1 | MODULE advec_ws |
---|
2 | |
---|
3 | |
---|
4 | !-----------------------------------------------------------------------------! |
---|
5 | ! Current revisions: |
---|
6 | ! ----------------- |
---|
7 | ! Allocation of weight_substep moved to init_3d_model. |
---|
8 | ! Declaration of ws_scheme_sca and ws_scheme_mom moved to check_parameters. |
---|
9 | ! Setting bc for the horizontal velocity variances added (moved from |
---|
10 | ! flow_statistics) |
---|
11 | ! |
---|
12 | ! Former revisions: |
---|
13 | ! ----------------- |
---|
14 | ! $Id: advec_s_ws.f90 411 2009-12-11 12:31:43 Z suehring $ |
---|
15 | ! |
---|
16 | ! |
---|
17 | ! Initial revision |
---|
18 | ! |
---|
19 | ! 411 2009-12-11 12:31:43 Z suehring |
---|
20 | ! |
---|
21 | ! Description: |
---|
22 | ! ------------ |
---|
23 | ! Advection scheme for scalars and momentum using the flux formulation of |
---|
24 | ! Wicker and Skamarock 5th order. Additionally the module contains of a |
---|
25 | ! routine using for initialisation and steering of the statical evaluation. |
---|
26 | ! The computation of turbulent fluxes takes place inside the advection |
---|
27 | ! routines. |
---|
28 | ! In case of vector architectures Dirichlet and Radiation boundary conditions |
---|
29 | ! are outstanding and not available. |
---|
30 | ! A further routine local_diss_ij is available (next weeks) and is used if a |
---|
31 | ! control of dissipative fluxes is desired. |
---|
32 | ! In case of vertical grid stretching the order of advection scheme is |
---|
33 | ! degraded. This is also realized for the ocean where the stretching is |
---|
34 | ! downwards. |
---|
35 | ! |
---|
36 | ! OUTSTANDING: - Dirichlet and Radiation boundary conditions for |
---|
37 | ! vector architectures |
---|
38 | ! - dissipation control for cache architectures ( next weeks ) |
---|
39 | ! - Topography ( next weeks ) |
---|
40 | !-----------------------------------------------------------------------------! |
---|
41 | |
---|
42 | |
---|
43 | PRIVATE |
---|
44 | PUBLIC advec_s_ws, advec_u_ws, advec_v_ws, advec_w_ws, & |
---|
45 | local_diss, ws_init, ws_statistics |
---|
46 | |
---|
47 | INTERFACE ws_init |
---|
48 | MODULE PROCEDURE ws_init |
---|
49 | END INTERFACE ws_init |
---|
50 | INTERFACE ws_statistics |
---|
51 | MODULE PROCEDURE ws_statistics |
---|
52 | END INTERFACE ws_statistics |
---|
53 | INTERFACE advec_s_ws |
---|
54 | MODULE PROCEDURE advec_s_ws |
---|
55 | MODULE PROCEDURE advec_s_ws_ij |
---|
56 | END INTERFACE advec_s_ws |
---|
57 | INTERFACE advec_u_ws |
---|
58 | MODULE PROCEDURE advec_u_ws |
---|
59 | MODULE PROCEDURE advec_u_ws_ij |
---|
60 | END INTERFACE advec_u_ws |
---|
61 | INTERFACE advec_v_ws |
---|
62 | MODULE PROCEDURE advec_v_ws |
---|
63 | MODULE PROCEDURE advec_v_ws_ij |
---|
64 | END INTERFACE advec_v_ws |
---|
65 | INTERFACE advec_w_ws |
---|
66 | MODULE PROCEDURE advec_w_ws |
---|
67 | MODULE PROCEDURE advec_w_ws_ij |
---|
68 | END INTERFACE advec_w_ws |
---|
69 | INTERFACE local_diss |
---|
70 | MODULE PROCEDURE local_diss |
---|
71 | MODULE PROCEDURE local_diss_ij |
---|
72 | END INTERFACE local_diss |
---|
73 | |
---|
74 | CONTAINS |
---|
75 | |
---|
76 | ! |
---|
77 | !-- Initialisation |
---|
78 | |
---|
79 | SUBROUTINE ws_init |
---|
80 | USE arrays_3d |
---|
81 | USE constants |
---|
82 | USE control_parameters |
---|
83 | USE indices |
---|
84 | USE statistics |
---|
85 | |
---|
86 | ! |
---|
87 | !-- Allocate arrays needed for dissipation control. |
---|
88 | IF ( dissipation_control ) THEN |
---|
89 | ! ALLOCATE(var_x(nzb+1:nzt,nys:nyn,nxl:nxr), & |
---|
90 | ! var_y(nzb+1:nzt,nys:nyn,nxl:nxr), & |
---|
91 | ! var_z(nzb+1:nzt,nys:nyn,nxl:nxr), & |
---|
92 | ! gamma_x(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
93 | ! gamma_y(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
94 | ! gamma_z(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) |
---|
95 | ENDIF |
---|
96 | |
---|
97 | !-- Set the appropriate factors for scalar and momentum advection. |
---|
98 | adv_sca_5 = 0.016666666666666 |
---|
99 | adv_sca_3 = 0.083333333333333 |
---|
100 | adv_mom_5 = 0.0083333333333333 |
---|
101 | adv_mom_3 = 0.041666666666666 |
---|
102 | |
---|
103 | ! |
---|
104 | !-- Arrays needed for statical evaluation of fluxes. |
---|
105 | IF ( ws_scheme_mom ) THEN |
---|
106 | ALLOCATE( sums_wsus_ws_l(nzb:nzt+1,0:statistic_regions), & |
---|
107 | sums_wsvs_ws_l(nzb:nzt+1,0:statistic_regions), & |
---|
108 | sums_us2_ws_l(nzb:nzt+1,0:statistic_regions), & |
---|
109 | sums_vs2_ws_l(nzb:nzt+1,0:statistic_regions), & |
---|
110 | sums_ws2_ws_l(nzb:nzt+1,0:statistic_regions)) |
---|
111 | |
---|
112 | sums_wsus_ws_l = 0.0 |
---|
113 | sums_wsvs_ws_l = 0.0 |
---|
114 | sums_us2_ws_l = 0.0 |
---|
115 | sums_vs2_ws_l = 0.0 |
---|
116 | sums_ws2_ws_l = 0.0 |
---|
117 | ENDIF |
---|
118 | |
---|
119 | IF ( ws_scheme_sca ) THEN |
---|
120 | ALLOCATE( sums_wspts_ws_l(nzb:nzt+1,0:statistic_regions)) |
---|
121 | sums_wspts_ws_l = 0.0 |
---|
122 | IF ( humidity .OR. passive_scalar ) THEN |
---|
123 | ALLOCATE( sums_wsqs_ws_l(nzb:nzt+1,0:statistic_regions)) |
---|
124 | sums_wsqs_ws_l = 0.0 |
---|
125 | ENDIF |
---|
126 | IF ( ocean ) THEN |
---|
127 | ALLOCATE( sums_wssas_ws_l(nzb:nzt+1,0:statistic_regions)) |
---|
128 | sums_wssas_ws_l = 0.0 |
---|
129 | ENDIF |
---|
130 | ENDIF |
---|
131 | ! |
---|
132 | !-- Arrays needed for reasons of speed optimization for cache and noopt |
---|
133 | !-- version. For the vector version the buffer arrays are not necessary, |
---|
134 | !-- because the the fluxes can swapped directly inside the loops of the |
---|
135 | !-- advection routines. |
---|
136 | IF ( loop_optimization /= 'vector' ) THEN |
---|
137 | IF ( ws_scheme_mom ) THEN |
---|
138 | ALLOCATE(flux_s_u(nzb+1:nzt), flux_s_v(nzb+1:nzt), & |
---|
139 | flux_s_w(nzb+1:nzt), diss_s_u(nzb+1:nzt), & |
---|
140 | diss_s_v(nzb+1:nzt), diss_s_w(nzb+1:nzt)) |
---|
141 | ALLOCATE(flux_l_u(nzb+1:nzt,nys:nyn), & |
---|
142 | flux_l_v(nzb+1:nzt,nys:nyn), flux_l_w(nzb+1:nzt,nys:nyn), & |
---|
143 | diss_l_u(nzb+1:nzt,nys:nyn), diss_l_v(nzb+1:nzt,nys:nyn), & |
---|
144 | diss_l_w(nzb+1:nzt,nys:nyn)) |
---|
145 | ENDIF |
---|
146 | IF ( ws_scheme_sca ) THEN |
---|
147 | ALLOCATE(flux_s_pt(nzb+1:nzt), flux_s_e(nzb+1:nzt), & |
---|
148 | diss_s_pt(nzb+1:nzt), diss_s_e(nzb+1:nzt)) |
---|
149 | ALLOCATE(flux_l_pt(nzb+1:nzt,nys:nyn), & |
---|
150 | flux_l_e(nzb+1:nzt,nys:nyn), diss_l_pt(nzb+1:nzt,nys:nyn), & |
---|
151 | diss_l_e(nzb+1:nzt,nys:nyn)) |
---|
152 | IF ( humidity .OR. passive_scalar ) THEN |
---|
153 | ALLOCATE(flux_s_q(nzb+1:nzt), diss_s_q(nzb+1:nzt)) |
---|
154 | ALLOCATE(flux_l_q(nzb+1:nzt,nys:nyn), & |
---|
155 | diss_l_q(nzb+1:nzt,nys:nyn)) |
---|
156 | ENDIF |
---|
157 | IF ( ocean ) THEN |
---|
158 | ALLOCATE(flux_s_sa(nzb+1:nzt), diss_s_sa(nzb+1:nzt)) |
---|
159 | ALLOCATE(flux_l_sa(nzb+1:nzt,nys:nyn), & |
---|
160 | diss_l_sa(nzb+1:nzt,nys:nyn)) |
---|
161 | ENDIF |
---|
162 | ENDIF |
---|
163 | ENDIF |
---|
164 | ! |
---|
165 | !-- Determine the flags where the order of the scheme for horizontal |
---|
166 | !-- advection should be degraded. |
---|
167 | ALLOCATE( boundary_flags(nys:nyn,nxl:nxr) ) |
---|
168 | DO i = nxl, nxr |
---|
169 | DO j = nys, nyn |
---|
170 | boundary_flags(j,i) = 0 |
---|
171 | IF ( outflow_l ) THEN |
---|
172 | IF ( i == nxlu ) boundary_flags(j,i) = 5 |
---|
173 | IF ( i == nxl ) boundary_flags(j,i) = 6 |
---|
174 | ELSEIF ( outflow_r ) THEN |
---|
175 | IF ( i == nxr-1 ) boundary_flags(j,i) = 1 |
---|
176 | IF ( i == nxr ) boundary_flags(j,i) = 2 |
---|
177 | ELSEIF ( outflow_n ) THEN |
---|
178 | IF ( j == nyn-1 ) boundary_flags(j,i) = 3 |
---|
179 | IF ( j == nyn ) boundary_flags(j,i) = 4 |
---|
180 | ELSEIF ( outflow_s ) THEN |
---|
181 | IF ( j == nysv ) boundary_flags(j,i) = 7 |
---|
182 | IF ( j == nys ) boundary_flags(j,i) = 8 |
---|
183 | ENDIF |
---|
184 | ENDDO |
---|
185 | ENDDO |
---|
186 | |
---|
187 | END SUBROUTINE ws_init |
---|
188 | |
---|
189 | |
---|
190 | |
---|
191 | SUBROUTINE ws_statistics |
---|
192 | |
---|
193 | USE control_parameters |
---|
194 | USE statistics |
---|
195 | |
---|
196 | ! |
---|
197 | !-- The arrays needed for statistical evaluation are set to to 0 at the |
---|
198 | !-- begin of prognostic_equations. |
---|
199 | IF ( ws_scheme_mom ) THEN |
---|
200 | sums_wsus_ws_l = 0.0 |
---|
201 | sums_wsvs_ws_l = 0.0 |
---|
202 | sums_us2_ws_l = 0.0 |
---|
203 | sums_vs2_ws_l = 0.0 |
---|
204 | sums_ws2_ws_l = 0.0 |
---|
205 | ENDIF |
---|
206 | IF ( ws_scheme_sca ) THEN |
---|
207 | sums_wspts_ws_l = 0.0 |
---|
208 | IF ( humidity .OR. passive_scalar ) sums_wsqs_ws_l = 0.0 |
---|
209 | IF ( ocean ) sums_wssas_ws_l = 0.0 |
---|
210 | ENDIF |
---|
211 | |
---|
212 | END SUBROUTINE ws_statistics |
---|
213 | |
---|
214 | |
---|
215 | |
---|
216 | !------------------------------------------------------------------------------! |
---|
217 | ! Scalar advection - Call for grid point i,j |
---|
218 | !------------------------------------------------------------------------------! |
---|
219 | SUBROUTINE advec_s_ws_ij( i, j, sk, sk_char,swap_flux_y_local, & |
---|
220 | swap_diss_y_local, swap_flux_x_local, swap_diss_x_local ) |
---|
221 | |
---|
222 | USE arrays_3d |
---|
223 | USE constants |
---|
224 | USE control_parameters |
---|
225 | USE grid_variables |
---|
226 | USE indices |
---|
227 | USE statistics |
---|
228 | |
---|
229 | IMPLICIT NONE |
---|
230 | |
---|
231 | INTEGER :: i, j, k |
---|
232 | LOGICAL :: degraded_l = .FALSE., degraded_s = .FALSE. |
---|
233 | REAL :: flux_d, diss_d, u_comp, v_comp |
---|
234 | REAL, DIMENSION(:,:,:), POINTER :: sk |
---|
235 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_r, diss_r, & |
---|
236 | flux_n, diss_n |
---|
237 | REAL, DIMENSION(nzb+1:nzt) :: swap_flux_y_local, & |
---|
238 | swap_diss_y_local |
---|
239 | REAL, DIMENSION(nzb+1:nzt,nys:nyn) :: swap_flux_x_local, & |
---|
240 | swap_diss_x_local |
---|
241 | CHARACTER (LEN = *), INTENT(IN) :: sk_char |
---|
242 | |
---|
243 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
244 | ! |
---|
245 | !-- Degrade the order for Dirichlet bc. at the outflow boundary. |
---|
246 | SELECT CASE ( boundary_flags(j,i) ) |
---|
247 | |
---|
248 | CASE ( 1 ) |
---|
249 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
250 | u_comp = u(k,j,i+1) - u_gtrans |
---|
251 | flux_r(k) = u_comp * ( & |
---|
252 | 7. * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
253 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) * adv_sca_3 |
---|
254 | diss_r(k) = - abs(u_comp) * ( & |
---|
255 | 3. * ( sk(k,j,i+1)-sk(k,j,i) ) & |
---|
256 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) * adv_sca_3 |
---|
257 | ENDDO |
---|
258 | |
---|
259 | CASE ( 2 ) |
---|
260 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
261 | u_comp = u(k,j,i+1) - u_gtrans |
---|
262 | flux_r(k) = u_comp * ( sk(k,j,i+1) + sk(k,j,i) ) * 0.5 |
---|
263 | diss_r(k) = diss_2nd( sk(k,j,i+1), sk(k,j,i+1), sk(k,j,i), & |
---|
264 | sk(k,j,i-1), sk(k,j,i-2), u_comp, & |
---|
265 | 0.5, ddx ) |
---|
266 | ENDDO |
---|
267 | |
---|
268 | CASE ( 3 ) |
---|
269 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
270 | v_comp = v(k,j+1,i) - v_gtrans |
---|
271 | flux_n(k) = v_comp * ( & |
---|
272 | 7. * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
273 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) * adv_sca_3 |
---|
274 | diss_n(k) = - abs(v_comp) * ( & |
---|
275 | 3. * ( sk(k,j+1,i)-sk(k,j,i) ) & |
---|
276 | - (sk(k,j+2,i) - sk(k,j-1,i) ) ) * adv_sca_3 |
---|
277 | ENDDO |
---|
278 | CASE ( 4 ) |
---|
279 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
280 | v_comp = v(k,j+1,i) - v_gtrans |
---|
281 | flux_n(k) = v_comp* ( sk(k,j+1,i) + sk(k,j,i) ) * 0.5 |
---|
282 | diss_n(k) = diss_2nd( sk(k,j+1,i), sk(k,j+1,i), sk(k,j,i), & |
---|
283 | sk(k,j-1,i), sk(k,j-2,i), v_comp, & |
---|
284 | 0.5, ddy ) |
---|
285 | ENDDO |
---|
286 | |
---|
287 | CASE ( 5 ) |
---|
288 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
289 | u_comp = u(k,j,i+1) - u_gtrans |
---|
290 | flux_r(k) = u_comp * ( & |
---|
291 | 7. * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
