1 | MODULE advec_ws |
---|
2 | |
---|
3 | !-----------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! Former revisions: |
---|
8 | ! ----------------- |
---|
9 | ! $Id: advec_ws.f90 714 2011-03-30 14:23:50Z suehring $ |
---|
10 | ! |
---|
11 | ! 713 2011-03-30 14:21:21Z suehring |
---|
12 | ! File reformatted. |
---|
13 | ! Bugfix in vertical advection of w concerning the optimized version for |
---|
14 | ! vector architecture. |
---|
15 | ! Constants adv_mom_3, adv_mom_5, adv_sca_5, adv_sca_3 reformulated as |
---|
16 | ! broken numbers. |
---|
17 | ! |
---|
18 | ! 709 2011-03-30 09:31:40Z raasch |
---|
19 | ! formatting adjustments |
---|
20 | ! |
---|
21 | ! 705 2011-03-25 11:21:43 Z suehring $ |
---|
22 | ! Bugfix in declaration of logicals concerning outflow boundaries. |
---|
23 | ! |
---|
24 | ! 411 2009-12-11 12:31:43 Z suehring |
---|
25 | ! Allocation of weight_substep moved to init_3d_model. |
---|
26 | ! Declaration of ws_scheme_sca and ws_scheme_mom moved to check_parameters. |
---|
27 | ! Setting bc for the horizontal velocity variances added (moved from |
---|
28 | ! flow_statistics). |
---|
29 | ! |
---|
30 | ! Initial revision |
---|
31 | ! |
---|
32 | ! 411 2009-12-11 12:31:43 Z suehring |
---|
33 | ! |
---|
34 | ! Description: |
---|
35 | ! ------------ |
---|
36 | ! Advection scheme for scalars and momentum using the flux formulation of |
---|
37 | ! Wicker and Skamarock 5th order. Additionally the module contains of a |
---|
38 | ! routine using for initialisation and steering of the statical evaluation. |
---|
39 | ! The computation of turbulent fluxes takes place inside the advection |
---|
40 | ! routines. |
---|
41 | ! In case of vector architectures Dirichlet and Radiation boundary conditions |
---|
42 | ! are outstanding and not available. |
---|
43 | ! A further routine local_diss_ij is available (next weeks) and is used if a |
---|
44 | ! control of dissipative fluxes is desired. |
---|
45 | ! In case of vertical grid stretching the order of advection scheme is |
---|
46 | ! degraded. This is also realized for the ocean where the stretching is |
---|
47 | ! downwards. |
---|
48 | ! |
---|
49 | ! OUTSTANDING: - Dirichlet and Radiation boundary conditions for |
---|
50 | ! vector architectures |
---|
51 | ! - dissipation control for cache architectures ( next weeks ) |
---|
52 | ! - Topography ( next weeks ) |
---|
53 | !-----------------------------------------------------------------------------! |
---|
54 | |
---|
55 | PRIVATE |
---|
56 | PUBLIC advec_s_ws, advec_u_ws, advec_v_ws, advec_w_ws, & |
---|
57 | local_diss, ws_init, ws_statistics |
---|
58 | |
---|
59 | INTERFACE ws_init |
---|
60 | MODULE PROCEDURE ws_init |
---|
61 | END INTERFACE ws_init |
---|
62 | |
---|
63 | INTERFACE ws_statistics |
---|
64 | MODULE PROCEDURE ws_statistics |
---|
65 | END INTERFACE ws_statistics |
---|
66 | |
---|
67 | INTERFACE advec_s_ws |
---|
68 | MODULE PROCEDURE advec_s_ws |
---|
69 | MODULE PROCEDURE advec_s_ws_ij |
---|
70 | END INTERFACE advec_s_ws |
---|
71 | |
---|
72 | INTERFACE advec_u_ws |
---|
73 | MODULE PROCEDURE advec_u_ws |
---|
74 | MODULE PROCEDURE advec_u_ws_ij |
---|
75 | END INTERFACE advec_u_ws |
---|
76 | |
---|
77 | INTERFACE advec_v_ws |
---|
78 | MODULE PROCEDURE advec_v_ws |
---|
79 | MODULE PROCEDURE advec_v_ws_ij |
---|
80 | END INTERFACE advec_v_ws |
---|
81 | |
---|
82 | INTERFACE advec_w_ws |
---|
83 | MODULE PROCEDURE advec_w_ws |
---|
84 | MODULE PROCEDURE advec_w_ws_ij |
---|
85 | END INTERFACE advec_w_ws |
---|
86 | |
---|
87 | INTERFACE local_diss |
---|
88 | MODULE PROCEDURE local_diss |
---|
89 | MODULE PROCEDURE local_diss_ij |
---|
90 | END INTERFACE local_diss |
---|
91 | |
---|
92 | CONTAINS |
---|
93 | |
---|
94 | |
---|
95 | !------------------------------------------------------------------------------! |
---|
96 | ! Initialization of WS-scheme |
---|
97 | !------------------------------------------------------------------------------! |
---|
98 | SUBROUTINE ws_init |
---|
99 | |
---|
100 | USE arrays_3d |
---|
101 | USE constants |
---|
102 | USE control_parameters |
---|
103 | USE indices |
---|
104 | USE statistics |
---|
105 | |
---|
106 | ! |
---|
107 | !-- Allocate arrays needed for dissipation control. |
---|
108 | IF ( dissipation_control ) THEN |
---|
109 | ! ALLOCATE(var_x(nzb+1:nzt,nys:nyn,nxl:nxr), & |
---|
110 | ! var_y(nzb+1:nzt,nys:nyn,nxl:nxr), & |
---|
111 | ! var_z(nzb+1:nzt,nys:nyn,nxl:nxr), & |
---|
112 | ! gamma_x(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
113 | ! gamma_y(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
114 | ! gamma_z(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) |
---|
115 | ENDIF |
---|
116 | |
---|
117 | ! |
---|
118 | !-- Set the appropriate factors for scalar and momentum advection. |
---|
119 | adv_sca_5 = 1./60. |
---|
120 | adv_sca_3 = 1./12. |
---|
121 | adv_mom_5 = 1./120. |
---|
122 | adv_mom_3 = 1./24. |
---|
123 | |
---|
124 | ! |
---|
125 | !-- Arrays needed for statical evaluation of fluxes. |
---|
126 | IF ( ws_scheme_mom ) THEN |
---|
127 | |
---|
128 | ALLOCATE( sums_wsus_ws_l(nzb:nzt+1,0:statistic_regions), & |
---|
129 | sums_wsvs_ws_l(nzb:nzt+1,0:statistic_regions), & |
---|
130 | sums_us2_ws_l(nzb:nzt+1,0:statistic_regions), & |
---|
131 | sums_vs2_ws_l(nzb:nzt+1,0:statistic_regions), & |
---|
132 | sums_ws2_ws_l(nzb:nzt+1,0:statistic_regions)) |
---|
133 | |
---|
134 | sums_wsus_ws_l = 0.0 |
---|
135 | sums_wsvs_ws_l = 0.0 |
---|
136 | sums_us2_ws_l = 0.0 |
---|
137 | sums_vs2_ws_l = 0.0 |
---|
138 | sums_ws2_ws_l = 0.0 |
---|
139 | |
---|
140 | ENDIF |
---|
141 | |
---|
142 | IF ( ws_scheme_sca ) THEN |
---|
143 | |
---|
144 | ALLOCATE( sums_wspts_ws_l(nzb:nzt+1,0:statistic_regions) ) |
---|
145 | sums_wspts_ws_l = 0.0 |
---|
146 | |
---|
147 | IF ( humidity .OR. passive_scalar ) THEN |
---|
148 | ALLOCATE( sums_wsqs_ws_l(nzb:nzt+1,0:statistic_regions) ) |
---|
149 | sums_wsqs_ws_l = 0.0 |
---|
150 | ENDIF |
---|
151 | |
---|
152 | IF ( ocean ) THEN |
---|
153 | ALLOCATE( sums_wssas_ws_l(nzb:nzt+1,0:statistic_regions) ) |
---|
154 | sums_wssas_ws_l = 0.0 |
---|
155 | ENDIF |
---|
156 | |
---|
157 | ENDIF |
---|
158 | |
---|
159 | ! |
---|
160 | !-- Arrays needed for reasons of speed optimization for cache and noopt |
---|
161 | !-- version. For the vector version the buffer arrays are not necessary, |
---|
162 | !-- because the the fluxes can swapped directly inside the loops of the |
---|
163 | !-- advection routines. |
---|
164 | IF ( loop_optimization /= 'vector' ) THEN |
---|
165 | |
---|
166 | IF ( ws_scheme_mom ) THEN |
---|
167 | |
---|
168 | ALLOCATE( flux_s_u(nzb+1:nzt), flux_s_v(nzb+1:nzt), & |
---|
169 | flux_s_w(nzb+1:nzt), diss_s_u(nzb+1:nzt), & |
---|
170 | diss_s_v(nzb+1:nzt), diss_s_w(nzb+1:nzt) ) |
---|
171 | ALLOCATE( flux_l_u(nzb+1:nzt,nys:nyn), & |
---|
172 | flux_l_v(nzb+1:nzt,nys:nyn), & |
---|
173 | flux_l_w(nzb+1:nzt,nys:nyn), & |
---|
174 | diss_l_u(nzb+1:nzt,nys:nyn), & |
---|
175 | diss_l_v(nzb+1:nzt,nys:nyn), & |
---|
176 | diss_l_w(nzb+1:nzt,nys:nyn) ) |
---|
177 | |
---|
178 | ENDIF |
---|
179 | |
---|
180 | IF ( ws_scheme_sca ) THEN |
---|
181 | |
---|
182 | ALLOCATE( flux_s_pt(nzb+1:nzt), flux_s_e(nzb+1:nzt), & |
---|
183 | diss_s_pt(nzb+1:nzt), diss_s_e(nzb+1:nzt) ) |
---|
184 | ALLOCATE( flux_l_pt(nzb+1:nzt,nys:nyn), & |
---|
185 | flux_l_e(nzb+1:nzt,nys:nyn), & |
---|
186 | diss_l_pt(nzb+1:nzt,nys:nyn), & |
---|
187 | diss_l_e(nzb+1:nzt,nys:nyn) ) |
---|
188 | |
---|
189 | IF ( humidity .OR. passive_scalar ) THEN |
---|
190 | ALLOCATE( flux_s_q(nzb+1:nzt), diss_s_q(nzb+1:nzt) ) |
---|
191 | ALLOCATE( flux_l_q(nzb+1:nzt,nys:nyn), & |
---|
192 | diss_l_q(nzb+1:nzt,nys:nyn) ) |
---|
193 | ENDIF |
---|
194 | |
---|
195 | IF ( ocean ) THEN |
---|
196 | ALLOCATE( flux_s_sa(nzb+1:nzt), diss_s_sa(nzb+1:nzt) ) |
---|
197 | ALLOCATE( flux_l_sa(nzb+1:nzt,nys:nyn), & |
---|
198 | diss_l_sa(nzb+1:nzt,nys:nyn) ) |
---|
199 | ENDIF |
---|
200 | |
---|
201 | ENDIF |
---|
202 | |
---|
203 | ENDIF |
---|
204 | |
---|
205 | ! |
---|
206 | !-- Determine the flags where the order of the scheme for horizontal |
---|
207 | !-- advection has to be degraded. |
---|
208 | ALLOCATE( boundary_flags(nys:nyn,nxl:nxr) ) |
---|
209 | DO i = nxl, nxr |
---|
210 | DO j = nys, nyn |
---|
211 | |
---|
212 | boundary_flags(j,i) = 0 |
---|
213 | IF ( outflow_l ) THEN |
---|
214 | IF ( i == nxlu ) boundary_flags(j,i) = 5 |
---|
215 | IF ( i == nxl ) boundary_flags(j,i) = 6 |
---|
216 | ELSEIF ( outflow_r ) THEN |
---|
217 | IF ( i == nxr-1 ) boundary_flags(j,i) = 1 |
---|
218 | IF ( i == nxr ) boundary_flags(j,i) = 2 |
---|
219 | ELSEIF ( outflow_n ) THEN |
---|
220 | IF ( j == nyn-1 ) boundary_flags(j,i) = 3 |
---|
221 | IF ( j == nyn ) boundary_flags(j,i) = 4 |
---|
222 | ELSEIF ( outflow_s ) THEN |
---|
223 | IF ( j == nysv ) boundary_flags(j,i) = 7 |
---|
224 | IF ( j == nys ) boundary_flags(j,i) = 8 |
---|
225 | ENDIF |
---|
226 | |
---|
227 | ENDDO |
---|
228 | ENDDO |
---|
229 | |
---|
230 | END SUBROUTINE ws_init |
---|
231 | |
---|
232 | |
---|
233 | !------------------------------------------------------------------------------! |
---|
234 | ! Initialize variables used for storing statistic qauntities (fluxes, variances) |
---|
235 | !------------------------------------------------------------------------------! |
---|
236 | SUBROUTINE ws_statistics |
---|
237 | |
---|
238 | USE control_parameters |
---|
239 | USE statistics |
---|
240 | |
---|
241 | IMPLICIT NONE |
---|
242 | |
---|
243 | ! |
---|
244 | !-- The arrays needed for statistical evaluation are set to to 0 at the |
---|
245 | !-- begin of prognostic_equations. |
---|
246 | IF ( ws_scheme_mom ) THEN |
---|
247 | sums_wsus_ws_l = 0.0 |
---|
248 | sums_wsvs_ws_l = 0.0 |
---|
249 | sums_us2_ws_l = 0.0 |
---|
250 | sums_vs2_ws_l = 0.0 |
---|
251 | sums_ws2_ws_l = 0.0 |
---|
252 | ENDIF |
---|
253 | |
---|
254 | IF ( ws_scheme_sca ) THEN |
---|
255 | sums_wspts_ws_l = 0.0 |
---|
256 | IF ( humidity .OR. passive_scalar ) sums_wsqs_ws_l = 0.0 |
---|
257 | IF ( ocean ) sums_wssas_ws_l = 0.0 |
---|
258 | |
---|
259 | ENDIF |
---|
260 | |
---|
261 | END SUBROUTINE ws_statistics |
---|
262 | |
---|
263 | |
---|
264 | !------------------------------------------------------------------------------! |
---|
265 | ! Scalar advection - Call for grid point i,j |
---|
266 | !------------------------------------------------------------------------------! |
---|
267 | SUBROUTINE advec_s_ws_ij( i, j, sk, sk_char,swap_flux_y_local, & |
---|
268 | swap_diss_y_local, swap_flux_x_local, & |
---|
269 | swap_diss_x_local ) |
---|
270 | |
---|
271 | USE arrays_3d |
---|
272 | USE constants |
---|
273 | USE control_parameters |
---|
274 | USE grid_variables |
---|
275 | USE indices |
---|
276 | USE statistics |
---|
277 | |
---|
278 | IMPLICIT NONE |
---|
279 | |
---|
280 | INTEGER :: i, j, k |
---|
281 | LOGICAL :: degraded_l, degraded_s |
---|
282 | REAL :: flux_d, diss_d, u_comp, v_comp |
---|
283 | REAL, DIMENSION(:,:,:), POINTER :: sk |
---|
284 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_r, diss_r, & |
---|
285 | flux_n, diss_n |
---|
286 | REAL, DIMENSION(nzb+1:nzt) :: swap_flux_y_local, & |
---|
287 | swap_diss_y_local |
---|
288 | REAL, DIMENSION(nzb+1:nzt,nys:nyn) :: swap_flux_x_local, & |
---|
289 | swap_diss_x_local |
---|
290 | CHARACTER (LEN = *), INTENT(IN) :: sk_char |
---|
291 | |
---|
292 | |
---|
293 | degraded_l = .FALSE. |
---|
294 | degraded_s = .FALSE. |
---|
295 | |
---|
296 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
297 | ! |
---|
298 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
299 | SELECT CASE ( boundary_flags(j,i) ) |
---|
300 | |
---|
301 | CASE ( 1 ) |
---|
302 | |
---|
303 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
304 | u_comp = u(k,j,i+1) - u_gtrans |
---|
305 | flux_r(k) = u_comp * ( & |
---|
306 | 7.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
307 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) * adv_sca_3 |
---|
308 | diss_r(k) = -ABS( u_comp ) * ( & |
---|
309 | 3.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
310 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) * adv_sca_3 |
---|
311 | ENDDO |
---|
312 | |
---|
313 | CASE ( 2 ) |
---|
314 | |
---|
315 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
316 | u_comp = u(k,j,i+1) - u_gtrans |
---|
317 | flux_r(k) = u_comp * ( sk(k,j,i+1) + sk(k,j,i) ) * 0.5 |
---|
318 | diss_r(k) = diss_2nd( sk(k,j,i+1), sk(k,j,i+1), sk(k,j,i), & |
---|
319 | sk(k,j,i-1), sk(k,j,i-2), u_comp, & |
---|
320 | 0.5, ddx ) |
---|
321 | ENDDO |
---|
322 | |
---|
323 | CASE ( 3 ) |
---|
324 | |
---|
325 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
326 | v_comp = v(k,j+1,i) - v_gtrans |
---|
327 | flux_n(k) = v_comp * ( & |
---|
328 | 7.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
329 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) * adv_sca_3 |
---|
330 | diss_n(k) = -ABS( v_comp ) * ( & |
---|
331 | 3.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
332 | - ( sk(k,j+2,i) - sk(k,j-1,i) ) ) * adv_sca_3 |
---|
333 | ENDDO |
---|
334 | |
---|
335 | CASE ( 4 ) |
---|
336 | |
---|
337 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
338 | v_comp = v(k,j+1,i) - v_gtrans |
---|
339 | flux_n(k) = v_comp* ( sk(k,j+1,i) + sk(k,j,i) ) * 0.5 |
---|
340 | diss_n(k) = diss_2nd( sk(k,j+1,i), sk(k,j+1,i), sk(k,j,i), & |
---|
341 | sk(k,j-1,i), sk(k,j-2,i), v_comp, & |
---|
342 | 0.5, ddy ) |
---|
343 | ENDDO |
---|
344 | |
---|
345 | CASE ( 5 ) |
---|
346 | |
---|
347 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
348 | u_comp = u(k,j,i+1) - u_gtrans |
---|
349 | flux_r(k) = u_comp * ( & |
---|
350 | 7.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
351 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) * adv_sca_3 |
---|
352 | diss_r(k) = -ABS( u_comp ) * ( & |
---|
353 | 3.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
354 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) * adv_sca_3 |
---|
355 | ENDDO |
---|
356 | |
---|
357 | CASE ( 6 ) |
---|
358 | |
---|
