output
INTEGER(iwp), INTENT(IN) :: av !< Use averaged data? 0 = no, 1 = yes?
INTEGER(iwp), INTENT(IN) :: nzb_do !< Unused. 2D. nz bottom to nz top
INTEGER(iwp), INTENT(IN) :: nzt_do !< Unused.
REAL(wp), INTENT(in) :: fill_value !< Fill value for unassigned locations
!-- Output variables
CHARACTER (LEN=*), INTENT(OUT) :: grid !< Grid type (always "zu1" for biom)
LOGICAL, INTENT(OUT) :: found !< Output found?
LOGICAL, INTENT(OUT) :: two_d !< Flag parameter that indicates 2D variables, horizontal cross sections, must be .TRUE.
REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< Temp. result grid to return
!-- Internal variables
CHARACTER (LEN=:), allocatable :: variable_short !< Trimmed version of char variable
INTEGER(iwp) :: i !< Running index, x-dir
INTEGER(iwp) :: j !< Running index, y-dir
INTEGER(iwp) :: k !< Running index, z-dir
INTEGER(iwp) :: l !< Running index, radiation grid
variable_short = TRIM( variable )
IF ( variable_short(1:4) /= 'bio_' ) THEN
found = .FALSE.
grid = 'none'
ENDIF
found = .TRUE.
local_pf = fill_value
SELECT CASE ( variable_short )
CASE ( 'bio_mrt_xy' )
grid = 'zu1'
two_d = .FALSE. !< can be calculated for several levels
local_pf = REAL( fill_value, KIND = wp )
DO l = 1, nmrtbl
i = mrtbl(ix,l)
j = mrtbl(iy,l)
k = mrtbl(iz,l)
IF ( k < nzb_do .OR. k > nzt_do .OR. j < nys .OR. j > nyn .OR. &
i < nxl .OR. i > nxr ) CYCLE
IF ( av == 0 ) THEN
IF ( mrt_include_sw ) THEN
local_pf(i,j,k) = ((human_absorb * mrtinsw(l) + &
human_emiss * mrtinlw(l)) / &
(human_emiss * sigma_sb)) ** .25_wp - degc_to_k
ELSE
local_pf(i,j,k) = (human_emiss * mrtinlw(l) / &
sigma_sb) ** .25_wp - degc_to_k
ENDIF
ELSE
local_pf(i,j,k) = mrt_av_grid(l)
ENDIF
ENDDO
CASE ( 'bio_perct*_xy' ) ! 2d-array
grid = 'zu1'
two_d = .TRUE.
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = perct(j,i)
ENDDO
ENDDO
ELSE
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = perct_av(j,i)
ENDDO
ENDDO
END IF
CASE ( 'bio_utci*_xy' ) ! 2d-array
grid = 'zu1'
two_d = .TRUE.
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = utci_grid(j,i)
ENDDO
ENDDO
ELSE
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = utci_av_grid(j,i)
ENDDO
ENDDO
END IF
CASE ( 'bio_pet*_xy' ) ! 2d-array
grid = 'zu1'
two_d = .TRUE.
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = pet_grid(j,i)
ENDDO
ENDDO
ELSE
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = pet_av_grid(j,i)
ENDDO
ENDDO
END IF
CASE DEFAULT
found = .FALSE.
grid = 'none'
END SELECT
END SUBROUTINE bio_data_output_2d
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Subroutine defining 3D output variables (dummy, always 2d!)
!> data_output_3d 709ff
!------------------------------------------------------------------------------!
SUBROUTINE bio_data_output_3d( av, variable, found, local_pf, nzb_do, nzt_do )
USE indices
USE kinds
IMPLICIT NONE
!-- Input variables
CHARACTER (LEN=*), INTENT(IN) :: variable !< Char identifier to select var for output
INTEGER(iwp), INTENT(IN) :: av !< Use averaged data? 0 = no, 1 = yes?
INTEGER(iwp), INTENT(IN) :: nzb_do !< Unused. 2D. nz bottom to nz top
INTEGER(iwp), INTENT(IN) :: nzt_do !< Unused.
!-- Output variables
LOGICAL, INTENT(OUT) :: found !< Output found?
REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< Temp. result grid to return
!-- Internal variables
INTEGER(iwp) :: l !< Running index, radiation grid
INTEGER(iwp) :: i !< Running index, x-dir
INTEGER(iwp) :: j !< Running index, y-dir
INTEGER(iwp) :: k !< Running index, z-dir
CHARACTER (LEN=:), allocatable :: variable_short !< Trimmed version of char variable
REAL(wp), PARAMETER :: fill_value = -999._wp
REAL(wp) :: mrt !< Buffer for mean radiant temperature
found = .TRUE.
variable_short = TRIM( variable )
IF ( variable_short(1:4) /= 'bio_' ) THEN
!-- Nothing to do, set found to FALSE and return immediatelly
found = .FALSE.
RETURN
ENDIF
SELECT CASE ( variable_short )
CASE ( 'bio_mrt' )
local_pf = REAL( fill_value, KIND = wp )
DO l = 1, nmrtbl
i = mrtbl(ix,l)
j = mrtbl(iy,l)
k = mrtbl(iz,l)
IF ( k < nzb_do .OR. k > nzt_do .OR. j < nys .OR. j > nyn .OR. &
i < nxl .OR. i > nxr ) CYCLE
IF ( av == 0 ) THEN
IF ( mrt_include_sw ) THEN
local_pf(i,j,k) = ((human_absorb * mrtinsw(l) + human_emiss * mrtinlw(l)) / &
(human_emiss * sigma_sb)) ** .25_wp - degc_to_k
ELSE
local_pf(i,j,k) = (human_emiss * mrtinlw(l) / &
sigma_sb) ** .25_wp - degc_to_k
ENDIF
ELSE
local_pf(i,j,k) = mrt_av_grid(l)
ENDIF
ENDDO
CASE DEFAULT
found = .FALSE.
END SELECT
END SUBROUTINE bio_data_output_3d
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining appropriate grid for netcdf variables.
!> It is called out from subroutine netcdf_interface_mod.
!> netcdf_interface_mod 918ff
!------------------------------------------------------------------------------!
SUBROUTINE bio_define_netcdf_grid( var, found, grid_x, grid_y, grid_z )
IMPLICIT NONE
!-- Input variables
CHARACTER (LEN=*), INTENT(IN) :: var !< Name of output variable
!-- Output variables
CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< x grid of output variable
CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< y grid of output variable
CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< z grid of output variable
LOGICAL, INTENT(OUT) :: found !< Flag if output var is found
!-- Local variables
LOGICAL :: is2d !< Var is 2d?
INTEGER(iwp) :: l !< Length of the var array
found = .FALSE.
grid_x = 'none'
grid_y = 'none'
grid_z = 'none'
l = MAX( 2, LEN_TRIM( var ) )
is2d = ( var(l-1:l) == 'xy' )
IF ( var(1:4) == 'bio_' ) THEN
found = .TRUE.
grid_x = 'x'
grid_y = 'y'
grid_z = 'zu'
IF ( is2d ) grid_z = 'zu1'
ENDIF
END SUBROUTINE bio_define_netcdf_grid
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Header output for biom module
!> header 982
!------------------------------------------------------------------------------!
SUBROUTINE bio_header( io )
IMPLICIT NONE
!-- Input variables
INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file
!-- Internal variables
CHARACTER (LEN=86) :: output_height_chr !< String for output height
WRITE( output_height_chr, '(F8.1,7X)' ) bio_output_height
!
!-- Write biom header
WRITE( io, 1 )
WRITE( io, 2 ) TRIM( output_height_chr )
WRITE( io, 3 ) TRIM( ACHAR( bio_cell_level ) )
1 FORMAT (//' Human thermal comfort module information:'/ &
' ------------------------------'/)
2 FORMAT (' --> All indices calculated for a height of (m): ', A )
3 FORMAT (' --> This corresponds to cell level : ', A )
END SUBROUTINE bio_header
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Initialization of the HTCM
!> init_3d_model 1987ff
!------------------------------------------------------------------------------!
SUBROUTINE bio_init
USE control_parameters, &
ONLY: message_string
IMPLICIT NONE
!-- Internal vriables
REAL ( wp ) :: height !< current height in meters
INTEGER ( iwp ) :: i !< iteration index
!-- Determine cell level corresponding to 1.1 m above ground level
! (gravimetric center of sample human)
time_bio_results = 0.0_wp
bio_cell_level = 0_iwp
bio_output_height = 0.5_wp * dz(1)
height = 0.0_wp
bio_cell_level = INT ( 1.099_wp / dz(1) )
bio_output_height = bio_output_height + bio_cell_level * dz(1)
IF ( .NOT. radiation_interactions ) THEN
message_string = 'The mrt calculation requires ' // &
'enabled radiation_interactions but it ' // &
'is disabled!'
CALL message( 'check_parameters', 'PAHU03', 0, 0, -1, 6, 0 )
ENDIF
END SUBROUTINE bio_init
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Allocate biom arrays and define pointers if required
!> init_3d_model 1047ff
!------------------------------------------------------------------------------!
SUBROUTINE bio_init_arrays
IMPLICIT NONE
!-- Allocate a temporary array with the desired output dimensions.
! Initialization omitted for performance, will be overwritten anyway
IF ( .NOT. ALLOCATED( tmrt_grid ) ) THEN
ALLOCATE( tmrt_grid (nys:nyn,nxl:nxr) )
ENDIF
IF ( bio_perct ) THEN
IF ( .NOT. ALLOCATED( perct ) ) THEN
ALLOCATE( perct (nys:nyn,nxl:nxr) )
ENDIF
ENDIF
IF ( bio_utci ) THEN
IF ( .NOT. ALLOCATED( utci_grid ) ) THEN
ALLOCATE( utci_grid (nys:nyn,nxl:nxr) )
ENDIF
ENDIF
IF ( bio_pet ) THEN
IF ( .NOT. ALLOCATED( pet_grid ) ) THEN
ALLOCATE( pet_grid (nys:nyn,nxl:nxr) )
ENDIF
END IF
IF ( bio_perct_av ) THEN
IF ( .NOT. ALLOCATED( perct_av ) ) THEN
ALLOCATE( perct_av (nys:nyn,nxl:nxr) )
ENDIF
ENDIF
IF ( bio_utci_av ) THEN
IF ( .NOT. ALLOCATED( utci_av_grid ) ) THEN
ALLOCATE( utci_av_grid (nys:nyn,nxl:nxr) )
ENDIF
ENDIF
IF ( bio_pet_av ) THEN
IF ( .NOT. ALLOCATED( pet_av_grid ) ) THEN
ALLOCATE( pet_av_grid (nys:nyn,nxl:nxr) )
ENDIF
END IF
END SUBROUTINE bio_init_arrays
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Parin for &biometeorology_parameters for reading biomet parameters
!------------------------------------------------------------------------------!
SUBROUTINE bio_parin
IMPLICIT NONE
!
!-- Internal variables
CHARACTER (LEN=80) :: line !< Dummy string for current line in parameter file
NAMELIST /biometeorology_parameters/ bio_pet, &
bio_pet_av, &
bio_perct, &
bio_perct_av, &
bio_utci, &
bio_utci_av
!-- Try to find biometeorology_parameters namelist
REWIND ( 11 )
line = ' '
DO WHILE ( INDEX( line, '&biometeorology_parameters' ) == 0 )
READ ( 11, '(A)', END = 20 ) line
ENDDO
BACKSPACE ( 11 )
!
!-- Read biometeorology_parameters namelist
READ ( 11, biometeorology_parameters, ERR = 10, END = 20 )
!
!-- Set flag that indicates that the biomet_module is switched on
biometeorology = .TRUE.
GOTO 20
!
!-- In case of error
10 BACKSPACE( 11 )
READ( 11 , '(A)') line
CALL parin_fail_message( 'biometeorology_parameters', line )
!
!-- Complete
20 CONTINUE
END SUBROUTINE bio_parin
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate biometeorology MRT for all 2D grid
!------------------------------------------------------------------------------!
SUBROUTINE bio_calculate_mrt_grid ( av )
IMPLICIT NONE
LOGICAL, INTENT(IN) :: av !< use averaged input?
!-- Internal variables
INTEGER(iwp) :: i !< Running index, x-dir, radiation coordinates
INTEGER(iwp) :: j !< Running index, y-dir, radiation coordinates
INTEGER(iwp) :: k !< Running index, y-dir, radiation coordinates
INTEGER(iwp) :: l !< Running index, radiation coordinates
!-- Calculate biometeorology MRT from local radiation
!-- fluxes calculated by RTM and assign into 2D grid
tmrt_grid = -999.
DO l = 1, nmrtbl
i = mrtbl(ix,l)
j = mrtbl(iy,l)
k = mrtbl(iz,l)
IF ( k - get_topography_top_index_ji( j, i, 's' ) == bio_cell_level + &
1_iwp) THEN
IF ( mrt_include_sw ) THEN
tmrt_grid(j,i) = ((human_absorb*mrtinsw(l) + &
human_emiss*mrtinlw(l)) / &
(human_emiss*sigma_sb)) ** .25_wp - degc_to_k
ELSE
tmrt_grid(j,i) = (human_emiss*mrtinlw(l) / sigma_sb) ** .25_wp &
- degc_to_k
ENDIF
ENDIF
ENDDO
END SUBROUTINE bio_calculate_mrt_grid
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate static thermal indices for 2D grid point i, j
!------------------------------------------------------------------------------!
SUBROUTINE bio_get_thermal_index_input_ij( average_input, i, j, ta, vp, ws, &
pair, tmrt )
IMPLICIT NONE
!-- Input variables
LOGICAL, INTENT ( IN ) :: average_input !< Determine averaged input conditions?
INTEGER(iwp), INTENT ( IN ) :: i !< Running index, x-dir
INTEGER(iwp), INTENT ( IN ) :: j !< Running index, y-dir
!-- Output parameters
REAL(wp), INTENT ( OUT ) :: tmrt !< Mean radiant temperature (°C)
REAL(wp), INTENT ( OUT ) :: ta !< Air temperature (°C)
REAL(wp), INTENT ( OUT ) :: vp !< Vapour pressure (hPa)
REAL(wp), INTENT ( OUT ) :: ws !< Wind speed (local level) (m/s)
REAL(wp), INTENT ( OUT ) :: pair !< Air pressure (hPa)
!-- Internal variables
INTEGER(iwp) :: k !< Running index, z-dir
INTEGER(iwp) :: ir !< Running index, x-dir, radiation coordinates
INTEGER(iwp) :: jr !< Running index, y-dir, radiation coordinates
INTEGER(iwp) :: kr !< Running index, y-dir, radiation coordinates
INTEGER(iwp) :: k_wind !< Running index, z-dir, wind speed only
INTEGER(iwp) :: l !< Running index, radiation coordinates
REAL(wp) :: vp_sat !< Saturation vapor pressure (hPa)
!-- Determine cell level closest to 1.1m above ground
! by making use of truncation due to int cast
k = get_topography_top_index_ji(j, i, 's') + bio_cell_level !< Vertical cell center closest to 1.1m
!
!-- Avoid non-representative horizontal u and v of 0.0 m/s too close to ground
k_wind = k
IF ( bio_cell_level < 1_iwp ) THEN
k_wind = k + 1_iwp
ENDIF
!-- Determine local values:
IF ( average_input ) THEN
!-- Calculate ta from Tp assuming dry adiabatic laps rate
ta = pt_av(k, j, i) - ( 0.0098_wp * dz(1) * ( k + .5_wp ) ) - degc_to_k
vp = -999._wp
IF ( humidity .AND. ALLOCATED( q_av ) ) THEN
vp = q_av(k, j, i)
ENDIF
ws = ( 0.5_wp * ABS( u_av(k_wind, j, i) + u_av(k_wind, j, i+1) ) + &
0.5_wp * ABS( v_av(k_wind, j, i) + v_av(k_wind, j+1, i) ) + &
0.5_wp * ABS( w_av(k_wind, j, i) + w_av(k_wind+1, j, i) ) )
ELSE
!-- Calculate ta from Tp assuming dry adiabatic laps rate
ta = pt(k, j, i) - ( 0.0098_wp * dz(1) * ( k + .5_wp ) ) - degc_to_k
vp = -999._wp
IF ( humidity ) THEN
vp = q(k, j, i)
ENDIF
ws = ( 0.5_wp * ABS( u(k_wind, j, i) + u(k_wind, j, i+1) ) + &
0.5_wp * ABS( v(k_wind, j, i) + v(k_wind, j+1, i) ) + &
0.5_wp * ABS( w(k_wind, j, i) + w(k_wind+1, j, i) ) )
ENDIF
!-- Local air pressure
pair = surface_pressure
!