292 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) * adv_sca_3 |
---|
293 | diss_r(k) = - abs(u_comp) * ( & |
---|
294 | 3. * ( sk(k,j,i+1)-sk(k,j,i) ) & |
---|
295 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) * adv_sca_3 |
---|
296 | ENDDO |
---|
297 | |
---|
298 | CASE ( 6 ) |
---|
299 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
300 | u_comp = u(k,j,i+1) - u_gtrans |
---|
301 | flux_r(k) = u_comp * ( & |
---|
302 | 7. * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
303 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) * adv_sca_3 |
---|
304 | diss_r(k) = - abs(u_comp) * ( & |
---|
305 | 3. * ( sk(k,j,i+1)-sk(k,j,i) ) & |
---|
306 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) * adv_sca_3 |
---|
307 | ! |
---|
308 | !-- Compute leftside fluxes for the left boundary of PE domain. |
---|
309 | u_comp = u(k,j,i) - u_gtrans |
---|
310 | swap_flux_x_local(k,j) = u_comp * ( & |
---|
311 | sk(k,j,i) + sk(k,j,i-1) ) * 0.5 |
---|
312 | swap_diss_x_local(k,j) = diss_2nd( sk(k,j,i+2),sk(k,j,i+1), & |
---|
313 | sk(k,j,i), sk(k,j,i-1), & |
---|
314 | sk(k,j,i-1), u_comp, & |
---|
315 | 0.5, ddx ) |
---|
316 | ENDDO |
---|
317 | degraded_l = .TRUE. |
---|
318 | |
---|
319 | CASE ( 7 ) |
---|
320 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
321 | v_comp = v(k,j+1,i)-v_gtrans |
---|
322 | flux_n(k) = v_comp * ( & |
---|
323 | 7. * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
324 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) * adv_sca_3 |
---|
325 | diss_n(k) = - abs(v_comp) * ( & |
---|
326 | 3. * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
327 | - ( sk(k,j+2,i) - sk(k,j-1,i) ) ) * adv_sca_3 |
---|
328 | ENDDO |
---|
329 | |
---|
330 | CASE ( 8 ) |
---|
331 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
332 | v_comp = v(k,j+1,i) - v_gtrans |
---|
333 | flux_n(k) = v_comp * ( & |
---|
334 | 7. * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
335 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) * adv_sca_3 |
---|
336 | diss_n(k) = - abs(v_comp) * ( & |
---|
337 | 3. * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
338 | - ( sk(k,j+2,i) - sk(k,j-1,i) ) ) * adv_sca_3 |
---|
339 | ! |
---|
340 | !-- Compute southside fluxes for the south boundary of PE domain |
---|
341 | v_comp = v(k,j,i) - v_gtrans |
---|
342 | swap_flux_y_local(k) = v_comp * ( & |
---|
343 | sk(k,j,i)+ sk(k,j-1,i) ) * 0.5 |
---|
344 | swap_diss_y_local(k) = diss_2nd( sk(k,j+2,i), sk(k,j+1,i), & |
---|
345 | sk(k,j,i), sk(k,j-1,i), & |
---|
346 | sk(k,j-1,i), v_comp, & |
---|
347 | 0.5, ddy ) |
---|
348 | ENDDO |
---|
349 | degraded_s = .TRUE. |
---|
350 | |
---|
351 | CASE DEFAULT |
---|
352 | |
---|
353 | END SELECT |
---|
354 | ! |
---|
355 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
356 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 & |
---|
357 | .OR. boundary_flags(j,i) == 5 .OR. boundary_flags(j,i) == 6 ) THEN |
---|
358 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
359 | v_comp = v(k,j+1,i) - v_gtrans |
---|
360 | flux_n(k) = v_comp * ( & |
---|
361 | 37. * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
362 | - 8. * ( sk(k,j+2,i) + sk(k,j-1,i) ) & |
---|
363 | + ( sk(k,j+3,i) + sk(k,j-2,i) ) ) * adv_sca_5 |
---|
364 | diss_n(k) = - abs(v_comp) * ( & |
---|
365 | 10. * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
366 | - 5. * ( sk(k,j+2,i) - sk(k,j-1,i) ) & |
---|
367 | + ( sk(k,j+3,i) - sk(k,j-2,i) ) ) * adv_sca_5 |
---|
368 | ENDDO |
---|
369 | |
---|
370 | ELSE |
---|
371 | |
---|
372 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
373 | u_comp = u(k,j,i+1) - u_gtrans |
---|
374 | flux_r(k) = u_comp * ( & |
---|
375 | 37. * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
376 | - 8. * ( sk(k,j,i+2) + sk(k,j,i-1) ) & |
---|
377 | + ( sk(k,j,i+3) + sk(k,j,i-2) ) ) * adv_sca_5 |
---|
378 | diss_r(k) = - abs(u_comp) * ( & |
---|
379 | 10. * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
380 | - 5. * ( sk(k,j,i+2) - sk(k,j,i-1) ) & |
---|
381 | + ( sk(k,j,i+3) - sk(k,j,i-2) ) ) * adv_sca_5 |
---|
382 | ENDDO |
---|
383 | |
---|
384 | ENDIF |
---|
385 | ! |
---|
386 | !-- Compute the fifth order fluxes for the interior of PE domain. |
---|
387 | ELSE |
---|
388 | |
---|
389 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
390 | u_comp = u(k,j,i+1) - u_gtrans |
---|
391 | flux_r(k) = u_comp * ( & |
---|
392 | 37. * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
393 | - 8. * ( sk(k,j,i+2) + sk(k,j,i-1) ) & |
---|
394 | + ( sk(k,j,i+3) + sk(k,j,i-2) ) ) * adv_sca_5 |
---|
395 | diss_r(k) = - abs(u_comp) * ( & |
---|
396 | 10. * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
397 | - 5. * ( sk(k,j,i+2) - sk(k,j,i-1) ) & |
---|
398 | + ( sk(k,j,i+3) - sk(k,j,i-2) ) ) * adv_sca_5 |
---|
399 | |
---|
400 | v_comp = v(k,j+1,i) - v_gtrans |
---|
401 | flux_n(k) = v_comp * ( & |
---|
402 | 37. * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
403 | - 8. * ( sk(k,j+2,i) + sk(k,j-1,i) ) & |
---|
404 | + ( sk(k,j+3,i) + sk(k,j-2,i) ) ) * adv_sca_5 |
---|
405 | diss_n(k) = - abs(v_comp) * ( & |
---|
406 | 10. * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
407 | - 5. * ( sk(k,j+2,i) - sk(k,j-1,i) ) & |
---|
408 | + ( sk(k,j+3,i) - sk(k,j-2,i) ) ) * adv_sca_5 |
---|
409 | ENDDO |
---|
410 | |
---|
411 | ENDIF |
---|
412 | ! |
---|
413 | !-- Compute left- and southside fluxes of the respective PE bounds. |
---|
414 | IF ( j == nys .AND. ( .NOT. degraded_s ) ) THEN |
---|
415 | |
---|
416 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
417 | v_comp = v(k,j,i) - v_gtrans |
---|
418 | swap_flux_y_local(k) = v_comp * ( & |
---|
419 | 37. * ( sk(k,j,i) + sk(k,j-1,i) ) & |
---|
420 | - 8. * ( sk(k,j+1,i) + sk(k,j-2,i) ) & |
---|
421 | + ( sk(k,j+2,i) + sk(k,j-3,i) ) & |
---|
422 | ) * adv_sca_5 |
---|
423 | swap_diss_y_local(k) = - abs(v_comp) * ( & |
---|
424 | 10. * ( sk(k,j,i) - sk(k,j-1,i) ) & |
---|
425 | - 5. * ( sk(k,j+1,i) - sk(k,j-2,i) ) & |
---|
426 | + sk(k,j+2,i) - sk(k,j-3,i) & |
---|
427 | ) * adv_sca_5 |
---|
428 | ENDDO |
---|
429 | |
---|
430 | ENDIF |
---|
431 | |
---|
432 | IF ( i == nxl .AND. ( .NOT. degraded_l ) ) THEN |
---|
433 | |
---|
434 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
435 | u_comp = u(k,j,i) - u_gtrans |
---|
436 | swap_flux_x_local(k,j) = u_comp * ( & |
---|
437 | 37. * ( sk(k,j,i) + sk(k,j,i-1) ) & |
---|
438 | - 8. * ( sk(k,j,i+1) + sk(k,j,i-2) ) & |
---|
439 | + ( sk(k,j,i+2) + sk(k,j,i-3) ) & |
---|
440 | ) * adv_sca_5 |
---|
441 | swap_diss_x_local(k,j) = - abs(u_comp) * ( & |
---|
442 | 10. * ( sk(k,j,i) - sk(k,j,i-1) ) & |
---|
443 | - 5. * ( sk(k,j,i+1) - sk(k,j,i-2) ) & |
---|
444 | + ( sk(k,j,i+2) - sk(k,j,i-3) ) & |
---|
445 | ) * adv_sca_5 |
---|
446 | ENDDO |
---|
447 | |
---|
448 | ENDIF |
---|
449 | ! |
---|
450 | !-- Now compute the tendency terms for the horizontal parts. |
---|
451 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
452 | |
---|
453 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
454 | ( flux_r(k) + diss_r(k) & |
---|
455 | - ( swap_flux_x_local(k,j) + swap_diss_x_local(k,j) ) ) * ddx & |
---|
456 | + (flux_n(k)+diss_n(k) & |
---|
457 | - (swap_flux_y_local(k) + swap_diss_y_local(k) ) ) * ddy ) |
---|
458 | |
---|
459 | swap_flux_y_local(k) = flux_n(k) |
---|
460 | swap_diss_y_local(k) = diss_n(k) |
---|
461 | swap_flux_x_local(k,j) = flux_r(k) |
---|
462 | swap_diss_x_local(k,j) = diss_r(k) |
---|
463 | |
---|
464 | ENDDO |
---|
465 | ! |
---|
466 | !-- Vertical advection, degradation of order near surface and top. |
---|
467 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
468 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
469 | |
---|
470 | flux_t(nzb_s_inner(j,i)) = 0. |
---|
471 | diss_t(nzb_s_inner(j,i)) = 0. |
---|
472 | ! |
---|
473 | !-- 2nd order scheme |
---|
474 | k = nzb_s_inner(j,i) + 1 |
---|
475 | flux_d = flux_t(k-1) |
---|
476 | diss_d = diss_t(k-1) |
---|
477 | flux_t(k) = w(k,j,i) * ( sk(k+1,j,i) + sk(k,j,i) ) * 0.5 |
---|
478 | ! |
---|
479 | !-- sk(k,j,i) is referenced three times to avoid a access below surface. |
---|
480 | diss_t(k) = diss_2nd( sk(k+2,j,i), sk(k+1,j,i), sk(k,j,i), sk(k,j,i), & |
---|
481 | sk(k,j,i), w(k,j,i), 0.5, ddzw(k) ) |
---|
482 | |
---|
483 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
484 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
485 | ! |
---|
486 | !-- WS3 as an intermediate step |
---|
487 | k = nzb_s_inner(j,i) + 2 |
---|
488 | flux_d = flux_t(k-1) |
---|
489 | diss_d = diss_t(k-1) |
---|
490 | flux_t(k) = w(k,j,i) * ( & |
---|
491 | 7. * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
492 | - ( sk(k+2,j,i) + sk(k-1,j,i) ) ) * adv_sca_3 |
---|
493 | diss_t(k) = - abs(w(k,j,i)) * ( & |
---|
494 | 3. * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
495 | - ( sk(k+2,j,i) - sk(k-1,j,i) ) ) * adv_sca_3 |
---|
496 | |
---|
497 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
498 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
499 | ! |
---|
500 | !-- WS5 |
---|
501 | DO k = nzb_s_inner(j,i) + 3, nzt - 2 |
---|
502 | |
---|
503 | flux_d = flux_t(k-1) |
---|
504 | diss_d = diss_t(k-1) |
---|
505 | |
---|
506 | flux_t(k) = w(k,j,i) * ( & |
---|
507 | 37. * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
508 | - 8. * ( sk(k+2,j,i) + sk(k-1,j,i) ) & |
---|
509 | + ( sk(k+3,j,i) + sk(k-2,j,i) ) ) *adv_sca_5 |
---|
510 | diss_t(k) = - abs(w(k,j,i)) * ( & |
---|
511 | 10. * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
512 | - 5. * ( sk(k+2,j,i) - sk(k-1,j,i) ) & |
---|
513 | + ( sk(k+3,j,i) - sk(k-2,j,i) ) ) * adv_sca_5 |
---|
514 | |
---|
515 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
516 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
517 | ENDDO |
---|
518 | ! |
---|
519 | !-- WS3 as an intermediate step |
---|
520 | k = nzt - 1 |
---|
521 | flux_d = flux_t(k-1) |
---|
522 | diss_d = diss_t(k-1) |
---|
523 | flux_t(k) = w(k,j,i) * ( & |
---|
524 | 7. * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
525 | - ( sk(k+2,j,i) + sk(k-1,j,i) ) ) * adv_sca_3 |
---|
526 | diss_t(k) = - abs(w(k,j,i)) * ( & |
---|
527 | 3. * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
528 | - ( sk(k+2,j,i) - sk(k-1,j,i) ) ) * adv_sca_3 |
---|
529 | |
---|
530 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
531 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
532 | ! |
---|
533 | !-- 2nd |
---|
534 | k = nzt |
---|
535 | flux_d = flux_t(k-1) |
---|
536 | diss_d = diss_t(k-1) |
---|
537 | flux_t(k) = w(k,j,i) * ( sk(k+1,j,i) + sk(k,j,i) ) *0.5 |
---|
538 | ! |
---|
539 | !-- sk(k+1) is referenced two times to avoid a segmentation fault at top. |
---|
540 | diss_t(k) = diss_2nd( sk(k+1,j,i), sk(k+1,j,i), sk(k,j,i), sk(k-1,j,i),& |
---|
541 | sk(k-2,j,i), w(k,j,i), 0.5, ddzw(k) ) |
---|
542 | |
---|
543 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
544 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
545 | ! |
---|
546 | !-- evaluation of statistics |
---|
547 | SELECT CASE ( sk_char ) |
---|
548 | |
---|
549 | CASE ( 'pt' ) |
---|
550 | DO k = nzb_s_inner(j,i), nzt |
---|
551 | sums_wspts_ws_l(k,:) = sums_wspts_ws_l(k,:) & |
---|
552 | + (flux_t(k)+diss_t(k)) & |
---|
553 | * weight_substep(intermediate_timestep_count) * rmask(j,i,:) |
---|
554 | ENDDO |
---|
555 | |
---|
556 | CASE ( 'sa' ) |
---|
557 | DO k = nzb_s_inner(j,i), nzt |
---|
558 | sums_wssas_ws_l(k,:) = sums_wssas_ws_l(k,:) & |
---|
559 | +(flux_t(k)+diss_t(k)) & |
---|
560 | * weight_substep(intermediate_timestep_count) * rmask(j,i,:) |
---|
561 | ENDDO |
---|
562 | |
---|
563 | CASE ( 'q' ) |
---|
564 | DO k = nzb_s_inner(j,i), nzt |
---|
565 | sums_wsqs_ws_l(k,:) = sums_wsqs_ws_l(k,:) & |
---|
566 | + (flux_t(k)+diss_t(k)) & |
---|
567 | * weight_substep(intermediate_timestep_count) * rmask(j,i,:) |
---|
568 | ENDDO |
---|
569 | |
---|
570 | END SELECT |
---|
571 | |
---|
572 | END SUBROUTINE advec_s_ws_ij |
---|
573 | |
---|
574 | |
---|
575 | |
---|
576 | |
---|
577 | !------------------------------------------------------------------------------! |
---|
578 | ! Advection of u-component - Call for grid point i,j |
---|