359 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
360 | u_comp = u(k,j,i+1) - u_gtrans |
---|
361 | flux_r(k) = u_comp * ( & |
---|
362 | 7.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
363 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) * adv_sca_3 |
---|
364 | diss_r(k) = -ABS( u_comp ) * ( & |
---|
365 | 3.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
366 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) * adv_sca_3 |
---|
367 | ! |
---|
368 | !-- Compute leftside fluxes for the left boundary of PE domain |
---|
369 | u_comp = u(k,j,i) - u_gtrans |
---|
370 | swap_flux_x_local(k,j) = u_comp * ( & |
---|
371 | sk(k,j,i) + sk(k,j,i-1) ) * 0.5 |
---|
372 | swap_diss_x_local(k,j) = diss_2nd( sk(k,j,i+2),sk(k,j,i+1), & |
---|
373 | sk(k,j,i), sk(k,j,i-1), & |
---|
374 | sk(k,j,i-1), u_comp, & |
---|
375 | 0.5, ddx ) |
---|
376 | ENDDO |
---|
377 | degraded_l = .TRUE. |
---|
378 | |
---|
379 | CASE ( 7 ) |
---|
380 | |
---|
381 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
382 | v_comp = v(k,j+1,i)-v_gtrans |
---|
383 | flux_n(k) = v_comp * ( & |
---|
384 | 7.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
385 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) * adv_sca_3 |
---|
386 | diss_n(k) = -ABS( v_comp ) * ( & |
---|
387 | 3.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
388 | - ( sk(k,j+2,i) - sk(k,j-1,i) ) ) * adv_sca_3 |
---|
389 | ENDDO |
---|
390 | |
---|
391 | CASE ( 8 ) |
---|
392 | |
---|
393 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
394 | v_comp = v(k,j+1,i) - v_gtrans |
---|
395 | flux_n(k) = v_comp * ( & |
---|
396 | 7.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
397 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) * adv_sca_3 |
---|
398 | diss_n(k) = -ABS( v_comp ) * ( & |
---|
399 | 3.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
400 | - ( sk(k,j+2,i) - sk(k,j-1,i) ) ) * adv_sca_3 |
---|
401 | ! |
---|
402 | !-- Compute southside fluxes for the south boundary of PE domain |
---|
403 | v_comp = v(k,j,i) - v_gtrans |
---|
404 | swap_flux_y_local(k) = v_comp * & |
---|
405 | ( sk(k,j,i) + sk(k,j-1,i) ) * 0.5 |
---|
406 | swap_diss_y_local(k) = diss_2nd( sk(k,j+2,i), sk(k,j+1,i), & |
---|
407 | sk(k,j,i), sk(k,j-1,i), & |
---|
408 | sk(k,j-1,i), v_comp, & |
---|
409 | 0.5, ddy ) |
---|
410 | ENDDO |
---|
411 | degraded_s = .TRUE. |
---|
412 | |
---|
413 | CASE DEFAULT |
---|
414 | |
---|
415 | END SELECT |
---|
416 | |
---|
417 | ! |
---|
418 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
419 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 .OR. & |
---|
420 | boundary_flags(j,i) == 5 .OR. boundary_flags(j,i) == 6 ) THEN |
---|
421 | |
---|
422 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
423 | v_comp = v(k,j+1,i) - v_gtrans |
---|
424 | flux_n(k) = v_comp * ( & |
---|
425 | 37.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
426 | - 8.0 * ( sk(k,j+2,i) + sk(k,j-1,i) ) & |
---|
427 | + ( sk(k,j+3,i) + sk(k,j-2,i) ) ) * adv_sca_5 |
---|
428 | diss_n(k) = -ABS( v_comp ) * ( & |
---|
429 | 10.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
430 | - 5.0 * ( sk(k,j+2,i) - sk(k,j-1,i) ) & |
---|
431 | + ( sk(k,j+3,i) - sk(k,j-2,i) ) ) * adv_sca_5 |
---|
432 | ENDDO |
---|
433 | |
---|
434 | ELSE |
---|
435 | |
---|
436 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
437 | u_comp = u(k,j,i+1) - u_gtrans |
---|
438 | flux_r(k) = u_comp * ( & |
---|
439 | 37.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
440 | - 8.0 * ( sk(k,j,i+2) + sk(k,j,i-1) ) & |
---|
441 | + ( sk(k,j,i+3) + sk(k,j,i-2) ) ) * adv_sca_5 |
---|
442 | diss_r(k) = -ABS( u_comp ) * ( & |
---|
443 | 10.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
444 | - 5.0 * ( sk(k,j,i+2) - sk(k,j,i-1) ) & |
---|
445 | + ( sk(k,j,i+3) - sk(k,j,i-2) ) ) * adv_sca_5 |
---|
446 | ENDDO |
---|
447 | |
---|
448 | ENDIF |
---|
449 | |
---|
450 | ELSE |
---|
451 | |
---|
452 | ! |
---|
453 | !-- Compute the fifth order fluxes for the interior of PE domain. |
---|
454 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
455 | u_comp = u(k,j,i+1) - u_gtrans |
---|
456 | flux_r(k) = u_comp * ( & |
---|
457 | 37.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
458 | - 8.0 * ( sk(k,j,i+2) + sk(k,j,i-1) ) & |
---|
459 | + ( sk(k,j,i+3) + sk(k,j,i-2) ) ) * adv_sca_5 |
---|
460 | diss_r(k) = -ABS( u_comp ) * ( & |
---|
461 | 10.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
462 | - 5.0 * ( sk(k,j,i+2) - sk(k,j,i-1) ) & |
---|
463 | + ( sk(k,j,i+3) - sk(k,j,i-2) ) ) * adv_sca_5 |
---|
464 | |
---|
465 | v_comp = v(k,j+1,i) - v_gtrans |
---|
466 | flux_n(k) = v_comp * ( & |
---|
467 | 37.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
468 | - 8.0 * ( sk(k,j+2,i) + sk(k,j-1,i) ) & |
---|
469 | + ( sk(k,j+3,i) + sk(k,j-2,i) ) ) * adv_sca_5 |
---|
470 | diss_n(k) = -ABS( v_comp ) * ( & |
---|
471 | 10.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
472 | - 5.0 * ( sk(k,j+2,i) - sk(k,j-1,i) ) & |
---|
473 | + ( sk(k,j+3,i) - sk(k,j-2,i) ) ) * adv_sca_5 |
---|
474 | ENDDO |
---|
475 | |
---|
476 | ENDIF |
---|
477 | ! |
---|
478 | !-- Compute left- and southside fluxes of the respective PE bounds. |
---|
479 | IF ( j == nys .AND. ( .NOT. degraded_s ) ) THEN |
---|
480 | |
---|
481 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
482 | v_comp = v(k,j,i) - v_gtrans |
---|
483 | swap_flux_y_local(k) = v_comp * ( & |
---|
484 | 37.0 * ( sk(k,j,i) + sk(k,j-1,i) ) & |
---|
485 | - 8.0 * ( sk(k,j+1,i) + sk(k,j-2,i) ) & |
---|
486 | + ( sk(k,j+2,i) + sk(k,j-3,i) ) & |
---|
487 | ) * adv_sca_5 |
---|
488 | swap_diss_y_local(k) = -ABS( v_comp ) * ( & |
---|
489 | 10.0 * ( sk(k,j,i) - sk(k,j-1,i) ) & |
---|
490 | - 5.0 * ( sk(k,j+1,i) - sk(k,j-2,i) ) & |
---|
491 | + sk(k,j+2,i) - sk(k,j-3,i) & |
---|
492 | ) * adv_sca_5 |
---|
493 | ENDDO |
---|
494 | |
---|
495 | ENDIF |
---|
496 | |
---|
497 | IF ( i == nxl .AND. .NOT. degraded_l ) THEN |
---|
498 | |
---|
499 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
500 | u_comp = u(k,j,i) - u_gtrans |
---|
501 | swap_flux_x_local(k,j) = u_comp * ( & |
---|
502 | 37.0 * ( sk(k,j,i) + sk(k,j,i-1) ) & |
---|
503 | - 8.0 * ( sk(k,j,i+1) + sk(k,j,i-2) ) & |
---|
504 | + ( sk(k,j,i+2) + sk(k,j,i-3) ) & |
---|
505 | ) * adv_sca_5 |
---|
506 | swap_diss_x_local(k,j) = -ABS( u_comp ) * ( & |
---|
507 | 10.0 * ( sk(k,j,i) - sk(k,j,i-1) ) & |
---|
508 | - 5.0 * ( sk(k,j,i+1) - sk(k,j,i-2) ) & |
---|
509 | + ( sk(k,j,i+2) - sk(k,j,i-3) ) & |
---|
510 | ) * adv_sca_5 |
---|
511 | ENDDO |
---|
512 | |
---|
513 | ENDIF |
---|
514 | |
---|
515 | ! |
---|
516 | !-- Now compute the tendency terms for the horizontal parts |
---|
517 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
518 | |
---|
519 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
520 | ( flux_r(k) + diss_r(k) - swap_flux_x_local(k,j) - & |
---|
521 | swap_diss_x_local(k,j) ) * ddx & |
---|
522 | + ( flux_n(k) + diss_n(k) - swap_flux_y_local(k) - & |
---|
523 | swap_diss_y_local(k) ) * ddy & |
---|
524 | ) |
---|
525 | |
---|
526 | swap_flux_y_local(k) = flux_n(k) |
---|
527 | swap_diss_y_local(k) = diss_n(k) |
---|
528 | swap_flux_x_local(k,j) = flux_r(k) |
---|
529 | swap_diss_x_local(k,j) = diss_r(k) |
---|
530 | |
---|
531 | ENDDO |
---|
532 | |
---|
533 | ! |
---|
534 | !-- Vertical advection, degradation of order near bottom and top. |
---|
535 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to later |
---|
536 | !-- calculation of statistics the top flux at the surface should be 0. |
---|
537 | flux_t(nzb_s_inner(j,i)) = 0.0 |
---|
538 | diss_t(nzb_s_inner(j,i)) = 0.0 |
---|
539 | |
---|
540 | ! |
---|
541 | !-- 2nd-order scheme (bottom) |
---|
542 | k = nzb_s_inner(j,i)+1 |
---|
543 | flux_d = flux_t(k-1) |
---|
544 | diss_d = diss_t(k-1) |
---|
545 | flux_t(k) = w(k,j,i) * ( sk(k+1,j,i) + sk(k,j,i) ) * 0.5 |
---|
546 | |
---|
547 | ! |
---|
548 | !-- sk(k,j,i) is referenced three times to avoid an access below surface |
---|
549 | diss_t(k) = diss_2nd( sk(k+2,j,i), sk(k+1,j,i), sk(k,j,i), sk(k,j,i), & |
---|
550 | sk(k,j,i), w(k,j,i), 0.5, ddzw(k) ) |
---|
551 | |
---|
552 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) - flux_d - diss_d ) & |
---|
553 | * ddzw(k) |
---|
554 | ! |
---|
555 | !-- WS3 as an intermediate step (bottom) |
---|
556 | k = nzb_s_inner(j,i) + 2 |
---|
557 | flux_d = flux_t(k-1) |
---|
558 | diss_d = diss_t(k-1) |
---|
559 | flux_t(k) = w(k,j,i) * ( & |
---|
560 | 7.0 * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
561 | - ( sk(k+2,j,i) + sk(k-1,j,i) ) & |
---|
562 | ) * adv_sca_3 |
---|
563 | diss_t(k) = -ABS( w(k,j,i) ) * ( & |
---|
564 | 3.0 * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
565 | - ( sk(k+2,j,i) - sk(k-1,j,i) ) & |
---|
566 | ) * adv_sca_3 |
---|
567 | |
---|
568 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) - flux_d - diss_d ) & |
---|
569 | * ddzw(k) |
---|
570 | ! |
---|
571 | !-- WS5 |
---|
572 | DO k = nzb_s_inner(j,i)+3, nzt-2 |
---|
573 | |
---|
574 | flux_d = flux_t(k-1) |
---|
575 | diss_d = diss_t(k-1) |
---|
576 | flux_t(k) = w(k,j,i) * ( & |
---|
577 | 37.0 * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
578 | - 8.0 * ( sk(k+2,j,i) + sk(k-1,j,i) ) & |
---|
579 | + ( sk(k+3,j,i) + sk(k-2,j,i) ) & |
---|
580 | ) * adv_sca_5 |
---|
581 | diss_t(k) = -ABS( w(k,j,i) ) * ( & |
---|
582 | 10.0 * ( sk(k+1,j,i) - sk(k,j,i) )& |
---|
583 | - 5.0 * ( sk(k+2,j,i) - sk(k-1,j,i) )& |
---|
584 | + ( sk(k+3,j,i) - sk(k-2,j,i) )& |
---|
585 | ) * adv_sca_5 |
---|
586 | |
---|
587 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
588 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
589 | |
---|
590 | ENDDO |
---|
591 | |
---|
592 | ! |
---|
593 | !-- WS3 as an intermediate step (top) |
---|
594 | k = nzt - 1 |
---|
595 | flux_d = flux_t(k-1) |
---|
596 | diss_d = diss_t(k-1) |
---|
597 | flux_t(k) = w(k,j,i) * ( & |
---|
598 | 7.0 * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
599 | - ( sk(k+2,j,i) + sk(k-1,j,i) ) & |
---|
600 | ) * adv_sca_3 |
---|
601 | diss_t(k) = -ABS( w(k,j,i) ) * ( & |
---|
602 | 3.0 * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
603 | - ( sk(k+2,j,i) - sk(k-1,j,i) ) & |
---|
604 | ) * adv_sca_3 |
---|
605 | |
---|
606 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) - flux_d - diss_d ) & |
---|
607 | * ddzw(k) |
---|
608 | ! |
---|
609 | !-- 2nd-order scheme (top) |
---|
610 | k = nzt |
---|
611 | flux_d = flux_t(k-1) |
---|
612 | diss_d = diss_t(k-1) |
---|
613 | flux_t(k) = w(k,j,i) * ( sk(k+1,j,i) + sk(k,j,i) ) * 0.5 |
---|
614 | |
---|
615 | ! |
---|
616 | !-- sk(k+1) is referenced two times to avoid a segmentation fault at top |
---|
617 | diss_t(k) = diss_2nd( sk(k+1,j,i), sk(k+1,j,i), sk(k,j,i), sk(k-1,j,i), & |
---|
618 | sk(k-2,j,i), w(k,j,i), 0.5, ddzw(k) ) |
---|
619 | |
---|
620 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) - flux_d - diss_d ) & |
---|
621 | * ddzw(k) |
---|
622 | ! |
---|
623 | !-- Evaluation of statistics |
---|
624 | SELECT CASE ( sk_char ) |
---|
625 | |
---|
626 | CASE ( 'pt' ) |
---|
627 | |
---|
628 | DO k = nzb_s_inner(j,i), nzt |
---|
629 | sums_wspts_ws_l(k,:) = sums_wspts_ws_l(k,:) + & |
---|
630 | ( flux_t(k) + diss_t(k) ) & |
---|
631 | * weight_substep(intermediate_timestep_count) & |
---|
632 | * rmask(j,i,:) |
---|
633 | ENDDO |
---|
634 | |
---|
635 | CASE ( 'sa' ) |
---|
636 | |
---|
637 | DO k = nzb_s_inner(j,i), nzt |
---|
638 | sums_wssas_ws_l(k,:) = sums_wssas_ws_l(k,:) + & |
---|
639 | ( flux_t(k) + diss_t(k) ) & |
---|
640 | * weight_substep(intermediate_timestep_count) & |
---|
641 | * rmask(j,i,:) |
---|
642 | ENDDO |
---|
643 | |
---|
644 | CASE ( 'q' ) |
---|
645 | |
---|
646 | DO k = nzb_s_inner(j,i), nzt |
---|
647 | sums_wsqs_ws_l(k,:) = sums_wsqs_ws_l(k,:) + & |
---|
648 | ( flux_t(k) + diss_t(k) ) & |
---|
649 | * weight_substep(intermediate_timestep_count) & |
---|
650 | * rmask(j,i,:) |
---|
651 | ENDDO |
---|
652 | |
---|
653 | END SELECT |
---|
654 | |
---|
655 | END SUBROUTINE advec_s_ws_ij |
---|
656 | |
---|
657 | |
---|
658 | |
---|
659 | |
---|
660 | !------------------------------------------------------------------------------! |
---|
661 | ! Advection of u-component - Call for grid point i,j |
---|
662 | !------------------------------------------------------------------------------! |
---|
663 | SUBROUTINE advec_u_ws_ij( i, j ) |
---|
664 | |
---|
665 | USE arrays_3d |
---|
666 | USE constants |
---|
667 | USE control_parameters |
---|
668 | USE grid_variables |
---|
669 | USE indices |
---|
670 | USE statistics |
---|
671 | |
---|
672 | IMPLICIT NONE |
---|
673 | |
---|
674 | INTEGER :: i, j, k |
---|
675 | LOGICAL :: degraded_l, degraded_s |
---|
676 | REAL :: gu, gv, flux_d, diss_d, u_comp_l, v_comp, w_comp |
---|
677 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_r, diss_r, & |
---|
678 | flux_n, diss_n, u_comp |
---|
679 | |
---|
680 | degraded_l = .FALSE. |
---|
681 | degraded_s = .FALSE. |
---|
682 | |
---|
683 | gu = 2.0 * u_gtrans |
---|
684 | gv = 2.0 * v_gtrans |
---|
685 | |
---|
686 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
687 | ! |
---|
688 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
689 | SELECT CASE ( boundary_flags(j,i) ) |
---|
690 | |
---|
691 | CASE ( 1 ) |
---|
692 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
693 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
694 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
695 | 7.0 * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
696 | - ( u(k,j,i+2) + u(k,j,i-1) ) ) * adv_mom_3 |
---|
697 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
698 | 3.0 * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
699 | - ( u(k,j,i+2) - u(k,j,i-1) ) ) * adv_mom_3 |
---|
700 | ENDDO |
---|
701 | |
---|
702 | CASE ( 2 ) |
---|
703 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
704 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
705 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
706 | u(k,j,i+1) + u(k,j,i) ) * 0.25 |
---|
707 | diss_r(k) = diss_2nd( u(k,j,i+1) ,u(k,j,i+1), u(k,j,i), & |
---|