!-- Calculate water vapour pressure at saturation and convert to hPa
!-- The magnus formula is limited to temperatures up to 333.15 K to
! avoid negative values of vp_sat
IF ( vp > -998._wp ) THEN
vp_sat = 0.01_wp * magnus( MIN( ta + degc_to_k, 333.15_wp ) )
vp = vp * pair / ( vp + 0.622_wp )
IF ( vp > vp_sat ) vp = vp_sat
ENDIF
!-- local mtr value at [i,j]
tmrt = -999. !< this can be a valid result (e.g. for inside some ostacle)
IF ( radiation ) THEN
!-- Use MRT from RTM precalculated in tmrt_grid
tmrt = tmrt_grid(j,i)
ENDIF
END SUBROUTINE bio_get_thermal_index_input_ij
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate static thermal indices for any point within a 2D grid
!> time_integration.f90: 1065ff
!------------------------------------------------------------------------------!
SUBROUTINE bio_calculate_thermal_index_maps ( av )
IMPLICIT NONE
!-- Input attributes
LOGICAL, INTENT ( IN ) :: av !< Calculate based on averaged input conditions?
!-- Internal variables
INTEGER(iwp) :: i, j !< Running index
REAL(wp) :: clo !< Clothing index (no dimension)
REAL(wp) :: ta !< Air temperature (°C)
REAL(wp) :: vp !< Vapour pressure (hPa)
REAL(wp) :: ws !< Wind speed (local level) (m/s)
REAL(wp) :: pair !< Air pressure (hPa)
REAL(wp) :: perct_tmp !< Perceived temperature (°C)
REAL(wp) :: utci_tmp !< Universal thermal climate index (°C)
REAL(wp) :: pet_tmp !< Physiologically equivalent temperature (°C)
REAL(wp) :: tmrt_tmp !< Mean radiant temperature (°C)
CALL bio_init_arrays
!-- fill out the MRT 2D grid from appropriate source (RTM, RRTMG,...)
CALL bio_calculate_mrt_grid ( av )
DO i = nxl, nxr
DO j = nys, nyn
!-- Determine local input conditions
CALL bio_get_thermal_index_input_ij ( av, i, j, ta, vp, &
ws, pair, tmrt_tmp )
! tmrt_grid(j, i) = tmrt_tmp !< already set by bio_calculate_mrt_grid!
!-- Only proceed if input is available
IF ( tmrt_tmp <= -998._wp .OR. vp <= -998._wp ) THEN
pet_tmp = -999._wp !< set fail value, e.g. valid for within
perct_tmp = -999._wp !< some obstacle
utci_tmp = -999._wp
ELSE
!-- Calculate static thermal indices based on local tmrt
clo = -999._wp
IF ( bio_perct ) THEN
!-- Estimate local perceived temperature
CALL calculate_perct_static( ta, vp, ws, tmrt_tmp, pair, clo, &
perct_tmp )
ENDIF
IF ( bio_utci ) THEN
!-- Estimate local universal thermal climate index
CALL calculate_utci_static( ta, vp, ws, tmrt_tmp, &
bio_output_height, utci_tmp )
ENDIF
IF ( bio_pet ) THEN
!-- Estimate local physiologically equivalent temperature
CALL calculate_pet_static( ta, vp, ws, tmrt_tmp, pair, pet_tmp )
ENDIF
END IF
IF ( av ) THEN
!-- Write results for selected averaged indices
IF ( bio_perct_av ) THEN
perct_av(j, i) = perct_tmp
END IF
IF ( bio_utci_av ) THEN
utci_av_grid(j, i) = utci_tmp
END IF
IF ( bio_pet_av ) THEN
pet_av_grid(j, i) = pet_tmp
END IF
ELSE
!-- Write result for selected indices
IF ( bio_perct ) THEN
perct(j, i) = perct_tmp
END IF
IF ( bio_utci ) THEN
utci_grid(j, i) = utci_tmp
END IF
IF ( bio_pet ) THEN
pet_grid(j, i) = pet_tmp
END IF
END IF
END DO
END DO
END SUBROUTINE bio_calculate_thermal_index_maps
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate dynamic thermal indices (currently only iPT, but expandable)
!------------------------------------------------------------------------------!
SUBROUTINE bio_calc_ipt( ta, vp, ws, pair, tmrt, dt, energy_storage, &
t_clo, clo, actlev, age, weight, height, work, sex, ipt )
IMPLICIT NONE
!-- Input parameters
REAL(wp), INTENT ( IN ) :: ta !< Air temperature (°C)
REAL(wp), INTENT ( IN ) :: vp !< Vapour pressure (hPa)
REAL(wp), INTENT ( IN ) :: ws !< Wind speed (local level) (m/s)
REAL(wp), INTENT ( IN ) :: pair !< Air pressure (hPa)
REAL(wp), INTENT ( IN ) :: tmrt !< Mean radiant temperature (°C)
REAL(wp), INTENT ( IN ) :: dt !< Time past since last calculation (s)
REAL(wp), INTENT ( IN ) :: age !< Age of agent (y)
REAL(wp), INTENT ( IN ) :: weight !< Weight of agent (Kg)
REAL(wp), INTENT ( IN ) :: height !< Height of agent (m)
REAL(wp), INTENT ( IN ) :: work !< Mechanical workload of agent
! (without metabolism!) (W)
INTEGER(iwp), INTENT ( IN ) :: sex !< Sex of agent (1 = male, 2 = female)
!-- Both, input and output parameters
Real(wp), INTENT ( INOUT ) :: energy_storage !< Energy storage (W/m²)
Real(wp), INTENT ( INOUT ) :: t_clo !< Clothing temperature (°C)
Real(wp), INTENT ( INOUT ) :: clo !< Current clothing in sulation
Real(wp), INTENT ( INOUT ) :: actlev !< Individuals activity level
! per unit surface area (W/m²)
!-- Output parameters
REAL(wp), INTENT ( OUT ) :: ipt !< Instationary perceived temp. (°C)
!-- If clo equals the initial value, this is the initial call
IF ( clo <= -998._wp ) THEN
!-- Initialize instationary perceived temperature with personalized
! PT as an initial guess, set actlev and clo
CALL ipt_init ( age, weight, height, sex, work, actlev, clo, &
ta, vp, ws, tmrt, pair, dt, energy_storage, t_clo, &
ipt )
ELSE
!-- Estimate local instatinoary perceived temperature
CALL ipt_cycle ( ta, vp, ws, tmrt, pair, dt, energy_storage, t_clo, &
clo, actlev, work, ipt )
ENDIF
END SUBROUTINE bio_calc_ipt
!------------------------------------------------------------------------------!
! Description:
! ------------
!> SUBROUTINE for calculating UTCI Temperature (UTCI)
!> computed by a 6th order approximation
!
!> UTCI regression equation after
!> Bröde P, Fiala D, Blazejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B,
!> Havenith G (2012) Deriving the operational procedure for the Universal Thermal
!> Climate Index (UTCI). International Journal of Biometeorology 56 (3):481-494.
!> doi:10.1007/s00484-011-0454-1
!
!> original source available at:
!> www.utci.org
!------------------------------------------------------------------------------!
SUBROUTINE calculate_utci_static( ta_in, vp, ws_hag, tmrt, hag, utci )
IMPLICIT NONE
!-- Type of input of the argument list
REAL(WP), INTENT ( IN ) :: ta_in !< Local air temperature (°C)
REAL(WP), INTENT ( IN ) :: vp !< Loacl vapour pressure (hPa)
REAL(WP), INTENT ( IN ) :: ws_hag !< Incident wind speed (m/s)
REAL(WP), INTENT ( IN ) :: tmrt !< Local mean radiant temperature (°C)
REAL(WP), INTENT ( IN ) :: hag !< Height of wind speed input (m)
!-- Type of output of the argument list
REAL(wp), INTENT ( OUT ) :: utci !< Universal Thermal Climate Index (°C)
!-- Make sure precission is sufficient for regression equation
REAL(WP) :: ta !< internal air temperature (°C)
REAL(WP) :: pa !< air pressure in kPa (kPa)
REAL(WP) :: d_tmrt !< delta-tmrt (°C)
REAL(WP) :: va !< wind speed at 10 m above ground level (m/s)
REAL(WP) :: offset !< utci deviation by ta cond. exceeded (°C)
!-- Initialize
offset = 0._wp
ta = ta_in
d_tmrt = tmrt - ta_in
!-- Use vapour pressure in kpa
pa = vp / 10.0_wp
!-- Wind altitude correction from hag to 10m after Broede et al. (2012), eq.3
! z(0) is set to 0.01 according to UTCI profile definition
va = ws_hag * log ( 10.0_wp / 0.01_wp ) / log ( hag / 0.01_wp )
!-- Check if input values in range after Broede et al. (2012)
IF ( ( d_tmrt > 70._wp ) .OR. ( d_tmrt < -30._wp ) .OR. &
( vp >= 50._wp ) ) THEN
utci = -999._wp
RETURN
ENDIF
!-- Apply eq. 2 in Broede et al. (2012) for ta out of bounds
IF ( ta > 50._wp ) THEN
offset = ta - 50._wp
ta = 50._wp
ENDIF
IF ( ta < -50._wp ) THEN
offset = ta + 50._wp
ta = -50._wp
ENDIF
!-- For routine application. For wind speeds and relative
! humidity values below 0.5 m/s or 5%, respectively, the
! user is advised to use the lower bounds for the calculations.
IF ( va < 0.5_wp ) va = 0.5_wp
IF ( va > 17._wp ) va = 17._wp
!-- Calculate 6th order polynomial as approximation
utci = ta + &
( 6.07562052e-01 ) + &
( -2.27712343e-02 ) * ta + &
( 8.06470249e-04 ) * ta * ta + &
( -1.54271372e-04 ) * ta * ta * ta + &
( -3.24651735e-06 ) * ta * ta * ta * ta + &
( 7.32602852e-08 ) * ta * ta * ta * ta * ta + &
( 1.35959073e-09 ) * ta * ta * ta * ta * ta * ta + &
( -2.25836520e+00 ) * va + &
( 8.80326035e-02 ) * ta * va + &
( 2.16844454e-03 ) * ta * ta * va + &
( -1.53347087e-05 ) * ta * ta * ta * va + &
( -5.72983704e-07 ) * ta * ta * ta * ta * va + &
( -2.55090145e-09 ) * ta * ta * ta * ta * ta * va + &
( -7.51269505e-01 ) * va * va + &
( -4.08350271e-03 ) * ta * va * va + &
( -5.21670675e-05 ) * ta * ta * va * va + &
( 1.94544667e-06 ) * ta * ta * ta * va * va + &
( 1.14099531e-08 ) * ta * ta * ta * ta * va * va + &
( 1.58137256e-01 ) * va * va * va + &
( -6.57263143e-05 ) * ta * va * va * va + &
( 2.22697524e-07 ) * ta * ta * va * va * va + &
( -4.16117031e-08 ) * ta * ta * ta * va * va * va + &
( -1.27762753e-02 ) * va * va * va * va + &
( 9.66891875e-06 ) * ta * va * va * va * va + &
( 2.52785852e-09 ) * ta * ta * va * va * va * va + &
( 4.56306672e-04 ) * va * va * va * va * va + &
( -1.74202546e-07 ) * ta * va * va * va * va * va + &
( -5.91491269e-06 ) * va * va * va * va * va * va + &
( 3.98374029e-01 ) * d_tmrt + &
( 1.83945314e-04 ) * ta * d_tmrt + &
( -1.73754510e-04 ) * ta * ta * d_tmrt + &
( -7.60781159e-07 ) * ta * ta * ta * d_tmrt + &
( 3.77830287e-08 ) * ta * ta * ta * ta * d_tmrt + &
( 5.43079673e-10 ) * ta * ta * ta * ta * ta * d_tmrt + &
( -2.00518269e-02 ) * va * d_tmrt + &
( 8.92859837e-04 ) * ta * va * d_tmrt + &
( 3.45433048e-06 ) * ta * ta * va * d_tmrt + &
( -3.77925774e-07 ) * ta * ta * ta * va * d_tmrt + &
( -1.69699377e-09 ) * ta * ta * ta * ta * va * d_tmrt + &
( 1.69992415e-04 ) * va * va * d_tmrt + &
( -4.99204314e-05 ) * ta * va * va * d_tmrt + &
( 2.47417178e-07 ) * ta * ta * va * va * d_tmrt + &
( 1.07596466e-08 ) * ta * ta * ta * va * va * d_tmrt + &
( 8.49242932e-05 ) * va * va * va * d_tmrt + &
( 1.35191328e-06 ) * ta * va * va * va * d_tmrt + &
( -6.21531254e-09 ) * ta * ta * va * va * va * d_tmrt + &
( -4.99410301e-06 ) * va * va * va * va * d_tmrt + &
( -1.89489258e-08 ) * ta * va * va * va * va * d_tmrt + &
( 8.15300114e-08 ) * va * va * va * va * va * d_tmrt + &
( 7.55043090e-04 ) * d_tmrt * d_tmrt + &
( -5.65095215e-05 ) * ta * d_tmrt * d_tmrt + &
( -4.52166564e-07 ) * ta * ta * d_tmrt * d_tmrt + &
( 2.46688878e-08 ) * ta * ta * ta * d_tmrt * d_tmrt + &
( 2.42674348e-10 ) * ta * ta * ta * ta * d_tmrt * d_tmrt + &
( 1.54547250e-04 ) * va * d_tmrt * d_tmrt + &
( 5.24110970e-06 ) * ta * va * d_tmrt * d_tmrt + &
( -8.75874982e-08 ) * ta * ta * va * d_tmrt * d_tmrt + &
( -1.50743064e-09 ) * ta * ta * ta * va * d_tmrt * d_tmrt + &
( -1.56236307e-05 ) * va * va * d_tmrt * d_tmrt + &
( -1.33895614e-07 ) * ta * va * va * d_tmrt * d_tmrt + &
( 2.49709824e-09 ) * ta * ta * va * va * d_tmrt * d_tmrt + &
( 6.51711721e-07 ) * va * va * va * d_tmrt * d_tmrt + &
( 1.94960053e-09 ) * ta * va * va * va * d_tmrt * d_tmrt + &
( -1.00361113e-08 ) * va * va * va * va * d_tmrt * d_tmrt + &