579 | !------------------------------------------------------------------------------! |
---|
580 | SUBROUTINE advec_u_ws_ij( i, j ) |
---|
581 | |
---|
582 | USE arrays_3d |
---|
583 | USE constants |
---|
584 | USE control_parameters |
---|
585 | USE grid_variables |
---|
586 | USE indices |
---|
587 | USE statistics |
---|
588 | |
---|
589 | IMPLICIT NONE |
---|
590 | |
---|
591 | INTEGER :: i, j, k |
---|
592 | LOGICAL :: degraded_l = .FALSE., degraded_s = .FALSE. |
---|
593 | REAL :: gu, gv, flux_d, diss_d, u_comp_l, v_comp, w_comp |
---|
594 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_r, diss_r, & |
---|
595 | flux_n, diss_n, u_comp |
---|
596 | |
---|
597 | gu = 2.0 * u_gtrans |
---|
598 | gv = 2.0 * v_gtrans |
---|
599 | |
---|
600 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
601 | ! |
---|
602 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
603 | SELECT CASE ( boundary_flags(j,i) ) |
---|
604 | |
---|
605 | CASE ( 1 ) |
---|
606 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
607 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
608 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
609 | 7. * (u(k,j,i+1) + u(k,j,i) ) & |
---|
610 | - ( u(k,j,i+2) + u(k,j,i-1) ) ) * adv_mom_3 |
---|
611 | diss_r(k) = - abs(u_comp(k) - gu) * ( & |
---|
612 | 3. * (u(k,j,i+1) - u(k,j,i) ) & |
---|
613 | - ( u(k,j,i+2) - u(k,j,i-1) ) ) * adv_mom_3 |
---|
614 | ENDDO |
---|
615 | |
---|
616 | CASE ( 2 ) |
---|
617 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
618 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
619 | flux_r(k) = (u_comp(k) - gu) * ( u(k,j,i+1) + u(k,j,i) )*0.25 |
---|
620 | diss_r(k) = diss_2nd( u(k,j,i+1) ,u(k,j,i+1), u(k,j,i), & |
---|
621 | u(k,j,i-1), u(k,j,i-2), u_comp(k), & |
---|
622 | 0.25, ddx ) |
---|
623 | ENDDO |
---|
624 | |
---|
625 | CASE ( 3 ) |
---|
626 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
627 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
628 | flux_n(k) = v_comp * ( & |
---|
629 | 7. * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
630 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) * adv_mom_3 |
---|
631 | diss_n(k) = - abs(v_comp) * ( & |
---|
632 | 3. * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
633 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) * adv_mom_3 |
---|
634 | ENDDO |
---|
635 | |
---|
636 | CASE ( 4 ) |
---|
637 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
638 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
639 | flux_n(k) = v_comp * ( u(k,j+1,i) + u(k,j,i) ) * 0.25 |
---|
640 | diss_n(k) = diss_2nd( u(k,j+1,i), u(k,j+1,i), u(k,j,i), & |
---|
641 | u(k,j-1,i), u(k,j-2,i), v_comp, & |
---|
642 | 0.25, ddy ) |
---|
643 | ENDDO |
---|
644 | |
---|
645 | CASE ( 5 ) |
---|
646 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
647 | ! |
---|
648 | !-- Compute leftside fluxes for the left boundary of PE domain |
---|
649 | u_comp(k) = u(k,j,i) + u(k,j,i-1) - gu |
---|
650 | flux_l_u(k,j) = u_comp(k) * ( u(k,j,i) + u(k,j,i-1) ) * 0.25 |
---|
651 | diss_l_u(k,j) = diss_2nd(u(k,j,i+2), u(k,j,i+1), u(k,j,i), & |
---|
652 | u(k,j,i-1), u(k,j,i-1), u_comp(k), & |
---|
653 | 0.25, ddx ) |
---|
654 | |
---|
655 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
656 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
657 | 7. * (u(k,j,i+1) + u(k,j,i) ) & |
---|
658 | - ( u(k,j,i+2) + u(k,j,i-1) ) ) * adv_mom_3 |
---|
659 | diss_r(k) = - abs( u_comp(k) -gu ) * ( & |
---|
660 | 3. * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
661 | - ( u(k,j,i+2) - u(k,j,i-1) ) ) * adv_mom_3 |
---|
662 | ENDDO |
---|
663 | degraded_l = .TRUE. |
---|
664 | |
---|
665 | CASE ( 7 ) |
---|
666 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
667 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
668 | flux_n(k) = v_comp * ( & |
---|
669 | 7. * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
670 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) * adv_mom_3 |
---|
671 | diss_n(k) = - abs(v_comp) * ( & |
---|
672 | 3. * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
673 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) * adv_mom_3 |
---|
674 | ENDDO |
---|
675 | |
---|
676 | CASE ( 8 ) |
---|
677 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
678 | ! |
---|
679 | !-- Compute southside fluxes for the south boundary of PE domain |
---|
680 | v_comp = v(k,j,i) + v(k,j,i-1) - gv |
---|
681 | flux_s_u(k) = v_comp * ( u(k,j,i) + u(k,j-1,i) ) * 0.25 |
---|
682 | diss_s_u(k) = diss_2nd( u(k,j+2,i), u(k,j+1,i), u(k,j,i), & |
---|
683 | u(k,j-1,i), u(k,j-1,i), v_comp, & |
---|
684 | 0.25, ddy ) |
---|
685 | |
---|
686 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
687 | flux_n(k) = v_comp * ( & |
---|
688 | 7. * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
689 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) * adv_mom_3 |
---|
690 | diss_n(k) = - abs(v_comp) * ( & |
---|
691 | 3. * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
692 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) * adv_mom_3 |
---|
693 | ENDDO |
---|
694 | degraded_s = .TRUE. |
---|
695 | |
---|
696 | CASE DEFAULT |
---|
697 | |
---|
698 | END SELECT |
---|
699 | ! |
---|
700 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
701 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 & |
---|
702 | .OR. boundary_flags(j,i) == 5 ) THEN |
---|
703 | |
---|
704 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
705 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
706 | flux_n(k) = v_comp * ( & |
---|
707 | 37. * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
708 | - 8. * ( u(k,j+2,i) + u(k,j-1,i) ) & |
---|
709 | + ( u(k,j+3,i) + u(k,j-2,i) ) ) *adv_mom_5 |
---|
710 | diss_n(k) = - abs(v_comp) * ( & |
---|
711 | 10. * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
712 | - 5. * ( u(k,j+2,i) - u(k,j-1,i) ) & |
---|
713 | + ( u(k,j+3,i) - u(k,j-2,i) ) ) * adv_mom_5 |
---|
714 | ENDDO |
---|
715 | |
---|
716 | ELSE |
---|
717 | |
---|
718 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
719 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
720 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
721 | 37. * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
722 | - 8. * ( u(k,j,i+2) + u(k,j,i-1) ) & |
---|
723 | + ( u(k,j,i+3) + u(k,j,i-2) ) ) * adv_mom_5 |
---|
724 | diss_r(k) = - abs(u_comp(k) - gu) * ( & |
---|
725 | 10. * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
726 | - 5. * ( u(k,j,i+2) - u(k,j,i-1) ) & |
---|
727 | + ( u(k,j,i+3) - u(k,j,i-2) ) ) *adv_mom_5 |
---|
728 | ENDDO |
---|
729 | |
---|
730 | ENDIF |
---|
731 | |
---|
732 | ELSE |
---|
733 | ! |
---|
734 | !-- Compute the fifth order fluxes for the interior of PE domain. |
---|
735 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
736 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
737 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
738 | 37. * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
739 | - 8. * ( u(k,j,i+2) + u(k,j,i-1) ) & |
---|
740 | + ( u(k,j,i+3) + u(k,j,i-2) ) ) * adv_mom_5 |
---|
741 | diss_r(k) = - abs(u_comp(k) - gu) * ( & |
---|
742 | 10. * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
743 | - 5. * ( u(k,j,i+2) - u(k,j,i-1) ) & |
---|
744 | + ( u(k,j,i+3) - u(k,j,i-2) ) ) * adv_mom_5 |
---|
745 | |
---|
746 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
747 | flux_n(k) = v_comp * ( & |
---|
748 | 37. * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
749 | - 8. * ( u(k,j+2,i) + u(k,j-1,i) ) & |
---|
750 | + ( u(k,j+3,i) + u(k,j-2,i) ) ) * adv_mom_5 |
---|
751 | diss_n(k) = - abs(v_comp) * ( & |
---|
752 | 10. * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
753 | - 5. * ( u(k,j+2,i) - u(k,j-1,i) ) & |
---|
754 | + ( u(k,j+3,i) - u(k,j-2,i) ) ) * adv_mom_5 |
---|
755 | ENDDO |
---|
756 | |
---|
757 | ENDIF |
---|
758 | ! |
---|
759 | !-- Compute left- and southside fluxes for the respective boundary of PE |
---|
760 | IF ( j == nys .AND. ( .NOT. degraded_s ) ) THEN |
---|
761 | |
---|
762 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
763 | v_comp = v(k,j,i) + v(k,j,i-1) - gv |
---|
764 | flux_s_u(k) = v_comp * ( & |
---|
765 | 37. * ( u(k,j,i) + u(k,j-1,i) ) & |
---|
766 | - 8. * ( u(k,j+1,i) + u(k,j-2,i) ) & |
---|
767 | + ( u(k,j+2,i) + u(k,j-3,i) ) ) * adv_mom_5 |
---|
768 | diss_s_u(k) = - abs(v_comp) * ( & |
---|
769 | 10. * ( u(k,j,i) - u(k,j-1,i) ) & |
---|
770 | - 5. * ( u(k,j+1,i) - u(k,j-2,i) ) & |
---|
771 | + ( u(k,j+2,i) - u(k,j-3,i) ) ) * adv_mom_5 |
---|
772 | ENDDO |
---|
773 | |
---|
774 | ENDIF |
---|
775 | |
---|
776 | IF ( i == nxlu .AND. ( .NOT. degraded_l ) ) THEN |
---|
777 | |
---|
778 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
779 | u_comp_l = u(k,j,i)+u(k,j,i-1)-gu |
---|
780 | flux_l_u(k,j) = u_comp_l * ( & |
---|
781 | 37. * ( u(k,j,i) + u(k,j,i-1) ) & |
---|
782 | - 8. * ( u(k,j,i+1) + u(k,j,i-2) ) & |
---|
783 | + ( u(k,j,i+2) + u(k,j,i-3) ) ) * adv_mom_5 |
---|
784 | diss_l_u(k,j) = - abs(u_comp_l) * ( & |
---|
785 | 10. * ( u(k,j,i) - u(k,j,i-1) ) & |
---|
786 | - 5. * ( u(k,j,i+1) - u(k,j,i-2) ) & |
---|
787 | + ( u(k,j,i+2) - u(k,j,i-3) ) ) * adv_mom_5 |
---|
788 | ENDDO |
---|
789 | |
---|
790 | ENDIF |
---|
791 | ! |
---|
792 | !-- Now compute the tendency terms for the horizontal parts. |
---|
793 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
794 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
795 | ( flux_r(k) + diss_r(k) & |
---|
796 | - ( flux_l_u(k,j) + diss_l_u(k,j) ) ) * ddx & |
---|
797 | + ( flux_n(k) + diss_n(k) & |
---|
798 | - ( flux_s_u(k) + diss_s_u(k) ) ) * ddy ) |
---|
799 | |
---|
800 | flux_l_u(k,j) = flux_r(k) |
---|
801 | diss_l_u(k,j) = diss_r(k) |
---|
802 | flux_s_u(k) = flux_n(k) |
---|
803 | diss_s_u(k) = diss_n(k) |
---|
804 | ! |
---|
805 | !-- Statistical Evaluation of u'u'. The factor has to be applied for |
---|
806 | !-- right evaluation when gallilei_trans = .T. . |
---|
807 | sums_us2_ws_l(k,:) = sums_us2_ws_l(k,:) & |
---|
808 | + ( flux_r(k) * & |
---|
809 | ( u_comp(k) - 2. * hom(k,1,1,:) ) / ( u_comp(k) - gu + 1.0E-20 ) & |
---|
810 | + diss_r(k) & |
---|
811 | * abs(u_comp(k) - 2. * hom(k,1,1,:) ) & |
---|
812 | / (abs(u_comp(k) - gu) + 1.0E-20) ) & |
---|
813 | * weight_substep(intermediate_timestep_count) * rmask(j,i,:) |
---|
814 | ENDDO |
---|
815 | sums_us2_ws_l(nzb_u_inner(j,i),:) = & |
---|
816 | sums_us2_ws_l(nzb_u_inner(j,i)+1,:) |
---|
817 | |
---|
818 | ! |
---|
819 | !-- Vertical advection, degradation of order near surface and top. |
---|
820 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
821 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
822 | flux_t(nzb_u_inner(j,i)) = 0. !statistical reasons |
---|
823 | diss_t(nzb_u_inner(j,i)) = 0. |
---|
824 | ! |
---|
825 | !-- 2nd order scheme |
---|
826 | k = nzb_u_inner(j,i) + 1 |
---|
827 | flux_d = flux_t(k-1) |
---|
828 | diss_d = diss_t(k-1) |
---|
829 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
830 | flux_t(k) = w_comp * ( u(k+1,j,i) + u(k,j,i) ) *0.25 |
---|
831 | diss_t(k) = diss_2nd( u(k+2,j,i), u(k+1,j,i), u(k,j,i), 0., 0., & |
---|
832 | w_comp, 0.25, ddzw(k) ) |
---|
833 | |
---|
834 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
835 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
836 | ! |
---|
837 | !-- WS3 as an intermediate step |
---|
838 | k = nzb_u_inner(j,i) + 2 |
---|
839 | flux_d = flux_t(k-1) |
---|
840 | diss_d = diss_t(k-1) |
---|
841 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
842 | flux_t(k) = w_comp*( & |
---|
843 | 7. * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
844 | - ( u(k+2,j,i) + u(k-1,j,i) ) ) * adv_mom_3 |
---|
845 | diss_t(k) = -abs(w_comp)*( & |
---|
846 | 3. * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
847 | - ( u(k+2,j,i) - u(k-1,j,i) ) ) * adv_mom_3 |
---|
848 | |
---|
849 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
850 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
851 | |
---|
852 | DO k = nzb_u_inner(j,i) + 3, nzt - 2 |
---|
853 | flux_d = flux_t(k-1) |
---|
854 | diss_d = diss_t(k-1) |
---|
855 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
856 | flux_t(k) = w_comp*( & |
---|