708 | u(k,j,i-1), u(k,j,i-2), u_comp(k), & |
---|
709 | 0.25, ddx ) |
---|
710 | ENDDO |
---|
711 | |
---|
712 | CASE ( 3 ) |
---|
713 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
714 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
715 | flux_n(k) = v_comp * ( & |
---|
716 | 7.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
717 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) * adv_mom_3 |
---|
718 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
719 | 3.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
720 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) * adv_mom_3 |
---|
721 | ENDDO |
---|
722 | |
---|
723 | CASE ( 4 ) |
---|
724 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
725 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
726 | flux_n(k) = v_comp * ( u(k,j+1,i) + u(k,j,i) ) * 0.25 |
---|
727 | diss_n(k) = diss_2nd( u(k,j+1,i), u(k,j+1,i), u(k,j,i), & |
---|
728 | u(k,j-1,i), u(k,j-2,i), v_comp, & |
---|
729 | 0.25, ddy ) |
---|
730 | ENDDO |
---|
731 | |
---|
732 | CASE ( 5 ) |
---|
733 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
734 | ! |
---|
735 | !-- Compute leftside fluxes for the left boundary of PE domain |
---|
736 | u_comp(k) = u(k,j,i) + u(k,j,i-1) - gu |
---|
737 | flux_l_u(k,j) = u_comp(k) * ( u(k,j,i) + u(k,j,i-1) ) * 0.25 |
---|
738 | diss_l_u(k,j) = diss_2nd( u(k,j,i+2), u(k,j,i+1), u(k,j,i), & |
---|
739 | u(k,j,i-1), u(k,j,i-1), u_comp(k),& |
---|
740 | 0.25, ddx ) |
---|
741 | |
---|
742 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
743 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
744 | 7.0 * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
745 | - ( u(k,j,i+2) + u(k,j,i-1) ) ) * adv_mom_3 |
---|
746 | diss_r(k) = - ABS( u_comp(k) -gu ) * ( & |
---|
747 | 3.0 * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
748 | - ( u(k,j,i+2) - u(k,j,i-1) ) ) * adv_mom_3 |
---|
749 | ENDDO |
---|
750 | degraded_l = .TRUE. |
---|
751 | |
---|
752 | CASE ( 7 ) |
---|
753 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
754 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
755 | flux_n(k) = v_comp * ( & |
---|
756 | 7.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
757 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) * adv_mom_3 |
---|
758 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
759 | 3.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
760 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) * adv_mom_3 |
---|
761 | ENDDO |
---|
762 | |
---|
763 | CASE ( 8 ) |
---|
764 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
765 | ! |
---|
766 | !-- Compute southside fluxes for the south boundary of PE domain |
---|
767 | v_comp = v(k,j,i) + v(k,j,i-1) - gv |
---|
768 | flux_s_u(k) = v_comp * ( u(k,j,i) + u(k,j-1,i) ) * 0.25 |
---|
769 | diss_s_u(k) = diss_2nd( u(k,j+2,i), u(k,j+1,i), u(k,j,i), & |
---|
770 | u(k,j-1,i), u(k,j-1,i), v_comp, & |
---|
771 | 0.25, ddy ) |
---|
772 | |
---|
773 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
774 | flux_n(k) = v_comp * ( & |
---|
775 | 7.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
776 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) * adv_mom_3 |
---|
777 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
778 | 3.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
779 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) * adv_mom_3 |
---|
780 | ENDDO |
---|
781 | degraded_s = .TRUE. |
---|
782 | |
---|
783 | CASE DEFAULT |
---|
784 | |
---|
785 | END SELECT |
---|
786 | ! |
---|
787 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
788 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 .OR. & |
---|
789 | boundary_flags(j,i) == 5 ) THEN |
---|
790 | |
---|
791 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
792 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
793 | flux_n(k) = v_comp * ( & |
---|
794 | 37.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
795 | - 8.0 * ( u(k,j+2,i) + u(k,j-1,i) ) & |
---|
796 | + ( u(k,j+3,i) + u(k,j-2,i) ) ) * adv_mom_5 |
---|
797 | diss_n(k) = - ABS ( v_comp ) * ( & |
---|
798 | 10.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
799 | - 5.0 * ( u(k,j+2,i) - u(k,j-1,i) ) & |
---|
800 | + ( u(k,j+3,i) - u(k,j-2,i) ) ) * adv_mom_5 |
---|
801 | ENDDO |
---|
802 | |
---|
803 | ELSE |
---|
804 | |
---|
805 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
806 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
807 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
808 | 37.0 * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
809 | - 8.0 * ( u(k,j,i+2) + u(k,j,i-1) ) & |
---|
810 | + ( u(k,j,i+3) + u(k,j,i-2) ) ) * adv_mom_5 |
---|
811 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
812 | 10.0 * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
813 | - 5.0 * ( u(k,j,i+2) - u(k,j,i-1) ) & |
---|
814 | + ( u(k,j,i+3) - u(k,j,i-2) ) ) * adv_mom_5 |
---|
815 | ENDDO |
---|
816 | |
---|
817 | ENDIF |
---|
818 | |
---|
819 | ELSE |
---|
820 | ! |
---|
821 | !-- Compute the fifth order fluxes for the interior of PE domain. |
---|
822 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
823 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
824 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
825 | 37.0 * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
826 | - 8.0 * ( u(k,j,i+2) + u(k,j,i-1) ) & |
---|
827 | + ( u(k,j,i+3) + u(k,j,i-2) ) ) * adv_mom_5 |
---|
828 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
829 | 10.0 * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
830 | - 5.0 * ( u(k,j,i+2) - u(k,j,i-1) ) & |
---|
831 | + ( u(k,j,i+3) - u(k,j,i-2) ) ) * adv_mom_5 |
---|
832 | |
---|
833 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
834 | flux_n(k) = v_comp * ( & |
---|
835 | 37.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
836 | - 8.0 * ( u(k,j+2,i) + u(k,j-1,i) ) & |
---|
837 | + ( u(k,j+3,i) + u(k,j-2,i) ) ) * adv_mom_5 |
---|
838 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
839 | 10.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
840 | - 5.0 * ( u(k,j+2,i) - u(k,j-1,i) ) & |
---|
841 | + ( u(k,j+3,i) - u(k,j-2,i) ) ) * adv_mom_5 |
---|
842 | ENDDO |
---|
843 | |
---|
844 | ENDIF |
---|
845 | ! |
---|
846 | !-- Compute left- and southside fluxes for the respective boundary of PE |
---|
847 | IF ( j == nys .AND. ( .NOT. degraded_s ) ) THEN |
---|
848 | |
---|
849 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
850 | v_comp = v(k,j,i) + v(k,j,i-1) - gv |
---|
851 | flux_s_u(k) = v_comp * ( & |
---|
852 | 37.0 * ( u(k,j,i) + u(k,j-1,i) ) & |
---|
853 | - 8.0 * ( u(k,j+1,i) + u(k,j-2,i) ) & |
---|
854 | + ( u(k,j+2,i) + u(k,j-3,i) ) ) * adv_mom_5 |
---|
855 | diss_s_u(k) = - ABS(v_comp) * ( & |
---|
856 | 10.0 * ( u(k,j,i) - u(k,j-1,i) ) & |
---|
857 | - 5.0 * ( u(k,j+1,i) - u(k,j-2,i) ) & |
---|
858 | + ( u(k,j+2,i) - u(k,j-3,i) ) ) * adv_mom_5 |
---|
859 | ENDDO |
---|
860 | |
---|
861 | ENDIF |
---|
862 | |
---|
863 | IF ( i == nxlu .AND. ( .NOT. degraded_l ) ) THEN |
---|
864 | |
---|
865 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
866 | u_comp_l = u(k,j,i)+u(k,j,i-1)-gu |
---|
867 | flux_l_u(k,j) = u_comp_l * ( & |
---|
868 | 37.0 * ( u(k,j,i) + u(k,j,i-1) ) & |
---|
869 | - 8.0 * ( u(k,j,i+1) + u(k,j,i-2) ) & |
---|
870 | + ( u(k,j,i+2) + u(k,j,i-3) ) ) * adv_mom_5 |
---|
871 | diss_l_u(k,j) = - ABS(u_comp_l) * ( & |
---|
872 | 10.0 * ( u(k,j,i) - u(k,j,i-1) ) & |
---|
873 | - 5.0 * ( u(k,j,i+1) - u(k,j,i-2) ) & |
---|
874 | + ( u(k,j,i+2) - u(k,j,i-3) ) ) * adv_mom_5 |
---|
875 | ENDDO |
---|
876 | |
---|
877 | ENDIF |
---|
878 | ! |
---|
879 | !-- Now compute the tendency terms for the horizontal parts. |
---|
880 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
881 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
882 | ( flux_r(k) + diss_r(k) & |
---|
883 | - flux_l_u(k,j) - diss_l_u(k,j) ) * ddx & |
---|
884 | + ( flux_n(k) + diss_n(k) & |
---|
885 | - flux_s_u(k) - diss_s_u(k) ) * ddy ) |
---|
886 | |
---|
887 | flux_l_u(k,j) = flux_r(k) |
---|
888 | diss_l_u(k,j) = diss_r(k) |
---|
889 | flux_s_u(k) = flux_n(k) |
---|
890 | diss_s_u(k) = diss_n(k) |
---|
891 | ! |
---|
892 | !-- Statistical Evaluation of u'u'. The factor has to be applied for |
---|
893 | !-- right evaluation when gallilei_trans = .T. . |
---|
894 | sums_us2_ws_l(k,:) = sums_us2_ws_l(k,:) & |
---|
895 | + ( flux_r(k) * & |
---|
896 | ( u_comp(k) - 2.0 * hom(k,1,1,:) ) & |
---|
897 | / ( u_comp(k) - gu + 1.0E-20 ) & |
---|
898 | + diss_r(k) * & |
---|
899 | ABS( u_comp(k) - 2.0 * hom(k,1,1,:) ) & |
---|
900 | / ( ABS( u_comp(k) - gu ) + 1.0E-20 ) ) & |
---|
901 | * weight_substep(intermediate_timestep_count) * rmask(j,i,:) |
---|
902 | ENDDO |
---|
903 | sums_us2_ws_l(nzb_u_inner(j,i),:) = sums_us2_ws_l(nzb_u_inner(j,i)+1,:) |
---|
904 | |
---|
905 | |
---|
906 | ! |
---|
907 | !-- Vertical advection, degradation of order near surface and top. |
---|
908 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
909 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
910 | flux_t(nzb_u_inner(j,i)) = 0. !statistical reasons |
---|
911 | diss_t(nzb_u_inner(j,i)) = 0. |
---|
912 | ! |
---|
913 | !-- 2nd order scheme (bottom) |
---|
914 | k = nzb_u_inner(j,i)+1 |
---|
915 | flux_d = flux_t(k-1) |
---|
916 | diss_d = diss_t(k-1) |
---|
917 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
918 | flux_t(k) = w_comp * ( u(k+1,j,i) + u(k,j,i) ) *0.25 |
---|
919 | diss_t(k) = diss_2nd( u(k+2,j,i), u(k+1,j,i), u(k,j,i), 0., 0., & |
---|
920 | w_comp, 0.25, ddzw(k) ) |
---|
921 | |
---|
922 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
923 | - flux_d - diss_d ) * ddzw(k) |
---|
924 | ! |
---|
925 | !-- WS3 as an intermediate step (bottom) |
---|
926 | k = nzb_u_inner(j,i)+2 |
---|
927 | flux_d = flux_t(k-1) |
---|
928 | diss_d = diss_t(k-1) |
---|
929 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
930 | flux_t(k) = w_comp * ( & |
---|
931 | 7.0 * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
932 | - ( u(k+2,j,i) + u(k-1,j,i) ) ) * adv_mom_3 |
---|
933 | diss_t(k) = -ABS( w_comp) * ( & |
---|
934 | 3.0 * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
935 | - ( u(k+2,j,i) - u(k-1,j,i) ) ) * adv_mom_3 |
---|
936 | |
---|
937 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
938 | - flux_d - diss_d ) * ddzw(k) |
---|
939 | ! |
---|
940 | !-- WS5 |
---|
941 | DO k = nzb_u_inner(j,i)+3, nzt-2 |
---|
942 | flux_d = flux_t(k-1) |
---|
943 | diss_d = diss_t(k-1) |
---|
944 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
945 | flux_t(k) = w_comp * ( & |
---|
946 | 37.0 * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
947 | - 8.0 * ( u(k+2,j,i) + u(k-1,j,i) ) & |
---|
948 | + ( u(k+3,j,i) + u(k-2,j,i) ) ) * adv_mom_5 |
---|
949 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
950 | 10.0 * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
951 | - 5.0 * ( u(k+2,j,i) - u(k-1,j,i) ) & |
---|
952 | + ( u(k+3,j,i) - u(k-2,j,i) ) ) * adv_mom_5 |
---|
953 | |
---|
954 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
955 | - flux_d - diss_d ) * ddzw(k) |
---|
956 | ENDDO |
---|
957 | ! |
---|
958 | !-- WS3 as an intermediate step (top) |
---|
959 | k = nzt - 1 |
---|
960 | flux_d = flux_t(k-1) |
---|
961 | diss_d = diss_t(k-1) |
---|
962 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
963 | flux_t(k) = w_comp * ( & |
---|
964 | 7.0 * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
965 | - ( u(k+2,j,i) + u(k-1,j,i) ) ) * adv_mom_3 |
---|
966 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
967 | 3.0 * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
968 | - ( u(k+2,j,i) - u(k-1,j,i) ) ) * adv_mom_3 |
---|
969 | |
---|
970 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
971 | - flux_d - diss_d ) * ddzw(k) |
---|
972 | |
---|
973 | ! |
---|
974 | !-- 2nd order scheme (top) |
---|
975 | k = nzt |
---|
976 | flux_d = flux_t(k-1) |
---|
977 | diss_d = diss_t(k-1) |
---|
978 | w_comp = w(k,j,i)+w(k,j,i-1) |
---|
979 | flux_t(k) = w_comp * ( u(k+1,j,i) + u(k,j,i) ) * 0.25 |
---|
980 | diss_t(k) = diss_2nd( u(k+1,j,i), u(k+1,j,i), u(k,j,i), u(k-1,j,i), & |
---|
981 | u(k-2,j,i), w_comp, 0.25, ddzw(k) ) |
---|
982 | |
---|
983 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
984 | - flux_d - diss_d ) * ddzw(k) |
---|
985 | |
---|
986 | ! |
---|
987 | !-- sum up the vertical momentum fluxes |
---|
988 | DO k = nzb_u_inner(j,i), nzt |
---|
989 | sums_wsus_ws_l(k,:) = sums_wsus_ws_l(k,:) & |
---|
990 | + ( flux_t(k) + diss_t(k) ) & |
---|
991 | * weight_substep(intermediate_timestep_count) * rmask(j,i,:) |
---|
992 | ENDDO |
---|
993 | |
---|
994 | |
---|
995 | END SUBROUTINE advec_u_ws_ij |
---|
996 | |
---|
997 | |
---|
998 | |
---|
999 | |
---|
1000 | !------------------------------------------------------------------------------! |
---|
1001 | ! Advection of v-component - Call for grid point i,j |
---|
1002 | !------------------------------------------------------------------------------! |
---|
1003 | SUBROUTINE advec_v_ws_ij( i, j ) |
---|
1004 | |
---|
1005 | USE arrays_3d |
---|
1006 | USE constants |
---|
1007 | USE control_parameters |
---|
1008 | USE grid_variables |
---|
1009 | USE indices |
---|
1010 | USE statistics |
---|
1011 | |
---|
1012 | IMPLICIT NONE |
---|
1013 | |
---|
1014 | INTEGER :: i, j, k |
---|
1015 | LOGICAL :: degraded_l, degraded_s |
---|
1016 | REAL :: gu, gv, flux_d, diss_d, u_comp, v_comp_l, w_comp |
---|
1017 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_n, & |
---|
1018 | diss_n, flux_r, diss_r, v_comp |
---|
1019 | |
---|
1020 | degraded_l = .FALSE. |
---|
1021 | degraded_s = .FALSE. |
---|
1022 | |
---|
1023 | gu = 2.0 * u_gtrans |
---|
1024 | gv = 2.0 * v_gtrans |
---|
1025 | |
---|
1026 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
1027 | ! |
---|
1028 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
1029 | SELECT CASE ( boundary_flags(j,i) ) |
---|
1030 | |
---|
1031 | CASE ( 1 ) |
---|
1032 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1033 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