( -1.21206673e-05 ) * d_tmrt * d_tmrt * d_tmrt + &
( -2.18203660e-07 ) * ta * d_tmrt * d_tmrt * d_tmrt + &
( 7.51269482e-09 ) * ta * ta * d_tmrt * d_tmrt * d_tmrt + &
( 9.79063848e-11 ) * ta * ta * ta * d_tmrt * d_tmrt * d_tmrt + &
( 1.25006734e-06 ) * va * d_tmrt * d_tmrt * d_tmrt + &
( -1.81584736e-09 ) * ta * va * d_tmrt * d_tmrt * d_tmrt + &
( -3.52197671e-10 ) * ta * ta * va * d_tmrt * d_tmrt * d_tmrt + &
( -3.36514630e-08 ) * va * va * d_tmrt * d_tmrt * d_tmrt + &
( 1.35908359e-10 ) * ta * va * va * d_tmrt * d_tmrt * d_tmrt + &
( 4.17032620e-10 ) * va * va * va * d_tmrt * d_tmrt * d_tmrt + &
( -1.30369025e-09 ) * d_tmrt * d_tmrt * d_tmrt * d_tmrt + &
( 4.13908461e-10 ) * ta * d_tmrt * d_tmrt * d_tmrt * d_tmrt + &
( 9.22652254e-12 ) * ta * ta * d_tmrt * d_tmrt * d_tmrt * d_tmrt + &
( -5.08220384e-09 ) * va * d_tmrt * d_tmrt * d_tmrt * d_tmrt + &
( -2.24730961e-11 ) * ta * va * d_tmrt * d_tmrt * d_tmrt * d_tmrt + &
( 1.17139133e-10 ) * va * va * d_tmrt * d_tmrt * d_tmrt * d_tmrt + &
( 6.62154879e-10 ) * d_tmrt * d_tmrt * d_tmrt * d_tmrt * d_tmrt + &
( 4.03863260e-13 ) * ta * d_tmrt * d_tmrt * d_tmrt * d_tmrt * d_tmrt + &
( 1.95087203e-12 ) * va * d_tmrt * d_tmrt * d_tmrt * d_tmrt * d_tmrt + &
( -4.73602469e-12 ) * d_tmrt * d_tmrt * d_tmrt * d_tmrt * d_tmrt * &
d_tmrt + &
( 5.12733497e+00 ) * pa + &
( -3.12788561e-01 ) * ta * pa + &
( -1.96701861e-02 ) * ta * ta * pa + &
( 9.99690870e-04 ) * ta * ta * ta * pa + &
( 9.51738512e-06 ) * ta * ta * ta * ta * pa + &
( -4.66426341e-07 ) * ta * ta * ta * ta * ta * pa + &
( 5.48050612e-01 ) * va * pa + &
( -3.30552823e-03 ) * ta * va * pa + &
( -1.64119440e-03 ) * ta * ta * va * pa + &
( -5.16670694e-06 ) * ta * ta * ta * va * pa + &
( 9.52692432e-07 ) * ta * ta * ta * ta * va * pa + &
( -4.29223622e-02 ) * va * va * pa + &
( 5.00845667e-03 ) * ta * va * va * pa + &
( 1.00601257e-06 ) * ta * ta * va * va * pa + &
( -1.81748644e-06 ) * ta * ta * ta * va * va * pa + &
( -1.25813502e-03 ) * va * va * va * pa + &
( -1.79330391e-04 ) * ta * va * va * va * pa + &
( 2.34994441e-06 ) * ta * ta * va * va * va * pa + &
( 1.29735808e-04 ) * va * va * va * va * pa + &
( 1.29064870e-06 ) * ta * va * va * va * va * pa + &
( -2.28558686e-06 ) * va * va * va * va * va * pa + &
( -3.69476348e-02 ) * d_tmrt * pa + &
( 1.62325322e-03 ) * ta * d_tmrt * pa + &
( -3.14279680e-05 ) * ta * ta * d_tmrt * pa + &
( 2.59835559e-06 ) * ta * ta * ta * d_tmrt * pa + &
( -4.77136523e-08 ) * ta * ta * ta * ta * d_tmrt * pa + &
( 8.64203390e-03 ) * va * d_tmrt * pa + &
( -6.87405181e-04 ) * ta * va * d_tmrt * pa + &
( -9.13863872e-06 ) * ta * ta * va * d_tmrt * pa + &
( 5.15916806e-07 ) * ta * ta * ta * va * d_tmrt * pa + &
( -3.59217476e-05 ) * va * va * d_tmrt * pa + &
( 3.28696511e-05 ) * ta * va * va * d_tmrt * pa + &
( -7.10542454e-07 ) * ta * ta * va * va * d_tmrt * pa + &
( -1.24382300e-05 ) * va * va * va * d_tmrt * pa + &
( -7.38584400e-09 ) * ta * va * va * va * d_tmrt * pa + &
( 2.20609296e-07 ) * va * va * va * va * d_tmrt * pa + &
( -7.32469180e-04 ) * d_tmrt * d_tmrt * pa + &
( -1.87381964e-05 ) * ta * d_tmrt * d_tmrt * pa + &
( 4.80925239e-06 ) * ta * ta * d_tmrt * d_tmrt * pa + &
( -8.75492040e-08 ) * ta * ta * ta * d_tmrt * d_tmrt * pa + &
( 2.77862930e-05 ) * va * d_tmrt * d_tmrt * pa + &
( -5.06004592e-06 ) * ta * va * d_tmrt * d_tmrt * pa + &
( 1.14325367e-07 ) * ta * ta * va * d_tmrt * d_tmrt * pa + &
( 2.53016723e-06 ) * va * va * d_tmrt * d_tmrt * pa + &
( -1.72857035e-08 ) * ta * va * va * d_tmrt * d_tmrt * pa + &
( -3.95079398e-08 ) * va * va * va * d_tmrt * d_tmrt * pa + &
( -3.59413173e-07 ) * d_tmrt * d_tmrt * d_tmrt * pa + &
( 7.04388046e-07 ) * ta * d_tmrt * d_tmrt * d_tmrt * pa + &
( -1.89309167e-08 ) * ta * ta * d_tmrt * d_tmrt * d_tmrt * pa + &
( -4.79768731e-07 ) * va * d_tmrt * d_tmrt * d_tmrt * pa + &
( 7.96079978e-09 ) * ta * va * d_tmrt * d_tmrt * d_tmrt * pa + &
( 1.62897058e-09 ) * va * va * d_tmrt * d_tmrt * d_tmrt * pa + &
( 3.94367674e-08 ) * d_tmrt * d_tmrt * d_tmrt * d_tmrt * pa + &
( -1.18566247e-09 ) * ta * d_tmrt * d_tmrt * d_tmrt * d_tmrt * pa + &
( 3.34678041e-10 ) * va * d_tmrt * d_tmrt * d_tmrt * d_tmrt * pa + &
( -1.15606447e-10 ) * d_tmrt * d_tmrt * d_tmrt * d_tmrt * d_tmrt * pa + &
( -2.80626406e+00 ) * pa * pa + &
( 5.48712484e-01 ) * ta * pa * pa + &
( -3.99428410e-03 ) * ta * ta * pa * pa + &
( -9.54009191e-04 ) * ta * ta * ta * pa * pa + &
( 1.93090978e-05 ) * ta * ta * ta * ta * pa * pa + &
( -3.08806365e-01 ) * va * pa * pa + &
( 1.16952364e-02 ) * ta * va * pa * pa + &
( 4.95271903e-04 ) * ta * ta * va * pa * pa + &
( -1.90710882e-05 ) * ta * ta * ta * va * pa * pa + &
( 2.10787756e-03 ) * va * va * pa * pa + &
( -6.98445738e-04 ) * ta * va * va * pa * pa + &
( 2.30109073e-05 ) * ta * ta * va * va * pa * pa + &
( 4.17856590e-04 ) * va * va * va * pa * pa + &
( -1.27043871e-05 ) * ta * va * va * va * pa * pa + &
( -3.04620472e-06 ) * va * va * va * va * pa * pa + &
( 5.14507424e-02 ) * d_tmrt * pa * pa + &
( -4.32510997e-03 ) * ta * d_tmrt * pa * pa + &
( 8.99281156e-05 ) * ta * ta * d_tmrt * pa * pa + &
( -7.14663943e-07 ) * ta * ta * ta * d_tmrt * pa * pa + &
( -2.66016305e-04 ) * va * d_tmrt * pa * pa + &
( 2.63789586e-04 ) * ta * va * d_tmrt * pa * pa + &
( -7.01199003e-06 ) * ta * ta * va * d_tmrt * pa * pa + &
( -1.06823306e-04 ) * va * va * d_tmrt * pa * pa + &
( 3.61341136e-06 ) * ta * va * va * d_tmrt * pa * pa + &
( 2.29748967e-07 ) * va * va * va * d_tmrt * pa * pa + &
( 3.04788893e-04 ) * d_tmrt * d_tmrt * pa * pa + &
( -6.42070836e-05 ) * ta * d_tmrt * d_tmrt * pa * pa + &
( 1.16257971e-06 ) * ta * ta * d_tmrt * d_tmrt * pa * pa + &
( 7.68023384e-06 ) * va * d_tmrt * d_tmrt * pa * pa + &
( -5.47446896e-07 ) * ta * va * d_tmrt * d_tmrt * pa * pa + &
( -3.59937910e-08 ) * va * va * d_tmrt * d_tmrt * pa * pa + &
( -4.36497725e-06 ) * d_tmrt * d_tmrt * d_tmrt * pa * pa + &
( 1.68737969e-07 ) * ta * d_tmrt * d_tmrt * d_tmrt * pa * pa + &
( 2.67489271e-08 ) * va * d_tmrt * d_tmrt * d_tmrt * pa * pa + &
( 3.23926897e-09 ) * d_tmrt * d_tmrt * d_tmrt * d_tmrt * pa * pa + &
( -3.53874123e-02 ) * pa * pa * pa + &
( -2.21201190e-01 ) * ta * pa * pa * pa + &
( 1.55126038e-02 ) * ta * ta * pa * pa * pa + &
( -2.63917279e-04 ) * ta * ta * ta * pa * pa * pa + &
( 4.53433455e-02 ) * va * pa * pa * pa + &
( -4.32943862e-03 ) * ta * va * pa * pa * pa + &
( 1.45389826e-04 ) * ta * ta * va * pa * pa * pa + &
( 2.17508610e-04 ) * va * va * pa * pa * pa + &
( -6.66724702e-05 ) * ta * va * va * pa * pa * pa + &
( 3.33217140e-05 ) * va * va * va * pa * pa * pa + &
( -2.26921615e-03 ) * d_tmrt * pa * pa * pa + &
( 3.80261982e-04 ) * ta * d_tmrt * pa * pa * pa + &
( -5.45314314e-09 ) * ta * ta * d_tmrt * pa * pa * pa + &
( -7.96355448e-04 ) * va * d_tmrt * pa * pa * pa + &
( 2.53458034e-05 ) * ta * va * d_tmrt * pa * pa * pa + &
( -6.31223658e-06 ) * va * va * d_tmrt * pa * pa * pa + &
( 3.02122035e-04 ) * d_tmrt * d_tmrt * pa * pa * pa + &
( -4.77403547e-06 ) * ta * d_tmrt * d_tmrt * pa * pa * pa + &
( 1.73825715e-06 ) * va * d_tmrt * d_tmrt * pa * pa * pa + &
( -4.09087898e-07 ) * d_tmrt * d_tmrt * d_tmrt * pa * pa * pa + &
( 6.14155345e-01 ) * pa * pa * pa * pa + &
( -6.16755931e-02 ) * ta * pa * pa * pa * pa + &
( 1.33374846e-03 ) * ta * ta * pa * pa * pa * pa + &
( 3.55375387e-03 ) * va * pa * pa * pa * pa + &
( -5.13027851e-04 ) * ta * va * pa * pa * pa * pa + &
( 1.02449757e-04 ) * va * va * pa * pa * pa * pa + &
( -1.48526421e-03 ) * d_tmrt * pa * pa * pa * pa + &
( -4.11469183e-05 ) * ta * d_tmrt * pa * pa * pa * pa + &
( -6.80434415e-06 ) * va * d_tmrt * pa * pa * pa * pa + &
( -9.77675906e-06 ) * d_tmrt * d_tmrt * pa * pa * pa * pa + &
( 8.82773108e-02 ) * pa * pa * pa * pa * pa + &
( -3.01859306e-03 ) * ta * pa * pa * pa * pa * pa + &
( 1.04452989e-03 ) * va * pa * pa * pa * pa * pa + &
( 2.47090539e-04 ) * d_tmrt * pa * pa * pa * pa * pa + &
( 1.48348065e-03 ) * pa * pa * pa * pa * pa * pa
!-- Consider offset in result
utci = utci + offset
END SUBROUTINE calculate_utci_static
!------------------------------------------------------------------------------!
! Description:
! ------------
!> calculate_perct_static: Estimation of perceived temperature (PT, degC)
!> Value of perct is the Perceived Temperature, degree centigrade
!------------------------------------------------------------------------------!
SUBROUTINE calculate_perct_static( ta, vp, ws, tmrt, pair, clo, perct )
IMPLICIT NONE
!-- Type of input of the argument list
REAL(wp), INTENT ( IN ) :: ta !< Local air temperature (degC)
REAL(wp), INTENT ( IN ) :: vp !< Local vapour pressure (hPa)
REAL(wp), INTENT ( IN ) :: tmrt !< Local mean radiant temperature (degC)
REAL(wp), INTENT ( IN ) :: ws !< Local wind velocitry (m/s)
REAL(wp), INTENT ( IN ) :: pair !< Local barometric air pressure (hPa)
!-- Type of output of the argument list
REAL(wp), INTENT ( OUT ) :: perct !< Perceived temperature (degC)
REAL(wp), INTENT ( OUT ) :: clo !< Clothing index (dimensionless)
!-- Parameters for standard "Klima-Michel"
REAL(wp), PARAMETER :: eta = 0._wp !< Mechanical work efficiency for walking on flat ground (compare to Fanger (1972) pp 24f)
REAL(wp), PARAMETER :: actlev = 134.6862_wp !< Workload by activity per standardized surface (A_Du)
!-- Type of program variables
REAL(wp), PARAMETER :: eps = 0.0005 !< Accuracy in clothing insulation (clo) for evaluation the root of Fanger's PMV (pmva=0)
REAL(wp) :: sclo !< summer clothing insulation
REAL(wp) :: wclo !< winter clothing insulation
REAL(wp) :: d_pmv !< PMV deviation (dimensionless --> PMV)
REAL(wp) :: svp_ta !< saturation vapor pressure (hPa)
REAL(wp) :: sult_lim !< threshold for sultrieness (hPa)
REAL(wp) :: dgtcm !< Mean deviation dependent on perct
REAL(wp) :: dgtcstd !< Mean deviation plus its standard deviation
REAL(wp) :: clon !< clo for neutral conditions (clo)
REAL(wp) :: ireq_minimal !< Minimal required clothing insulation (clo)
! REAL(wp) :: clo_fanger !< clo for fanger subroutine, unused
REAL(wp) :: pmv_w !< Fangers predicted mean vote for winter clothing
REAL(wp) :: pmv_s !< Fangers predicted mean vote for summer clothing
REAL(wp) :: pmva !< adjusted predicted mean vote
REAL(wp) :: ptc !< perceived temp. for cold conditions (°C)
REAL(wp) :: d_std !< factor to threshold for sultriness
REAL(wp) :: pmvs !< pred. mean vote considering sultrieness
REAL(wp) :: top !< Gagge's operative temperatures (°C)
INTEGER(iwp) :: ncount !< running index
INTEGER(iwp) :: nerr_cold !< error number (cold conditions)
INTEGER(iwp) :: nerr !< error number
LOGICAL :: sultrieness
!-- Initialise
perct = 9999.0_wp
nerr = 0_iwp
ncount = 0_iwp
sultrieness = .FALSE.