857 | 37.* ( u(k+1,j,i) + u(k,j,i) ) & |
---|
858 | - 8. * ( u(k+2,j,i) + u(k-1,j,i) ) & |
---|
859 | + ( u(k+3,j,i) + u(k-2,j,i) ) ) * adv_mom_5 |
---|
860 | diss_t(k) = - abs(w_comp) * ( & |
---|
861 | 10. * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
862 | - 5. * ( u(k+2,j,i) - u(k-1,j,i) ) & |
---|
863 | + ( u(k+3,j,i) - u(k-2,j,i) ) ) * adv_mom_5 |
---|
864 | |
---|
865 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
866 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
867 | ENDDO |
---|
868 | ! |
---|
869 | !-- WS3 as an intermediate step |
---|
870 | k = nzt - 1 |
---|
871 | flux_d = flux_t(k-1) |
---|
872 | diss_d = diss_t(k-1) |
---|
873 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
874 | flux_t(k) = w_comp * ( & |
---|
875 | 7. * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
876 | - ( u(k+2,j,i) + u(k-1,j,i) ) ) * adv_mom_3 |
---|
877 | diss_t(k) = - abs(w_comp) * ( & |
---|
878 | 3. * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
879 | - ( u(k+2,j,i) - u(k-1,j,i) ) ) * adv_mom_3 |
---|
880 | |
---|
881 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
882 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
883 | |
---|
884 | ! |
---|
885 | !-- 2nd order scheme |
---|
886 | k = nzt |
---|
887 | flux_d = flux_t(k-1) |
---|
888 | diss_d = diss_t(k-1) |
---|
889 | w_comp = w(k,j,i)+w(k,j,i-1) |
---|
890 | flux_t(k) = w_comp * ( u(k+1,j,i) + u(k,j,i) ) * 0.25 |
---|
891 | diss_t(k) = diss_2nd( u(k+1,j,i), u(k+1,j,i), u(k,j,i), u(k-1,j,i), & |
---|
892 | u(k-2,j,i), w_comp, 0.25, ddzw(k) ) |
---|
893 | |
---|
894 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
895 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
896 | |
---|
897 | ! |
---|
898 | !-- sum up the vertical momentum fluxes |
---|
899 | DO k = nzb_u_inner(j,i), nzt |
---|
900 | sums_wsus_ws_l(k,:) = sums_wsus_ws_l(k,:) & |
---|
901 | + ( flux_t(k) + diss_t(k) ) & |
---|
902 | * weight_substep(intermediate_timestep_count) * rmask(j,i,:) |
---|
903 | ENDDO |
---|
904 | |
---|
905 | |
---|
906 | END SUBROUTINE advec_u_ws_ij |
---|
907 | |
---|
908 | |
---|
909 | |
---|
910 | |
---|
911 | !------------------------------------------------------------------------------! |
---|
912 | ! Advection of v-component - Call for grid point i,j |
---|
913 | !------------------------------------------------------------------------------! |
---|
914 | SUBROUTINE advec_v_ws_ij( i, j ) |
---|
915 | |
---|
916 | USE arrays_3d |
---|
917 | USE constants |
---|
918 | USE control_parameters |
---|
919 | USE grid_variables |
---|
920 | USE indices |
---|
921 | USE statistics |
---|
922 | |
---|
923 | IMPLICIT NONE |
---|
924 | |
---|
925 | INTEGER :: i, j, k |
---|
926 | LOGICAL :: degraded_l = .FALSE., degraded_s = .FALSE. |
---|
927 | REAL :: gu, gv, flux_d, diss_d, u_comp, v_comp_l, w_comp |
---|
928 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_n, & |
---|
929 | diss_n, flux_r, diss_r, v_comp |
---|
930 | |
---|
931 | gu = 2.0 * u_gtrans |
---|
932 | gv = 2.0 * v_gtrans |
---|
933 | |
---|
934 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
935 | ! |
---|
936 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
937 | SELECT CASE ( boundary_flags(j,i) ) |
---|
938 | |
---|
939 | CASE ( 1 ) |
---|
940 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
941 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
942 | flux_r(k) = u_comp * ( & |
---|
943 | 7. * (v(k,j,i+1) + v(k,j,i) ) & |
---|
944 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) * adv_mom_3 |
---|
945 | diss_r(k) = - abs(u_comp) * ( & |
---|
946 | 3. * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
947 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) * adv_mom_3 |
---|
948 | ENDDO |
---|
949 | |
---|
950 | CASE ( 2 ) |
---|
951 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
952 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
953 | flux_r(k) = u_comp * ( v(k,j,i+1) + v(k,j,i) ) * 0.25 |
---|
954 | diss_r(k) = diss_2nd( v(k,j,i+1), v(k,j,i+1), v(k,j,i), & |
---|
955 | v(k,j,i-1), v(k,j,i-2), u_comp, & |
---|
956 | 0.25, ddx ) |
---|
957 | ENDDO |
---|
958 | |
---|
959 | CASE ( 3 ) |
---|
960 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
961 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
962 | flux_n(k) = ( v_comp(k)- gv ) * ( & |
---|
963 | 7. * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
964 | - ( v(k,j+2,i) + v(k,j-1,i) ) ) * adv_mom_3 |
---|
965 | diss_n(k) = - abs(v_comp(k) - gv) * ( & |
---|
966 | 3. * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
967 | - ( v(k,j+2,i) - v(k,j-1,i) ) ) * adv_mom_3 |
---|
968 | ENDDO |
---|
969 | |
---|
970 | CASE ( 4 ) |
---|
971 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
972 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
973 | flux_n(k) = ( v_comp(k) - gv ) * & |
---|
974 | ( v(k,j+1,i) + v(k,j,i) ) * 0.25 |
---|
975 | diss_n(k) = diss_2nd( v(k,j+1,i), v(k,j+1,i), v(k,j,i), & |
---|
976 | v(k,j-1,i), v(k,j-2,i), v_comp(k), & |
---|
977 | 0.25, ddy ) |
---|
978 | ENDDO |
---|
979 | |
---|
980 | CASE ( 5 ) |
---|
981 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
982 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
983 | flux_r(k) = u_comp * ( & |
---|
984 | 7. * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
985 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) * adv_mom_3 |
---|
986 | diss_r(k) = - abs(u_comp) * ( & |
---|
987 | 3. * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
988 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) * adv_mom_3 |
---|
989 | ENDDO |
---|
990 | |
---|
991 | CASE ( 6 ) |
---|
992 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
993 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
994 | flux_l_v(k,j) = u_comp * ( v(k,j,i) + v(k,j,i-1) ) * 0.25 |
---|
995 | diss_l_v(k,j) = diss_2nd( v(k,j,i+2), v(k,j,i+1), v(k,j,i),& |
---|
996 | v(k,j,i-1), v(k,j,i-1), u_comp, & |
---|
997 | 0.25, ddx ) |
---|
998 | |
---|
999 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
1000 | flux_r(k) = u_comp * ( & |
---|
1001 | 7. * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
1002 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) * adv_mom_3 |
---|
1003 | diss_r(k) = - abs(u_comp) * ( & |
---|
1004 | 3. * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
1005 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) * adv_mom_3 |
---|
1006 | ENDDO |
---|
1007 | degraded_l = .TRUE. |
---|
1008 | |
---|
1009 | CASE ( 7 ) |
---|
1010 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
1011 | v_comp(k) = v(k,j,i) + v(k,j-1,i) - gv |
---|
1012 | flux_s_v(k) = v_comp(k) * ( v(k,j,i) + v(k,j-1,i) ) * 0.25 |
---|
1013 | diss_s_v(k) = diss_2nd( v(k,j+2,i), v(k,j+1,i), v(k,j,i), & |
---|
1014 | v(k,j-1,i), v(k,j-1,i), v_comp(k), & |
---|
1015 | 0.25, ddy ) |
---|
1016 | |
---|
1017 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
1018 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
1019 | 7. * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
1020 | - ( v(k,j+2,i) + v(k,j-1,i) ) ) * adv_mom_3 |
---|
1021 | diss_n(k) = - abs(v_comp(k) - gv) * ( & |
---|
1022 | 3. * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
1023 | - ( v(k,j+2,i) - v(k,j-1,i) ) ) * adv_mom_3 |
---|
1024 | ENDDO |
---|
1025 | degraded_s = .TRUE. |
---|
1026 | |
---|
1027 | CASE DEFAULT |
---|
1028 | |
---|
1029 | END SELECT |
---|
1030 | ! |
---|
1031 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
1032 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 & |
---|
1033 | .OR. boundary_flags(j,i) == 5 .OR. boundary_flags(j,i) == 6 ) THEN |
---|
1034 | |
---|
1035 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
1036 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
1037 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
1038 | 37. * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
1039 | - 8. * ( v(k,j+2,i) + v(k,j-1,i) ) & |
---|
1040 | + ( v(k,j+3,i) + v(k,j-2,i) ) ) * adv_mom_5 |
---|
1041 | diss_n(k) = - abs(v_comp(k) - gv ) * ( & |
---|
1042 | 10. * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
1043 | - 5. * ( v(k,j+2,i) - v(k,j-1,i) ) & |
---|
1044 | + ( v(k,j+3,i) - v(k,j-2,i) ) ) *adv_mom_5 |
---|
1045 | ENDDO |
---|
1046 | |
---|
1047 | ELSE |
---|
1048 | |
---|
1049 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
1050 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
1051 | flux_r(k) = u_comp * ( & |
---|
1052 | 37. * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
1053 | - 8. * ( v(k,j,i+2) + v(k,j,i-1) ) & |
---|
1054 | + ( v(k,j,i+3) + v(k,j,i-2) ) ) * adv_mom_5 |
---|
1055 | diss_r(k) = - abs(u_comp) * ( & |
---|
1056 | 10. * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
1057 | -5. * ( v(k,j,i+2) - v(k,j,i-1) ) & |
---|
1058 | + ( v(k,j,i+3) - v(k,j,i-2) ) ) * adv_mom_5 |
---|
1059 | ENDDO |
---|
1060 | |
---|
1061 | ENDIF |
---|
1062 | |
---|
1063 | ELSE |
---|
1064 | ! |
---|
1065 | !-- Compute the fifth order fluxes for the interior of PE domain. |
---|
1066 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
1067 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
1068 | flux_r(k) = u_comp * ( & |
---|
1069 | 37. * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
1070 | - 8. * ( v(k,j,i+2) + v(k,j,i-1) ) & |
---|
1071 | + ( v(k,j,i+3) + v(k,j,i-2) ) ) * adv_mom_5 |
---|
1072 | diss_r(k) = - abs(u_comp) * ( & |
---|
1073 | 10. * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
1074 | - 5. * ( v(k,j,i+2) - v(k,j,i-1) ) & |
---|
1075 | + ( v(k,j,i+3) - v(k,j,i-2) ) ) * adv_mom_5 |
---|
1076 | |
---|
1077 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
1078 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
1079 | 37. * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
1080 | - 8. * ( v(k,j+2,i) + v(k,j-1,i) ) & |
---|
1081 | + ( v(k,j+3,i) + v(k,j-2,i) ) ) * adv_mom_5 |
---|
1082 | diss_n(k) = - abs(v_comp(k) - gv) * ( & |
---|
1083 | 10. * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
1084 | - 5. * ( v(k,j+2,i) - v(k,j-1,i) ) & |
---|
1085 | + ( v(k,j+3,i) - v(k,j-2,i) ) ) * adv_mom_5 |
---|
1086 | ENDDO |
---|
1087 | |
---|
1088 | ENDIF |
---|
1089 | ! |
---|
1090 | !-- Compute left- and southside fluxes for the respective boundary |
---|
1091 | IF ( i == nxl .AND. ( .NOT. degraded_l ) ) THEN |
---|
1092 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
1093 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
1094 | flux_l_v(k,j) = u_comp * ( & |
---|
1095 | 37. * ( v(k,j,i) + v(k,j,i-1) ) & |
---|
1096 | - 8. * ( v(k,j,i+1) + v(k,j,i-2) ) & |
---|
1097 | + ( v(k,j,i+2) + v(k,j,i-3) ) ) * adv_mom_5 |
---|
1098 | diss_l_v(k,j) = - abs(u_comp) * ( & |
---|
1099 | 10. * ( v(k,j,i) - v(k,j,i-1) ) & |
---|
1100 | - 5. * ( v(k,j,i+1) - v(k,j,i-2) ) & |
---|
1101 | + ( v(k,j,i+2) - v(k,j,i-3) ) ) * adv_mom_5 |
---|
1102 | ENDDO |
---|
1103 | |
---|
1104 | ENDIF |
---|
1105 | |
---|
1106 | IF ( j == nysv .AND. ( .NOT. degraded_s ) ) THEN |
---|
1107 | |
---|
1108 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
1109 | v_comp_l = v(k,j,i) + v(k,j-1,i) - gv |
---|
1110 | flux_s_v(k) = v_comp_l * ( & |
---|
1111 | 37. * ( v(k,j,i) + v(k,j-1,i) ) & |
---|
1112 | - 8. * ( v(k,j+1,i) + v(k,j-2,i) ) & |
---|
1113 | + ( v(k,j+2,i) + v(k,j-3,i) ) ) * adv_mom_5 |
---|
1114 | diss_s_v(k) = - abs(v_comp_l) * ( & |
---|
1115 | 10. * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
1116 | - 5. * ( v(k,j+1,i) - v(k,j-2,i) ) & |
---|
1117 | + ( v(k,j+2,i) - v(k,j-3,i) ) ) * adv_mom_5 |
---|
1118 | ENDDO |
---|
1119 | |
---|
1120 | ENDIF |
---|
1121 | ! |
---|
1122 | !-- Now compute the tendency terms for the horizontal parts. |
---|
1123 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
1124 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
1125 | ( flux_r(k) + diss_r(k) & |
---|
1126 | - ( flux_l_v(k,j) + diss_l_v(k,j) ) ) * ddx & |
---|
1127 | + ( flux_n(k) + diss_n(k) & |
---|
1128 | - ( flux_s_v(k) + diss_s_v(k) ) ) * ddy ) |
---|
1129 | |
---|
1130 | flux_l_v(k,j) = flux_r(k) |
---|
1131 | diss_l_v(k,j) = diss_r(k) |
---|
1132 | flux_s_v(k) = flux_n(k) |
---|
1133 | diss_s_v(k) = diss_n(k) |
---|
1134 | |
---|
1135 | ! |
---|