1034 | flux_r(k) = u_comp * ( & |
---|
1035 | 7.0 * (v(k,j,i+1) + v(k,j,i) ) & |
---|
1036 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) * adv_mom_3 |
---|
1037 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1038 | 3.0 * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
1039 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) * adv_mom_3 |
---|
1040 | ENDDO |
---|
1041 | |
---|
1042 | CASE ( 2 ) |
---|
1043 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1044 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
1045 | flux_r(k) = u_comp * ( v(k,j,i+1) + v(k,j,i) ) * 0.25 |
---|
1046 | diss_r(k) = diss_2nd( v(k,j,i+1), v(k,j,i+1), v(k,j,i), & |
---|
1047 | v(k,j,i-1), v(k,j,i-2), u_comp, & |
---|
1048 | 0.25, ddx ) |
---|
1049 | ENDDO |
---|
1050 | |
---|
1051 | CASE ( 3 ) |
---|
1052 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1053 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
1054 | flux_n(k) = ( v_comp(k)- gv ) * ( & |
---|
1055 | 7.0 * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
1056 | - ( v(k,j+2,i) + v(k,j-1,i) ) ) * adv_mom_3 |
---|
1057 | diss_n(k) = - ABS( v_comp(k) - gv ) * ( & |
---|
1058 | 3.0 * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
1059 | - ( v(k,j+2,i) - v(k,j-1,i) ) ) * adv_mom_3 |
---|
1060 | ENDDO |
---|
1061 | |
---|
1062 | CASE ( 4 ) |
---|
1063 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1064 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
1065 | flux_n(k) = ( v_comp(k) - gv ) * & |
---|
1066 | ( v(k,j+1,i) + v(k,j,i) ) * 0.25 |
---|
1067 | diss_n(k) = diss_2nd( v(k,j+1,i), v(k,j+1,i), v(k,j,i), & |
---|
1068 | v(k,j-1,i), v(k,j-2,i), v_comp(k), & |
---|
1069 | 0.25, ddy ) |
---|
1070 | ENDDO |
---|
1071 | |
---|
1072 | CASE ( 5 ) |
---|
1073 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1074 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
1075 | flux_r(k) = u_comp * ( & |
---|
1076 | 7.0 * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
1077 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) * adv_mom_3 |
---|
1078 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1079 | 3.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
1080 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) * adv_mom_3 |
---|
1081 | ENDDO |
---|
1082 | |
---|
1083 | CASE ( 6 ) |
---|
1084 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1085 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
1086 | flux_l_v(k,j) = u_comp * ( v(k,j,i) + v(k,j,i-1) ) * 0.25 |
---|
1087 | diss_l_v(k,j) = diss_2nd( v(k,j,i+2), v(k,j,i+1), v(k,j,i),& |
---|
1088 | v(k,j,i-1), v(k,j,i-1), u_comp, & |
---|
1089 | 0.25, ddx ) |
---|
1090 | |
---|
1091 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
1092 | flux_r(k) = u_comp * ( & |
---|
1093 | 7.0 * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
1094 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) * adv_mom_3 |
---|
1095 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1096 | 3.0 * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
1097 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) * adv_mom_3 |
---|
1098 | ENDDO |
---|
1099 | degraded_l = .TRUE. |
---|
1100 | |
---|
1101 | CASE ( 7 ) |
---|
1102 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1103 | v_comp(k) = v(k,j,i) + v(k,j-1,i) - gv |
---|
1104 | flux_s_v(k) = v_comp(k) * ( v(k,j,i) + v(k,j-1,i) ) * 0.25 |
---|
1105 | diss_s_v(k) = diss_2nd( v(k,j+2,i), v(k,j+1,i), v(k,j,i), & |
---|
1106 | v(k,j-1,i), v(k,j-1,i), v_comp(k), & |
---|
1107 | 0.25, ddy ) |
---|
1108 | |
---|
1109 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
1110 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
1111 | 7.0 * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
1112 | - ( v(k,j+2,i) + v(k,j-1,i) ) ) * adv_mom_3 |
---|
1113 | diss_n(k) = - ABS( v_comp(k) - gv ) * ( & |
---|
1114 | 3.0 * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
1115 | - ( v(k,j+2,i) - v(k,j-1,i) ) ) * adv_mom_3 |
---|
1116 | ENDDO |
---|
1117 | degraded_s = .TRUE. |
---|
1118 | |
---|
1119 | CASE DEFAULT |
---|
1120 | |
---|
1121 | END SELECT |
---|
1122 | ! |
---|
1123 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
1124 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 .OR. & |
---|
1125 | boundary_flags(j,i) == 5 .OR. boundary_flags(j,i) == 6 ) THEN |
---|
1126 | |
---|
1127 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1128 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
1129 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
1130 | 37.0 * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
1131 | - 8.0 * ( v(k,j+2,i) + v(k,j-1,i) ) & |
---|
1132 | + ( v(k,j+3,i) + v(k,j-2,i) ) ) * adv_mom_5 |
---|
1133 | diss_n(k) = - ABS( v_comp(k) - gv ) * ( & |
---|
1134 | 10.0 * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
1135 | - 5.0 * ( v(k,j+2,i) - v(k,j-1,i) ) & |
---|
1136 | + ( v(k,j+3,i) - v(k,j-2,i) ) ) * adv_mom_5 |
---|
1137 | ENDDO |
---|
1138 | |
---|
1139 | ELSE |
---|
1140 | |
---|
1141 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1142 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
1143 | flux_r(k) = u_comp * ( & |
---|
1144 | 37.0 * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
1145 | - 8.0 * ( v(k,j,i+2) + v(k,j,i-1) ) & |
---|
1146 | + ( v(k,j,i+3) + v(k,j,i-2) ) ) * adv_mom_5 |
---|
1147 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1148 | 10.0 * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
1149 | - 5.0 * ( v(k,j,i+2) - v(k,j,i-1) ) & |
---|
1150 | + ( v(k,j,i+3) - v(k,j,i-2) ) ) * adv_mom_5 |
---|
1151 | ENDDO |
---|
1152 | |
---|
1153 | ENDIF |
---|
1154 | |
---|
1155 | ELSE |
---|
1156 | ! |
---|
1157 | !-- Compute the fifth order fluxes for the interior of PE domain. |
---|
1158 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1159 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
1160 | flux_r(k) = u_comp * ( & |
---|
1161 | 37.0 * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
1162 | - 8.0 * ( v(k,j,i+2) + v(k,j,i-1) ) & |
---|
1163 | + ( v(k,j,i+3) + v(k,j,i-2) ) ) * adv_mom_5 |
---|
1164 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1165 | 10.0 * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
1166 | - 5.0 * ( v(k,j,i+2) - v(k,j,i-1) ) & |
---|
1167 | + ( v(k,j,i+3) - v(k,j,i-2) ) ) * adv_mom_5 |
---|
1168 | |
---|
1169 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
1170 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
1171 | 37.0 * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
1172 | - 8.0 * ( v(k,j+2,i) + v(k,j-1,i) ) & |
---|
1173 | + ( v(k,j+3,i) + v(k,j-2,i) ) ) * adv_mom_5 |
---|
1174 | diss_n(k) = - ABS( v_comp(k) - gv ) * ( & |
---|
1175 | 10.0 * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
1176 | - 5.0 * ( v(k,j+2,i) - v(k,j-1,i) ) & |
---|
1177 | + ( v(k,j+3,i) - v(k,j-2,i) ) ) * adv_mom_5 |
---|
1178 | ENDDO |
---|
1179 | |
---|
1180 | ENDIF |
---|
1181 | ! |
---|
1182 | !-- Compute left- and southside fluxes for the respective boundary |
---|
1183 | IF ( i == nxl .AND. ( .NOT. degraded_l ) ) THEN |
---|
1184 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1185 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
1186 | flux_l_v(k,j) = u_comp * ( & |
---|
1187 | 37.0 * ( v(k,j,i) + v(k,j,i-1) ) & |
---|
1188 | - 8.0 * ( v(k,j,i+1) + v(k,j,i-2) ) & |
---|
1189 | + ( v(k,j,i+2) + v(k,j,i-3) ) ) * adv_mom_5 |
---|
1190 | diss_l_v(k,j) = - ABS( u_comp ) * ( & |
---|
1191 | 10.0 * ( v(k,j,i) - v(k,j,i-1) ) & |
---|
1192 | - 5.0 * ( v(k,j,i+1) - v(k,j,i-2) ) & |
---|
1193 | + ( v(k,j,i+2) - v(k,j,i-3) ) ) * adv_mom_5 |
---|
1194 | ENDDO |
---|
1195 | |
---|
1196 | ENDIF |
---|
1197 | |
---|
1198 | IF ( j == nysv .AND. ( .NOT. degraded_s ) ) THEN |
---|
1199 | |
---|
1200 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1201 | v_comp_l = v(k,j,i) + v(k,j-1,i) - gv |
---|
1202 | flux_s_v(k) = v_comp_l * ( & |
---|
1203 | 37.0 * ( v(k,j,i) + v(k,j-1,i) ) & |
---|
1204 | - 8.0 * ( v(k,j+1,i) + v(k,j-2,i) ) & |
---|
1205 | + ( v(k,j+2,i) + v(k,j-3,i) ) ) * adv_mom_5 |
---|
1206 | diss_s_v(k) = - ABS( v_comp_l ) * ( & |
---|
1207 | 10.0 * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
1208 | - 5.0 * ( v(k,j+1,i) - v(k,j-2,i) ) & |
---|
1209 | + ( v(k,j+2,i) - v(k,j-3,i) ) ) * adv_mom_5 |
---|
1210 | ENDDO |
---|
1211 | |
---|
1212 | ENDIF |
---|
1213 | ! |
---|
1214 | !-- Now compute the tendency terms for the horizontal parts. |
---|
1215 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1216 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
1217 | ( flux_r(k) + diss_r(k) & |
---|
1218 | - flux_l_v(k,j) - diss_l_v(k,j) ) * ddx & |
---|
1219 | + ( flux_n(k) + diss_n(k) & |
---|
1220 | - flux_s_v(k) - diss_s_v(k) ) * ddy ) |
---|
1221 | |
---|
1222 | flux_l_v(k,j) = flux_r(k) |
---|
1223 | diss_l_v(k,j) = diss_r(k) |
---|
1224 | flux_s_v(k) = flux_n(k) |
---|
1225 | diss_s_v(k) = diss_n(k) |
---|
1226 | |
---|
1227 | ! |
---|
1228 | !-- Statistical Evaluation of v'v'. The factor has to be applied for |
---|
1229 | !-- right evaluation when gallilei_trans = .T. . |
---|
1230 | |
---|
1231 | sums_vs2_ws_l(k,:) = sums_vs2_ws_l(k,:) & |
---|
1232 | + ( flux_n(k) & |
---|
1233 | * ( v_comp(k) - 2.0 * hom(k,1,2,:) ) & |
---|
1234 | / ( v_comp(k) - gv + 1.0E-20 ) & |
---|
1235 | + diss_n(k) & |
---|
1236 | * ABS( v_comp(k) - 2.0 * hom(k,1,2,:) ) & |
---|
1237 | / ( ABS( v_comp(k) - gv ) +1.0E-20 ) ) & |
---|
1238 | * weight_substep(intermediate_timestep_count) * rmask(j,i,:) |
---|
1239 | |
---|
1240 | ENDDO |
---|
1241 | sums_vs2_ws_l(nzb_v_inner(j,i),:) = sums_vs2_ws_l(nzb_v_inner(j,i)+1,:) |
---|
1242 | |
---|
1243 | ! |
---|
1244 | !-- Vertical advection, degradation of order near surface and top. |
---|
1245 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
1246 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
1247 | flux_t(nzb_v_inner(j,i)) = 0.0 !statistical reasons |
---|
1248 | diss_t(nzb_v_inner(j,i)) = 0.0 |
---|
1249 | ! |
---|
1250 | !-- 2nd order scheme (bottom) |
---|
1251 | k = nzb_v_inner(j,i)+1 |
---|
1252 | flux_d = flux_t(k-1) |
---|
1253 | diss_d = diss_t(k-1) |
---|
1254 | w_comp = w(k,j-1,i) + w(k,j,i) |
---|
1255 | flux_t(k) = w_comp * ( v(k+1,j,i) + v(k,j,i) ) * 0.25 |
---|
1256 | diss_t(k) = diss_2nd( v(k+2,j,i), v(k+1,j,i), v(k,j,i), 0.0, 0.0, & |
---|
1257 | w_comp, 0.25, ddzw(k) ) |
---|
1258 | |
---|
1259 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1260 | - flux_d - diss_d ) * ddzw(k) |
---|
1261 | |
---|
1262 | ! |
---|
1263 | !-- WS3 as an intermediate step (bottom) |
---|
1264 | k = nzb_v_inner(j,i)+2 |
---|
1265 | flux_d = flux_t(k-1) |
---|
1266 | diss_d = diss_t(k-1) |
---|
1267 | w_comp = w(k,j-1,i) + w(k,j,i) |
---|
1268 | flux_t(k) = w_comp * ( & |
---|
1269 | 7.0 * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
1270 | - ( v(k+2,j,i) + v(k-1,j,i) ) ) * adv_mom_3 |
---|
1271 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
1272 | 3.0 * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
1273 | - ( v(k+2,j,i) - v(k-1,j,i) ) ) * adv_mom_3 |
---|
1274 | |
---|
1275 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1276 | - flux_d - diss_d ) * ddzw(k) |
---|
1277 | ! |
---|
1278 | !-- WS5 |
---|
1279 | DO k = nzb_v_inner(j,i)+3, nzt-2 |
---|
1280 | flux_d = flux_t(k-1) |
---|
1281 | diss_d = diss_t(k-1) |
---|
1282 | w_comp = w(k,j-1,i) + w(k,j,i) |
---|
1283 | flux_t(k) = w_comp * ( & |
---|
1284 | 37.0 * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
1285 | - 8.0 * ( v(k+2,j,i) + v(k-1,j,i) ) & |
---|
1286 | + ( v(k+3,j,i) + v(k-2,j,i) ) ) * adv_mom_5 |
---|
1287 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
1288 | 10.0 * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
1289 | - 5.0 * ( v(k+2,j,i) - v(k-1,j,i) ) & |
---|
1290 | + ( v(k+3,j,i) - v(k-2,j,i) ) ) * adv_mom_5 |
---|
1291 | |
---|
1292 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1293 | - flux_d - diss_d ) * ddzw(k) |
---|
1294 | ENDDO |
---|
1295 | ! |
---|
1296 | !-- WS3 as an intermediate step (top) |
---|
1297 | k = nzt - 1 |
---|
1298 | flux_d = flux_t(k-1) |
---|
1299 | diss_d = diss_t(k-1) |
---|
1300 | w_comp = w(k,j-1,i) + w(k,j,i) |
---|
1301 | flux_t(k) = w_comp * ( & |
---|
1302 | 7.0 * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
1303 | - ( v(k+2,j,i) + v(k-1,j,i) ) ) * adv_mom_3 |
---|
1304 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
1305 | 3.0 * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
1306 | - ( v(k+2,j,i) - v(k-1,j,i) ) ) * adv_mom_3 |
---|
1307 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1308 | - flux_d - diss_d ) * ddzw(k) |
---|
1309 | ! |
---|
1310 | !-- 2nd order scheme (top) |
---|
1311 | k = nzt |
---|
1312 | flux_d = flux_t(k-1) |
---|
1313 | diss_d = diss_t(k-1) |
---|
1314 | w_comp = w(k,j-1,i)+w(k,j,i) |
---|
1315 | flux_t(k) = w_comp * ( v(k+1,j,i) + v(k,j,i) ) * 0.25 |
---|
1316 | diss_t(k) = diss_2nd( v(k+1,j,i), v(k+1,j,i), v(k,j,i), v(k-1,j,i), & |
---|
1317 | v(k-2,j,i), w_comp, 0.25, ddzw(k) ) |
---|
1318 | |
---|
1319 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1320 | - flux_d - diss_d ) * ddzw(k) |
---|
1321 | |
---|
1322 | DO k = nzb_v_inner(j,i), nzt |
---|
1323 | sums_wsvs_ws_l(k,:) = sums_wsvs_ws_l(k,:) & |
---|
1324 | + ( flux_t(k) + diss_t(k) ) & |
---|
1325 | * weight_substep(intermediate_timestep_count) * rmask(j,i,:) |
---|
1326 | ENDDO |
---|
1327 | |
---|
1328 | END SUBROUTINE advec_v_ws_ij |
---|
1329 | |
---|
1330 | |
---|
1331 | |
---|
1332 | !------------------------------------------------------------------------------! |
---|
1333 | ! Advection of w-component - Call for grid point i,j |
---|
1334 | !------------------------------------------------------------------------------! |
---|
1335 | SUBROUTINE advec_w_ws_ij( i, j ) |
---|
1336 | |
---|
1337 | USE arrays_3d |
---|
1338 | USE constants |
---|
1339 | USE control_parameters |
---|
1340 | USE grid_variables |
---|
1341 | USE indices |
---|
1342 | USE statistics |
---|
1343 | |
---|
1344 | IMPLICIT NONE |
---|
1345 | |
---|
1346 | INTEGER :: i, j, k |
---|
1347 | LOGICAL :: degraded_l, degraded_s |