!-- Tresholds: clothing insulation (account for model inaccuracies)
! summer clothing
sclo = 0.44453_wp
! winter clothing
wclo = 1.76267_wp
!-- decision: firstly calculate for winter or summer clothing
IF ( ta <= 10._wp ) THEN
!-- First guess: winter clothing insulation: cold stress
clo = wclo
CALL fanger ( ta, tmrt, vp, ws, pair, clo, actlev, eta, pmva, top )
pmv_w = pmva
IF ( pmva > 0._wp ) THEN
!-- Case summer clothing insulation: heat load ?
clo = sclo
CALL fanger ( ta, tmrt, vp, ws, pair, clo, actlev, eta, pmva, &
top )
pmv_s = pmva
IF ( pmva <= 0._wp ) THEN
!-- Case: comfort achievable by varying clothing insulation
!-- Between winter and summer set values
CALL iso_ridder ( ta, tmrt, vp, ws, pair, actlev, eta, sclo, &
pmv_s, wclo, pmv_w, eps, pmva, top, ncount, clo )
IF ( ncount < 0_iwp ) THEN
nerr = -1_iwp
RETURN
ENDIF
ELSE IF ( pmva > 0.06_wp ) THEN
clo = 0.5_wp
CALL fanger ( ta, tmrt, vp, ws, pair, clo, actlev, eta, &
pmva, top )
ENDIF
ELSE IF ( pmva < -0.11_wp ) THEN
clo = 1.75_wp
CALL fanger ( ta, tmrt, vp, ws, pair, clo, actlev, eta, pmva, &
top )
ENDIF
ELSE
!-- First guess: summer clothing insulation: heat load
clo = sclo
CALL fanger ( ta, tmrt, vp, ws, pair, clo, actlev, eta, pmva, top )
pmv_s = pmva
IF ( pmva < 0._wp ) THEN
!-- Case winter clothing insulation: cold stress ?
clo = wclo
CALL fanger ( ta, tmrt, vp, ws, pair, clo, actlev, eta, pmva, &
top )
pmv_w = pmva
IF ( pmva >= 0._wp ) THEN
!-- Case: comfort achievable by varying clothing insulation
! between winter and summer set values
CALL iso_ridder ( ta, tmrt, vp, ws, pair, actlev, eta, sclo, &
pmv_s, wclo, pmv_w, eps, pmva, top, ncount, clo )
IF ( ncount < 0_iwp ) THEN
nerr = -1_iwp
RETURN
ENDIF
ELSE IF ( pmva < -0.11_wp ) THEN
clo = 1.75_wp
CALL fanger ( ta, tmrt, vp, ws, pair, clo, actlev, eta, &
pmva, top )
ENDIF
ELSE IF ( pmva > 0.06_wp ) THEN
clo = 0.5_wp
CALL fanger ( ta, tmrt, vp, ws, pair, clo, actlev, eta, pmva, &
top )
ENDIF
ENDIF
!-- Determine perceived temperature by regression equation + adjustments
pmvs = pmva
CALL perct_regression ( pmva, clo, perct )
ptc = perct
IF ( clo >= 1.75_wp .AND. pmva <= -0.11_wp ) THEN
!-- Adjust for cold conditions according to Gagge 1986
CALL dpmv_cold ( pmva, ta, ws, tmrt, nerr_cold, d_pmv )
IF ( nerr_cold > 0_iwp ) nerr = -5_iwp
pmvs = pmva - d_pmv
IF ( pmvs > -0.11_wp ) THEN
d_pmv = 0._wp
pmvs = -0.11_wp
ENDIF
CALL perct_regression ( pmvs, clo, perct )
ENDIF
! clo_fanger = clo
clon = clo
IF ( clo > 0.5_wp .AND. perct <= 8.73_wp ) THEN
!-- Required clothing insulation (ireq) is exclusively defined for
! operative temperatures (top) less 10 (C) for a
! reference wind of 0.2 m/s according to 8.73 (C) for 0.1 m/s
clon = ireq_neutral ( perct, ireq_minimal, nerr )
clo = clon
ENDIF
CALL calc_sultr ( ptc, dgtcm, dgtcstd, sult_lim )
sultrieness = .FALSE.
d_std = -99._wp
IF ( pmva > 0.06_wp .AND. clo <= 0.5_wp ) THEN
!-- Adjust for warm/humid conditions according to Gagge 1986
CALL saturation_vapor_pressure ( ta, svp_ta )
d_pmv = deltapmv ( pmva, ta, vp, svp_ta, tmrt, ws, nerr )
pmvs = pmva + d_pmv
CALL perct_regression ( pmvs, clo, perct )
IF ( sult_lim < 99._wp ) THEN
IF ( (perct - ptc) > sult_lim ) sultrieness = .TRUE.
!-- Set factor to threshold for sultriness
IF ( dgtcstd /= 0_iwp ) THEN
d_std = ( ( perct - ptc ) - dgtcm ) / dgtcstd
ENDIF
ENDIF
ENDIF
END SUBROUTINE calculate_perct_static
!------------------------------------------------------------------------------!
! Description:
! ------------
!> The SUBROUTINE calculates the saturation water vapour pressure
!> (hPa = hecto Pascal) for a given temperature ta (degC).
!> For example, ta can be the air temperature or the dew point temperature.
!------------------------------------------------------------------------------!
SUBROUTINE saturation_vapor_pressure( ta, svp_ta )
IMPLICIT NONE
REAL(wp), INTENT ( IN ) :: ta !< ambient air temperature (degC)
REAL(wp), INTENT ( OUT ) :: svp_ta !< saturation water vapour pressure (hPa)
REAL(wp) :: b
REAL(wp) :: c
IF ( ta < 0._wp ) THEN
!-- ta < 0 (degC): saturation water vapour pressure over ice
b = 17.84362_wp
c = 245.425_wp
ELSE
!-- ta >= 0 (degC): saturation water vapour pressure over water
b = 17.08085_wp
c = 234.175_wp
ENDIF
!-- Saturation water vapour pressure
svp_ta = 6.1078_wp * EXP ( b * ta / ( c + ta ) )
END SUBROUTINE saturation_vapor_pressure
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Find the clothing insulation value clo_res (clo) to make Fanger's Predicted
!> Mean Vote (PMV) equal comfort (pmva=0) for actual meteorological conditions
!> (ta,tmrt, vp, ws, pair) and values of individual's activity level
!------------------------------------------------------------------------------!
SUBROUTINE iso_ridder( ta, tmrt, vp, ws, pair, actlev, eta, sclo, &
pmv_s, wclo, pmv_w, eps, pmva, top, nerr, &
clo_res )
IMPLICIT NONE
!-- Input variables of argument list:
REAL(wp), INTENT ( IN ) :: ta !< Ambient temperature (degC)
REAL(wp), INTENT ( IN ) :: tmrt !< Mean radiant temperature (degC)
REAL(wp), INTENT ( IN ) :: vp !< Water vapour pressure (hPa)
REAL(wp), INTENT ( IN ) :: ws !< Wind speed (m/s) 1 m above ground
REAL(wp), INTENT ( IN ) :: pair !< Barometric pressure (hPa)
REAL(wp), INTENT ( IN ) :: actlev !< Individuals activity level per unit surface area (W/m2)
REAL(wp), INTENT ( IN ) :: eta !< Individuals work efficiency (dimensionless)
REAL(wp), INTENT ( IN ) :: sclo !< Lower threshold of bracketing clothing insulation (clo)
REAL(wp), INTENT ( IN ) :: wclo !< Upper threshold of bracketing clothing insulation (clo)
REAL(wp), INTENT ( IN ) :: eps !< (0.05) accuracy in clothing insulation (clo) for
! evaluation the root of Fanger's PMV (pmva=0)
REAL(wp), INTENT ( IN ) :: pmv_w !< Fanger's PMV corresponding to wclo
REAL(wp), INTENT ( IN ) :: pmv_s !< Fanger's PMV corresponding to sclo
! Output variables of argument list:
REAL(wp), INTENT ( OUT ) :: pmva !< 0 (set to zero, because clo is evaluated for comfort)
REAL(wp), INTENT ( OUT ) :: top !< Operative temperature (degC) at found root of Fanger's PMV
REAL(wp), INTENT ( OUT ) :: clo_res !< Resulting clothing insulation value (clo)
INTEGER(iwp), INTENT ( OUT ) :: nerr !< Error status / quality flag
! nerr >= 0, o.k., and nerr is the number of iterations for
! convergence
! nerr = -1: error = malfunction of Ridder's convergence method
! nerr = -2: error = maximum iterations (max_iteration) exceeded
! nerr = -3: error = root not bracketed between sclo and wclo
!-- Type of program variables
INTEGER(iwp), PARAMETER :: max_iteration = 15_iwp !< max number of iterations
REAL(wp), PARAMETER :: guess_0 = -1.11e30_wp !< initial guess
REAL(wp) :: x_ridder !< current guess for clothing insulation (clo)
REAL(wp) :: clo_lower !< lower limit of clothing insulation (clo)
REAL(wp) :: clo_upper !< upper limit of clothing insulation (clo)
REAL(wp) :: x_lower !< lower guess for clothing insulation (clo)
REAL(wp) :: x_upper !< upper guess for clothing insulation (clo)
REAL(wp) :: x_average !< average of x_lower and x_upper (clo)
REAL(wp) :: x_new !< preliminary result for clothing insulation (clo)
REAL(wp) :: y_lower !< predicted mean vote for summer clothing
REAL(wp) :: y_upper !< predicted mean vote for winter clothing
REAL(wp) :: y_average !< average of y_lower and y_upper
REAL(wp) :: y_new !< preliminary result for pred. mean vote
REAL(wp) :: sroot !< sqrt of PMV-guess
INTEGER(iwp) :: j !< running index
!-- Initialise
nerr = 0_iwp
!-- Set pmva = 0 (comfort): Root of PMV depending on clothing insulation
pmva = 0._wp
clo_lower = sclo
y_lower = pmv_s
clo_upper = wclo
y_upper = pmv_w
IF ( ( y_lower > 0._wp .AND. y_upper < 0._wp ) .OR. &
( y_lower < 0._wp .AND. y_upper > 0._wp ) ) THEN
x_lower = clo_lower
x_upper = clo_upper
x_ridder = guess_0
DO j = 1_iwp, max_iteration
x_average = 0.5_wp * ( x_lower + x_upper )
CALL fanger ( ta, tmrt, vp, ws, pair, x_average, actlev, eta, &
y_average, top )
sroot = SQRT ( y_average**2 - y_lower * y_upper )
IF ( sroot == 0._wp ) THEN
clo_res = x_average
nerr = j
RETURN
ENDIF
x_new = x_average + ( x_average - x_lower ) * &
( SIGN ( 1._wp, y_lower - y_upper ) * y_average / sroot )
IF ( ABS ( x_new - x_ridder ) <= eps ) THEN
clo_res = x_ridder
nerr = j
RETURN
ENDIF
x_ridder = x_new
CALL fanger ( ta, tmrt, vp, ws, pair, x_ridder, actlev, eta, &
y_new, top )
IF ( y_new == 0._wp ) THEN
clo_res = x_ridder
nerr = j
RETURN
ENDIF
IF ( SIGN ( y_average, y_new ) /= y_average ) THEN
x_lower = x_average
y_lower = y_average
x_upper = x_ridder
y_upper = y_new
ELSE IF ( SIGN ( y_lower, y_new ) /= y_lower ) THEN
x_upper = x_ridder
y_upper = y_new
ELSE IF ( SIGN ( y_upper, y_new ) /= y_upper ) THEN
x_lower = x_ridder
y_lower = y_new
ELSE
!-- Never get here in x_ridder: singularity in y
nerr = -1_iwp
clo_res = x_ridder
RETURN
ENDIF
IF ( ABS ( x_upper - x_lower ) <= eps ) THEN
clo_res = x_ridder
nerr = j
RETURN
ENDIF
ENDDO
!-- x_ridder exceed maximum iterations
nerr = -2_iwp
clo_res = y_new
RETURN
ELSE IF ( y_lower == 0. ) THEN
x_ridder = clo_lower
ELSE IF ( y_upper == 0. ) THEN
x_ridder = clo_upper
ELSE
!-- x_ridder not bracketed by u_clo and o_clo
nerr = -3_iwp
clo_res = x_ridder
RETURN
ENDIF
END SUBROUTINE iso_ridder
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Regression relations between perceived temperature (perct) and (adjusted)
!> PMV. The regression presumes the Klima-Michel settings for reference
!> individual and reference environment.
!------------------------------------------------------------------------------!
SUBROUTINE perct_regression( pmv, clo, perct )
IMPLICIT NONE
REAL(wp), INTENT ( IN ) :: pmv !< Fangers predicted mean vote (dimensionless)
REAL(wp), INTENT ( IN ) :: clo !< clothing insulation index (clo)
REAL(wp), INTENT ( OUT ) :: perct !< perct (degC) corresponding to given PMV / clo
IF ( pmv <= -0.11_wp ) THEN
perct = 5.805_wp + 12.6784_wp * pmv
ELSE
IF ( pmv >= + 0.01_wp ) THEN
perct = 16.826_wp + 6.163_wp * pmv
ELSE
perct = 21.258_wp - 9.558_wp * clo
ENDIF
ENDIF
END SUBROUTINE perct_regression
!------------------------------------------------------------------------------!
! Description:
! ------------
!> FANGER.F90
!>
!> SI-VERSION: ACTLEV W m-2, DAMPFDRUCK hPa
!> Berechnet das aktuelle Predicted Mean Vote nach Fanger
!>
!> The case of free convection (ws < 0.1 m/s) is dealt with ws = 0.1 m/s
!------------------------------------------------------------------------------!
SUBROUTINE fanger( ta, tmrt, pa, in_ws, pair, in_clo, actlev, eta, pmva, top )
IMPLICIT NONE
!-- Input variables of argument list:
REAL(wp), INTENT ( IN ) :: ta !< Ambient air temperature (degC)
REAL(wp), INTENT ( IN ) :: tmrt !< Mean radiant temperature (degC)
REAL(wp), INTENT ( IN ) :: pa !< Water vapour pressure (hPa)
REAL(wp), INTENT ( IN ) :: pair !< Barometric pressure (hPa) at site
REAL(wp), INTENT ( IN ) :: in_ws !< Wind speed (m/s) 1 m above ground
REAL(wp), INTENT ( IN ) :: in_clo !< Clothing insulation (clo)
REAL(wp), INTENT ( IN ) :: actlev !< Individuals activity level per unit surface area (W/m2)
REAL(wp), INTENT ( IN ) :: eta !< Individuals mechanical work efficiency (dimensionless)
!-- Output variables of argument list:
REAL(wp), INTENT ( OUT ) :: pmva !< Actual Predicted Mean Vote (PMV,
! dimensionless) according to Fanger corresponding to meteorological
! (ta,tmrt,pa,ws,pair) and individual variables (clo, actlev, eta)
REAL(wp), INTENT ( OUT ) :: top !< operative temperature (degC)
!-- Internal variables
REAL(wp) :: f_cl !< Increase in surface due to clothing (factor)
REAL(wp) :: heat_convection !< energy loss by autocnvection (W)
REAL(wp) :: activity !< persons activity (must stay == actlev, W)
REAL(wp) :: t_skin_aver !< average skin temperature (°C)
REAL(wp) :: bc !< preliminary result storage
REAL(wp) :: cc !< preliminary result storage
REAL(wp) :: dc !< preliminary result storage
REAL(wp) :: ec !< preliminary result storage
REAL(wp) :: gc !< preliminary result storage
REAL(wp) :: t_clothing !< clothing temperature (°C)
REAL(wp) :: hr !< radiational heat resistence
REAL(wp) :: clo !< clothing insulation index (clo)
REAL(wp) :: ws !< wind speed (m/s)
REAL(wp) :: z1 !< Empiric factor for the adaption of the heat
! ballance equation to the psycho-physical scale (Equ. 40 in FANGER)
REAL(wp) :: z2 !< Water vapour diffution through the skin
REAL(wp) :: z3 !< Sweat evaporation from the skin surface
REAL(wp) :: z4 !< Loss of latent heat through respiration
REAL(wp) :: z5 !< Loss of radiational heat
REAL(wp) :: z6 !< Heat loss through forced convection
INTEGER(iwp) :: i !< running index
!-- Clo must be > 0. to avoid div. by 0!
clo = in_clo
IF ( clo <= 0._wp ) clo = .001_wp
!-- f_cl = Increase in surface due to clothing
f_cl = 1._wp + .15_wp * clo
!-- Case of free convection (ws < 0.1 m/s ) not considered
ws = in_ws
IF ( ws < .1_wp ) THEN
ws = .1_wp
ENDIF
!-- Heat_convection = forced convection
heat_convection = 12.1_wp * SQRT ( ws * pair / 1013.25_wp )
!-- Activity = inner heat produktion per standardized surface
activity = actlev * ( 1._wp - eta )
!-- T_skin_aver = average skin temperature
t_skin_aver = 35.7_wp - .0275_wp * activity
!-- Calculation of constants for evaluation below
bc = .155_wp * clo * 3.96_wp * 10._wp**( -8 ) * f_cl
cc = f_cl * heat_convection
ec = .155_wp * clo
dc = ( 1._wp + ec * cc ) / bc
gc = ( t_skin_aver + bc * ( tmrt + degc_to_k )**4 + ec * cc * ta ) / bc
!-- Calculation of clothing surface temperature (t_clothing) based on
! Newton-approximation with air temperature as initial guess
t_clothing = ta
DO i = 1, 3
t_clothing = t_clothing - ( ( t_clothing + degc_to_k )**4 + t_clothing &
* dc - gc ) / ( 4._wp * ( t_clothing + degc_to_k )**3 + dc )
ENDDO
!-- Empiric factor for the adaption of the heat ballance equation
! to the psycho-physical scale (Equ. 40 in FANGER)
z1 = ( .303_wp * EXP ( -.036_wp * actlev ) + .0275_wp )
!-- Water vapour diffution through the skin
z2 = .31_wp * ( 57.3_wp - .07_wp * activity-pa )
!-- Sweat evaporation from the skin surface
z3 = .42_wp * ( activity - 58._wp )
!-- Loss of latent heat through respiration
z4 = .0017_wp * actlev * ( 58.7_wp - pa ) + .0014_wp * actlev * &
( 34._wp - ta )
!-- Loss of radiational heat
z5 = 3.96e-8_wp * f_cl * ( ( t_clothing + degc_to_k )**4 - ( tmrt + &
degc_to_k )**4 )
IF ( ABS ( t_clothing - tmrt ) > 0._wp ) THEN
hr = z5 / f_cl / ( t_clothing - tmrt )
ELSE
hr = 0._wp
ENDIF
!-- Heat loss through forced convection cc*(t_clothing-TT)
z6 = cc * ( t_clothing - ta )
!-- Predicted Mean Vote
pmva = z1 * ( activity - z2 - z3 - z4 - z5 - z6 )
!-- Operative temperatur
top = ( hr * tmrt + heat_convection * ta ) / ( hr + heat_convection )
END SUBROUTINE fanger
!------------------------------------------------------------------------------!