1136 | !-- Statistical Evaluation of v'v'. The factor has to be applied for |
---|
1137 | !-- right evaluation when gallilei_trans = .T. . |
---|
1138 | |
---|
1139 | sums_vs2_ws_l(k,:) = sums_vs2_ws_l(k,:) & |
---|
1140 | + ( flux_n(k) & |
---|
1141 | * ( v_comp(k) - 2. * hom(k,1,2,:) ) & |
---|
1142 | / ( v_comp(k) - gv + 1.0E-20 ) & |
---|
1143 | + diss_n(k) & |
---|
1144 | * abs( v_comp(k) - 2. * hom(k,1,2,:) ) & |
---|
1145 | / ( abs( v_comp(k) - gv ) +1.0E-20 ) ) & |
---|
1146 | * weight_substep(intermediate_timestep_count) * rmask(j,i,:) |
---|
1147 | |
---|
1148 | ENDDO |
---|
1149 | sums_vs2_ws_l(nzb_v_inner(j,i),:) = & |
---|
1150 | sums_vs2_ws_l(nzb_v_inner(j,i)+1,:) |
---|
1151 | ! |
---|
1152 | !-- Vertical advection, degradation of order near surface and top. |
---|
1153 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
1154 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
1155 | flux_t(nzb_v_inner(j,i)) = 0. !statistical reasons |
---|
1156 | diss_t(nzb_v_inner(j,i)) = 0. |
---|
1157 | ! |
---|
1158 | !-- 2nd order scheme |
---|
1159 | k = nzb_v_inner(j,i) + 1 |
---|
1160 | flux_d = flux_t(k-1) |
---|
1161 | diss_d = diss_t(k-1) |
---|
1162 | w_comp = w(k,j-1,i) + w(k,j,i) |
---|
1163 | flux_t(k) = w_comp * ( v(k+1,j,i) + v(k,j,i) ) * 0.25 |
---|
1164 | diss_t(k) = diss_2nd( v(k+2,j,i), v(k+1,j,i), v(k,j,i), 0., 0., w_comp,& |
---|
1165 | 0.25, ddzw(k) ) |
---|
1166 | |
---|
1167 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1168 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
1169 | |
---|
1170 | ! |
---|
1171 | !-- WS3 as an intermediate step |
---|
1172 | k = nzb_v_inner(j,i) + 2 |
---|
1173 | flux_d = flux_t(k-1) |
---|
1174 | diss_d = diss_t(k-1) |
---|
1175 | w_comp = w(k,j-1,i) + w(k,j,i) |
---|
1176 | flux_t(k) = w_comp * ( & |
---|
1177 | 7. * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
1178 | - ( v(k+2,j,i) + v(k-1,j,i) ) ) * adv_mom_3 |
---|
1179 | diss_t(k) = - abs(w_comp) * ( & |
---|
1180 | 3. * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
1181 | - ( v(k+2,j,i) - v(k-1,j,i) ) ) * adv_mom_3 |
---|
1182 | |
---|
1183 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1184 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
1185 | !-- WS5 |
---|
1186 | DO k = nzb_v_inner(j,i) + 3, nzt - 2 |
---|
1187 | flux_d = flux_t(k-1) |
---|
1188 | diss_d = diss_t(k-1) |
---|
1189 | w_comp = w(k,j-1,i) + w(k,j,i) |
---|
1190 | flux_t(k) = w_comp * ( & |
---|
1191 | 37. * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
1192 | - 8. * ( v(k+2,j,i) + v(k-1,j,i) ) & |
---|
1193 | + ( v(k+3,j,i) + v(k-2,j,i) ) ) * adv_mom_5 |
---|
1194 | diss_t(k) = - abs(w_comp) * ( & |
---|
1195 | 10. * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
1196 | - 5. * ( v(k+2,j,i) - v(k-1,j,i) ) & |
---|
1197 | + ( v(k+3,j,i) - v(k-2,j,i) ) ) * adv_mom_5 |
---|
1198 | |
---|
1199 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1200 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
1201 | ENDDO |
---|
1202 | ! |
---|
1203 | !-- WS3 as an intermediate step |
---|
1204 | k = nzt - 1 |
---|
1205 | flux_d = flux_t(k-1) |
---|
1206 | diss_d = diss_t(k-1) |
---|
1207 | w_comp = w(k,j-1,i) + w(k,j,i) |
---|
1208 | flux_t(k) = w_comp * ( & |
---|
1209 | 7. * ( v(k+1,j,i) + v(k,j,i) ) & |
---|
1210 | - ( v(k+2,j,i) + v(k-1,j,i) ) ) * adv_mom_3 |
---|
1211 | diss_t(k) = - abs(w_comp) * ( & |
---|
1212 | 3. * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
1213 | - ( v(k+2,j,i) - v(k-1,j,i) ) ) * adv_mom_3 |
---|
1214 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1215 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
1216 | ! |
---|
1217 | !-- 2nd order scheme |
---|
1218 | k = nzt |
---|
1219 | flux_d = flux_t(k-1) |
---|
1220 | diss_d = diss_t(k-1) |
---|
1221 | w_comp = w(k,j-1,i)+w(k,j,i) |
---|
1222 | flux_t(k) = w_comp * ( v(k+1,j,i) + v(k,j,i) ) * 0.25 |
---|
1223 | diss_t(k) = diss_2nd( v(k+1,j,i), v(k+1,j,i), v(k,j,i), v(k-1,j,i), & |
---|
1224 | v(k-2,j,i), w_comp, 0.25, ddzw(k) ) |
---|
1225 | |
---|
1226 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1227 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
1228 | |
---|
1229 | DO k = nzb_v_inner(j,i), nzt |
---|
1230 | sums_wsvs_ws_l(k,:) = sums_wsvs_ws_l(k,:) & |
---|
1231 | + ( flux_t(k) + diss_t(k) ) & |
---|
1232 | * weight_substep(intermediate_timestep_count) * rmask(j,i,:) |
---|
1233 | ENDDO |
---|
1234 | |
---|
1235 | END SUBROUTINE advec_v_ws_ij |
---|
1236 | |
---|
1237 | |
---|
1238 | |
---|
1239 | !------------------------------------------------------------------------------! |
---|
1240 | ! Advection of w-component - Call for grid point i,j |
---|
1241 | !------------------------------------------------------------------------------! |
---|
1242 | SUBROUTINE advec_w_ws_ij( i, j ) |
---|
1243 | |
---|
1244 | USE arrays_3d |
---|
1245 | USE constants |
---|
1246 | USE control_parameters |
---|
1247 | USE grid_variables |
---|
1248 | USE indices |
---|
1249 | USE statistics |
---|
1250 | |
---|
1251 | IMPLICIT NONE |
---|
1252 | |
---|
1253 | INTEGER :: i, j, k |
---|
1254 | LOGICAL :: degraded_l = .FALSE., degraded_s = .FALSE. |
---|
1255 | REAL :: gu, gv, flux_d, diss_d, u_comp, v_comp, w_comp |
---|
1256 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_r, diss_r, flux_n, & |
---|
1257 | diss_n |
---|
1258 | |
---|
1259 | gu = 2.0 * u_gtrans |
---|
1260 | gv = 2.0 * v_gtrans |
---|
1261 | |
---|
1262 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
1263 | ! |
---|
1264 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
1265 | SELECT CASE ( boundary_flags(j,i) ) |
---|
1266 | |
---|
1267 | CASE ( 1 ) |
---|
1268 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
1269 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1270 | flux_r(k) = u_comp * ( & |
---|
1271 | 7. * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
1272 | - ( w(k,j,i+2) + w(k,j,i-1) ) ) * adv_mom_3 |
---|
1273 | diss_r(k) = -abs(u_comp) * ( & |
---|
1274 | 3. * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
1275 | - ( w(k,j,i+2) - w(k,j,i-1) ) ) * adv_mom_3 |
---|
1276 | ENDDO |
---|
1277 | |
---|
1278 | CASE ( 2 ) |
---|
1279 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
1280 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1281 | flux_r(k) = u_comp * ( w(k,j,i+1) + w(k,j,i) ) * 0.25 |
---|
1282 | diss_r(k) = diss_2nd( w(k,j,i+1), w(k,j,i+1), w(k,j,i), & |
---|
1283 | w(k,j,i-1), w(k,j,i-2), u_comp, & |
---|
1284 | 0.25, ddx ) |
---|
1285 | ENDDO |
---|
1286 | |
---|
1287 | CASE ( 3 ) |
---|
1288 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
1289 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1290 | flux_n(k) = v_comp * ( & |
---|
1291 | 7. * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
1292 | - ( w(k,j+2,i) + w(k,j-1,i) ) ) * adv_mom_3 |
---|
1293 | diss_n(k) = -abs(v_comp) * ( & |
---|
1294 | 3. * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
1295 | - ( w(k,j+2,i) - w(k,j-1,i) ) ) * adv_mom_3 |
---|
1296 | ENDDO |
---|
1297 | |
---|
1298 | CASE ( 4 ) |
---|
1299 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
1300 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1301 | flux_n(k) = v_comp * ( w(k,j+1,i) + w(k,j,i) ) * 0.25 |
---|
1302 | diss_n(k) = diss_2nd( w(k,j+1,i), w(k,j+1,i), w(k,j,i), & |
---|
1303 | w(k,j-1,i), w(k,j-2,i), v_comp, & |
---|
1304 | 0.25, ddy ) |
---|
1305 | ENDDO |
---|
1306 | |
---|
1307 | CASE ( 5 ) |
---|
1308 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
1309 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1310 | flux_r(k) = u_comp * ( & |
---|
1311 | 7. * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
1312 | - ( w(k,j,i+2) + w(k,j,i-1) ) ) * adv_mom_3 |
---|
1313 | diss_r(k) = - abs(u_comp) * ( & |
---|
1314 | 3. * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
1315 | - ( w(k,j,i+2) - w(k,j,i-1) ) ) * adv_mom_3 |
---|
1316 | ENDDO |
---|
1317 | |
---|
1318 | CASE ( 6 ) |
---|
1319 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
1320 | ! |
---|
1321 | !-- Compute leftside fluxes for the left boundary of PE domain |
---|
1322 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1323 | flux_r(k) = u_comp *( & |
---|
1324 | 7. * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
1325 | - ( w(k,j,i+2) + w(k,j,i-1) ) ) * adv_mom_3 |
---|
1326 | diss_r(k) = - abs(u_comp) * ( & |
---|
1327 | 3. * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
1328 | - ( w(k,j,i+2) - w(k,j,i-1) ) ) * adv_mom_3 |
---|
1329 | |
---|
1330 | u_comp = u(k+1,j,i) + u(k,j,i) - gu |
---|
1331 | flux_l_w(k,j) = u_comp * ( w(k,j,i) + w(k,j,i-1) ) * 0.25 |
---|
1332 | diss_l_w(k,j) = diss_2nd( w(k,j,i+2), w(k,j,i+1), w(k,j,i), & |
---|
1333 | w(k,j,i-1), w(k,j,i-1), u_comp, & |
---|
1334 | 0.25,ddx) |
---|
1335 | ENDDO |
---|
1336 | degraded_l = .TRUE. |
---|
1337 | |
---|
1338 | CASE ( 7 ) |
---|
1339 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
1340 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1341 | flux_n(k) = v_comp *( & |
---|
1342 | 7. * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
1343 | - ( w(k,j+2,i) + w(k,j-1,i) ) ) * adv_mom_3 |
---|
1344 | diss_n(k) = - abs(v_comp) * ( & |
---|
1345 | 3. * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
1346 | - ( w(k,j+2,i) - w(k,j-1,i) ) ) * adv_mom_3 |
---|
1347 | ENDDO |
---|
1348 | |
---|
1349 | CASE ( 8 ) |
---|
1350 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
1351 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1352 | flux_n(k) = v_comp * ( & |
---|
1353 | 7. * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
1354 | - ( w(k,j+2,i) + w(k,j-1,i) ) ) * adv_mom_3 |
---|
1355 | diss_n(k) = - abs(v_comp) * ( & |
---|
1356 | 3. * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
1357 | - ( w(k,j+2,i) - w(k,j-1,i) ) ) * adv_mom_3 |
---|
1358 | ! |
---|
1359 | !-- Compute southside fluxes for the south boundary of PE domain |
---|
1360 | v_comp = v(k+1,j,i) + v(k,j,i) - gv |
---|
1361 | flux_s_w(k) = v_comp * ( w(k,j,i) + w(k,j-1,i) ) * 0.25 |
---|
1362 | diss_s_w(k) = diss_2nd( w(k,j+2,i), w(k,j+1,i), w(k,j,i), & |
---|
1363 | w(k,j-1,i), w(k,j-1,i), v_comp, & |
---|
1364 | 0.25, ddy ) |
---|
1365 | ENDDO |
---|
1366 | degraded_s = .TRUE. |
---|
1367 | |
---|
1368 | CASE DEFAULT |
---|
1369 | |
---|
1370 | END SELECT |
---|
1371 | ! |
---|
1372 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
1373 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 & |
---|
1374 | .OR. boundary_flags(j,i) == 5 .OR. boundary_flags(j,i) == 6 ) THEN |
---|
1375 | |
---|
1376 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
1377 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1378 | flux_n(k) = v_comp * ( & |
---|
1379 | 37. * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
1380 | - 8. * ( w(k,j+2,i) + w(k,j-1,i) ) & |
---|
1381 | + ( w(k,j+3,i) + w(k,j-2,i) ) ) * adv_mom_5 |
---|
1382 | diss_n(k) = - abs(v_comp) * ( & |
---|
1383 | 10. * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
1384 | - 5. * ( w(k,j+2,i) - w(k,j-1,i) ) & |
---|
1385 | + ( w(k,j+3,i) - w(k,j-2,i) ) ) * adv_mom_5 |
---|
1386 | ENDDO |
---|
1387 | |
---|
1388 | ELSE |
---|
1389 | |
---|
1390 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
1391 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1392 | flux_r(k) = u_comp * ( & |
---|
1393 | 37. * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
1394 | - 8. * ( w(k,j,i+2) + w(k,j,i-1) ) & |
---|
1395 | + ( w(k,j,i+3) + w(k,j,i-2) ) ) * adv_mom_5 |
---|
1396 | diss_r(k) = - abs(u_comp) * ( & |
---|
1397 | 10. * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
1398 | - 5. * ( w(k,j,i+2) - w(k,j,i-1) ) & |
---|
1399 | + ( w(k,j,i+3) - w(k,j,i-2) ) ) * adv_mom_5 |
---|
1400 | ENDDO |
---|
1401 | |
---|
1402 | ENDIF |
---|
1403 | |
---|
1404 | ELSE |
---|
1405 | ! |
---|
1406 | !-- Compute the fifth order fluxes for the interior of PE domain. |
---|
1407 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
1408 | u_comp = u(k+1,j,i+1) + u(k,j,i+1) - gu |
---|
1409 | flux_r(k) = u_comp * ( & |
---|
1410 | 37. * ( w(k,j,i+1) + w(k,j,i) ) & |
---|
1411 | - 8. * ( w(k,j,i+2) + w(k,j,i-1) ) & |
---|
1412 | + ( w(k,j,i+3) + w(k,j,i-2) ) ) * adv_mom_5 |