---|
1348 | REAL :: gu, gv, flux_d, diss_d, u_comp, v_comp, w_comp |
---|
1349 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_r, diss_r, flux_n, & |
---|
1350 | diss_n |
---|
1351 | |
---|
1352 | degraded_l = .FALSE. |
---|
1353 | degraded_s = .FALSE. |
---|
1354 | |
---|
1355 | gu = 2.0 * u_gtrans |
---|
1356 | gv = 2.0 * v_gtrans |
---|
1357 | |
---|
1358 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
1359 | ! |
---|
1360 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
1361 | SELECT CASE ( boundary_flags(j,i) ) |
---|
1362 | |
---|
1363 | CASE ( 1 ) |
---|
1364 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1365 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1366 | flux_r(k) = u_comp * ( & |
---|
1367 | 7.0 * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
1368 | - ( w(k,j,i+2) + w(k,j,i-1) ) ) * adv_mom_3 |
---|
1369 | diss_r(k) = -ABS( u_comp ) * ( & |
---|
1370 | 3.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
1371 | - ( w(k,j,i+2) - w(k,j,i-1) ) ) * adv_mom_3 |
---|
1372 | ENDDO |
---|
1373 | |
---|
1374 | CASE ( 2 ) |
---|
1375 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1376 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1377 | flux_r(k) = u_comp * ( w(k,j,i+1) + w(k,j,i) ) * 0.25 |
---|
1378 | diss_r(k) = diss_2nd( w(k,j,i+1), w(k,j,i+1), w(k,j,i), & |
---|
1379 | w(k,j,i-1), w(k,j,i-2), u_comp, & |
---|
1380 | 0.25, ddx ) |
---|
1381 | ENDDO |
---|
1382 | |
---|
1383 | CASE ( 3 ) |
---|
1384 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1385 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1386 | flux_n(k) = v_comp * ( & |
---|
1387 | 7.0 * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
1388 | - ( w(k,j+2,i) + w(k,j-1,i) ) ) * adv_mom_3 |
---|
1389 | diss_n(k) = -ABS( v_comp ) * ( & |
---|
1390 | 3.0 * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
1391 | - ( w(k,j+2,i) - w(k,j-1,i) ) ) * adv_mom_3 |
---|
1392 | ENDDO |
---|
1393 | |
---|
1394 | CASE ( 4 ) |
---|
1395 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1396 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1397 | flux_n(k) = v_comp * ( w(k,j+1,i) + w(k,j,i) ) * 0.25 |
---|
1398 | diss_n(k) = diss_2nd( w(k,j+1,i), w(k,j+1,i), w(k,j,i), & |
---|
1399 | w(k,j-1,i), w(k,j-2,i), v_comp, & |
---|
1400 | 0.25, ddy ) |
---|
1401 | ENDDO |
---|
1402 | |
---|
1403 | CASE ( 5 ) |
---|
1404 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1405 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1406 | flux_r(k) = u_comp * ( & |
---|
1407 | 7.0 * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
1408 | - ( w(k,j,i+2) + w(k,j,i-1) ) ) * adv_mom_3 |
---|
1409 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1410 | 3.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
1411 | - ( w(k,j,i+2) - w(k,j,i-1) ) ) * adv_mom_3 |
---|
1412 | ENDDO |
---|
1413 | |
---|
1414 | CASE ( 6 ) |
---|
1415 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1416 | ! |
---|
1417 | !-- Compute leftside fluxes for the left boundary of PE domain |
---|
1418 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1419 | flux_r(k) = u_comp *( & |
---|
1420 | 7.0 * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
1421 | - ( w(k,j,i+2) + w(k,j,i-1) ) ) * adv_mom_3 |
---|
1422 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1423 | 3.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
1424 | - ( w(k,j,i+2) - w(k,j,i-1) ) ) * adv_mom_3 |
---|
1425 | |
---|
1426 | u_comp = u(k+1,j,i) + u(k,j,i) - gu |
---|
1427 | flux_l_w(k,j) = u_comp * ( w(k,j,i) + w(k,j,i-1) ) * 0.25 |
---|
1428 | diss_l_w(k,j) = diss_2nd( w(k,j,i+2), w(k,j,i+1), w(k,j,i), & |
---|
1429 | w(k,j,i-1), w(k,j,i-1), u_comp, & |
---|
1430 | 0.25, ddx ) |
---|
1431 | ENDDO |
---|
1432 | degraded_l = .TRUE. |
---|
1433 | |
---|
1434 | CASE ( 7 ) |
---|
1435 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1436 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1437 | flux_n(k) = v_comp *( & |
---|
1438 | 7.0 * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
1439 | - ( w(k,j+2,i) + w(k,j-1,i) ) ) * adv_mom_3 |
---|
1440 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1441 | 3.0 * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
1442 | - ( w(k,j+2,i) - w(k,j-1,i) ) ) * adv_mom_3 |
---|
1443 | ENDDO |
---|
1444 | |
---|
1445 | CASE ( 8 ) |
---|
1446 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1447 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1448 | flux_n(k) = v_comp * ( & |
---|
1449 | 7.0 * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
1450 | - ( w(k,j+2,i) + w(k,j-1,i) ) ) * adv_mom_3 |
---|
1451 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1452 | 3.0 * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
1453 | - ( w(k,j+2,i) - w(k,j-1,i) ) ) * adv_mom_3 |
---|
1454 | ! |
---|
1455 | !-- Compute southside fluxes for the south boundary of PE domain |
---|
1456 | v_comp = v(k+1,j,i) + v(k,j,i) - gv |
---|
1457 | flux_s_w(k) = v_comp * ( w(k,j,i) + w(k,j-1,i) ) * 0.25 |
---|
1458 | diss_s_w(k) = diss_2nd( w(k,j+2,i), w(k,j+1,i), w(k,j,i), & |
---|
1459 | w(k,j-1,i), w(k,j-1,i), v_comp, & |
---|
1460 | 0.25, ddy ) |
---|
1461 | ENDDO |
---|
1462 | degraded_s = .TRUE. |
---|
1463 | |
---|
1464 | CASE DEFAULT |
---|
1465 | |
---|
1466 | END SELECT |
---|
1467 | ! |
---|
1468 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
1469 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 .OR. & |
---|
1470 | boundary_flags(j,i) == 5 .OR. boundary_flags(j,i) == 6 ) THEN |
---|
1471 | |
---|
1472 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1473 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1474 | flux_n(k) = v_comp * ( & |
---|
1475 | 37.0 * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
1476 | - 8.0 * ( w(k,j+2,i) + w(k,j-1,i) ) & |
---|
1477 | + ( w(k,j+3,i) + w(k,j-2,i) ) ) * adv_mom_5 |
---|
1478 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1479 | 10.0 * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
1480 | - 5.0 * ( w(k,j+2,i) - w(k,j-1,i) ) & |
---|
1481 | + ( w(k,j+3,i) - w(k,j-2,i) ) ) * adv_mom_5 |
---|
1482 | ENDDO |
---|
1483 | |
---|
1484 | ELSE |
---|
1485 | |
---|
1486 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1487 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1488 | flux_r(k) = u_comp * ( & |
---|
1489 | 37.0 * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
1490 | - 8.0 * ( w(k,j,i+2) + w(k,j,i-1) ) & |
---|
1491 | + ( w(k,j,i+3) + w(k,j,i-2) ) ) * adv_mom_5 |
---|
1492 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1493 | 10.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
1494 | - 5.0 * ( w(k,j,i+2) - w(k,j,i-1) ) & |
---|
1495 | + ( w(k,j,i+3) - w(k,j,i-2) ) ) * adv_mom_5 |
---|
1496 | ENDDO |
---|
1497 | |
---|
1498 | ENDIF |
---|
1499 | |
---|
1500 | ELSE |
---|
1501 | ! |
---|
1502 | !-- Compute the fifth order fluxes for the interior of PE domain. |
---|
1503 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1504 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1505 | flux_r(k) = u_comp * ( & |
---|
1506 | 37.0 * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
1507 | - 8.0 * ( w(k,j,i+2) + w(k,j,i-1) ) & |
---|
1508 | + ( w(k,j,i+3) + w(k,j,i-2) ) ) * adv_mom_5 |
---|
1509 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1510 | 10.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
1511 | - 5.0 * ( w(k,j,i+2) - w(k,j,i-1) ) & |
---|
1512 | + ( w(k,j,i+3) - w(k,j,i-2) ) ) * adv_mom_5 |
---|
1513 | |
---|
1514 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1515 | flux_n(k) = v_comp * ( & |
---|
1516 | 37.0 * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
1517 | - 8.0 * ( w(k,j+2,i) + w(k,j-1,i) ) & |
---|
1518 | + ( w(k,j+3,i) + w(k,j-2,i) ) ) * adv_mom_5 |
---|
1519 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1520 | 10.0 * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
1521 | - 5.0 * ( w(k,j+2,i) - w(k,j-1,i) ) & |
---|
1522 | + ( w(k,j+3,i) - w(k,j-2,i) ) ) * adv_mom_5 |
---|
1523 | ENDDO |
---|
1524 | |
---|
1525 | ENDIF |
---|
1526 | ! |
---|
1527 | !-- Compute left- and southside fluxes for the respective boundary |
---|
1528 | IF ( j == nys .AND. ( .NOT. degraded_s ) ) THEN |
---|
1529 | |
---|
1530 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1531 | v_comp = v(k+1,j,i) + v(k,j,i) - gv |
---|
1532 | flux_s_w(k) = v_comp * ( & |
---|
1533 | 37.0 * ( w(k,j,i) + w(k,j-1,i) ) & |
---|
1534 | - 8.0 * ( w(k,j+1,i) +w(k,j-2,i) ) & |
---|
1535 | + ( w(k,j+2,i) + w(k,j-3,i) ) ) * adv_mom_5 |
---|
1536 | diss_s_w(k) = - ABS( v_comp ) * ( & |
---|
1537 | 10.0 * ( w(k,j,i) - w(k,j-1,i) ) & |
---|
1538 | - 5.0 * ( w(k,j+1,i) - w(k,j-2,i) ) & |
---|
1539 | + ( w(k,j+2,i) - w(k,j-3,i) ) ) * adv_mom_5 |
---|
1540 | ENDDO |
---|
1541 | |
---|
1542 | ENDIF |
---|
1543 | |
---|
1544 | IF ( i == nxl .AND. ( .NOT. degraded_l ) ) THEN |
---|
1545 | |
---|
1546 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1547 | u_comp = u(k+1,j,i) + u(k,j,i) - gu |
---|
1548 | flux_l_w(k,j) = u_comp * ( & |
---|
1549 | 37.0 * ( w(k,j,i) + w(k,j,i-1) ) & |
---|
1550 | - 8.0 * ( w(k,j,i+1) + w(k,j,i-2) ) & |
---|
1551 | + ( w(k,j,i+2) + w(k,j,i-3) ) ) * adv_mom_5 |
---|
1552 | diss_l_w(k,j) = - ABS( u_comp ) * ( & |
---|
1553 | 10.0 * ( w(k,j,i) - w(k,j,i-1) ) & |
---|
1554 | - 5.0 * ( w(k,j,i+1) - w(k,j,i-2) ) & |
---|
1555 | + ( w(k,j,i+2) - w(k,j,i-3) ) ) * adv_mom_5 |
---|
1556 | ENDDO |
---|
1557 | |
---|
1558 | ENDIF |
---|
1559 | ! |
---|
1560 | !-- Now compute the tendency terms for the horizontal parts. |
---|
1561 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1562 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
1563 | ( flux_r(k) + diss_r(k) & |
---|
1564 | - flux_l_w(k,j) - diss_l_w(k,j) ) * ddx & |
---|
1565 | + ( flux_n(k) + diss_n(k) & |
---|
1566 | - flux_s_w(k) - diss_s_w(k) ) * ddy ) |
---|
1567 | |
---|
1568 | flux_l_w(k,j) = flux_r(k) |
---|
1569 | diss_l_w(k,j) = diss_r(k) |
---|
1570 | flux_s_w(k) = flux_n(k) |
---|
1571 | diss_s_w(k) = diss_n(k) |
---|
1572 | ENDDO |
---|
1573 | |
---|
1574 | ! |
---|
1575 | !-- Vertical advection, degradation of order near surface and top. |
---|
1576 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
1577 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
1578 | flux_t(nzb_w_inner(j,i)) = 0.0 !statistical reasons |
---|
1579 | diss_t(nzb_w_inner(j,i)) = 0.0 |
---|
1580 | ! |
---|
1581 | !-- 2nd order scheme (bottom) |
---|
1582 | k = nzb_w_inner(j,i)+1 |
---|
1583 | flux_d = flux_t(k-1) |
---|
1584 | diss_d = diss_t(k-1) |
---|
1585 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
1586 | flux_t(k) = w_comp * ( w(k+1,j,i) + w(k,j,i) ) * 0.25 |
---|
1587 | diss_t(k) = diss_2nd( w(k+2,j,i), w(k+1,j,i), w(k,j,i), 0.0, 0.0, & |
---|
1588 | w_comp, 0.25, ddzu(k+1) ) |
---|
1589 | |
---|
1590 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1591 | - flux_d - diss_d ) * ddzu(k+1) |
---|
1592 | ! |
---|
1593 | !-- WS3 as an intermediate step (bottom) |
---|
1594 | k = nzb_w_inner(j,i)+2 |
---|
1595 | flux_d = flux_t(k-1) |
---|
1596 | diss_d = diss_t(k-1) |
---|
1597 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
1598 | flux_t(k) = w_comp * ( & |
---|
1599 | 7.0 * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
1600 | - ( w(k+2,j,i) + w(k-1,j,i) ) ) * adv_mom_3 |
---|
1601 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
1602 | 3.0 * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
1603 | - ( w(k+2,j,i) - w(k-1,j,i) ) ) * adv_mom_3 |
---|
1604 | |
---|
1605 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1606 | - flux_d - diss_d ) * ddzu(k+1) |
---|
1607 | ! |
---|
1608 | !-- WS5 |
---|
1609 | DO k = nzb_w_inner(j,i)+3, nzt-2 |
---|
1610 | flux_d = flux_t(k-1) |
---|
1611 | diss_d = diss_t(k-1) |
---|
1612 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
1613 | flux_t(k) = w_comp * ( & |
---|
1614 | 37.0 * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
1615 | - 8.0 * ( w(k+2,j,i) + w(k-1,j,i) ) & |
---|
1616 | + ( w(k+3,j,i) + w(k-2,j,i) ) ) * adv_mom_5 |
---|
1617 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
1618 | 10.0 * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
1619 | - 5.0 * ( w(k+2,j,i) - w(k-1,j,i) ) & |
---|
1620 | + ( w(k+3,j,i) - w(k-2,j,i) ) ) * adv_mom_5 |
---|
1621 | |
---|
1622 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1623 | - flux_d - diss_d ) * ddzu(k+1) |
---|
1624 | ENDDO |
---|
1625 | !-- WS3 as an intermediate step (top) |
---|
1626 | k = nzt - 1 |
---|
1627 | flux_d = flux_t(k-1) |
---|
1628 | diss_d = diss_t(k-1) |
---|
1629 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
1630 | flux_t(k) = w_comp * ( & |
---|
1631 | 7.0 * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
1632 | - ( w(k+2,j,i) + w(k-1,j,i) ) ) *adv_mom_3 |
---|
1633 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
1634 | 3.0 * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
1635 | - ( w(k+2,j,i) - w(k-1,j,i) ) ) * adv_mom_3 |
---|
1636 | |
---|
1637 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1638 | - flux_d - diss_d ) * ddzu(k+1) |
---|
1639 | ! |
---|
1640 | !-- 2nd order scheme (top) |
---|
1641 | k = nzt |
---|
1642 | flux_d = flux_t(k-1) |
---|
1643 | diss_d = diss_t(k-1) |
---|
1644 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
1645 | flux_t(k) = w_comp * ( w(k+1,j,i) + w(k,j,i) ) * 0.25 |
---|
1646 | diss_t(k) = diss_2nd( w(k+1,j,i), w(k+1,j,i), w(k,j,i), w(k-1,j,i), & |
---|
1647 | w(k-2,j,i), w_comp, 0.25, ddzu(k+1) ) |
---|
1648 | |
---|
1649 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1650 | - flux_d - diss_d ) * ddzu(k+1) |
---|
1651 | |
---|
1652 | DO k = nzb_w_inner(j,i), nzt |
---|
1653 | sums_ws2_ws_l(k,:) = sums_ws2_ws_l(k,:) & |
---|
1654 | + ( flux_t(k) + diss_t(k) ) & |
---|
1655 | * weight_substep(intermediate_timestep_count) * rmask(j,i,:) |
---|
1656 | ENDDO |
---|
1657 | |
---|
1658 | END SUBROUTINE advec_w_ws_ij |
---|
1659 | |
---|
1660 | |
---|
1661 | !------------------------------------------------------------------------------! |
---|