! Description:
! ------------
!> For pmva > 0 and clo =0.5 the increment (deltapmv) is calculated
!> that converts pmva into Gagge's et al. (1986) PMV*.
!------------------------------------------------------------------------------!
REAL(wp) FUNCTION deltapmv( pmva, ta, vp, svp_ta, tmrt, ws, nerr )
IMPLICIT NONE
!-- Input variables of argument list:
REAL(wp), INTENT ( IN ) :: pmva !< Actual Predicted Mean Vote (PMV) according to Fanger
REAL(wp), INTENT ( IN ) :: ta !< Ambient temperature (degC) at screen level
REAL(wp), INTENT ( IN ) :: vp !< Water vapour pressure (hPa) at screen level
REAL(wp), INTENT ( IN ) :: svp_ta !< Saturation water vapour pressure (hPa) at ta
REAL(wp), INTENT ( IN ) :: tmrt !< Mean radiant temperature (degC) at screen level
REAL(wp), INTENT ( IN ) :: ws !< Wind speed (m/s) 1 m above ground
!-- Output variables of argument list:
INTEGER(iwp), INTENT ( OUT ) :: nerr !< Error status / quality flag
! 0 = o.k.
! -2 = pmva outside valid regression range
! -3 = rel. humidity set to 5 % or 95 %, respectively
! -4 = deltapmv set to avoid pmvs < 0
!-- Internal variable types:
REAL(wp) :: pmv !<
REAL(wp) :: pa_p50 !<
REAL(wp) :: pa !<
REAL(wp) :: apa !<
REAL(wp) :: dapa !<
REAL(wp) :: sqvel !<
REAL(wp) :: dtmrt !<
REAL(wp) :: p10 !<
REAL(wp) :: p95 !<
REAL(wp) :: gew !<
REAL(wp) :: gew2 !<
REAL(wp) :: dpmv_1 !<
REAL(wp) :: dpmv_2 !<
REAL(wp) :: pmvs !<
REAL(wp) :: bpmv(0:7) !<
REAL(wp) :: bpa_p50(0:7) !<
REAL(wp) :: bpa(0:7) !<
REAL(wp) :: bapa(0:7) !<
REAL(wp) :: bdapa(0:7) !<
REAL(wp) :: bsqvel(0:7) !<
REAL(wp) :: bta(0:7) !<
REAL(wp) :: bdtmrt(0:7) !<
REAL(wp) :: aconst(0:7) !<
INTEGER(iwp) :: nreg !<
DATA bpmv / &
-0.0556602_wp, -0.1528680_wp, -0.2336104_wp, -0.2789387_wp, -0.3551048_wp,&
-0.4304076_wp, -0.4884961_wp, -0.4897495_wp /
DATA bpa_p50 / &
-0.1607154_wp, -0.4177296_wp, -0.4120541_wp, -0.0886564_wp, +0.4285938_wp,&
+0.6281256_wp, +0.5067361_wp, +0.3965169_wp /
DATA bpa / &
+0.0580284_wp, +0.0836264_wp, +0.1009919_wp, +0.1020777_wp, +0.0898681_wp,&
+0.0839116_wp, +0.0853258_wp, +0.0866589_wp /
DATA bapa / &
-1.7838788_wp, -2.9306231_wp, -1.6350334_wp, +0.6211547_wp, +3.3918083_wp,&
+5.5521025_wp, +8.4897418_wp, +16.6265851_wp /
DATA bdapa / &
+1.6752720_wp, +2.7379504_wp, +1.2940526_wp, -1.0985759_wp, -3.9054732_wp,&
-6.0403012_wp, -8.9437119_wp, -17.0671201_wp /
DATA bsqvel / &
-0.0315598_wp, -0.0286272_wp, -0.0009228_wp, +0.0483344_wp, +0.0992366_wp,&
+0.1491379_wp, +0.1951452_wp, +0.2133949_wp /
DATA bta / &
+0.0953986_wp, +0.1524760_wp, +0.0564241_wp, -0.0893253_wp, -0.2398868_wp,&
-0.3515237_wp, -0.5095144_wp, -0.9469258_wp /
DATA bdtmrt / &
-0.0004672_wp, -0.0000514_wp, -0.0018037_wp, -0.0049440_wp, -0.0069036_wp,&
-0.0075844_wp, -0.0079602_wp, -0.0089439_wp /
DATA aconst / &
+1.8686215_wp, +3.4260713_wp, +2.0116185_wp, -0.7777552_wp, -4.6715853_wp,&
-7.7314281_wp, -11.7602578_wp, -23.5934198_wp /
!-- Test for compliance with regression range
IF ( pmva < -1.0_wp .OR. pmva > 7.0_wp ) THEN
nerr = -2_iwp
ELSE
nerr = 0_iwp
ENDIF
!-- Initialise classic PMV
pmv = pmva
!-- Water vapour pressure of air
p10 = 0.05_wp * svp_ta
p95 = 1.00_wp * svp_ta
IF ( vp >= p10 .AND. vp <= p95 ) THEN
pa = vp
ELSE
nerr = -3_iwp
IF ( vp < p10 ) THEN
!-- Due to conditions of regression: r.H. >= 5 %
pa = p10
ELSE
!-- Due to conditions of regression: r.H. <= 95 %
pa = p95
ENDIF
ENDIF
IF ( pa > 0._wp ) THEN
!-- Natural logarithm of pa
apa = LOG ( pa )
ELSE
apa = -5._wp
ENDIF
!-- Ratio actual water vapour pressure to that of a r.H. of 50 %
pa_p50 = 0.5_wp * svp_ta
IF ( pa_p50 > 0._wp .AND. pa > 0._wp ) THEN
dapa = apa - LOG ( pa_p50 )
pa_p50 = pa / pa_p50
ELSE
dapa = -5._wp
pa_p50 = 0._wp
ENDIF
!-- Square root of wind velocity
IF ( ws >= 0._wp ) THEN
sqvel = SQRT ( ws )
ELSE
sqvel = 0._wp
ENDIF
!-- Air temperature
! ta = ta
!-- Difference mean radiation to air temperature
dtmrt = tmrt - ta
!-- Select the valid regression coefficients
nreg = INT ( pmv )
IF ( nreg < 0_iwp ) THEN
!-- value of the FUNCTION in the case pmv <= -1
deltapmv = 0._wp
RETURN
ENDIF
gew = MOD ( pmv, 1._wp )
IF ( gew < 0._wp ) gew = 0._wp
IF ( nreg > 5_iwp ) THEN
! nreg=6
nreg = 5_iwp
gew = pmv - 5._wp
gew2 = pmv - 6._wp
IF ( gew2 > 0_iwp ) THEN
gew = ( gew - gew2 ) / gew
ENDIF
ENDIF
!-- Regression valid for 0. <= pmv <= 6.
dpmv_1 = &
+ bpa ( nreg ) * pa &
+ bpmv ( nreg ) * pmv &
+ bapa ( nreg ) * apa &
+ bta ( nreg ) * ta &
+ bdtmrt ( nreg ) * dtmrt &
+ bdapa ( nreg ) * dapa &
+ bsqvel ( nreg ) * sqvel &
+ bpa_p50 ( nreg ) * pa_p50 &
+ aconst ( nreg )
dpmv_2 = 0._wp
IF ( nreg < 6_iwp ) THEN
dpmv_2 = &
+ bpa ( nreg + 1_iwp ) * pa &
+ bpmv ( nreg + 1_iwp ) * pmv &
+ bapa ( nreg + 1_iwp ) * apa &
+ bta ( nreg + 1_iwp ) * ta &
+ bdtmrt ( nreg + 1_iwp ) * dtmrt &
+ bdapa ( nreg + 1_iwp ) * dapa &
+ bsqvel ( nreg + 1_iwp ) * sqvel &
+ bpa_p50 ( nreg + 1_iwp ) * pa_p50 &
+ aconst ( nreg + 1_iwp )
ENDIF
!-- Calculate pmv modification
deltapmv = ( 1._wp - gew ) * dpmv_1 + gew * dpmv_2
pmvs = pmva + deltapmv
IF ( ( pmvs ) < 0._wp ) THEN
!-- Prevent negative pmv* due to problems with clothing insulation
nerr = -4_iwp
IF ( pmvs > -0.11_wp ) THEN
!-- Threshold from FUNCTION perct_regression for winter clothing insulation
deltapmv = deltapmv + 0.11_wp
ELSE
!-- Set pmvs to "0" for compliance with summer clothing insulation
deltapmv = -1._wp * pmva
ENDIF
ENDIF
END FUNCTION deltapmv
!------------------------------------------------------------------------------!
! Description:
! ------------
!> The subroutine "calc_sultr" returns a threshold value to perceived
!> temperature allowing to decide whether the actual perceived temperature
!> is linked to perecption of sultriness. The threshold values depends
!> on the Fanger's classical PMV, expressed here as perceived temperature
!> perct.
!------------------------------------------------------------------------------!
SUBROUTINE calc_sultr( perct, dperctm, dperctstd, sultr_res )
IMPLICIT NONE
!-- Input of the argument list:
REAL(wp), INTENT ( IN ) :: perct !< Classical perceived temperature: Base is Fanger's PMV
!-- Additional output variables of argument list:
REAL(wp), INTENT ( OUT ) :: dperctm !< Mean deviation perct (classical gt) to gt* (rational gt
! calculated based on Gagge's rational PMV*)
REAL(wp), INTENT ( OUT ) :: dperctstd !< dperctm plus its standard deviation times a factor
! determining the significance to perceive sultriness
REAL(wp), INTENT ( OUT ) :: sultr_res
!-- Types of coefficients mean deviation: third order polynomial
REAL(wp), PARAMETER :: dperctka = +7.5776086_wp
REAL(wp), PARAMETER :: dperctkb = -0.740603_wp
REAL(wp), PARAMETER :: dperctkc = +0.0213324_wp
REAL(wp), PARAMETER :: dperctkd = -0.00027797237_wp
!-- Types of coefficients mean deviation plus standard deviation
! regression coefficients: third order polynomial
REAL(wp), PARAMETER :: dperctsa = +0.0268918_wp
REAL(wp), PARAMETER :: dperctsb = +0.0465957_wp
REAL(wp), PARAMETER :: dperctsc = -0.00054709752_wp
REAL(wp), PARAMETER :: dperctsd = +0.0000063714823_wp
!-- Factor to mean standard deviation defining SIGNificance for
! sultriness
REAL(wp), PARAMETER :: faktor = 1._wp
!-- Initialise
sultr_res = +99._wp
dperctm = 0._wp
dperctstd = 999999._wp
IF ( perct < 16.826_wp .OR. perct > 56._wp ) THEN
!-- Unallowed classical PMV/perct
RETURN
ENDIF
!-- Mean deviation dependent on perct
dperctm = dperctka + dperctkb * perct + dperctkc * perct**2._wp + dperctkd * perct**3._wp
!-- Mean deviation plus its standard deviation
dperctstd = dperctsa + dperctsb * perct + dperctsc * perct**2._wp + dperctsd * perct**3._wp
!-- Value of the FUNCTION
sultr_res = dperctm + faktor * dperctstd
IF ( ABS ( sultr_res ) > 99._wp ) sultr_res = +99._wp
END SUBROUTINE calc_sultr
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Multiple linear regression to calculate an increment delta_cold,
!> to adjust Fanger's classical PMV (pmva) by Gagge's 2 node model,
!> applying Fanger's convective heat transfer coefficient, hcf.
!> Wind velocitiy of the reference environment is 0.10 m/s
!------------------------------------------------------------------------------!
SUBROUTINE dpmv_cold( pmva, ta, ws, tmrt, nerr, dpmv_cold_res )
IMPLICIT NONE
!-- Type of input arguments
REAL(wp), INTENT ( IN ) :: pmva !< Fanger's classical predicted mean vote
REAL(wp), INTENT ( IN ) :: ta !< Air temperature 2 m above ground (degC)
REAL(wp), INTENT ( IN ) :: ws !< Relative wind velocity 1 m above ground (m/s)
REAL(wp), INTENT ( IN ) :: tmrt !< Mean radiant temperature (degC)
!-- Type of output argument
INTEGER(iwp), INTENT ( OUT ) :: nerr !< Error indicator: 0 = o.k., +1 = denominator for intersection = 0
REAL(wp), INTENT ( OUT ) :: dpmv_cold_res !< Increment to adjust pmva according to the results of Gagge's
! 2 node model depending on the input
!-- Type of program variables
REAL(wp) :: delta_cold(3)
REAL(wp) :: pmv_cross(2)
REAL(wp) :: reg_a(3)
REAL(wp) :: coeff(3,5)
REAL(wp) :: r_nenner
REAL(wp) :: pmvc
REAL(wp) :: dtmrt
REAL(wp) :: sqrt_ws
INTEGER(iwp) :: i
INTEGER(iwp) :: j
INTEGER(iwp) :: i_bin
!-- Coefficient of the 3 regression lines
! 1:const 2:*pmvc 3:*ta 4:*sqrt_ws 5:*dtmrt
coeff(1,1:5) = &
(/ +0.161_wp, +0.130_wp, -1.125E-03_wp, +1.106E-03_wp, -4.570E-04_wp /)
coeff(2,1:5) = &
(/ 0.795_wp, 0.713_wp, -8.880E-03_wp, -1.803E-03_wp, -2.816E-03_wp/)
coeff(3,1:5) = &
(/ +0.05761_wp, +0.458_wp, -1.829E-02_wp, -5.577E-03_wp, -1.970E-03_wp /)
!-- Initialise
nerr = 0_iwp
dpmv_cold_res = 0._wp
pmvc = pmva
dtmrt = tmrt - ta
sqrt_ws = ws
IF ( sqrt_ws < 0.10_wp ) THEN
sqrt_ws = 0.10_wp
ELSE
sqrt_ws = SQRT ( sqrt_ws )
ENDIF
DO i = 1, 3
delta_cold (i) = 0._wp
IF ( i < 3 ) THEN
pmv_cross (i) = pmvc
ENDIF
ENDDO
DO i = 1, 3
!-- Regression constant for given meteorological variables
reg_a(i) = coeff(i, 1) + coeff(i, 3) * ta + coeff(i, 4) * &
sqrt_ws + coeff(i,5)*dtmrt
delta_cold(i) = reg_a(i) + coeff(i, 2) * pmvc
ENDDO
!-- Intersection points of regression lines in terms of Fanger's PMV
DO i = 1, 2
r_nenner = coeff (i, 2) - coeff (i + 1, 2)
IF ( ABS ( r_nenner ) > 0.00001_wp ) THEN
pmv_cross(i) = ( reg_a (i + 1) - reg_a (i) ) / r_nenner
ELSE
nerr = 1_iwp
RETURN
ENDIF
ENDDO
i_bin = 3
DO i = 1, 2
IF ( pmva > pmv_cross (i) ) THEN
i_bin = i
EXIT
ENDIF
ENDDO
!-- Adjust to operative temperature scaled according
! to classical PMV (Fanger)
dpmv_cold_res = delta_cold(i_bin) - dpmv_adj(pmva)
END SUBROUTINE dpmv_cold
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculates the summand dpmv_adj adjusting to the operative temperature
!> scaled according to classical PMV (Fanger)
!> Reference environment: v_1m = 0.10 m/s, dTMRT = 0 K, r.h. = 50 %
!------------------------------------------------------------------------------!