---|
1413 | diss_r(k) = - abs(u_comp) * ( & |
---|
1414 | 10. * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
1415 | - 5. * ( w(k,j,i+2) - w(k,j,i-1) ) & |
---|
1416 | + ( w(k,j,i+3) - w(k,j,i-2) ) ) * adv_mom_5 |
---|
1417 | |
---|
1418 | v_comp = v(k+1,j+1,i) + v(k,j+1,i) - gv |
---|
1419 | flux_n(k) = v_comp * ( & |
---|
1420 | 37. * ( w(k,j+1,i) + w(k,j,i) ) & |
---|
1421 | - 8. * ( w(k,j+2,i) + w(k,j-1,i) ) & |
---|
1422 | + ( w(k,j+3,i) + w(k,j-2,i) ) ) * adv_mom_5 |
---|
1423 | diss_n(k) = - abs(v_comp) * ( & |
---|
1424 | 10. * ( w(k,j+1,i) - w(k,j,i) ) & |
---|
1425 | - 5. * ( w(k,j+2,i) - w(k,j-1,i) ) & |
---|
1426 | + ( w(k,j+3,i) - w(k,j-2,i) ) ) * adv_mom_5 |
---|
1427 | ENDDO |
---|
1428 | |
---|
1429 | ENDIF |
---|
1430 | ! |
---|
1431 | !-- Compute left- and southside fluxes for the respective boundary |
---|
1432 | IF ( j == nys .AND. ( .NOT. degraded_s ) ) THEN |
---|
1433 | |
---|
1434 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
1435 | v_comp = v(k+1,j,i) + v(k,j,i) - gv |
---|
1436 | flux_s_w(k) = v_comp * ( & |
---|
1437 | 37. * ( w(k,j,i) + w(k,j-1,i) ) & |
---|
1438 | - 8. * ( w(k,j+1,i) +w(k,j-2,i) ) & |
---|
1439 | + ( w(k,j+2,i) + w(k,j-3,i) ) ) * adv_mom_5 |
---|
1440 | diss_s_w(k) = - abs(v_comp) * ( & |
---|
1441 | 10. * ( w(k,j,i) - w(k,j-1,i) ) & |
---|
1442 | - 5. * ( w(k,j+1,i) - w(k,j-2,i) ) & |
---|
1443 | + ( w(k,j+2,i) - w(k,j-3,i) ) ) * adv_mom_5 |
---|
1444 | ENDDO |
---|
1445 | |
---|
1446 | ENDIF |
---|
1447 | |
---|
1448 | IF ( i == nxl .AND. ( .NOT. degraded_l ) ) THEN |
---|
1449 | |
---|
1450 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
1451 | u_comp = u(k+1,j,i) + u(k,j,i) - gu |
---|
1452 | flux_l_w(k,j) = u_comp * ( & |
---|
1453 | 37. * ( w(k,j,i) + w(k,j,i-1) ) & |
---|
1454 | - 8. * ( w(k,j,i+1) + w(k,j,i-2) ) & |
---|
1455 | + ( w(k,j,i+2) + w(k,j,i-3) ) ) * adv_mom_5 |
---|
1456 | diss_l_w(k,j) = - abs(u_comp) * ( & |
---|
1457 | 10. * ( w(k,j,i) - w(k,j,i-1) ) & |
---|
1458 | - 5. * ( w(k,j,i+1) - w(k,j,i-2) ) & |
---|
1459 | + ( w(k,j,i+2) - w(k,j,i-3) ) ) * adv_mom_5 |
---|
1460 | ENDDO |
---|
1461 | |
---|
1462 | ENDIF |
---|
1463 | ! |
---|
1464 | !-- Now compute the tendency terms for the horizontal parts. |
---|
1465 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
1466 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
1467 | ( flux_r(k) + diss_r(k) & |
---|
1468 | - ( flux_l_w(k,j) + diss_l_w(k,j) ) ) * ddx & |
---|
1469 | + ( flux_n(k) + diss_n(k) & |
---|
1470 | - ( flux_s_w(k) + diss_s_w(k) ) ) * ddy ) |
---|
1471 | |
---|
1472 | flux_l_w(k,j) = flux_r(k) |
---|
1473 | diss_l_w(k,j) = diss_r(k) |
---|
1474 | flux_s_w(k) = flux_n(k) |
---|
1475 | diss_s_w(k) = diss_n(k) |
---|
1476 | ENDDO |
---|
1477 | |
---|
1478 | ! |
---|
1479 | !-- Vertical advection, degradation of order near surface and top. |
---|
1480 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
1481 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
1482 | flux_t(nzb_w_inner(j,i)) = 0. !statistical reasons |
---|
1483 | diss_t(nzb_w_inner(j,i)) = 0. |
---|
1484 | ! |
---|
1485 | !-- 2nd order scheme |
---|
1486 | k = nzb_w_inner(j,i) + 1 |
---|
1487 | flux_d = flux_t(k-1) |
---|
1488 | diss_d = diss_t(k-1) |
---|
1489 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
1490 | flux_t(k) = w_comp * ( w(k+1,j,i) + w(k,j,i) ) * 0.25 |
---|
1491 | diss_t(k) = diss_2nd( w(k+2,j,i), w(k+1,j,i), w(k,j,i), 0., 0., & |
---|
1492 | w_comp, 0.25, ddzu(k+1) ) |
---|
1493 | |
---|
1494 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1495 | - ( flux_d + diss_d ) ) * ddzu(k+1) |
---|
1496 | ! |
---|
1497 | !-- WS3 as an intermediate step |
---|
1498 | k = nzb_w_inner(j,i) + 2 |
---|
1499 | flux_d = flux_t(k-1) |
---|
1500 | diss_d = diss_t(k-1) |
---|
1501 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
1502 | flux_t(k) = w_comp * ( & |
---|
1503 | 7. * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
1504 | - ( w(k+2,j,i) + w(k-1,j,i) ) ) * adv_mom_3 |
---|
1505 | diss_t(k) = - abs(w_comp) * ( & |
---|
1506 | 3. * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
1507 | - ( w(k+2,j,i) - w(k-1,j,i) ) ) * adv_mom_3 |
---|
1508 | |
---|
1509 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1510 | - ( flux_d + diss_d ) ) * ddzu(k+1) |
---|
1511 | ! |
---|
1512 | !-- WS5 |
---|
1513 | DO k = nzb_w_inner(j,i) + 3, nzt -2 |
---|
1514 | flux_d = flux_t(k-1) |
---|
1515 | diss_d = diss_t(k-1) |
---|
1516 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
1517 | flux_t(k) = w_comp * ( & |
---|
1518 | 37. * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
1519 | - 8. * ( w(k+2,j,i) + w(k-1,j,i) ) & |
---|
1520 | + ( w(k+3,j,i) + w(k-2,j,i) ) ) * adv_mom_5 |
---|
1521 | diss_t(k) = - abs(w_comp) * ( & |
---|
1522 | 10. * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
1523 | - 5. * ( w(k+2,j,i) - w(k-1,j,i) ) & |
---|
1524 | + ( w(k+3,j,i) - w(k-2,j,i) ) ) * adv_mom_5 |
---|
1525 | |
---|
1526 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1527 | - ( flux_d + diss_d ) ) * ddzu(k+1) |
---|
1528 | ENDDO |
---|
1529 | !-- WS3 as an intermediate step |
---|
1530 | k = nzt - 1 |
---|
1531 | flux_d = flux_t(k-1) |
---|
1532 | diss_d = diss_t(k-1) |
---|
1533 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
1534 | flux_t(k) = w_comp * ( & |
---|
1535 | 7. * ( w(k+1,j,i) + w(k,j,i) ) & |
---|
1536 | - ( w(k+2,j,i) + w(k-1,j,i) ) ) *adv_mom_3 |
---|
1537 | diss_t(k) = - abs(w_comp) * ( & |
---|
1538 | 3. * ( w(k+1,j,i) - w(k,j,i) ) & |
---|
1539 | - ( w(k+2,j,i) - w(k-1,j,i) ) ) * adv_mom_3 |
---|
1540 | |
---|
1541 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1542 | - ( flux_d + diss_d ) ) * ddzu(k+1) |
---|
1543 | ! |
---|
1544 | !-- 2nd order scheme |
---|
1545 | k = nzt |
---|
1546 | flux_d = flux_t(k-1) |
---|
1547 | diss_d = diss_t(k-1) |
---|
1548 | w_comp = w(k+1,j,i) + w(k,j,i) |
---|
1549 | flux_t(k) = w_comp * ( w(k+1,j,i) + w(k,j,i) ) * 0.25 |
---|
1550 | diss_t(k) = diss_2nd( w(k+1,j,i), w(k+1,j,i), w(k,j,i), w(k-1,j,i), & |
---|
1551 | w(k-2,j,i), w_comp, 0.25, ddzu(k+1) ) |
---|
1552 | |
---|
1553 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1554 | - ( flux_d + diss_d ) ) * ddzu(k+1) |
---|
1555 | |
---|
1556 | DO k = nzb_w_inner(j,i), nzt |
---|
1557 | sums_ws2_ws_l(k,:) = sums_ws2_ws_l(k,:) & |
---|
1558 | + ( flux_t(k) + diss_t(k) ) & |
---|
1559 | * weight_substep(intermediate_timestep_count) * rmask(j,i,:) |
---|
1560 | ENDDO |
---|
1561 | |
---|
1562 | END SUBROUTINE advec_w_ws_ij |
---|
1563 | |
---|
1564 | |
---|
1565 | ! |
---|
1566 | ! Scalar advection - Call for all grid points |
---|
1567 | !------------------------------------------------------------------------------! |
---|
1568 | SUBROUTINE advec_s_ws( sk, sk_char ) |
---|
1569 | |
---|
1570 | USE arrays_3d |
---|
1571 | USE constants |
---|
1572 | USE control_parameters |
---|
1573 | USE grid_variables |
---|
1574 | USE indices |
---|
1575 | USE statistics |
---|
1576 | |
---|
1577 | IMPLICIT NONE |
---|
1578 | |
---|
1579 | INTEGER :: i, j, k |
---|
1580 | |
---|
1581 | REAL, DIMENSION(:,:,:), POINTER :: sk |
---|
1582 | REAL :: flux_d, diss_d, u_comp, v_comp |
---|
1583 | REAL, DIMENSION(nzb:nzt+1) :: flux_r, diss_r, flux_n, diss_n |
---|
1584 | REAL, DIMENSION(nzb+1:nzt) :: swap_flux_y_local, swap_diss_y_local, & |
---|
1585 | flux_t, diss_t |
---|
1586 | REAL, DIMENSION(nzb+1:nzt,nys:nyn) :: swap_flux_x_local, & |
---|
1587 | swap_diss_x_local |
---|
1588 | CHARACTER (LEN = *), INTENT(IN) :: sk_char |
---|
1589 | |
---|
1590 | ! |
---|
1591 | !-- Compute the fluxes for the whole left boundary of the processor domain. |
---|
1592 | i = nxl |
---|
1593 | DO j = nys, nyn |
---|
1594 | IF ( boundary_flags(j,i) == 6 ) THEN |
---|
1595 | |
---|
1596 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
1597 | u_comp = u(k,j,i) - u_gtrans |
---|
1598 | swap_flux_x_local(k,j) = u_comp * ( & |
---|
1599 | sk(k,j,i) + sk(k,j,i-1)) * 0.5 |
---|
1600 | swap_diss_x_local(k,j) = diss_2nd( sk(k,j,i+2), sk(k,j,i+1), & |
---|
1601 | sk(k,j,i), sk(k,j,i-1), & |
---|
1602 | sk(k,j,i-1), u_comp, & |
---|
1603 | 0.5, ddx ) |
---|
1604 | ENDDO |
---|
1605 | |
---|
1606 | ELSE |
---|
1607 | |
---|
1608 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
1609 | u_comp = u(k,j,i) - u_gtrans |
---|
1610 | swap_flux_x_local(k,j) = u_comp*( & |
---|
1611 | 37. * (sk(k,j,i)+sk(k,j,i-1) ) & |
---|
1612 | -8. * ( sk(k,j,i+1) + sk(k,j,i-2) ) & |
---|
1613 | + ( sk(k,j,i+2) + sk(k,j,i-3) ) )& |
---|
1614 | * adv_sca_5 |
---|
1615 | swap_diss_x_local(k,j) = - abs(u_comp) * ( & |
---|
1616 | 10. * (sk(k,j,i) - sk(k,j,i-1) ) & |
---|
1617 | -5. * ( sk(k,j,i+1) - sk(k,j,i-2) ) & |
---|
1618 | + ( sk(k,j,i+2) - sk(k,j,i-3) ) )& |
---|
1619 | * adv_sca_5 |
---|
1620 | ENDDO |
---|
1621 | ENDIF |
---|
1622 | ENDDO |
---|
1623 | ! |
---|
1624 | !-- The following loop computes the horizontal fluxes for the interior of the |
---|
1625 | !-- processor domain plus south boundary points. Furthermore tendency terms |
---|
1626 | !-- are computed. |
---|
1627 | DO i = nxl, nxr |
---|
1628 | j = nys |
---|
1629 | IF ( boundary_flags(j,i) == 8 ) THEN |
---|
1630 | |
---|
1631 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
1632 | v_comp = v(k,j,i) - v_gtrans |
---|
1633 | swap_flux_y_local(k) = v_comp * & |
---|
1634 | ( sk(k,j,i) + sk(k,j-1,i) ) * 0.5 |
---|
1635 | swap_diss_y_local(k) = diss_2nd( sk(k,j+2,i), sk(k,j+1,i), & |
---|
1636 | sk(k,j,i), sk(k,j-1,i), & |
---|
1637 | sk(k,j-1,i), v_comp, 0.5, ddy) |
---|
1638 | ENDDO |
---|
1639 | |
---|
1640 | ELSE |
---|
1641 | |
---|
1642 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
1643 | v_comp = v(k,j,i) - v_gtrans |
---|
1644 | swap_flux_y_local(k) = v_comp * ( & |
---|
1645 | 37. * ( sk(k,j,i) + sk(k,j-1,i) ) & |
---|
1646 | - 8. * ( sk(k,j+1,i) + sk(k,j-2,i) ) & |
---|
1647 | + ( sk(k,j+2,i) + sk(k,j-3,i) ) ) & |
---|
1648 | * adv_sca_5 |
---|
1649 | swap_diss_y_local(k)= - abs(v_comp) * ( & |
---|
1650 | 10. * ( sk(k,j,i) - sk(k,j-1,i) ) & |
---|
1651 | - 5. * ( sk(k,j+1,i) - sk(k,j-2,i) ) & |
---|
1652 | + ( sk(k,j+2,i)-sk(k,j-3,i) ) ) & |
---|
1653 | * adv_sca_5 |
---|
1654 | ENDDO |
---|
1655 | |
---|
1656 | ENDIF |
---|
1657 | |
---|
1658 | DO j = nys, nyn |
---|
1659 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
1660 | ! |
---|
1661 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
1662 | SELECT CASE ( boundary_flags(j,i) ) |
---|
1663 | |
---|
1664 | CASE ( 1 ) |
---|
1665 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
1666 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1667 | flux_r(k) = u_comp * ( & |
---|
1668 | 7. * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
1669 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) * adv_sca_3 |
---|
1670 | diss_r(k) = - abs(u_comp) * ( & |
---|
1671 | 3. * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
1672 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) * adv_sca_3 |
---|
1673 | ENDDO |
---|
1674 | |
---|
1675 | CASE ( 2 ) |
---|
1676 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
1677 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1678 | flux_r(k) = u_comp * ( sk(k,j,i+1) + sk(k,j,i) ) * 0.5 |
---|
1679 | diss_r(k) = diss_2nd( sk(k,j,i+1), sk(k,j,i+1), & |
---|
1680 | sk(k,j,i), sk(k,j,i-1), & |
---|
1681 | sk(k,j,i-2), u_comp, 0.5, ddx ) |
---|
1682 | ENDDO |
---|
1683 | |
---|
1684 | CASE ( 3 ) |
---|
1685 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
1686 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1687 | flux_n(k) = v_comp * ( & |
---|
1688 | 7. * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
1689 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) * adv_sca_3 |
---|
1690 | diss_n(k) = - abs(v_comp) * ( & |
---|
1691 | 3. * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
1692 | - ( sk(k,j+2,i) - sk(k,j-1,i) ) ) * adv_sca_3 |
---|
1693 | ENDDO |
---|
1694 | |
---|
1695 | CASE ( 4 ) |
---|
1696 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
1697 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1698 | flux_n(k) = v_comp * ( sk(k,j+1,i) + sk(k,j,i) ) * 0.5 |
---|
1699 | diss_n(k) = diss_2nd( sk(k,j+1,i), sk(k,j+1,i), & |