1662 | ! Scalar advection - Call for all grid points |
---|
1663 | !------------------------------------------------------------------------------! |
---|
1664 | SUBROUTINE advec_s_ws( sk, sk_char ) |
---|
1665 | |
---|
1666 | USE arrays_3d |
---|
1667 | USE constants |
---|
1668 | USE control_parameters |
---|
1669 | USE grid_variables |
---|
1670 | USE indices |
---|
1671 | USE statistics |
---|
1672 | |
---|
1673 | IMPLICIT NONE |
---|
1674 | |
---|
1675 | INTEGER :: i, j, k |
---|
1676 | |
---|
1677 | REAL, DIMENSION(:,:,:), POINTER :: sk |
---|
1678 | REAL :: flux_d, diss_d, u_comp, v_comp |
---|
1679 | REAL, DIMENSION(nzb:nzt+1) :: flux_r, diss_r, flux_n, diss_n |
---|
1680 | REAL, DIMENSION(nzb+1:nzt) :: swap_flux_y_local, swap_diss_y_local, & |
---|
1681 | flux_t, diss_t |
---|
1682 | REAL, DIMENSION(nzb+1:nzt,nys:nyn) :: swap_flux_x_local, & |
---|
1683 | swap_diss_x_local |
---|
1684 | CHARACTER (LEN = *), INTENT(IN) :: sk_char |
---|
1685 | |
---|
1686 | ! |
---|
1687 | !-- Compute the fluxes for the whole left boundary of the processor domain. |
---|
1688 | i = nxl |
---|
1689 | DO j = nys, nyn |
---|
1690 | IF ( boundary_flags(j,i) == 6 ) THEN |
---|
1691 | |
---|
1692 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1693 | u_comp = u(k,j,i) - u_gtrans |
---|
1694 | swap_flux_x_local(k,j) = u_comp * ( & |
---|
1695 | sk(k,j,i) + sk(k,j,i-1)) * 0.5 |
---|
1696 | swap_diss_x_local(k,j) = diss_2nd( sk(k,j,i+2), sk(k,j,i+1), & |
---|
1697 | sk(k,j,i), sk(k,j,i-1), & |
---|
1698 | sk(k,j,i-1), u_comp, & |
---|
1699 | 0.5, ddx ) |
---|
1700 | ENDDO |
---|
1701 | |
---|
1702 | ELSE |
---|
1703 | |
---|
1704 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1705 | u_comp = u(k,j,i) - u_gtrans |
---|
1706 | swap_flux_x_local(k,j) = u_comp*( & |
---|
1707 | 37.0 * ( sk(k,j,i)+sk(k,j,i-1) ) & |
---|
1708 | - 8.0 * ( sk(k,j,i+1) + sk(k,j,i-2) ) & |
---|
1709 | + ( sk(k,j,i+2) + sk(k,j,i-3) ) )& |
---|
1710 | * adv_sca_5 |
---|
1711 | swap_diss_x_local(k,j) = - ABS( u_comp ) * ( & |
---|
1712 | 10.0 * (sk(k,j,i) - sk(k,j,i-1) ) & |
---|
1713 | - 5.0 * ( sk(k,j,i+1) - sk(k,j,i-2) ) & |
---|
1714 | + ( sk(k,j,i+2) - sk(k,j,i-3) ) )& |
---|
1715 | * adv_sca_5 |
---|
1716 | ENDDO |
---|
1717 | ENDIF |
---|
1718 | ENDDO |
---|
1719 | ! |
---|
1720 | !-- The following loop computes the horizontal fluxes for the interior of the |
---|
1721 | !-- processor domain plus south boundary points. Furthermore tendency terms |
---|
1722 | !-- are computed. |
---|
1723 | DO i = nxl, nxr |
---|
1724 | j = nys |
---|
1725 | IF ( boundary_flags(j,i) == 8 ) THEN |
---|
1726 | |
---|
1727 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1728 | v_comp = v(k,j,i) - v_gtrans |
---|
1729 | swap_flux_y_local(k) = v_comp * & |
---|
1730 | ( sk(k,j,i) + sk(k,j-1,i) ) * 0.5 |
---|
1731 | swap_diss_y_local(k) = diss_2nd( sk(k,j+2,i), sk(k,j+1,i), & |
---|
1732 | sk(k,j,i), sk(k,j-1,i), & |
---|
1733 | sk(k,j-1,i), v_comp, 0.5, ddy ) |
---|
1734 | ENDDO |
---|
1735 | |
---|
1736 | ELSE |
---|
1737 | |
---|
1738 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1739 | v_comp = v(k,j,i) - v_gtrans |
---|
1740 | swap_flux_y_local(k) = v_comp * ( & |
---|
1741 | 37.0 * ( sk(k,j,i) + sk(k,j-1,i) ) & |
---|
1742 | - 8.0 * ( sk(k,j+1,i) + sk(k,j-2,i) ) & |
---|
1743 | + ( sk(k,j+2,i) + sk(k,j-3,i) ) ) & |
---|
1744 | * adv_sca_5 |
---|
1745 | swap_diss_y_local(k)= - ABS( v_comp ) * ( & |
---|
1746 | 10.0 * ( sk(k,j,i) - sk(k,j-1,i) ) & |
---|
1747 | - 5.0 * ( sk(k,j+1,i) - sk(k,j-2,i) ) & |
---|
1748 | + ( sk(k,j+2,i)-sk(k,j-3,i) ) ) & |
---|
1749 | * adv_sca_5 |
---|
1750 | ENDDO |
---|
1751 | |
---|
1752 | ENDIF |
---|
1753 | |
---|
1754 | DO j = nys, nyn |
---|
1755 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
1756 | ! |
---|
1757 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
1758 | SELECT CASE ( boundary_flags(j,i) ) |
---|
1759 | |
---|
1760 | CASE ( 1 ) |
---|
1761 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1762 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1763 | flux_r(k) = u_comp * ( & |
---|
1764 | 7.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
1765 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) & |
---|
1766 | * adv_sca_3 |
---|
1767 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1768 | 3.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
1769 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) & |
---|
1770 | * adv_sca_3 |
---|
1771 | ENDDO |
---|
1772 | |
---|
1773 | CASE ( 2 ) |
---|
1774 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1775 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1776 | flux_r(k) = u_comp * ( sk(k,j,i+1) + sk(k,j,i) ) * 0.5 |
---|
1777 | diss_r(k) = diss_2nd( sk(k,j,i+1), sk(k,j,i+1), & |
---|
1778 | sk(k,j,i), sk(k,j,i-1), & |
---|
1779 | sk(k,j,i-2), u_comp, 0.5, ddx ) |
---|
1780 | ENDDO |
---|
1781 | |
---|
1782 | CASE ( 3 ) |
---|
1783 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1784 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1785 | flux_n(k) = v_comp * ( & |
---|
1786 | 7.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
1787 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) & |
---|
1788 | * adv_sca_3 |
---|
1789 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1790 | 3.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
1791 | - ( sk(k,j+2,i) - sk(k,j-1,i) ) ) & |
---|
1792 | * adv_sca_3 |
---|
1793 | ENDDO |
---|
1794 | |
---|
1795 | CASE ( 4 ) |
---|
1796 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1797 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1798 | flux_n(k) = v_comp * ( sk(k,j+1,i) + sk(k,j,i) ) * 0.5 |
---|
1799 | diss_n(k) = diss_2nd( sk(k,j+1,i), sk(k,j+1,i), & |
---|
1800 | sk(k,j,i), sk(k,j-1,i), & |
---|
1801 | sk(k,j-2,i), v_comp, 0.5, ddy ) |
---|
1802 | ENDDO |
---|
1803 | |
---|
1804 | CASE ( 5 ) |
---|
1805 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
1806 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1807 | flux_r(k) = u_comp * ( & |
---|
1808 | 7.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
1809 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) & |
---|
1810 | * adv_sca_3 |
---|
1811 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1812 | 3.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
1813 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) & |
---|
1814 | * adv_sca_3 |
---|
1815 | ENDDO |
---|
1816 | |
---|
1817 | CASE ( 6 ) |
---|
1818 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1819 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1820 | flux_r(k) = u_comp * ( & |
---|
1821 | 7.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
1822 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) & |
---|
1823 | * adv_sca_3 |
---|
1824 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1825 | 3.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
1826 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) & |
---|
1827 | * adv_sca_3 |
---|
1828 | ENDDO |
---|
1829 | |
---|
1830 | CASE ( 7 ) |
---|
1831 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1832 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1833 | flux_n(k) = v_comp * ( & |
---|
1834 | 7.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
1835 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) & |
---|
1836 | * adv_sca_3 |
---|
1837 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1838 | 3.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
1839 | - ( sk(k,j+2,i) - sk(k,j-1,i) ) ) & |
---|
1840 | * adv_sca_3 |
---|
1841 | ENDDO |
---|
1842 | |
---|
1843 | CASE ( 8 ) |
---|
1844 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1845 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1846 | flux_n(k) = v_comp * ( & |
---|
1847 | 7.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
1848 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) & |
---|
1849 | * adv_sca_3 |
---|
1850 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1851 | 3.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
1852 | - ( sk(k,j+2,i) - sk(k,j-1,i) ) ) & |
---|
1853 | * adv_sca_3 |
---|
1854 | ENDDO |
---|
1855 | |
---|
1856 | CASE DEFAULT |
---|
1857 | |
---|
1858 | END SELECT |
---|
1859 | |
---|
1860 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 .OR.& |
---|
1861 | boundary_flags(j,i) == 5 .OR. boundary_flags(j,i) == 6 ) & |
---|
1862 | THEN |
---|
1863 | |
---|
1864 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1865 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1866 | flux_n(k) = v_comp * ( & |
---|
1867 | 37.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
1868 | - 8.0 * ( sk(k,j+2,i) + sk(k,j-1,i) ) & |
---|
1869 | + ( sk(k,j+3,i) + sk(k,j-2,i) ) ) & |
---|
1870 | * adv_sca_5 |
---|
1871 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1872 | 10.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
1873 | - 5.0 * ( sk(k,j+2,i) - sk(k,j-1,i) ) & |
---|
1874 | + ( sk(k,j+3,i) - sk(k,j-2,i) ) ) & |
---|
1875 | * adv_sca_5 |
---|
1876 | ENDDO |
---|
1877 | |
---|
1878 | ELSE |
---|
1879 | |
---|
1880 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1881 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1882 | flux_r(k) = u_comp * ( & |
---|
1883 | 37.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
1884 | - 8.0 * ( sk(k,j,i+2) + sk(k,j,i-1) ) & |
---|
1885 | + ( sk(k,j,i+3) + sk(k,j,i-2) ) ) & |
---|
1886 | * adv_sca_5 |
---|
1887 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1888 | 10.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
1889 | - 5.0 * ( sk(k,j,i+2) - sk(k,j,i-1) ) & |
---|
1890 | + ( sk(k,j,i+3) - sk(k,j,i-2) ) ) & |
---|
1891 | * adv_sca_5 |
---|
1892 | ENDDO |
---|
1893 | |
---|
1894 | ENDIF |
---|
1895 | |
---|
1896 | ELSE |
---|
1897 | |
---|
1898 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1899 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1900 | flux_r(k) = u_comp * ( & |
---|
1901 | 37.0 * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
1902 | - 8.0 * ( sk(k,j,i+2) + sk(k,j,i-1) ) & |
---|
1903 | + ( sk(k,j,i+3) + sk(k,j,i-2) ) ) & |
---|
1904 | * adv_sca_5 |
---|
1905 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
1906 | 10.0 * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
1907 | - 5.0 * ( sk(k,j,i+2) - sk(k,j,i-1) ) & |
---|
1908 | + ( sk(k,j,i+3) - sk(k,j,i-2) ) ) & |
---|
1909 | * adv_sca_5 |
---|
1910 | |
---|
1911 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1912 | flux_n(k) = v_comp * ( & |
---|
1913 | 37.0 * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
1914 | - 8.0 * ( sk(k,j+2,i) + sk(k,j-1,i) ) & |
---|
1915 | + ( sk(k,j+3,i) + sk(k,j-2,i) ) ) & |
---|
1916 | * adv_sca_5 |
---|
1917 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
1918 | 10.0 * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
1919 | - 5.0 * ( sk(k,j+2,i) - sk(k,j-1,i) ) & |
---|
1920 | + ( sk(k,j+3,i) - sk(k,j-2,i) ) ) & |
---|
1921 | * adv_sca_5 |
---|
1922 | ENDDO |
---|
1923 | |
---|
1924 | ENDIF |
---|
1925 | |
---|
1926 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1927 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
1928 | ( flux_r(k) + diss_r(k) & |
---|
1929 | - swap_flux_x_local(k,j) - swap_diss_x_local(k,j) ) * ddx & |
---|
1930 | + ( flux_n(k) + diss_n(k) & |
---|
1931 | - swap_flux_y_local(k) - swap_diss_y_local(k) ) * ddy) |
---|
1932 | |
---|
1933 | swap_flux_x_local(k,j) = flux_r(k) |
---|
1934 | swap_diss_x_local(k,j) = diss_r(k) |
---|
1935 | swap_flux_y_local(k) = flux_n(k) |
---|
1936 | swap_diss_y_local(k) = diss_n(k) |
---|
1937 | ENDDO |
---|
1938 | ENDDO |
---|
1939 | ENDDO |
---|
1940 | |
---|
1941 | ! |
---|
1942 | !-- Vertical advection, degradation of order near surface and top. |
---|
1943 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
1944 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
1945 | DO i = nxl, nxr |
---|
1946 | DO j = nys, nyn |
---|
1947 | ! |
---|
1948 | !-- 2nd order scheme (bottom) |
---|
1949 | k=nzb_s_inner(j,i)+1 |
---|
1950 | ! |
---|
1951 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to static |
---|
1952 | !-- reasons the top flux at the surface should be 0. |
---|
1953 | flux_t(nzb_s_inner(j,i)) = 0.0 |
---|
1954 | diss_t(nzb_s_inner(j,i)) = 0.0 |
---|
1955 | flux_d = flux_t(k-1) |
---|
1956 | diss_d = diss_t(k-1) |
---|
1957 | flux_t(k) = w(k,j,i) * ( sk(k+1,j,i) + sk(k,j,i) ) * 0.5 |
---|
1958 | diss_t(k) = diss_2nd( sk(k+2,j,i), sk(k+1,j,i), sk(k,j,i), & |
---|
1959 | sk(k,j,i), sk(k,j,i), w(k,j,i), & |
---|
1960 | 0.5, ddzw(k) ) |
---|
1961 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1962 | - flux_d - diss_d ) * ddzw(k) |
---|
1963 | ! |
---|
1964 | !-- WS3 as an intermediate step (bottom) |
---|
1965 | k = nzb_s_inner(j,i)+2 |
---|
1966 | flux_d = flux_t(k-1) |
---|
1967 | diss_d = diss_t(k-1) |
---|
1968 | flux_t(k) = w(k,j,i) * ( & |
---|
1969 | 7.0 * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
1970 | - ( sk(k+2,j,i) + sk(k-1,j,i) ) ) * adv_sca_3 |
---|
1971 | diss_t(k) = - ABS( w(k,j,i) ) * ( & |
---|
1972 | 3.0 * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
1973 | - ( sk(k+2,j,i) - sk(k-1,j,i) ) ) * adv_sca_3 |
---|
1974 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1975 | - flux_d - diss_d ) * ddzw(k) |
---|
1976 | ! |
---|
1977 | !-- WS5 |
---|
1978 | DO k = nzb_s_inner(j,i)+3, nzt-2 |
---|
1979 | flux_d = flux_t(k-1) |
---|
1980 | diss_d = diss_t(k-1) |
---|
1981 | flux_t(k) = w(k,j,i) * ( & |
---|
1982 | 37.0 * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
1983 | - 8.0 * ( sk(k+2,j,i) + sk(k-1,j,i) ) & |
---|
1984 | + ( sk(k+3,j,i) + sk(k-2,j,i) ) ) * adv_sca_5 |
---|
1985 | diss_t(k) = - ABS(w(k,j,i)) * ( & |
---|
1986 | 10.0 * ( sk(k+1,j,i) -sk(k,j,i) ) & |
---|
1987 | - 5.0 * ( sk(k+2,j,i) - sk(k-1,j,i) ) & |
---|
1988 | + ( sk(k+3,j,i) - sk(k-2,j,i) ) ) * adv_sca_5 |
---|
1989 | |
---|
1990 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1991 | - flux_d - diss_d ) * ddzw(k) |
---|
1992 | ENDDO |
---|
1993 | ! |
---|
1994 | !-- WS3 as an intermediate step (top) |
---|
1995 | k = nzt - 1 |
---|
1996 | flux_d = flux_t(k-1) |