REAL(wp) FUNCTION dpmv_adj( pmva )
IMPLICIT NONE
REAL(wp), INTENT ( IN ) :: pmva
INTEGER(iwp), PARAMETER :: n_bin = 3
INTEGER(iwp), PARAMETER :: n_ca = 0
INTEGER(iwp), PARAMETER :: n_ce = 3
REAL(wp), dimension (n_bin, n_ca:n_ce) :: coef
REAL(wp) :: pmv
INTEGER(iwp) :: i, i_bin
! range_1 range_2 range_3
DATA (coef(i, 0), i = 1, n_bin) /0.0941540_wp, -0.1506620_wp, -0.0871439_wp/
DATA (coef(i, 1), i = 1, n_bin) /0.0783162_wp, -1.0612651_wp, 0.1695040_wp/
DATA (coef(i, 2), i = 1, n_bin) /0.1350144_wp, -1.0049144_wp, -0.0167627_wp/
DATA (coef(i, 3), i = 1, n_bin) /0.1104037_wp, -0.2005277_wp, -0.0003230_wp/
IF ( pmva <= -2.1226_wp ) THEN
i_bin = 3_iwp
ELSE IF ( pmva <= -1.28_wp ) THEN
i_bin = 2_iwp
ELSE
i_bin = 1_iwp
ENDIF
dpmv_adj = coef( i_bin, n_ca )
pmv = 1._wp
DO i = n_ca + 1, n_ce
pmv = pmv * pmva
dpmv_adj = dpmv_adj + coef(i_bin, i) * pmv
ENDDO
RETURN
END FUNCTION dpmv_adj
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Based on perceived temperature (perct) as input, ireq_neutral determines
!> the required clothing insulation (clo) for thermally neutral conditions
!> (neither body cooling nor body heating). It is related to the Klima-
!> Michel activity level (134.682 W/m2). IREQ_neutral is only defined
!> for perct < 10 (degC)
!------------------------------------------------------------------------------!
REAL(wp) FUNCTION ireq_neutral( perct, ireq_minimal, nerr )
IMPLICIT NONE
!-- Type declaration of arguments
REAL(wp), INTENT ( IN ) :: perct
REAL(wp), INTENT ( OUT ) :: ireq_minimal
INTEGER(iwp), INTENT ( OUT ) :: nerr
!-- Type declaration for internal varables
REAL(wp) :: top02
!-- Initialise
nerr = 0_iwp
!-- Convert perceived temperature from basis 0.1 m/s to basis 0.2 m/s
top02 = 1.8788_wp + 0.9296_wp * perct
!-- IREQ neutral conditions (thermal comfort)
ireq_neutral = 1.62_wp - 0.0564_wp * top02
!-- Regression only defined for perct <= 10 (degC)
IF ( ireq_neutral < 0.5_wp ) THEN
IF ( ireq_neutral < 0.48_wp ) THEN
nerr = 1_iwp
ENDIF
ireq_neutral = 0.5_wp
ENDIF
!-- Minimal required clothing insulation: maximal acceptable body cooling
ireq_minimal = 1.26_wp - 0.0588_wp * top02
IF ( nerr > 0_iwp ) THEN
ireq_minimal = ireq_neutral
ENDIF
RETURN
END FUNCTION ireq_neutral
!------------------------------------------------------------------------------!
! Description:
! ------------
!> The SUBROUTINE surface area calculates the surface area of the individual
!> according to its height (m), weight (kg), and age (y)
!------------------------------------------------------------------------------!
SUBROUTINE surface_area ( height_cm, weight, age, surf )
IMPLICIT NONE
REAL(wp) , INTENT(in) :: weight
REAL(wp) , INTENT(in) :: height_cm
INTEGER(iwp), INTENT(in) :: age
REAL(wp) , INTENT(out) :: surf
REAL(wp) :: height
height = height_cm * 100._wp
!-- According to Gehan-George, for children
IF ( age < 19_iwp ) THEN
IF ( age < 5_iwp ) THEN
surf = 0.02667_wp * height**0.42246_wp * weight**0.51456_wp
RETURN
END IF
surf = 0.03050_wp * height**0.35129_wp * weight**0.54375_wp
RETURN
END IF
!-- DuBois D, DuBois EF: A formula to estimate the approximate surface area if
! height and weight be known. In: Arch. Int. Med.. 17, 1916, S. 863?871.
surf = 0.007184_wp * height**0.725_wp * weight**0.425_wp
RETURN
END SUBROUTINE surface_area
!------------------------------------------------------------------------------!
! Description:
! ------------
!> The SUBROUTINE persdat calculates
!> - the total internal energy production = metabolic + workload,
!> - the total internal energy production for a standardized surface (actlev)
!> - the DuBois - area (a_surf [m2])
!> from
!> - the persons age (years),
!> - weight (kg),
!> - height (m),
!> - sex (1 = male, 2 = female),
!> - work load (W)
!> for a sample human.
!------------------------------------------------------------------------------!
SUBROUTINE persdat ( age, weight, height, sex, work, a_surf, actlev )
!
IMPLICIT NONE
REAL(wp), INTENT(in) :: age
REAL(wp), INTENT(in) :: weight
REAL(wp), INTENT(in) :: height
REAL(wp), INTENT(in) :: work
INTEGER(iwp), INTENT(in) :: sex
REAL(wp), INTENT(out) :: actlev
REAL(wp) :: a_surf
REAL(wp) :: energy_prod
REAL(wp) :: s
REAL(wp) :: factor
REAL(wp) :: basic_heat_prod
CALL surface_area ( height, weight, INT( age ), a_surf )
s = height * 100._wp / ( weight ** ( 1._wp / 3._wp ) )
factor = 1._wp + .004_wp * ( 30._wp - age )
basic_heat_prod = 0.
IF ( sex == 1_iwp ) THEN
basic_heat_prod = 3.45_wp * weight ** ( 3._wp / 4._wp ) * ( factor + &
.01_wp * ( s - 43.4_wp ) )
ELSE IF ( sex == 2_iwp ) THEN
basic_heat_prod = 3.19_wp * weight ** ( 3._wp / 4._wp ) * ( factor + &
.018_wp * ( s - 42.1_wp ) )
END IF
energy_prod = work + basic_heat_prod
actlev = energy_prod / a_surf
END SUBROUTINE persdat
!------------------------------------------------------------------------------!
! Description:
! ------------
!> SUBROUTINE ipt_init
!> initializes the instationary perceived temperature
!------------------------------------------------------------------------------!
SUBROUTINE ipt_init (age, weight, height, sex, work, actlev, clo, &
ta, vp, ws, tmrt, pair, dt, storage, t_clothing, &
ipt )
IMPLICIT NONE
!-- Input parameters
REAL(wp), INTENT(in) :: age !< Persons age (years)
REAL(wp), INTENT(in) :: weight !< Persons weight (kg)
REAL(wp), INTENT(in) :: height !< Persons height (m)
REAL(wp), INTENT(in) :: work !< Current workload (W)
REAL(wp), INTENT(in) :: ta !< Air Temperature (°C)
REAL(wp), INTENT(in) :: vp !< Vapor pressure (hPa)
REAL(wp), INTENT(in) :: ws !< Wind speed in approx. 1.1m (m/s)
REAL(wp), INTENT(in) :: tmrt !< Mean radiant temperature (°C)
REAL(wp), INTENT(in) :: pair !< Air pressure (hPa)
REAL(wp), INTENT(in) :: dt !< Timestep (s)
INTEGER(iwp), INTENT(in) :: sex !< Persons sex (1 = male, 2 = female)
!-- Output parameters
REAL(wp), INTENT(out) :: actlev
REAL(wp), INTENT(out) :: clo
REAL(wp), INTENT(out) :: storage
REAL(wp), INTENT(out) :: t_clothing
REAL(wp), INTENT(out) :: ipt
!-- Internal variables
REAL(wp), PARAMETER :: eps = 0.0005_wp
REAL(wp), PARAMETER :: eta = 0._wp
REAL(wp) :: sclo
REAL(wp) :: wclo
REAL(wp) :: d_pmv
REAL(wp) :: svp_ta
REAL(wp) :: sult_lim
REAL(wp) :: dgtcm
REAL(wp) :: dgtcstd
REAL(wp) :: clon
REAL(wp) :: ireq_minimal
! REAL(wp) :: clo_fanger
REAL(wp) :: pmv_w
REAL(wp) :: pmv_s
REAL(wp) :: pmva
REAL(wp) :: ptc
REAL(wp) :: d_std
REAL(wp) :: pmvs
REAL(wp) :: top
REAL(wp) :: a_surf
REAL(wp) :: acti
INTEGER(iwp) :: ncount
INTEGER(iwp) :: nerr_cold
INTEGER(iwp) :: nerr
LOGICAL :: sultrieness
storage = 0._wp
CALL persdat ( age, weight, height, sex, work, a_surf, actlev )
!-- Initialise
t_clothing = -999.0_wp
ipt = -999.0_wp
nerr = 0_wp
ncount = 0_wp
sultrieness = .FALSE.
!-- Tresholds: clothing insulation (account for model inaccuracies)
!-- Summer clothing
sclo = 0.44453_wp
!-- Winter clothing
wclo = 1.76267_wp
!-- Decision: firstly calculate for winter or summer clothing
IF ( ta <= 10._wp ) THEN
!-- First guess: winter clothing insulation: cold stress
clo = wclo
t_clothing = -999.0_wp ! force initial run
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, &
t_clothing, storage, dt, pmva )
pmv_w = pmva
IF ( pmva > 0._wp ) THEN
!-- Case summer clothing insulation: heat load ?
clo = sclo
t_clothing = -999.0_wp ! force initial run
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, &
t_clothing, storage, dt, pmva )
pmv_s = pmva
IF ( pmva <= 0._wp ) THEN
!-- Case: comfort achievable by varying clothing insulation
! between winter and summer set values
CALL iso_ridder ( ta, tmrt, vp, ws, pair, actlev, eta , sclo, &
pmv_s, wclo, pmv_w, eps, pmva, top, ncount, clo )
IF ( ncount < 0_iwp ) THEN
nerr = -1_iwp
RETURN
ENDIF
ELSE IF ( pmva > 0.06_wp ) THEN
clo = 0.5_wp
t_clothing = -999.0_wp
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, &
t_clothing, storage, dt, pmva )
ENDIF
ELSE IF ( pmva < -0.11_wp ) THEN
clo = 1.75_wp
t_clothing = -999.0_wp
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, &
t_clothing, storage, dt, pmva )
ENDIF
ELSE
!-- First guess: summer clothing insulation: heat load
clo = sclo
t_clothing = -999.0_wp
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, &
t_clothing, storage, dt, pmva )
pmv_s = pmva
IF ( pmva < 0._wp ) THEN
!-- Case winter clothing insulation: cold stress ?
clo = wclo
t_clothing = -999.0_wp
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, &
t_clothing, storage, dt, pmva )
pmv_w = pmva
IF ( pmva >= 0._wp ) THEN
!-- Case: comfort achievable by varying clothing insulation
! between winter and summer set values
CALL iso_ridder ( ta, tmrt, vp, ws, pair, actlev, eta, sclo, &
pmv_s, wclo, pmv_w, eps, pmva, top, ncount, clo )
IF ( ncount < 0_wp ) THEN
nerr = -1_iwp
RETURN
ENDIF
ELSE IF ( pmva < -0.11_wp ) THEN
clo = 1.75_wp
t_clothing = -999.0_wp
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, &
t_clothing, storage, dt, pmva )
ENDIF
ELSE IF ( pmva > 0.06_wp ) THEN
clo = 0.5_wp
t_clothing = -999.0_wp
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, &
t_clothing, storage, dt, pmva )
ENDIF
ENDIF
!-- Determine perceived temperature by regression equation + adjustments
pmvs = pmva
CALL perct_regression ( pmva, clo, ipt )
ptc = ipt
IF ( clo >= 1.75_wp .AND. pmva <= -0.11_wp ) THEN
!-- Adjust for cold conditions according to Gagge 1986
CALL dpmv_cold ( pmva, ta, ws, tmrt, nerr_cold, d_pmv )
IF ( nerr_cold > 0_iwp ) nerr = -5_iwp
pmvs = pmva - d_pmv
IF ( pmvs > -0.11_wp ) THEN
d_pmv = 0._wp
pmvs = -0.11_wp
ENDIF
CALL perct_regression ( pmvs, clo, ipt )
ENDIF
! clo_fanger = clo
clon = clo
IF ( clo > 0.5_wp .AND. ipt <= 8.73_wp ) THEN
!-- Required clothing insulation (ireq) is exclusively defined for
! operative temperatures (top) less 10 (C) for a
! reference wind of 0.2 m/s according to 8.73 (C) for 0.1 m/s
clon = ireq_neutral ( ipt, ireq_minimal, nerr )
clo = clon
ENDIF
CALL calc_sultr ( ptc, dgtcm, dgtcstd, sult_lim )
sultrieness = .FALSE.
d_std = -99._wp
IF ( pmva > 0.06_wp .AND. clo <= 0.5_wp ) THEN
!-- Adjust for warm/humid conditions according to Gagge 1986
CALL saturation_vapor_pressure ( ta, svp_ta )
d_pmv = deltapmv ( pmva, ta, vp, svp_ta, tmrt, ws, nerr )
pmvs = pmva + d_pmv
CALL perct_regression ( pmvs, clo, ipt )
IF ( sult_lim < 99._wp ) THEN
IF ( (ipt - ptc) > sult_lim ) sultrieness = .TRUE.
ENDIF
ENDIF
END SUBROUTINE ipt_init
!------------------------------------------------------------------------------!
! Description:
! ------------
!> SUBROUTINE ipt_cycle
!> Calculates one timestep for the instationary version of perceived
!> temperature (iPT, °C) for
!> - standard measured/predicted meteorological values and TMRT
!> as input;
!> - regressions for determination of PT;
!> - adjustment to Gagge's PMV* (2-node-model, 1986) as base of PT
!> under warm/humid conditions (Icl= 0.50 clo) and under cold
!> conditions (Icl= 1.75 clo)
!>
!------------------------------------------------------------------------------!
SUBROUTINE ipt_cycle( ta, vp, ws, tmrt, pair, dt, storage, t_clothing, clo, &
actlev, work, ipt )
IMPLICIT NONE
!-- Type of input of the argument list
REAL(wp), INTENT ( IN ) :: ta !< Air temperature (°C)
REAL(wp), INTENT ( IN ) :: vp !< Vapor pressure (hPa)
REAL(wp), INTENT ( IN ) :: tmrt !< Mean radiant temperature (°C)
REAL(wp), INTENT ( IN ) :: ws !< Wind speed (m/s)
REAL(wp), INTENT ( IN ) :: pair !< Air pressure (hPa)
REAL(wp), INTENT ( IN ) :: dt !< Timestep (s)
REAL(wp), INTENT ( IN ) :: clo !< Clothing index (no dim)
REAL(wp), INTENT ( IN ) :: actlev !< Internal heat production (W)
REAL(wp), INTENT ( IN ) :: work !< Mechanical work load (W)
!-- In and output parameters
REAL(wp), INTENT (INOUT) :: storage !< Heat storage (W)
REAL(wp), INTENT (INOUT) :: t_clothing !< Clothig temperature (°C)
!-- Type of output of the argument list
REAL(wp), INTENT ( OUT ) :: ipt !< Instationary perceived temperature (°C)
!-- Type of internal variables
REAL(wp) :: d_pmv
REAL(wp) :: svp_ta
REAL(wp) :: sult_lim
REAL(wp) :: dgtcm
REAL(wp) :: dgtcstd
REAL(wp) :: pmva
REAL(wp) :: ptc
REAL(wp) :: d_std
REAL(wp) :: pmvs
INTEGER(iwp) :: nerr_cold
INTEGER(iwp) :: nerr
LOGICAL :: sultrieness
!-- Initialise
ipt = -999.0_wp
nerr = 0_iwp
sultrieness = .FALSE.
!-- Determine pmv_adjusted for current conditions
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, &
t_clothing, storage, dt, pmva )
!-- Determine perceived temperature by regression equation + adjustments
CALL perct_regression ( pmva, clo, ipt )
IF ( clo >= 1.75_wp .AND. pmva <= -0.11_wp ) THEN
!-- Adjust for cold conditions according to Gagge 1986
CALL dpmv_cold ( pmva, ta, ws, tmrt, nerr_cold, d_pmv )
IF ( nerr_cold > 0_iwp ) nerr = -5_iwp
pmvs = pmva - d_pmv
IF ( pmvs > -0.11_wp ) THEN
d_pmv = 0._wp
pmvs = -0.11_wp
ENDIF
CALL perct_regression ( pmvs, clo, ipt )
ENDIF
!-- Consider sultriness if appropriate
ptc = ipt
CALL calc_sultr ( ptc, dgtcm, dgtcstd, sult_lim )
sultrieness = .FALSE.
d_std = -99._wp
IF ( pmva > 0.06_wp .AND. clo <= 0.5_wp ) THEN
!-- Adjust for warm/humid conditions according to Gagge 1986
CALL saturation_vapor_pressure ( ta, svp_ta )
d_pmv = deltapmv ( pmva, ta, vp, svp_ta, tmrt, ws, nerr )
pmvs = pmva + d_pmv
CALL perct_regression ( pmvs, clo, ipt )
IF ( sult_lim < 99._wp ) THEN
IF ( (ipt - ptc) > sult_lim ) sultrieness = .TRUE.