---|
1700 | sk(k,j,i), sk(k,j-1,i), & |
---|
1701 | sk(k,j-2,i), v_comp, 0.5, ddy ) |
---|
1702 | ENDDO |
---|
1703 | |
---|
1704 | CASE ( 5 ) |
---|
1705 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
1706 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1707 | flux_r(k) = u_comp * ( & |
---|
1708 | 7. * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
1709 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) * adv_sca_3 |
---|
1710 | diss_r(k) = - abs(u_comp) * ( & |
---|
1711 | 3. * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
1712 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) * adv_sca_3 |
---|
1713 | ENDDO |
---|
1714 | |
---|
1715 | CASE ( 6 ) |
---|
1716 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
1717 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1718 | flux_r(k) = u_comp * ( & |
---|
1719 | 7. * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
1720 | - ( sk(k,j,i+2) + sk(k,j,i-1) ) ) * adv_sca_3 |
---|
1721 | diss_r(k) = - abs(u_comp) * ( & |
---|
1722 | 3. * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
1723 | - ( sk(k,j,i+2) - sk(k,j,i-1) ) ) * adv_sca_3 |
---|
1724 | ENDDO |
---|
1725 | |
---|
1726 | CASE ( 7 ) |
---|
1727 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
1728 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1729 | flux_n(k) = v_comp * ( & |
---|
1730 | 7. * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
1731 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) * adv_sca_3 |
---|
1732 | diss_n(k) = - abs(v_comp) * ( & |
---|
1733 | 3. * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
1734 | - ( sk(k,j+2,i) - sk(k,j-1,i) ) ) * adv_sca_3 |
---|
1735 | ENDDO |
---|
1736 | |
---|
1737 | CASE ( 8 ) |
---|
1738 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
1739 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1740 | flux_n(k) = v_comp * ( & |
---|
1741 | 7. * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
1742 | - ( sk(k,j+2,i) + sk(k,j-1,i) ) ) * adv_sca_3 |
---|
1743 | diss_n(k) = - abs(v_comp) * ( & |
---|
1744 | 3. * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
1745 | - ( sk(k,j+2,i) - sk(k,j-1,i) ) ) * adv_sca_3 |
---|
1746 | ENDDO |
---|
1747 | |
---|
1748 | CASE DEFAULT |
---|
1749 | |
---|
1750 | END SELECT |
---|
1751 | |
---|
1752 | IF (boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 & |
---|
1753 | .OR. boundary_flags(j,i) == 5 .OR. boundary_flags(j,i) == 6) THEN |
---|
1754 | |
---|
1755 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
1756 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1757 | flux_n(k) = v_comp * ( & |
---|
1758 | 37. * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
1759 | - 8. * (sk(k,j+2,i) + sk(k,j-1,i) ) & |
---|
1760 | + ( sk(k,j+3,i) + sk(k,j-2,i) ) ) & |
---|
1761 | * adv_sca_5 |
---|
1762 | diss_n(k) = - abs(v_comp) * ( & |
---|
1763 | 10. * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
1764 | - 5. * ( sk(k,j+2,i) - sk(k,j-1,i) ) & |
---|
1765 | + ( sk(k,j+3,i) - sk(k,j-2,i) ) ) & |
---|
1766 | * adv_sca_5 |
---|
1767 | ENDDO |
---|
1768 | |
---|
1769 | ELSE |
---|
1770 | |
---|
1771 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
1772 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1773 | flux_r(k) = u_comp * ( & |
---|
1774 | 37. * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
1775 | - 8. * ( sk(k,j,i+2) + sk(k,j,i-1) ) & |
---|
1776 | + ( sk(k,j,i+3) + sk(k,j,i-2) ) ) & |
---|
1777 | * adv_sca_5 |
---|
1778 | diss_r(k) = - abs(u_comp) * ( & |
---|
1779 | 10. * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
1780 | - 5. * ( sk(k,j,i+2) - sk(k,j,i-1) ) & |
---|
1781 | + ( sk(k,j,i+3) - sk(k,j,i-2) ) ) & |
---|
1782 | * adv_sca_5 |
---|
1783 | ENDDO |
---|
1784 | |
---|
1785 | ENDIF |
---|
1786 | |
---|
1787 | ELSE |
---|
1788 | |
---|
1789 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
1790 | u_comp = u(k,j,i+1) - u_gtrans |
---|
1791 | flux_r(k) = u_comp * ( & |
---|
1792 | 37. * ( sk(k,j,i+1) + sk(k,j,i) ) & |
---|
1793 | - 8. * ( sk(k,j,i+2) + sk(k,j,i-1) ) & |
---|
1794 | + ( sk(k,j,i+3) + sk(k,j,i-2) ) ) & |
---|
1795 | * adv_sca_5 |
---|
1796 | diss_r(k) = - abs(u_comp) * ( & |
---|
1797 | 10. * ( sk(k,j,i+1) - sk(k,j,i) ) & |
---|
1798 | - 5. * ( sk(k,j,i+2) - sk(k,j,i-1) ) & |
---|
1799 | + ( sk(k,j,i+3) - sk(k,j,i-2) ) ) & |
---|
1800 | * adv_sca_5 |
---|
1801 | |
---|
1802 | v_comp = v(k,j+1,i) - v_gtrans |
---|
1803 | flux_n(k) = v_comp * ( & |
---|
1804 | 37. * ( sk(k,j+1,i) + sk(k,j,i) ) & |
---|
1805 | - 8. * ( sk(k,j+2,i) + sk(k,j-1,i) ) & |
---|
1806 | + ( sk(k,j+3,i) + sk(k,j-2,i) ) ) & |
---|
1807 | * adv_sca_5 |
---|
1808 | diss_n(k) = - abs(v_comp) * ( & |
---|
1809 | 10. * ( sk(k,j+1,i) - sk(k,j,i) ) & |
---|
1810 | - 5. * ( sk(k,j+2,i) - sk(k,j-1,i) ) & |
---|
1811 | + ( sk(k,j+3,i) - sk(k,j-2,i) ) ) & |
---|
1812 | * adv_sca_5 |
---|
1813 | ENDDO |
---|
1814 | |
---|
1815 | ENDIF |
---|
1816 | |
---|
1817 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
1818 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
1819 | ( flux_r(k) + diss_r(k) & |
---|
1820 | - ( swap_flux_x_local(k,j) + swap_diss_x_local(k,j) ) ) * ddx & |
---|
1821 | + ( flux_n(k) + diss_n(k) & |
---|
1822 | - ( swap_flux_y_local(k) + swap_diss_y_local(k) ) ) * ddy) |
---|
1823 | |
---|
1824 | swap_flux_x_local(k,j) = flux_r(k) |
---|
1825 | swap_diss_x_local(k,j) = diss_r(k) |
---|
1826 | swap_flux_y_local(k) = flux_n(k) |
---|
1827 | swap_diss_y_local(k) = diss_n(k) |
---|
1828 | ENDDO |
---|
1829 | ENDDO |
---|
1830 | ENDDO |
---|
1831 | |
---|
1832 | ! |
---|
1833 | !-- Vertical advection, degradation of order near surface and top. |
---|
1834 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
1835 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
1836 | DO i = nxl, nxr |
---|
1837 | DO j = nys, nyn |
---|
1838 | ! |
---|
1839 | !-- 2nd order scheme |
---|
1840 | k=nzb_s_inner(j,i) + 1 |
---|
1841 | ! |
---|
1842 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to static |
---|
1843 | !-- reasons the top flux at the surface should be 0. |
---|
1844 | flux_t(nzb_s_inner(j,i)) = 0. |
---|
1845 | diss_t(nzb_s_inner(j,i)) = 0. |
---|
1846 | flux_d = flux_t(k-1) |
---|
1847 | diss_d = diss_t(k-1) |
---|
1848 | flux_t(k) = w(k,j,i) * (sk(k+1,j,i) + sk(k,j,i) ) *0.5 |
---|
1849 | diss_t(k) = diss_2nd( sk(k+2,j,i), sk(k+1,j,i), sk(k,j,i), & |
---|
1850 | sk(k,j,i), sk(k,j,i), w(k,j,i), & |
---|
1851 | 0.5, ddzw(k) ) |
---|
1852 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1853 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
1854 | ! |
---|
1855 | !-- WS3 as an intermediate step |
---|
1856 | k = nzb_s_inner(j,i) + 2 |
---|
1857 | flux_d = flux_t(k-1) |
---|
1858 | diss_d = diss_t(k-1) |
---|
1859 | flux_t(k) = w(k,j,i) * ( & |
---|
1860 | 7. * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
1861 | - ( sk(k+2,j,i) + sk(k-1,j,i) ) ) * adv_sca_3 |
---|
1862 | diss_t(k) = - abs(w(k,j,i)) * ( & |
---|
1863 | 3. * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
1864 | - ( sk(k+2,j,i) - sk(k-1,j,i) ) ) * adv_sca_3 |
---|
1865 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1866 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
1867 | ! |
---|
1868 | !-- WS5 |
---|
1869 | DO k = nzb_s_inner(j,i) + 3, nzt - 2 |
---|
1870 | flux_d = flux_t(k-1) |
---|
1871 | diss_d = diss_t(k-1) |
---|
1872 | flux_t(k) = w(k,j,i) * ( & |
---|
1873 | 37. * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
1874 | - 8. * ( sk(k+2,j,i) + sk(k-1,j,i) ) & |
---|
1875 | + ( sk(k+3,j,i) + sk(k-2,j,i) ) ) * adv_sca_5 |
---|
1876 | diss_t(k) = - abs(w(k,j,i)) * ( & |
---|
1877 | 10. * ( sk(k+1,j,i) -sk(k,j,i) ) & |
---|
1878 | - 5. * ( sk(k+2,j,i) - sk(k-1,j,i) ) & |
---|
1879 | + ( sk(k+3,j,i) - sk(k-2,j,i) ) ) * adv_sca_5 |
---|
1880 | |
---|
1881 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1882 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
1883 | ENDDO |
---|
1884 | ! |
---|
1885 | !-- WS3 as an intermediate step |
---|
1886 | k = nzt - 1 |
---|
1887 | flux_d = flux_t(k-1) |
---|
1888 | diss_d = diss_t(k-1) |
---|
1889 | flux_t(k) = w(k,j,i) * ( & |
---|
1890 | 7. * ( sk(k+1,j,i) + sk(k,j,i) ) & |
---|
1891 | - ( sk(k+2,j,i) + sk(k-1,j,i) ) ) * adv_sca_3 |
---|
1892 | diss_t(k) = - abs(w(k,j,i)) * ( & |
---|
1893 | 3. * ( sk(k+1,j,i) - sk(k,j,i) ) & |
---|
1894 | - ( sk(k+2,j,i) - sk(k-1,j,i) ) ) * adv_sca_3 |
---|
1895 | |
---|
1896 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1897 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
1898 | ! |
---|
1899 | !-- 2nd order scheme |
---|
1900 | k = nzt |
---|
1901 | flux_d = flux_t(k-1) |
---|
1902 | diss_d = diss_t(k-1) |
---|
1903 | flux_t(k) = w(k,j,i) * ( sk(k+1,j,i) + sk(k,j,i) ) * 0.5 |
---|
1904 | diss_t(k) = diss_2nd( sk(k+1,j,i), sk(k+1,j,i), sk(k,j,i), & |
---|
1905 | sk(k-1,j,i), sk(k-2,j,i), w(k,j,i), & |
---|
1906 | 0.5, ddzw(k) ) |
---|
1907 | |
---|
1908 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
1909 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
1910 | ! |
---|
1911 | !-- evaluation of statistics |
---|
1912 | SELECT CASE ( sk_char ) |
---|
1913 | |
---|
1914 | CASE ( 'pt' ) |
---|
1915 | DO k = nzb_s_inner(j,i), nzt |
---|
1916 | sums_wspts_ws_l(k,:) = sums_wspts_ws_l(k,:) & |
---|
1917 | + ( flux_t(k) + diss_t(k) ) & |
---|
1918 | * weight_substep(intermediate_timestep_count) & |
---|
1919 | * rmask(j,i,:) |
---|
1920 | ENDDO |
---|
1921 | CASE ( 'sa' ) |
---|
1922 | DO k = nzb_s_inner(j,i), nzt |
---|
1923 | sums_wssas_ws_l(k,:) = sums_wssas_ws_l(k,:) & |
---|
1924 | + ( flux_t(k) + diss_t(k) ) & |
---|
1925 | * weight_substep(intermediate_timestep_count) & |
---|
1926 | * rmask(j,i,:) |
---|
1927 | ENDDO |
---|
1928 | CASE ( 'q' ) |
---|
1929 | DO k = nzb_s_inner(j,i), nzt |
---|
1930 | sums_wsqs_ws_l(k,:) = sums_wsqs_ws_l(k,:) & |
---|
1931 | + ( flux_t(k) + diss_t(k) ) & |
---|
1932 | * weight_substep(intermediate_timestep_count) & |
---|
1933 | * rmask(j,i,:) |
---|
1934 | ENDDO |
---|
1935 | |
---|
1936 | END SELECT |
---|
1937 | ENDDO |
---|
1938 | ENDDO |
---|
1939 | |
---|
1940 | |
---|
1941 | END SUBROUTINE advec_s_ws |
---|
1942 | |
---|
1943 | |
---|
1944 | ! |
---|
1945 | ! Advection of u - Call for all grid points |
---|
1946 | !------------------------------------------------------------------------------! |
---|
1947 | SUBROUTINE advec_u_ws |
---|
1948 | |
---|
1949 | USE arrays_3d |
---|
1950 | USE constants |
---|
1951 | USE control_parameters |
---|
1952 | USE grid_variables |
---|
1953 | USE indices |
---|
1954 | USE statistics |
---|
1955 | |
---|
1956 | IMPLICIT NONE |
---|
1957 | |
---|
1958 | INTEGER :: i, j, k |
---|
1959 | REAL :: gu, gv, flux_d, diss_d, v_comp, w_comp |
---|
1960 | REAL, DIMENSION(nzb+1:nzt) :: swap_flux_y_local_u, swap_diss_y_local_u |
---|
1961 | REAL, DIMENSION(nzb+1:nzt,nys:nyn) :: swap_flux_x_local_u, & |
---|
1962 | swap_diss_x_local_u |
---|
1963 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_r, diss_r, flux_n, & |
---|
1964 | diss_n, u_comp |
---|
1965 | |
---|
1966 | gu = 2.0 * u_gtrans |
---|
1967 | gv = 2.0 * v_gtrans |
---|
1968 | |
---|
1969 | ! |
---|
1970 | !-- Compute the fluxes for the whole left boundary of the processor domain. |
---|
1971 | i = nxlu |
---|
1972 | DO j = nys, nyn |
---|
1973 | IF( boundary_flags(j,i) == 5 ) THEN |
---|
1974 | |
---|
1975 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
1976 | u_comp(k) = u(k,j,i) + u(k,j,i-1) - gu |
---|
1977 | swap_flux_x_local_u(k,j) = u_comp(k) * & |
---|
1978 | ( u(k,j,i) + u(k,j,i-1) ) * 0.25 |
---|
1979 | swap_diss_x_local_u(k,j) = diss_2nd( u(k,j,i+2), u(k,j,i+1), & |
---|
1980 | u(k,j,i), u(k,j,i-1), & |
---|
1981 | u(k,j,i-1), u_comp(k), & |
---|
1982 | 0.25, ddx ) |
---|
1983 | ENDDO |
---|
1984 | |
---|
1985 | ELSE |
---|
1986 | |
---|
1987 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
1988 | u_comp(k) = u(k,j,i) + u(k,j,i-1) - gu |
---|
1989 | swap_flux_x_local_u(k,j) = u_comp(k) * ( & |
---|
1990 | 37. * ( u(k,j,i) + u(k,j,i-1) ) & |
---|
1991 | - 8. * ( u(k,j,i+1) + u(k,j,i-2) ) & |
---|
1992 | + (u(k,j,i+2)+u(k,j,i-3) ) ) & |
---|
1993 | * adv_mom_5 |
---|
1994 | swap_diss_x_local_u(k,j) = - abs(u_comp(k)) * ( & |