---|
1997 | diss_d = diss_t(k-1) |
---|
1998 | flux_t(k) = w(k,j,i) * ( & |
---|
1999 | 7.0 * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
2000 | - ( sk(k+2,j,i) + sk(k-1,j,i) ) ) * adv_sca_3 |
---|
2001 | diss_t(k) = - ABS(w(k,j,i)) * ( & |
---|
2002 | 3.0 * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
2003 | - ( sk(k+2,j,i) - sk(k-1,j,i) ) ) * adv_sca_3 |
---|
2004 | |
---|
2005 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2006 | - flux_d - diss_d ) * ddzw(k) |
---|
2007 | ! |
---|
2008 | !-- 2nd order scheme (top) |
---|
2009 | k = nzt |
---|
2010 | flux_d = flux_t(k-1) |
---|
2011 | diss_d = diss_t(k-1) |
---|
2012 | flux_t(k) = w(k,j,i) * ( sk(k+1,j,i) + sk(k,j,i) ) * 0.5 |
---|
2013 | diss_t(k) = diss_2nd( sk(k+1,j,i), sk(k+1,j,i), sk(k,j,i), & |
---|
2014 | sk(k-1,j,i), sk(k-2,j,i), w(k,j,i), & |
---|
2015 | 0.5, ddzw(k) ) |
---|
2016 | |
---|
2017 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2018 | - flux_d - diss_d ) * ddzw(k) |
---|
2019 | ! |
---|
2020 | !-- evaluation of statistics |
---|
2021 | SELECT CASE ( sk_char ) |
---|
2022 | |
---|
2023 | CASE ( 'pt' ) |
---|
2024 | DO k = nzb_s_inner(j,i), nzt |
---|
2025 | sums_wspts_ws_l(k,:) = sums_wspts_ws_l(k,:) & |
---|
2026 | + ( flux_t(k) + diss_t(k) ) & |
---|
2027 | * weight_substep(intermediate_timestep_count) & |
---|
2028 | * rmask(j,i,:) |
---|
2029 | ENDDO |
---|
2030 | CASE ( 'sa' ) |
---|
2031 | DO k = nzb_s_inner(j,i), nzt |
---|
2032 | sums_wssas_ws_l(k,:) = sums_wssas_ws_l(k,:) & |
---|
2033 | + ( flux_t(k) + diss_t(k) ) & |
---|
2034 | * weight_substep(intermediate_timestep_count) & |
---|
2035 | * rmask(j,i,:) |
---|
2036 | ENDDO |
---|
2037 | CASE ( 'q' ) |
---|
2038 | DO k = nzb_s_inner(j,i), nzt |
---|
2039 | sums_wsqs_ws_l(k,:) = sums_wsqs_ws_l(k,:) & |
---|
2040 | + ( flux_t(k) + diss_t(k) ) & |
---|
2041 | * weight_substep(intermediate_timestep_count) & |
---|
2042 | * rmask(j,i,:) |
---|
2043 | ENDDO |
---|
2044 | |
---|
2045 | END SELECT |
---|
2046 | ENDDO |
---|
2047 | ENDDO |
---|
2048 | |
---|
2049 | |
---|
2050 | END SUBROUTINE advec_s_ws |
---|
2051 | |
---|
2052 | |
---|
2053 | !------------------------------------------------------------------------------! |
---|
2054 | ! Advection of u - Call for all grid points |
---|
2055 | !------------------------------------------------------------------------------! |
---|
2056 | SUBROUTINE advec_u_ws |
---|
2057 | |
---|
2058 | USE arrays_3d |
---|
2059 | USE constants |
---|
2060 | USE control_parameters |
---|
2061 | USE grid_variables |
---|
2062 | USE indices |
---|
2063 | USE statistics |
---|
2064 | |
---|
2065 | IMPLICIT NONE |
---|
2066 | |
---|
2067 | INTEGER :: i, j, k |
---|
2068 | REAL :: gu, gv, flux_d, diss_d, v_comp, w_comp |
---|
2069 | REAL, DIMENSION(nzb+1:nzt) :: swap_flux_y_local_u, swap_diss_y_local_u |
---|
2070 | REAL, DIMENSION(nzb+1:nzt,nys:nyn) :: swap_flux_x_local_u, & |
---|
2071 | swap_diss_x_local_u |
---|
2072 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_r, diss_r, flux_n, & |
---|
2073 | diss_n, u_comp |
---|
2074 | |
---|
2075 | gu = 2.0 * u_gtrans |
---|
2076 | gv = 2.0 * v_gtrans |
---|
2077 | |
---|
2078 | ! |
---|
2079 | !-- Compute the fluxes for the whole left boundary of the processor domain. |
---|
2080 | i = nxlu |
---|
2081 | DO j = nys, nyn |
---|
2082 | IF( boundary_flags(j,i) == 5 ) THEN |
---|
2083 | |
---|
2084 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2085 | u_comp(k) = u(k,j,i) + u(k,j,i-1) - gu |
---|
2086 | swap_flux_x_local_u(k,j) = u_comp(k) * & |
---|
2087 | ( u(k,j,i) + u(k,j,i-1) ) * 0.25 |
---|
2088 | swap_diss_x_local_u(k,j) = diss_2nd( u(k,j,i+2), u(k,j,i+1), & |
---|
2089 | u(k,j,i), u(k,j,i-1), & |
---|
2090 | u(k,j,i-1), u_comp(k), & |
---|
2091 | 0.25, ddx ) |
---|
2092 | ENDDO |
---|
2093 | |
---|
2094 | ELSE |
---|
2095 | |
---|
2096 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2097 | u_comp(k) = u(k,j,i) + u(k,j,i-1) - gu |
---|
2098 | swap_flux_x_local_u(k,j) = u_comp(k) * ( & |
---|
2099 | 37.0 * ( u(k,j,i) + u(k,j,i-1) ) & |
---|
2100 | - 8.0 * ( u(k,j,i+1) + u(k,j,i-2) ) & |
---|
2101 | + (u(k,j,i+2)+u(k,j,i-3) ) ) & |
---|
2102 | * adv_mom_5 |
---|
2103 | swap_diss_x_local_u(k,j) = - ABS(u_comp(k)) * ( & |
---|
2104 | 10.0 * ( u(k,j,i) - u(k,j,i-1) ) & |
---|
2105 | - 5.0 * ( u(k,j,i+1) - u(k,j,i-2) ) & |
---|
2106 | + ( u(k,j,i+2) - u(k,j,i-3) ) )& |
---|
2107 | * adv_mom_5 |
---|
2108 | ENDDO |
---|
2109 | |
---|
2110 | ENDIF |
---|
2111 | |
---|
2112 | ENDDO |
---|
2113 | |
---|
2114 | DO i = nxlu, nxr |
---|
2115 | ! |
---|
2116 | !-- The following loop computes the fluxes for the south boundary points |
---|
2117 | j = nys |
---|
2118 | IF ( boundary_flags(j,i) == 8 ) THEN |
---|
2119 | ! |
---|
2120 | !-- Compute southside fluxes for the south boundary of PE domain |
---|
2121 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2122 | v_comp = v(k,j,i) + v(k,j,i-1) - gv |
---|
2123 | swap_flux_y_local_u(k) = v_comp * & |
---|
2124 | ( u(k,j,i) + u(k,j-1,i) ) * 0.25 |
---|
2125 | swap_diss_y_local_u(k) = diss_2nd( u(k,j+2,i), u(k,j+1,i), & |
---|
2126 | u(k,j,i), u(k,j-1,i), & |
---|
2127 | u(k,j-1,i), v_comp, & |
---|
2128 | 0.25, ddy ) |
---|
2129 | ENDDO |
---|
2130 | |
---|
2131 | ELSE |
---|
2132 | |
---|
2133 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2134 | v_comp = v(k,j,i) + v(k,j,i-1) - gv |
---|
2135 | swap_flux_y_local_u(k) = v_comp * ( & |
---|
2136 | 37.0 * ( u(k,j,i) + u(k,j-1,i) ) & |
---|
2137 | - 8.0 * ( u(k,j+1,i) + u(k,j-2,i) ) & |
---|
2138 | + ( u(k,j+2,i) + u(k,j-3,i) ) ) & |
---|
2139 | * adv_mom_5 |
---|
2140 | swap_diss_y_local_u(k) = - ABS( v_comp ) * ( & |
---|
2141 | 10.0 * ( u(k,j,i) - u(k,j-1,i) ) & |
---|
2142 | - 5.0 * ( u(k,j+1,i) - u(k,j-2,i) ) & |
---|
2143 | + ( u(k,j+2,i) - u(k,j-3,i) ) ) & |
---|
2144 | * adv_mom_5 |
---|
2145 | ENDDO |
---|
2146 | |
---|
2147 | ENDIF |
---|
2148 | ! |
---|
2149 | !-- Computation of interior fluxes and tendency terms |
---|
2150 | DO j = nys, nyn |
---|
2151 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
2152 | ! |
---|
2153 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
2154 | SELECT CASE ( boundary_flags(j,i) ) |
---|
2155 | |
---|
2156 | CASE ( 1 ) |
---|
2157 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2158 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
2159 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
2160 | 7.0 * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
2161 | - ( u(k,j,i+2) + u(k,j,i-1) ) ) & |
---|
2162 | * adv_mom_3 |
---|
2163 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
2164 | 3.0 * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
2165 | - ( u(k,j,i+2) - u(k,j,i-1) ) ) & |
---|
2166 | * adv_mom_3 |
---|
2167 | ENDDO |
---|
2168 | |
---|
2169 | CASE ( 2 ) |
---|
2170 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2171 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
2172 | flux_r(k) = ( u_comp(k) - gu ) * & |
---|
2173 | ( u(k,j,i+1) + u(k,j,i) ) * 0.25 |
---|
2174 | diss_r(k) = diss_2nd( u(k,j,i+1), u(k,j,i+1), & |
---|
2175 | u(k,j,i), u(k,j,i-1), & |
---|
2176 | u(k,j,i-2), u_comp(k) ,0.25 ,ddx) |
---|
2177 | ENDDO |
---|
2178 | |
---|
2179 | CASE ( 3 ) |
---|
2180 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2181 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2182 | flux_n(k) = v_comp * ( & |
---|
2183 | 7.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
2184 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) & |
---|
2185 | * adv_mom_3 |
---|
2186 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
2187 | 3.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
2188 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) & |
---|
2189 | * adv_mom_3 |
---|
2190 | ENDDO |
---|
2191 | |
---|
2192 | CASE ( 4 ) |
---|
2193 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2194 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2195 | flux_n(k) = v_comp * ( u(k,j+1,i) + u(k,j,i) ) * 0.25 |
---|
2196 | diss_n(k) = diss_2nd( u(k,j+1,i), u(k,j+1,i), & |
---|
2197 | u(k,j,i), u(k,j-1,i), & |
---|
2198 | u(k,j-2,i), v_comp, 0.25, ddy ) |
---|
2199 | ENDDO |
---|
2200 | |
---|
2201 | CASE ( 5 ) |
---|
2202 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2203 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
2204 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
2205 | 7.0 * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
2206 | - ( u(k,j,i+2) + u(k,j,i-1) ) ) & |
---|
2207 | * adv_mom_3 |
---|
2208 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
2209 | 3.0 * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
2210 | - ( u(k,j,i+2) - u(k,j,i-1) ) ) & |
---|
2211 | * adv_mom_3 |
---|
2212 | ENDDO |
---|
2213 | |
---|
2214 | CASE ( 7 ) |
---|
2215 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2216 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2217 | flux_n(k) = v_comp * ( & |
---|
2218 | 7.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
2219 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) & |
---|
2220 | * adv_mom_3 |
---|
2221 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
2222 | 3.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
2223 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) & |
---|
2224 | * adv_mom_3 |
---|
2225 | ENDDO |
---|
2226 | |
---|
2227 | CASE ( 8 ) |
---|
2228 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2229 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2230 | flux_n(k) = v_comp * ( & |
---|
2231 | 7.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
2232 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) & |
---|
2233 | * adv_mom_3 |
---|
2234 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
2235 | 3.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
2236 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) & |
---|
2237 | * adv_mom_3 |
---|
2238 | ENDDO |
---|
2239 | |
---|
2240 | CASE DEFAULT |
---|
2241 | |
---|
2242 | END SELECT |
---|
2243 | ! |
---|
2244 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
2245 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 .OR.& |
---|
2246 | boundary_flags(j,i) == 5 ) THEN |
---|
2247 | |
---|
2248 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2249 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2250 | flux_n(k) = v_comp * ( & |
---|
2251 | 37.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
2252 | - 8.0 * ( u(k,j+2,i) +u(k,j-1,i) ) & |
---|
2253 | + ( u(k,j+3,i) + u(k,j-2,i) ) ) & |
---|
2254 | * adv_mom_5 |
---|
2255 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
2256 | 10.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
2257 | - 5.0 * ( u(k,j+2,i) - u(k,j-1,i) ) & |
---|
2258 | + ( u(k,j+3,i) - u(k,j-2,i) ) ) & |
---|
2259 | * adv_mom_5 |
---|
2260 | ENDDO |
---|
2261 | |
---|
2262 | ELSE |
---|
2263 | |
---|
2264 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2265 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
2266 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
2267 | 37.0 * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
2268 | - 8.0 * ( u(k,j,i+2) + u(k,j,i-1) ) & |
---|
2269 | + ( u(k,j,i+3) + u(k,j,i-2) ) ) & |
---|
2270 | * adv_mom_5 |
---|
2271 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
2272 | 10.0 * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
2273 | - 5.0 * ( u(k,j,i+2) - u(k,j,i-1) ) & |
---|
2274 | + ( u(k,j,i+3) - u(k,j,i-2) ) ) & |
---|
2275 | * adv_mom_5 |
---|
2276 | ENDDO |
---|
2277 | |
---|
2278 | ENDIF |
---|
2279 | |
---|
2280 | ELSE |
---|
2281 | |
---|
2282 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2283 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
2284 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
2285 | 37.0 * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
2286 | - 8.0 * ( u(k,j,i+2) + u(k,j,i-1) ) & |
---|
2287 | + ( u(k,j,i+3) + u(k,j,i-2) ) ) & |
---|
2288 | * adv_mom_5 |
---|
2289 | diss_r(k) = - ABS( u_comp(k) - gu ) * ( & |
---|
2290 | 10.0 * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
2291 | - 5.0 * ( u(k,j,i+2) - u(k,j,i-1) ) & |
---|
2292 | + ( u(k,j,i+3) - u(k,j,i-2) ) ) * adv_mom_5 |
---|
2293 | |
---|
2294 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2295 | flux_n(k) = v_comp * ( & |
---|
2296 | 37.0 * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
2297 | - 8.0 * ( u(k,j+2,i) + u(k,j-1,i) ) & |
---|
2298 | + ( u(k,j+3,i) + u(k,j-2,i) ) ) * adv_mom_5 |
---|
2299 | diss_n(k) = - ABS( v_comp ) * ( & |
---|
2300 | 10.0 * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
2301 | - 5.0 * ( u(k,j+2,i) - u(k,j-1,i) ) & |
---|
2302 | + ( u(k,j+3,i) - u(k,j-2,i) ) ) * adv_mom_5 |
---|
2303 | |
---|
2304 | ENDDO |
---|
2305 | |
---|
2306 | ENDIF |
---|
2307 | |
---|
2308 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
2309 | |
---|
2310 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
2311 | ( flux_r(k) + diss_r(k) & |
---|
2312 | - swap_flux_x_local_u(k,j) - swap_diss_x_local_u(k,j) ) * ddx & |
---|
2313 | + ( flux_n(k) + diss_n(k) & |
---|
2314 | - swap_flux_y_local_u(k) - swap_diss_y_local_u(k) ) * ddy ) |
---|
2315 | |
---|
2316 | swap_flux_x_local_u(k,j) = flux_r(k) |
---|
2317 | swap_diss_x_local_u(k,j) = diss_r(k) |
---|
2318 | swap_flux_y_local_u(k) = flux_n(k) |
---|
2319 | swap_diss_y_local_u(k) = diss_n(k) |
---|
2320 | |
---|
2321 | sums_us2_ws_l(k,:) = sums_us2_ws_l(k,:) & |
---|
2322 | + ( flux_r(k) & |
---|
2323 | * ( u_comp(k) - 2.0 * hom(k,1,1,:) ) & |
---|
2324 | / ( u_comp(k) - gu + 1.0E-20 ) & |
---|
2325 | + diss_r(k) & |
---|
2326 | * ABS( u_comp(k) - 2.0 * hom(k,1,1,:) ) & |
---|
2327 | / ( ABS( u_comp(k) - gu) + 1.0E-20) ) & |
---|
2328 | * weight_substep(intermediate_timestep_count) * rmask(j,i,:) |
---|
2329 | ENDDO |
---|
2330 | sums_us2_ws_l(nzb_u_inner(j,i),:) = & |
---|
2331 | sums_us2_ws_l(nzb_u_inner(j,i)+1,:) |
---|
2332 | ENDDO |
---|
2333 | ENDDO |
---|
2334 | |
---|
2335 | ! |
---|
2336 | !-- Vertical advection, degradation of order near surface and top. |
---|
2337 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