ENDIF
ENDIF
END SUBROUTINE ipt_cycle
!------------------------------------------------------------------------------!
! Description:
! ------------
!> SUBROUTINE fanger_s calculates the
!> actual Predicted Mean Vote (dimensionless) according
!> to Fanger corresponding to meteorological (ta,tmrt,pa,ws,pair)
!> and individual variables (clo, actlev, eta) considering a storage
!> and clothing temperature for a given timestep.
!------------------------------------------------------------------------------!
SUBROUTINE fanger_s_acti( ta, tmrt, pa, in_ws, pair, in_clo, actlev, &
activity, t_cloth, s, dt, pmva )
IMPLICIT NONE
!-- Input argument types
REAL(wp), INTENT ( IN ) :: ta !< Air temperature (°C)
REAL(wp), INTENT ( IN ) :: tmrt !< Mean radiant temperature (°C)
REAL(wp), INTENT ( IN ) :: pa !< Vapour pressure (hPa)
REAL(wp), INTENT ( IN ) :: pair !< Air pressure (hPa)
REAL(wp), INTENT ( IN ) :: in_ws !< Wind speed (m/s)
REAL(wp), INTENT ( IN ) :: actlev !< Metabolic + work energy (W/m²)
REAL(wp), INTENT ( IN ) :: dt !< Timestep (s)
REAL(wp), INTENT ( IN ) :: activity !< Work load (W/m²)
REAL(wp), INTENT ( IN ) :: in_clo !< Clothing index (clo) (no dim)
!-- Output argument types
REAL(wp), INTENT ( OUT ) :: pmva !< actual Predicted Mean Vote (no dim)
REAL(wp), INTENT (INOUT) :: s !< storage var. of energy balance (W/m2)
REAL(wp), INTENT (INOUT) :: t_cloth !< clothing temperature (°C)
!-- Internal variables
REAL(wp), PARAMETER :: time_equil = 7200._wp
REAL(wp) :: f_cl !< Increase in surface due to clothing (factor)
REAL(wp) :: heat_convection !< energy loss by autocnvection (W)
REAL(wp) :: t_skin_aver !< average skin temperature (°C)
REAL(wp) :: bc !< preliminary result storage
REAL(wp) :: cc !< preliminary result storage
REAL(wp) :: dc !< preliminary result storage
REAL(wp) :: ec !< preliminary result storage
REAL(wp) :: gc !< preliminary result storage
REAL(wp) :: t_clothing !< clothing temperature (°C)
REAL(wp) :: hr !< radiational heat resistence
REAL(wp) :: clo !< clothing insulation index (clo)
REAL(wp) :: ws !< wind speed (m/s)
REAL(wp) :: z1 !< Empiric factor for the adaption of the heat
! ballance equation to the psycho-physical scale (Equ. 40 in FANGER)
REAL(wp) :: z2 !< Water vapour diffution through the skin
REAL(wp) :: z3 !< Sweat evaporation from the skin surface
REAL(wp) :: z4 !< Loss of latent heat through respiration
REAL(wp) :: z5 !< Loss of radiational heat
REAL(wp) :: z6 !< Heat loss through forced convection
REAL(wp) :: en !< Energy ballance (W)
REAL(wp) :: d_s !< Storage delta (W)
REAL(wp) :: adjustrate !< Max storage adjustment rate
REAL(wp) :: adjustrate_cloth !< max clothing temp. adjustment rate
INTEGER(iwp) :: i !< running index
INTEGER(iwp) :: niter !< Running index
!-- Clo must be > 0. to avoid div. by 0!
clo = in_clo
IF ( clo < 001._wp ) clo = .001_wp
!-- Increase in surface due to clothing
f_cl = 1._wp + .15_wp * clo
!-- Case of free convection (ws < 0.1 m/s ) not considered
ws = in_ws
IF ( ws < .1_wp ) THEN
ws = .1_wp
ENDIF
!-- Heat_convection = forced convection
heat_convection = 12.1_wp * SQRT ( ws * pair / 1013.25_wp )
!-- Average skin temperature
t_skin_aver = 35.7_wp - .0275_wp * activity
!-- Calculation of constants for evaluation below
bc = .155_wp * clo * 3.96_wp * 10._wp**( -8._wp ) * f_cl
cc = f_cl * heat_convection
ec = .155_wp * clo
dc = ( 1._wp + ec * cc ) / bc
gc = ( t_skin_aver + bc * ( tmrt + 273.2_wp )**4._wp + ec * cc * ta ) / bc
!-- Calculation of clothing surface temperature (t_clothing) based on
! newton-approximation with air temperature as initial guess
niter = dt
adjustrate = 1._wp - EXP ( -1._wp * ( 10._wp / time_equil ) * dt )
IF ( adjustrate >= 1._wp ) adjustrate = 1._wp
adjustrate_cloth = adjustrate * 30._wp
t_clothing = t_cloth
IF ( t_cloth <= -998.0_wp ) THEN ! If initial run
niter = 3_wp
adjustrate = 1._wp
adjustrate_cloth = 1._wp
t_clothing = ta
ENDIF
DO i = 1, niter
t_clothing = t_clothing - adjustrate_cloth * ( ( t_clothing + &
273.2_wp )**4._wp + t_clothing * &
dc - gc ) / ( 4._wp * ( t_clothing + 273.2_wp )**3._wp + dc )
ENDDO
!-- Empiric factor for the adaption of the heat ballance equation
! to the psycho-physical scale (Equ. 40 in FANGER)
z1 = ( .303_wp * EXP ( -.036_wp * actlev ) + .0275_wp )
!-- Water vapour diffution through the skin
z2 = .31_wp * ( 57.3_wp - .07_wp * activity-pa )
!-- Sweat evaporation from the skin surface
z3 = .42_wp * ( activity - 58._wp )
!-- Loss of latent heat through respiration
z4 = .0017_wp * actlev * ( 58.7_wp - pa ) + .0014_wp * actlev * &
( 34._wp - ta )
!-- Loss of radiational heat
z5 = 3.96e-8_wp * f_cl * ( ( t_clothing + 273.2_wp )**4 - ( tmrt + &
273.2_wp )**4 )
!-- Heat loss through forced convection
z6 = cc * ( t_clothing - ta )
!-- Write together as energy ballance
en = activity - z2 - z3 - z4 - z5 - z6
!-- Manage storage
d_s = adjustrate * en + ( 1._wp - adjustrate ) * s
!-- Predicted Mean Vote
pmva = z1 * d_s
!-- Update storage
s = d_s
t_cloth = t_clothing
END SUBROUTINE fanger_s_acti
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Physiologically Equivalent Temperature (PET),
!> stationary (calculated based on MEMI),
!> Subroutine based on PETBER vers. 1.5.1996 by P. Hoeppe
!------------------------------------------------------------------------------!
SUBROUTINE calculate_pet_static( ta, vpa, v, tmrt, pair, pet )
IMPLICIT NONE
!-- Input arguments:
REAL(wp), INTENT( IN ) :: ta !< Air temperature (°C)
REAL(wp), INTENT( IN ) :: tmrt !< Mean radiant temperature (°C)
REAL(wp), INTENT( IN ) :: v !< Wind speed (m/s)
REAL(wp), INTENT( IN ) :: vpa !< Vapor pressure (hPa)
REAL(wp), INTENT( IN ) :: pair !< Air pressure (hPa)
!-- Output arguments:
REAL(wp), INTENT ( OUT ) :: pet !< PET (°C)
!-- Internal variables:
REAL(wp) :: acl !< clothing area (m²)
REAL(wp) :: adu !< Du Bois area (m²)
REAL(wp) :: aeff !< effective area (m²)
REAL(wp) :: ere !< energy ballance (W)
REAL(wp) :: erel !< latent energy ballance (W)
REAL(wp) :: esw !< Energy-loss through sweat evap. (W)
REAL(wp) :: facl !< Surface area extension through clothing (factor)
REAL(wp) :: feff !< Surface modification by posture (factor)
REAL(wp) :: rdcl !< Diffusion resistence of clothing (factor)
REAL(wp) :: rdsk !< Diffusion resistence of skin (factor)
REAL(wp) :: rtv
REAL(wp) :: vpts !< Sat. vapor pressure over skin (hPa)
REAL(wp) :: tsk !< Skin temperature (°C)
REAL(wp) :: tcl !< Clothing temperature (°C)
REAL(wp) :: wetsk !< Fraction of wet skin (factor)
!-- Variables:
REAL(wp) :: int_heat !< Internal heat (W)
!-- MEMI configuration
REAL(wp) :: age !< Persons age (a)
REAL(wp) :: mbody !< Persons body mass (kg)
REAL(wp) :: ht !< Persons height (m)
REAL(wp) :: work !< Work load (W)
REAL(wp) :: eta !< Work efficiency (dimensionless)
REAL(wp) :: clo !< Clothing insulation index (clo)
REAL(wp) :: fcl !< Surface area modification by clothing (factor)
! INTEGER(iwp) :: pos !< Posture: 1 = standing, 2 = sitting
! INTEGER(iwp) :: sex !< Sex: 1 = male, 2 = female
!-- Configuration, keep standard parameters!
age = 35._wp
mbody = 75._wp
ht = 1.75_wp
work = 80._wp
eta = 0._wp
clo = 0.9_wp
fcl = 1.15_wp
!-- Call subfunctions
CALL in_body ( age, eta, ere, erel, ht, int_heat, mbody, pair, rtv, ta, &
vpa, work )
CALL heat_exch ( acl, adu, aeff, clo, ere, erel, esw, facl, fcl, feff, ht, &
int_heat,mbody, pair, rdcl, rdsk, ta, tcl, tmrt, tsk, v, vpa, &
vpts, wetsk )
CALL pet_iteration ( acl, adu, aeff, esw, facl, feff, int_heat, pair, rdcl,&
rdsk, rtv, ta, tcl, tsk, pet, vpts, wetsk )
END SUBROUTINE calculate_pet_static
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate internal energy ballance
!------------------------------------------------------------------------------!
SUBROUTINE in_body ( age, eta, ere, erel, ht, int_heat, mbody, pair, rtv, ta, &
vpa, work )
!-- Input arguments:
REAL(wp), INTENT( IN ) :: pair !< air pressure (hPa)
REAL(wp), INTENT( IN ) :: ta !< air temperature (°C)
REAL(wp), INTENT( IN ) :: vpa !< vapor pressure (hPa)
REAL(wp), INTENT( IN ) :: age !< Persons age (a)
REAL(wp), INTENT( IN ) :: mbody !< Persons body mass (kg)
REAL(wp), INTENT( IN ) :: ht !< Persons height (m)
REAL(wp), INTENT( IN ) :: work !< Work load (W)
REAL(wp), INTENT( IN ) :: eta !< Work efficiency (dimensionless)
!-- Output arguments:
REAL(wp), INTENT( OUT ) :: ere !< energy ballance (W)
REAL(wp), INTENT( OUT ) :: erel !< latent energy ballance (W)
REAL(wp), INTENT( OUT ) :: int_heat !< internal heat production (W)
REAL(wp), INTENT( OUT ) :: rtv !< respiratory volume
!-- Constants:
! REAL(wp), PARAMETER :: cair = 1010._wp !< replaced by c_p
! REAL(wp), PARAMETER :: evap = 2.42_wp * 10._wp **6._wp !< replaced by l_v
!-- Internal variables:
REAL(wp) :: eres !< Sensible respiratory heat flux (W)
REAL(wp) :: met
REAL(wp) :: tex
REAL(wp) :: vpex
met = 3.45_wp * mbody ** ( 3._wp / 4._wp ) * (1._wp + 0.004_wp * &
( 30._wp - age) + 0.010_wp * ( ( ht * 100._wp / &
( mbody ** ( 1._wp / 3._wp ) ) ) - 43.4_wp ) )
met = work + met
int_heat = met * (1._wp - eta)
!-- Sensible respiration energy
tex = 0.47_wp * ta + 21.0_wp
rtv = 1.44_wp * 10._wp ** (-6._wp) * met
eres = c_p * (ta - tex) * rtv
!-- Latent respiration energy
vpex = 6.11_wp * 10._wp ** ( 7.45_wp * tex / ( 235._wp + tex ) )
erel = 0.623_wp * l_v / pair * ( vpa - vpex ) * rtv
!-- Sum of the results
ere = eres + erel
END SUBROUTINE in_body
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate heat gain or loss
!------------------------------------------------------------------------------!
SUBROUTINE heat_exch ( acl, adu, aeff, clo, ere, erel, esw, facl, fcl, feff, &
ht, int_heat, mbody, pair, rdcl, rdsk, ta, tcl, tmrt, tsk, v, vpa, &
vpts, wetsk )
!-- Input arguments:
REAL(wp), INTENT( IN ) :: ere !< Energy ballance (W)
REAL(wp), INTENT( IN ) :: erel !< Latent energy ballance (W)
REAL(wp), INTENT( IN ) :: int_heat !< internal heat production (W)
REAL(wp), INTENT( IN ) :: pair !< Air pressure (hPa)
REAL(wp), INTENT( IN ) :: ta !< Air temperature (°C)
REAL(wp), INTENT( IN ) :: tmrt !< Mean radiant temperature (°C)
REAL(wp), INTENT( IN ) :: v !< Wind speed (m/s)
REAL(wp), INTENT( IN ) :: vpa !< Vapor pressure (hPa)
REAL(wp), INTENT( IN ) :: mbody !< body mass (kg)
REAL(wp), INTENT( IN ) :: ht !< height (m)
REAL(wp), INTENT( IN ) :: clo !< clothing insulation (clo)
REAL(wp), INTENT( IN ) :: fcl !< factor for surface area increase by clothing
!-- Output arguments:
REAL(wp), INTENT( OUT ) :: acl !< Clothing surface area (m²)
REAL(wp), INTENT( OUT ) :: adu !< Du-Bois area (m²)
REAL(wp), INTENT( OUT ) :: aeff !< Effective surface area (m²)
REAL(wp), INTENT( OUT ) :: esw !< Energy-loss through sweat evap. (W)
REAL(wp), INTENT( OUT ) :: facl !< Surface area extension through clothing (factor)
REAL(wp), INTENT( OUT ) :: feff !< Surface modification by posture (factor)
REAL(wp), INTENT( OUT ) :: rdcl !< Diffusion resistence of clothing (factor)
REAL(wp), INTENT( OUT ) :: rdsk !< Diffusion resistence of skin (factor)
REAL(wp), INTENT( OUT ) :: tcl !< Clothing temperature (°C)
REAL(wp), INTENT( OUT ) :: tsk !< Skin temperature (°C)
REAL(wp), INTENT( OUT ) :: vpts !< Sat. vapor pressure over skin (hPa)
REAL(wp), INTENT( OUT ) :: wetsk !< Fraction of wet skin (dimensionless)
!-- Cconstants:
! REAL(wp), PARAMETER :: cair = 1010._wp !< replaced by c_p
REAL(wp), PARAMETER :: cb = 3640._wp !<
REAL(wp), PARAMETER :: emcl = 0.95_wp !< Longwave emission coef. of cloth
REAL(wp), PARAMETER :: emsk = 0.99_wp !< Longwave emission coef. of skin
! REAL(wp), PARAMETER :: evap = 2.42_wp * 10._wp **6._wp !< replaced by l_v
REAL(wp), PARAMETER :: food = 0._wp !< Heat gain by food (W)
REAL(wp), PARAMETER :: po = 1013.25_wp !< Air pressure at sea level (hPa)
REAL(wp), PARAMETER :: rob = 1.06_wp !<
!-- Internal variables
REAL(wp) :: c(0:10) !< Core temperature array (°C)
REAL(wp) :: cbare !< Convection through bare skin
REAL(wp) :: cclo !< Convection through clothing
REAL(wp) :: csum !< Convection in total
REAL(wp) :: di !< difference between r1 and r2
REAL(wp) :: ed !< energy transfer by diffusion (W)
REAL(wp) :: enbal !< energy ballance (W)
REAL(wp) :: enbal2 !< energy ballance (storage, last cycle)
REAL(wp) :: eswdif !< difference between sweat production and evaporation potential
REAL(wp) :: eswphy !< sweat created by physiology
REAL(wp) :: eswpot !< potential sweat evaporation
REAL(wp) :: fec !<
REAL(wp) :: hc !<
REAL(wp) :: he !<
REAL(wp) :: htcl !<
REAL(wp) :: r1 !<
REAL(wp) :: r2 !<
REAL(wp) :: rbare !< Radiational loss of bare skin (W/m²)
REAL(wp) :: rcl !<
REAL(wp) :: rclo !< Radiational loss of clothing (W/m²)
REAL(wp) :: rclo2 !< Longwave radiation gain or loss (W/m²)
REAL(wp) :: rsum !< Radiational loss or gain (W/m²)
REAL(wp) :: sw !<
REAL(wp) :: swf !<
REAL(wp) :: swm !<
REAL(wp) :: tbody !<
REAL(wp) :: tcore(1:7) !<
REAL(wp) :: vb !<
REAL(wp) :: vb1 !<
REAL(wp) :: vb2 !<
REAL(wp) :: wd !<
REAL(wp) :: wr !<
REAL(wp) :: ws !<
REAL(wp) :: wsum !<
REAL(wp) :: xx !< modification step (K)
REAL(wp) :: y !< fraction of bare skin
INTEGER(iwp) :: count1 !< running index
INTEGER(iwp) :: count3 !< running index
INTEGER(iwp) :: j !< running index
INTEGER(iwp) :: i !< running index
LOGICAL :: skipIncreaseCount !< iteration control flag
wetsk = 0._wp
adu = 0.203_wp * mbody ** 0.425_wp * ht ** 0.725_wp
hc = 2.67_wp + ( 6.5_wp * v ** 0.67_wp)
hc = hc * (pair /po) ** 0.55_wp
feff = 0.725_wp !< Posture: 0.725 for stading
facl = (- 2.36_wp + 173.51_wp * clo - 100.76_wp * clo * clo + 19.28_wp &
* (clo ** 3._wp)) / 100._wp
IF ( facl > 1._wp ) facl = 1._wp
rcl = ( clo / 6.45_wp ) / facl
IF ( clo >= 2._wp ) y = 1._wp
IF ( ( clo > 0.6_wp ) .AND. ( clo < 2._wp ) ) y = ( ht - 0.2_wp ) / ht
IF ( ( clo <= 0.6_wp ) .AND. ( clo > 0.3_wp ) ) y = 0.5_wp
IF ( ( clo <= 0.3_wp ) .AND. ( clo > 0._wp ) ) y = 0.1_wp
r2 = adu * (fcl - 1._wp + facl) / (2._wp * 3.14_wp * ht * y)
r1 = facl * adu / (2._wp * 3.14_wp * ht * y)
di = r2 - r1
!-- Skin temperatur
DO j = 1, 7
tsk = 34._wp
count1 = 0_iwp
tcl = ( ta + tmrt + tsk ) / 3._wp
count3 = 1_iwp
enbal2 = 0._wp
DO i = 1, 100 ! allow for 100 iterations max
acl = adu * facl + adu * ( fcl - 1._wp )
rclo2 = emcl * sigma_sb * ( ( tcl + degc_to_k )**4._wp - &
( tmrt + degc_to_k )** 4._wp ) * feff
htcl = 6.28_wp * ht * y * di / ( rcl * LOG( r2 / r1 ) * acl )
tsk = 1._wp / htcl * ( hc * ( tcl - ta ) + rclo2 ) + tcl
!-- Radiation saldo
aeff = adu * feff
rbare = aeff * ( 1._wp - facl ) * emsk * sigma_sb * &
( ( tmrt + degc_to_k )** 4._wp - ( tsk + degc_to_k )** 4._wp )
rclo = feff * acl * emcl * sigma_sb * &
( ( tmrt + degc_to_k )** 4._wp - ( tcl + degc_to_k )** 4._wp )
rsum = rbare + rclo
!-- Convection
cbare = hc * ( ta - tsk ) * adu * ( 1._wp - facl )
cclo = hc * ( ta - tcl ) * acl
csum = cbare + cclo
!-- Core temperature
c(0) = int_heat + ere
c(1) = adu * rob * cb
c(2) = 18._wp - 0.5_wp * tsk
c(3) = 5.28_wp * adu * c(2)
c(4) = 0.0208_wp * c(1)
c(5) = 0.76075_wp * c(1)
c(6) = c(3) - c(5) - tsk * c(4)
c(7) = - c(0) * c(2) - tsk * c(3) + tsk * c(5)
c(8) = c(6) * c(6) - 4._wp * c(4) * c(7)
c(9) = 5.28_wp * adu - c(5) - c(4) * tsk
c(10) = c(9) * c(9) - 4._wp * c(4) * &
( c(5) * tsk - c(0) - 5.28_wp * adu * tsk )
IF ( tsk == 36._wp ) tsk = 36.01_wp
tcore(7) = c(0) / ( 5.28_wp * adu + c(1) * 6.3_wp / 3600._wp ) + tsk
tcore(3) = c(0) / ( 5.28_wp * adu + ( c(1) * 6.3_wp / 3600._wp ) / &
( 1._wp + 0.5_wp * ( 34._wp - tsk ) ) ) + tsk
IF ( c(10) >= 0._wp ) THEN
tcore(6) = ( - c(9) - c(10)**0.5_wp ) / ( 2._wp * c(4) )
tcore(1) = ( - c(9) + c(10)**0.5_wp ) / ( 2._wp * c(4) )
END IF
IF ( c(8) >= 0._wp ) THEN
tcore(2) = ( - c(6) + ABS( c(8) ) ** 0.5_wp ) / ( 2._wp * c(4) )
tcore(5) = ( - c(6) - ABS( c(8) ) ** 0.5_wp ) / ( 2._wp * c(4) )
tcore(4) = c(0) / ( 5.28_wp * adu + c(1) * 1._wp / 40._wp ) + tsk
END IF
!-- Transpiration
tbody = 0.1_wp * tsk + 0.9_wp * tcore(j)
swm = 304.94_wp * ( tbody - 36.6_wp ) * adu / 3600000._wp
vpts = 6.11_wp * 10._wp**( 7.45_wp * tsk / ( 235._wp + tsk ) )
IF ( tbody <= 36.6_wp ) swm = 0._wp !< no need for sweating
sw = swm
eswphy = - sw * l_v
he = 0.633_wp * hc / ( pair * c_p )
fec = 1._wp / ( 1._wp + 0.92_wp * hc * rcl )
eswpot = he * ( vpa - vpts ) * adu * l_v * fec
wetsk = eswphy / eswpot
IF ( wetsk > 1._wp ) wetsk = 1._wp
!
!-- Sweat production > evaporation?
eswdif = eswphy - eswpot
IF ( eswdif <= 0._wp ) esw = eswpot !< Limit is evaporation
IF ( eswdif > 0._wp ) esw = eswphy !< Limit is sweat production
IF ( esw > 0._wp ) esw = 0._wp !< Sweat can't be evaporated, no more cooling effect
!-- Diffusion
rdsk = 0.79_wp * 10._wp ** 7._wp
rdcl = 0._wp
ed = l_v / ( rdsk + rdcl ) * adu * ( 1._wp - wetsk ) * ( vpa - &
vpts )
!-- Max vb
vb1 = 34._wp - tsk
vb2 = tcore(j) - 36.6_wp
IF ( vb2 < 0._wp ) vb2 = 0._wp
IF ( vb1 < 0._wp ) vb1 = 0._wp
vb = ( 6.3_wp + 75._wp * vb2 ) / ( 1._wp + 0.5_wp * vb1 )
!-- Energy ballence
enbal = int_heat + ed + ere + esw + csum + rsum + food
!-- Clothing temperature
xx = 0.001_wp
IF ( count1 == 0_iwp ) xx = 1._wp
IF ( count1 == 1_iwp ) xx = 0.1_wp
IF ( count1 == 2_iwp ) xx = 0.01_wp
IF ( count1 == 3_iwp ) xx = 0.001_wp
IF ( enbal > 0._wp ) tcl = tcl + xx
IF ( enbal < 0._wp ) tcl = tcl - xx
skipIncreaseCount = .FALSE.
IF ( ( (enbal <= 0._wp ) .AND. (enbal2 > 0._wp ) ) .OR. &
( ( enbal >= 0._wp ) .AND. ( enbal2 < 0._wp ) ) ) THEN
skipIncreaseCount = .TRUE.
ELSE
enbal2 = enbal
count3 = count3 + 1_iwp
END IF
IF ( ( count3 > 200_iwp ) .OR. skipIncreaseCount ) THEN
IF ( count1 < 3_iwp ) THEN
count1 = count1 + 1_iwp
enbal2 = 0._wp
ELSE
EXIT
END IF
END IF
END DO
IF ( count1 == 3_iwp ) THEN
SELECT CASE ( j )
CASE ( 2, 5)
IF ( .NOT. ( ( tcore(j) >= 36.6_wp ) .AND. &
( tsk <= 34.050_wp ) ) ) CYCLE
CASE ( 6, 1 )
IF ( c(10) < 0._wp ) CYCLE
IF ( .NOT. ( ( tcore(j) >= 36.6_wp ) .AND. &
( tsk > 33.850_wp ) ) ) CYCLE
CASE ( 3 )
IF ( .NOT. ( ( tcore(j) < 36.6_wp ) .AND. &
( tsk <= 34.000_wp ) ) ) CYCLE
CASE ( 7 )
IF ( .NOT. ( ( tcore(j) < 36.6_wp ) .AND. &
( tsk > 34.000_wp ) ) ) CYCLE
CASE default
END SELECT
END IF
IF ( ( j /= 4_iwp ) .AND. ( vb >= 91._wp ) ) CYCLE
IF ( ( j == 4_iwp ) .AND. ( vb < 89._wp ) ) CYCLE
IF ( vb > 90._wp ) vb = 90._wp
!-- Loses by water
ws = sw * 3600._wp * 1000._wp
IF ( ws > 2000._wp ) ws = 2000._wp
wd = ed / l_v * 3600._wp * ( -1000._wp )
wr = erel / l_v * 3600._wp * ( -1000._wp )
wsum = ws + wr + wd
RETURN
END DO
END SUBROUTINE heat_exch
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate PET
!------------------------------------------------------------------------------!
SUBROUTINE pet_iteration ( acl, adu, aeff, esw, facl, feff, int_heat, pair, &
rdcl, rdsk, rtv, ta, tcl, tsk, pet, vpts, wetsk )
!-- Input arguments:
REAL(wp), INTENT( IN ) :: acl !< clothing surface area (m²)
REAL(wp), INTENT( IN ) :: adu !< Du-Bois area (m²)
REAL(wp), INTENT( IN ) :: esw !< energy-loss through sweat evap. (W)
REAL(wp), INTENT( IN ) :: facl !< surface area extension through clothing (factor)
REAL(wp), INTENT( IN ) :: feff !< surface modification by posture (factor)
REAL(wp), INTENT( IN ) :: int_heat !< internal heat production (W)
REAL(wp), INTENT( IN ) :: pair !< air pressure (hPa)
REAL(wp), INTENT( IN ) :: rdcl !< diffusion resistence of clothing (factor)
REAL(wp), INTENT( IN ) :: rdsk !< diffusion resistence of skin (factor)
REAL(wp), INTENT( IN ) :: rtv !< respiratory volume
REAL(wp), INTENT( IN ) :: ta !< air temperature (°C)
REAL(wp), INTENT( IN ) :: tcl !< clothing temperature (°C)
REAL(wp), INTENT( IN ) :: tsk !< skin temperature (°C)
REAL(wp), INTENT( IN ) :: vpts !< sat. vapor pressure over skin (hPa)
REAL(wp), INTENT( IN ) :: wetsk !< fraction of wet skin (dimensionless)
!-- Output arguments:
REAL(wp), INTENT( OUT ) :: aeff !< effective surface area (m²)
REAL(wp), INTENT( OUT ) :: pet !< PET (°C)
!-- Cconstants:
! REAL(wp), PARAMETER :: cair = 1010._wp !< replaced by c_p
REAL(wp), PARAMETER :: emcl = 0.95_wp !< Longwave emission coef. of cloth
REAL(wp), PARAMETER :: emsk = 0.99_wp !< Longwave emission coef. of skin
! REAL(wp), PARAMETER :: evap = 2.42_wp * 10._wp **6._wp !< replaced by l_v
REAL(wp), PARAMETER :: po = 1013.25_wp !< Air pressure at sea level (hPa)
!-- Internal variables
REAL ( wp ) :: cbare !< Convection through bare skin
REAL ( wp ) :: cclo !< Convection through clothing
REAL ( wp ) :: csum !< Convection in total
REAL ( wp ) :: ed !< Diffusion (W)
REAL ( wp ) :: enbal !< Energy ballance (W)
REAL ( wp ) :: enbal2 !< Energy ballance (last iteration cycle)
REAL ( wp ) :: ere !< Energy ballance result (W)
REAL ( wp ) :: erel !< Latent energy ballance (W)
REAL ( wp ) :: eres !< Sensible respiratory heat flux (W)
REAL ( wp ) :: hc !<
REAL ( wp ) :: rbare !< Radiational loss of bare skin (W/m²)
REAL ( wp ) :: rclo !< Radiational loss of clothing (W/m²)
REAL ( wp ) :: rsum !< Radiational loss or gain (W/m²)
REAL ( wp ) :: tex !< Temperat. of exhaled air (°C)
REAL ( wp ) :: vpex !< Vapor pressure of exhaled air (hPa)
REAL ( wp ) :: xx !< Delta PET per iteration (K)
INTEGER ( iwp ) :: count1 !< running index
INTEGER ( iwp ) :: i !< running index
pet = ta
enbal2 = 0._wp
DO count1 = 0, 3
DO i = 1, 125 ! 500 / 4
hc = 2.67_wp + 6.5_wp * 0.1_wp ** 0.67_wp
hc = hc * ( pair / po ) ** 0.55_wp
!-- Radiation
aeff = adu * feff
rbare = aeff * ( 1._wp - facl ) * emsk * sigma_sb * &
( ( pet + degc_to_k ) ** 4._wp - ( tsk + degc_to_k ) ** 4._wp )
rclo = feff * acl * emcl * sigma_sb * &
( ( pet + degc_to_k ) ** 4._wp - ( tcl + degc_to_k ) ** 4._wp )
rsum = rbare + rclo
!-- Covection
cbare = hc * ( pet - tsk ) * adu * ( 1._wp - facl )
cclo = hc * ( pet - tcl ) * acl
csum = cbare + cclo
!-- Diffusion
ed = l_v / ( rdsk + rdcl ) * adu * ( 1._wp - wetsk ) * ( 12._wp - &
vpts )
!-- Respiration
tex = 0.47_wp * pet + 21._wp
eres = c_p * ( pet - tex ) * rtv
vpex = 6.11_wp * 10._wp ** ( 7.45_wp * tex / ( 235._wp + tex ) )
erel = 0.623_wp * l_v / pair * ( 12._wp - vpex ) * rtv
ere = eres + erel
!-- Energy ballance
enbal = int_heat + ed + ere + esw + csum + rsum
!-- Iteration concerning ta
IF ( count1 == 0_iwp ) xx = 1._wp
IF ( count1 == 1_iwp ) xx = 0.1_wp
IF ( count1 == 2_iwp ) xx = 0.01_wp
IF ( count1 == 3_iwp ) xx = 0.001_wp
IF ( enbal > 0._wp ) pet = pet - xx
IF ( enbal < 0._wp ) pet = pet + xx
IF ( ( enbal <= 0._wp ) .AND. ( enbal2 > 0._wp ) ) EXIT
IF ( ( enbal >= 0._wp ) .AND. ( enbal2 < 0._wp ) ) EXIT
enbal2 = enbal
END DO
END DO
END SUBROUTINE pet_iteration
END MODULE biometeorology_mod