2338 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
2339 | DO i = nxlu, nxr |
---|
2340 | DO j = nys, nyn |
---|
2341 | k = nzb_u_inner(j,i)+1 |
---|
2342 | ! |
---|
2343 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to static |
---|
2344 | !-- reasons the top flux at the surface should be 0. |
---|
2345 | flux_t(nzb_u_inner(j,i)) = 0.0 |
---|
2346 | diss_t(nzb_u_inner(j,i)) = 0.0 |
---|
2347 | flux_d = flux_t(k-1) |
---|
2348 | diss_d = diss_t(k-1) |
---|
2349 | ! |
---|
2350 | !-- 2nd order scheme (bottom) |
---|
2351 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
2352 | flux_t(k) = w_comp * ( u(k+1,j,i) + u(k,j,i) ) * 0.25 |
---|
2353 | diss_t(k) = diss_2nd( u(k+2,j,i), u(k+1,j,i), u(k,j,i), & |
---|
2354 | 0.0, 0.0, w_comp, 0.25, ddzw(k) ) |
---|
2355 | |
---|
2356 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2357 | - flux_d - diss_d ) * ddzw(k) |
---|
2358 | ! |
---|
2359 | !-- WS3 as an intermediate step (bottom) |
---|
2360 | k = nzb_u_inner(j,i)+2 |
---|
2361 | flux_d = flux_t(k-1) |
---|
2362 | diss_d = diss_t(k-1) |
---|
2363 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
2364 | flux_t(k) = w_comp * ( & |
---|
2365 | 7.0 * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
2366 | - ( u(k+2,j,i) + u(k-1,j,i) ) ) * adv_mom_3 |
---|
2367 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
2368 | 3.0 * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
2369 | - ( u(k+2,j,i) - u(k-1,j,i) ) ) * adv_mom_3 |
---|
2370 | |
---|
2371 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2372 | - flux_d - diss_d ) * ddzw(k) |
---|
2373 | ! |
---|
2374 | !WS5 |
---|
2375 | DO k = nzb_u_inner(j,i)+3, nzt-2 |
---|
2376 | |
---|
2377 | flux_d = flux_t(k-1) |
---|
2378 | diss_d = diss_t(k-1) |
---|
2379 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
2380 | flux_t(k) = w_comp * ( & |
---|
2381 | 37.0 * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
2382 | - 8.0 * ( u(k+2,j,i) + u(k-1,j,i) ) & |
---|
2383 | + ( u(k+3,j,i) + u(k-2,j,i) ) ) * adv_mom_5 |
---|
2384 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
2385 | 10.0 * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
2386 | - 5.0 * ( u(k+2,j,i) - u(k-1,j,i) ) & |
---|
2387 | + ( u(k+3,j,i) - u(k-2,j,i) ) ) * adv_mom_5 |
---|
2388 | |
---|
2389 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2390 | - flux_d - diss_d ) * ddzw(k) |
---|
2391 | |
---|
2392 | ENDDO |
---|
2393 | ! |
---|
2394 | !-- WS3 as an intermediate step (top) |
---|
2395 | k = nzt-1 |
---|
2396 | flux_d = flux_t(k-1) |
---|
2397 | diss_d = diss_t(k-1) |
---|
2398 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
2399 | flux_t(k) = w_comp * ( & |
---|
2400 | 7.0 * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
2401 | - ( u(k+2,j,i) + u(k-1,j,i) ) ) * adv_mom_3 |
---|
2402 | diss_t(k) = - ABS( w_comp ) * ( & |
---|
2403 | 3.0 * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
2404 | - ( u(k+2,j,i) - u(k-1,j,i) ) ) * adv_mom_3 |
---|
2405 | |
---|
2406 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2407 | - flux_d - diss_d ) * ddzw(k) |
---|
2408 | ! |
---|
2409 | !-- 2nd order scheme (top) |
---|
2410 | k = nzt |
---|
2411 | flux_d = flux_t(k-1) |
---|
2412 | diss_d = diss_t(k-1) |
---|
2413 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
2414 | flux_t(k) = w_comp * ( u(k+1,j,i) + u(k,j,i) ) * 0.25 |
---|
2415 | diss_t(k) = diss_2nd( u(nzt+1,j,i), u(nzt+1,j,i), u(k,j,i), & |
---|
2416 | u(k-1,j,i), u(k-2,j,i), w_comp, & |
---|
2417 | 0.25, ddzw(k)) |
---|
2418 | |
---|
2419 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2420 | - flux_d - diss_d ) * ddzw(k) |
---|
2421 | ! |
---|
2422 | !-- at last vertical momentum flux is accumulated |
---|
2423 | DO k = nzb_u_inner(j,i), nzt |
---|
2424 | sums_wsus_ws_l(k,:) = sums_wsus_ws_l(k,:) & |
---|
2425 | + ( flux_t(k) + diss_t(k) ) & |
---|
2426 | * weight_substep(intermediate_timestep_count) & |
---|
2427 | * rmask(j,i,:) |
---|
2428 | ENDDO |
---|
2429 | ENDDO |
---|
2430 | ENDDO |
---|
2431 | |
---|
2432 | |
---|
2433 | END SUBROUTINE advec_u_ws |
---|
2434 | |
---|
2435 | |
---|
2436 | !------------------------------------------------------------------------------! |
---|
2437 | ! Advection of v - Call for all grid points |
---|
2438 | !------------------------------------------------------------------------------! |
---|
2439 | SUBROUTINE advec_v_ws |
---|
2440 | |
---|
2441 | USE arrays_3d |
---|
2442 | USE constants |
---|
2443 | USE control_parameters |
---|
2444 | USE grid_variables |
---|
2445 | USE indices |
---|
2446 | USE statistics |
---|
2447 | |
---|
2448 | IMPLICIT NONE |
---|
2449 | |
---|
2450 | |
---|
2451 | INTEGER :: i, j, k |
---|
2452 | REAL :: gu, gv, flux_l, flux_s, flux_d, diss_l, diss_s, diss_d, & |
---|
2453 | u_comp, w_comp |
---|
2454 | REAL, DIMENSION(nzb+1:nzt) :: swap_flux_y_local_v, swap_diss_y_local_v |
---|
2455 | REAL, DIMENSION(nzb+1:nzt,nys:nyn) :: swap_flux_x_local_v, & |
---|
2456 | swap_diss_x_local_v |
---|
2457 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_n, diss_n, flux_r, & |
---|
2458 | diss_r, v_comp |
---|
2459 | |
---|
2460 | gu = 2.0 * u_gtrans |
---|
2461 | gv = 2.0 * v_gtrans |
---|
2462 | ! |
---|
2463 | !-- First compute the whole left boundary of the processor domain |
---|
2464 | i = nxl |
---|
2465 | DO j = nysv, nyn |
---|
2466 | |
---|
2467 | IF ( boundary_flags(j,i) == 6 ) THEN |
---|
2468 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2469 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
2470 | swap_flux_x_local_v(k,j) = u_comp * & |
---|
2471 | ( v(k,j,i) + v(k,j,i-1)) * 0.25 |
---|
2472 | swap_diss_x_local_v(k,j) = diss_2nd( v(k,j,i+2), v(k,j,i+1), & |
---|
2473 | v(k,j,i), v(k,j,i-1), & |
---|
2474 | v(k,j,i-1), u_comp, & |
---|
2475 | 0.25, ddx ) |
---|
2476 | ENDDO |
---|
2477 | |
---|
2478 | ELSE |
---|
2479 | |
---|
2480 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2481 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
2482 | swap_flux_x_local_v(k,j) = u_comp * ( & |
---|
2483 | 37.0 * ( v(k,j,i) + v(k,j,i-1) ) & |
---|
2484 | - 8.0 * ( v(k,j,i+1) + v(k,j,i-2) ) & |
---|
2485 | + ( v(k,j,i+2) + v(k,j,i-3) ) )& |
---|
2486 | * adv_mom_5 |
---|
2487 | swap_diss_x_local_v(k,j) = - ABS( u_comp ) * ( & |
---|
2488 | 10.0 * ( v(k,j,i) - v(k,j,i-1) ) & |
---|
2489 | - 5.0 * ( v(k,j,i+1) - v(k,j,i-2) ) & |
---|
2490 | + ( v(k,j,i+2) - v(k,j,i-3) ) )& |
---|
2491 | * adv_mom_5 |
---|
2492 | ENDDO |
---|
2493 | |
---|
2494 | ENDIF |
---|
2495 | |
---|
2496 | ENDDO |
---|
2497 | |
---|
2498 | DO i = nxl, nxr |
---|
2499 | j = nysv |
---|
2500 | IF ( boundary_flags(j,i) == 7 ) THEN |
---|
2501 | |
---|
2502 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2503 | v_comp(k) = v(k,j,i) + v(k,j-1,i) - gv |
---|
2504 | swap_flux_y_local_v(k) = v_comp(k) * & |
---|
2505 | ( v(k,j,i) + v(k,j-1,i) ) * 0.25 |
---|
2506 | swap_diss_y_local_v(k) = diss_2nd( v(k,j+2,i), v(k,j+1,i), & |
---|
2507 | v(k,j,i), v(k,j-1,i), & |
---|
2508 | v(k,j-1,i), v_comp(k), & |
---|
2509 | 0.25, ddy ) |
---|
2510 | ENDDO |
---|
2511 | |
---|
2512 | ELSE |
---|
2513 | |
---|
2514 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2515 | v_comp(k) = v(k,j,i) + v(k,j-1,i) - gv |
---|
2516 | swap_flux_y_local_v(k) = v_comp(k) * ( & |
---|
2517 | 37.0 * ( v(k,j,i) + v(k,j-1,i) ) & |
---|
2518 | - 8.0 * ( v(k,j+1,i) + v(k,j-2,i) ) & |
---|
2519 | + ( v(k,j+2,i) + v(k,j-3,i) ) ) & |
---|
2520 | * adv_mom_5 |
---|
2521 | swap_diss_y_local_v(k) = - ABS( v_comp(k) ) * ( & |
---|
2522 | 10.0 * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
2523 | - 5.0 * ( v(k,j+1,i) - v(k,j-2,i) ) & |
---|
2524 | + ( v(k,j+2,i) - v(k,j-3,i) ) ) & |
---|
2525 | * adv_mom_5 |
---|
2526 | ENDDO |
---|
2527 | |
---|
2528 | ENDIF |
---|
2529 | |
---|
2530 | DO j = nysv, nyn |
---|
2531 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
2532 | ! |
---|
2533 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
2534 | SELECT CASE ( boundary_flags(j,i) ) |
---|
2535 | |
---|
2536 | CASE ( 1 ) |
---|
2537 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2538 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
2539 | flux_r(k) = u_comp * ( & |
---|
2540 | 7.0 * (v(k,j,i+1) + v(k,j,i) ) & |
---|
2541 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) & |
---|
2542 | * adv_mom_3 |
---|
2543 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
2544 | 3.0 * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
2545 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) & |
---|
2546 | * adv_mom_3 |
---|
2547 | ENDDO |
---|
2548 | |
---|
2549 | CASE ( 2 ) |
---|
2550 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2551 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
2552 | flux_r(k) = u_comp * ( v(k,j,i+1) + v(k,j,i) ) * 0.25 |
---|
2553 | diss_r(k) = diss_2nd( v(k,j,i+1), v(k,j,i+1), & |
---|
2554 | v(k,j,i), v(k,j,i-1), & |
---|
2555 | v(k,j,i-2), u_comp, 0.25, ddx ) |
---|
2556 | ENDDO |
---|
2557 | |
---|
2558 | CASE ( 3 ) |
---|
2559 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2560 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
2561 | flux_n(k) = ( v_comp(k)- gv ) * ( & |
---|
2562 | 7.0 * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
2563 | - ( v(k,j+2,i) + v(k,j-1,i) ) ) & |
---|
2564 | * adv_mom_3 |
---|
2565 | diss_n(k) = - ABS(v_comp(k) - gv) * ( & |
---|
2566 | 3.0 * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
2567 | - ( v(k,j+2,i) - v(k,j-1,i) ) ) & |
---|
2568 | * adv_mom_3 |
---|
2569 | ENDDO |
---|
2570 | |
---|
2571 | CASE ( 4 ) |
---|
2572 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2573 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
2574 | flux_n(k) = ( v_comp(k) - gv ) * & |
---|
2575 | ( v(k,j+1,i) + v(k,j,i) ) * 0.25 |
---|
2576 | diss_n(k) = diss_2nd( v(k,j+1,i), v(k,j+1,i), & |
---|
2577 | v(k,j,i), v(k,j-1,i), & |
---|
2578 | v(k,j-2,i), v_comp(k), 0.25, ddy) |
---|
2579 | ENDDO |
---|
2580 | |
---|
2581 | CASE ( 5 ) |
---|
2582 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
2583 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
2584 | flux_r(k) = u_comp * ( & |
---|
2585 | 7.0 * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
2586 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) & |
---|
2587 | * adv_mom_3 |
---|
2588 | diss_r(k) = - ABS (u_comp ) * ( & |
---|
2589 | 3.0 * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
2590 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) & |
---|
2591 | * adv_mom_3 |
---|
2592 | ENDDO |
---|
2593 | |
---|
2594 | CASE ( 6 ) |
---|
2595 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2596 | |
---|
2597 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
2598 | flux_r(k) = u_comp * ( & |
---|
2599 | 7.0 * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
2600 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) & |
---|
2601 | * adv_mom_3 |
---|
2602 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
2603 | 3.0 * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
2604 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) & |
---|
2605 | * adv_mom_3 |
---|
2606 | ENDDO |
---|
2607 | |
---|
2608 | CASE ( 7 ) |
---|
2609 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2610 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
2611 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
2612 | 7.0 * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
2613 | - ( v(k,j+2,i) + v(k,j-1,i) ) ) & |
---|
2614 | * adv_mom_3 |
---|
2615 | diss_n(k) = - ABS( v_comp(k) - gv ) * ( & |
---|
2616 | 3.0 * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
2617 | - ( v(k,j+2,i) - v(k,j-1,i) ) ) & |
---|
2618 | * adv_mom_3 |
---|
2619 | ENDDO |
---|
2620 | |
---|
2621 | CASE DEFAULT |
---|
2622 | |
---|
2623 | END SELECT |
---|
2624 | ! |
---|
2625 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
2626 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 .OR.& |
---|
2627 | boundary_flags(j,i) == 5 .OR. boundary_flags(j,i) == 6 ) & |
---|
2628 | THEN |
---|
2629 | |
---|
2630 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2631 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
2632 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
2633 | 37.0 * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
2634 | - 8.0 * ( v(k,j+2,i) + v(k,j-1,i) ) & |
---|
2635 | + ( v(k,j+3,i) + v(k,j-2,i) ) ) & |
---|
2636 | * adv_mom_5 |
---|
2637 | diss_n(k) = - ABS( v_comp(k) - gv ) * ( & |
---|
2638 | 10.0 * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
2639 | - 5.0 * ( v(k,j+2,i) - v(k,j-1,i) ) & |
---|
2640 | + ( v(k,j+3,i) - v(k,j-2,i) ) ) & |
---|
2641 | * adv_mom_5 |
---|
2642 | ENDDO |
---|
2643 | |
---|
2644 | ELSE |
---|
2645 | |
---|
2646 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2647 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
2648 | flux_r(k) = u_comp * ( & |
---|
2649 | 37.0 * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
2650 | - 8.0 * ( v(k,j,i+2) + v(k,j,i-1) ) & |
---|
2651 | + ( v(k,j,i+3) + v(k,j,i-2) ) ) & |
---|
2652 | * adv_mom_5 |
---|
2653 | diss_r(k) = - ABS( u_comp ) * ( & |
---|
2654 | 10.0 * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
2655 | - 5.0 * ( v(k,j,i+2) - v(k,j,i-1) ) & |
---|
2656 | + ( v(k,j,i+3) - v(k,j,i-2) ) ) & |
---|
2657 | * adv_mom_5 |
---|
2658 | ENDDO |
---|
2659 | |
---|
2660 | ENDIF |
---|
2661 | |
---|
2662 | |
---|
2663 | ELSE |
---|
2664 | |
---|
2665 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2666 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
2667 | flux_r(k) = u_comp * ( & |
---|
2668 | 37.0 * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
2669 | - 8.0 * ( v(k,j,i+2) + v(k,j,i-1) ) & |
---|
2670 | + ( v(k,j,i+3) + v(k,j,i-2) ) ) & |
---|
2671 | * adv_mom_5 |
---|
2672 | diss_r(k) = - ABS ( u_comp ) * ( & |
---|
2673 | 10.0 * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
2674 | - 5.0 * ( v(k,j,i+2) - v(k,j,i-1) ) & |
---|
2675 | + ( v(k,j,i+3) - v(k,j,i-2) ) ) * adv_mom_5 |
---|
2676 | |
---|
2677 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
2678 | |
---|