---|
1995 | 10. * ( u(k,j,i) - u(k,j,i-1) ) & |
---|
1996 | - 5. * ( u(k,j,i+1) - u(k,j,i-2) ) & |
---|
1997 | + ( u(k,j,i+2) - u(k,j,i-3) ) ) & |
---|
1998 | * adv_mom_5 |
---|
1999 | ENDDO |
---|
2000 | |
---|
2001 | ENDIF |
---|
2002 | |
---|
2003 | ENDDO |
---|
2004 | |
---|
2005 | DO i = nxlu, nxr |
---|
2006 | ! |
---|
2007 | !-- The following loop computes the fluxes for the south boundary points |
---|
2008 | j = nys |
---|
2009 | IF ( boundary_flags(j,i) == 8 ) THEN |
---|
2010 | ! |
---|
2011 | !-- Compute southside fluxes for the south boundary of PE domain |
---|
2012 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
2013 | v_comp = v(k,j,i) + v(k,j,i-1) - gv |
---|
2014 | swap_flux_y_local_u(k) = v_comp * & |
---|
2015 | ( u(k,j,i) + u(k,j-1,i) ) * 0.25 |
---|
2016 | swap_diss_y_local_u(k) = diss_2nd( u(k,j+2,i), u(k,j+1,i), & |
---|
2017 | u(k,j,i), u(k,j-1,i), & |
---|
2018 | u(k,j-1,i), v_comp, & |
---|
2019 | 0.25, ddy ) |
---|
2020 | ENDDO |
---|
2021 | |
---|
2022 | ELSE |
---|
2023 | |
---|
2024 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
2025 | v_comp = v(k,j,i) + v(k,j,i-1) - gv |
---|
2026 | swap_flux_y_local_u(k) = v_comp * ( & |
---|
2027 | 37. * ( u(k,j,i) + u(k,j-1,i) ) & |
---|
2028 | - 8. * ( u(k,j+1,i) + u(k,j-2,i) ) & |
---|
2029 | + ( u(k,j+2,i) + u(k,j-3,i) ) ) & |
---|
2030 | * adv_mom_5 |
---|
2031 | swap_diss_y_local_u(k) = - abs(v_comp) * ( & |
---|
2032 | 10. * ( u(k,j,i) - u(k,j-1,i) ) & |
---|
2033 | - 5. * ( u(k,j+1,i) - u(k,j-2,i) ) & |
---|
2034 | + ( u(k,j+2,i) - u(k,j-3,i) ) ) & |
---|
2035 | * adv_mom_5 |
---|
2036 | ENDDO |
---|
2037 | |
---|
2038 | ENDIF |
---|
2039 | ! |
---|
2040 | !-- Computation of interior fluxes and tendency terms |
---|
2041 | DO j = nys, nyn |
---|
2042 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
2043 | ! |
---|
2044 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
2045 | SELECT CASE ( boundary_flags(j,i) ) |
---|
2046 | |
---|
2047 | CASE ( 1 ) |
---|
2048 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
2049 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
2050 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
2051 | 7. * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
2052 | - ( u(k,j,i+2) + u(k,j,i-1) ) ) * adv_mom_3 |
---|
2053 | diss_r(k) = - abs(u_comp(k) - gu) * ( & |
---|
2054 | 3. * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
2055 | - ( u(k,j,i+2) - u(k,j,i-1) ) ) * adv_mom_3 |
---|
2056 | ENDDO |
---|
2057 | |
---|
2058 | CASE ( 2 ) |
---|
2059 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
2060 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
2061 | flux_r(k) = ( u_comp(k) - gu ) * & |
---|
2062 | ( u(k,j,i+1) + u(k,j,i) ) * 0.25 |
---|
2063 | diss_r(k) = diss_2nd( u(k,j,i+1), u(k,j,i+1), & |
---|
2064 | u(k,j,i), u(k,j,i-1), & |
---|
2065 | u(k,j,i-2), u_comp(k) ,0.25 ,ddx) |
---|
2066 | ENDDO |
---|
2067 | |
---|
2068 | CASE ( 3 ) |
---|
2069 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
2070 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2071 | flux_n(k) = v_comp * ( & |
---|
2072 | 7. * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
2073 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) * adv_mom_3 |
---|
2074 | diss_n(k) = - abs(v_comp) * ( & |
---|
2075 | 3. * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
2076 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) * adv_mom_3 |
---|
2077 | ENDDO |
---|
2078 | |
---|
2079 | CASE ( 4 ) |
---|
2080 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
2081 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2082 | flux_n(k) = v_comp * ( u(k,j+1,i) + u(k,j,i) ) * 0.25 |
---|
2083 | diss_n(k) = diss_2nd( u(k,j+1,i), u(k,j+1,i), & |
---|
2084 | u(k,j,i), u(k,j-1,i), & |
---|
2085 | u(k,j-2,i), v_comp, 0.25, ddy ) |
---|
2086 | ENDDO |
---|
2087 | |
---|
2088 | CASE ( 5 ) |
---|
2089 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
2090 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
2091 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
2092 | 7. * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
2093 | - ( u(k,j,i+2) + u(k,j,i-1) ) ) * adv_mom_3 |
---|
2094 | diss_r(k) = - abs(u_comp(k) - gu) * ( & |
---|
2095 | 3. * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
2096 | - ( u(k,j,i+2) - u(k,j,i-1) ) ) * adv_mom_3 |
---|
2097 | ENDDO |
---|
2098 | |
---|
2099 | CASE ( 7 ) |
---|
2100 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
2101 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2102 | flux_n(k) = v_comp * ( & |
---|
2103 | 7. * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
2104 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) * adv_mom_3 |
---|
2105 | diss_n(k) = - abs(v_comp) * ( & |
---|
2106 | 3. * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
2107 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) * adv_mom_3 |
---|
2108 | ENDDO |
---|
2109 | |
---|
2110 | CASE ( 8 ) |
---|
2111 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
2112 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2113 | flux_n(k) = v_comp * ( & |
---|
2114 | 7. * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
2115 | - ( u(k,j+2,i) + u(k,j-1,i) ) ) * adv_mom_3 |
---|
2116 | diss_n(k) = - abs(v_comp) * ( & |
---|
2117 | 3. * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
2118 | - ( u(k,j+2,i) - u(k,j-1,i) ) ) * adv_mom_3 |
---|
2119 | ENDDO |
---|
2120 | |
---|
2121 | CASE DEFAULT |
---|
2122 | |
---|
2123 | END SELECT |
---|
2124 | ! |
---|
2125 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
2126 | IF (boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 & |
---|
2127 | .OR. boundary_flags(j,i) == 5) THEN |
---|
2128 | |
---|
2129 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
2130 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2131 | flux_n(k) = v_comp * ( & |
---|
2132 | 37. * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
2133 | - 8. * ( u(k,j+2,i) +u(k,j-1,i) ) & |
---|
2134 | + ( u(k,j+3,i) + u(k,j-2,i) ) ) * adv_mom_5 |
---|
2135 | diss_n(k) = - abs(v_comp) * ( & |
---|
2136 | 10. * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
2137 | - 5. * ( u(k,j+2,i) - u(k,j-1,i) ) & |
---|
2138 | + ( u(k,j+3,i) - u(k,j-2,i) ) ) * adv_mom_5 |
---|
2139 | ENDDO |
---|
2140 | |
---|
2141 | ELSE |
---|
2142 | |
---|
2143 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
2144 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
2145 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
2146 | 37. * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
2147 | - 8. * ( u(k,j,i+2) + u(k,j,i-1) ) & |
---|
2148 | + ( u(k,j,i+3) + u(k,j,i-2) ) ) * adv_mom_5 |
---|
2149 | diss_r(k) = - abs(u_comp(k) - gu) * ( & |
---|
2150 | 10. * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
2151 | - 5. * ( u(k,j,i+2) - u(k,j,i-1) ) & |
---|
2152 | + ( u(k,j,i+3) - u(k,j,i-2) ) ) * adv_mom_5 |
---|
2153 | ENDDO |
---|
2154 | |
---|
2155 | ENDIF |
---|
2156 | |
---|
2157 | ELSE |
---|
2158 | |
---|
2159 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
2160 | u_comp(k) = u(k,j,i+1) + u(k,j,i) |
---|
2161 | flux_r(k) = ( u_comp(k) - gu ) * ( & |
---|
2162 | 37. * ( u(k,j,i+1) + u(k,j,i) ) & |
---|
2163 | - 8. * ( u(k,j,i+2) + u(k,j,i-1) ) & |
---|
2164 | + ( u(k,j,i+3) + u(k,j,i-2) ) ) * adv_mom_5 |
---|
2165 | diss_r(k) = - abs(u_comp(k) - gu) * ( & |
---|
2166 | 10. * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
2167 | - 5. * ( u(k,j,i+2) - u(k,j,i-1) ) & |
---|
2168 | + ( u(k,j,i+3) - u(k,j,i-2) ) ) * adv_mom_5 |
---|
2169 | |
---|
2170 | v_comp = v(k,j+1,i) + v(k,j+1,i-1) - gv |
---|
2171 | flux_n(k) = v_comp * ( & |
---|
2172 | 37. * ( u(k,j+1,i) + u(k,j,i) ) & |
---|
2173 | - 8. * ( u(k,j+2,i) + u(k,j-1,i) ) & |
---|
2174 | + ( u(k,j+3,i) + u(k,j-2,i) ) ) * adv_mom_5 |
---|
2175 | diss_n(k) = - abs(v_comp) * ( & |
---|
2176 | 10. * ( u(k,j+1,i) - u(k,j,i) ) & |
---|
2177 | - 5. * ( u(k,j+2,i) - u(k,j-1,i) ) & |
---|
2178 | + ( u(k,j+3,i) - u(k,j-2,i) ) ) * adv_mom_5 |
---|
2179 | |
---|
2180 | ENDDO |
---|
2181 | |
---|
2182 | ENDIF |
---|
2183 | |
---|
2184 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
2185 | |
---|
2186 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
2187 | ( flux_r(k) + diss_r(k) & |
---|
2188 | - ( swap_flux_x_local_u(k,j) + swap_diss_x_local_u(k,j) ) ) * ddx & |
---|
2189 | + ( flux_n(k) + diss_n(k) & |
---|
2190 | - ( swap_flux_y_local_u(k) + swap_diss_y_local_u(k) ) ) * ddy ) |
---|
2191 | |
---|
2192 | swap_flux_x_local_u(k,j) = flux_r(k) |
---|
2193 | swap_diss_x_local_u(k,j) = diss_r(k) |
---|
2194 | swap_flux_y_local_u(k) = flux_n(k) |
---|
2195 | swap_diss_y_local_u(k) = diss_n(k) |
---|
2196 | |
---|
2197 | sums_us2_ws_l(k,:) = sums_us2_ws_l(k,:) & |
---|
2198 | + ( flux_r(k) & |
---|
2199 | * ( u_comp(k) - 2. * hom(k,1,1,:) ) & |
---|
2200 | / ( u_comp(k) - gu + 1.0E-20 ) & |
---|
2201 | + diss_r(k) & |
---|
2202 | * abs(u_comp(k) - 2. * hom(k,1,1,:) ) & |
---|
2203 | / (abs(u_comp(k) - gu) + 1.0E-20) ) & |
---|
2204 | * weight_substep(intermediate_timestep_count) * rmask(j,i,:) |
---|
2205 | ENDDO |
---|
2206 | sums_us2_ws_l(nzb_u_inner(j,i),:) = & |
---|
2207 | sums_us2_ws_l(nzb_u_inner(j,i)+1,:) |
---|
2208 | ENDDO |
---|
2209 | ENDDO |
---|
2210 | |
---|
2211 | ! |
---|
2212 | !-- Vertical advection, degradation of order near surface and top. |
---|
2213 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to reasons of |
---|
2214 | !-- statistical evaluation the top flux at the surface should be 0 |
---|
2215 | DO i = nxlu, nxr |
---|
2216 | DO j = nys, nyn |
---|
2217 | k = nzb_u_inner(j,i) + 1 |
---|
2218 | ! |
---|
2219 | !-- The fluxes flux_d and diss_d at the surface are 0. Due to static |
---|
2220 | !-- reasons the top flux at the surface should be 0. |
---|
2221 | flux_t(nzb_u_inner(j,i)) = 0. |
---|
2222 | diss_t(nzb_u_inner(j,i)) = 0. |
---|
2223 | flux_d = flux_t(k-1) |
---|
2224 | diss_d = diss_t(k-1) |
---|
2225 | ! |
---|
2226 | !-- 2nd order scheme |
---|
2227 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
2228 | flux_t(k) = w_comp * ( u(k+1,j,i) + u(k,j,i) ) * 0.25 |
---|
2229 | diss_t(k) = diss_2nd( u(k+2,j,i), u(k+1,j,i), u(k,j,i), & |
---|
2230 | 0., 0., w_comp, 0.25, ddzw(k) ) |
---|
2231 | |
---|
2232 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2233 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
2234 | ! |
---|
2235 | !-- WS3 as an intermediate step |
---|
2236 | k = nzb_u_inner(j,i) + 2 |
---|
2237 | flux_d = flux_t(k-1) |
---|
2238 | diss_d = diss_t(k-1) |
---|
2239 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
2240 | flux_t(k) = w_comp * ( & |
---|
2241 | 7. * (u(k+1,j,i) + u(k,j,i) ) & |
---|
2242 | - ( u(k+2,j,i) + u(k-1,j,i) ) ) * adv_mom_3 |
---|
2243 | diss_t(k) = - abs(w_comp) * ( & |
---|
2244 | 3. * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
2245 | - ( u(k+2,j,i) - u(k-1,j,i) ) ) * adv_mom_3 |
---|
2246 | |
---|
2247 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2248 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
2249 | ! |
---|
2250 | !WS5 |
---|
2251 | DO k = nzb_u_inner(j,i) + 3, nzt - 3 |
---|
2252 | |
---|
2253 | flux_d = flux_t(k-1) |
---|
2254 | diss_d = diss_t(k-1) |
---|
2255 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
2256 | flux_t(k) = w_comp * ( & |
---|
2257 | 37. * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
2258 | - 8. * ( u(k+2,j,i) + u(k-1,j,i) ) & |
---|
2259 | + ( u(k+3,j,i) + u(k-2,j,i) ) ) * adv_mom_5 |
---|
2260 | diss_t(k) = - abs(w_comp) * ( & |
---|
2261 | 10. * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
2262 | - 5. * ( u(k+2,j,i) - u(k-1,j,i) ) & |
---|
2263 | + ( u(k+3,j,i) - u(k-2,j,i) ) ) * adv_mom_5 |
---|
2264 | |
---|
2265 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2266 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
2267 | |
---|
2268 | ENDDO |
---|
2269 | ! |
---|
2270 | !-- WS3 as an intermediate step |
---|
2271 | DO k = nzt - 2, nzt - 1 |
---|
2272 | flux_d = flux_t(k-1) |
---|
2273 | diss_d = diss_t(k-1) |
---|
2274 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
2275 | flux_t(k) = w_comp * ( & |
---|
2276 | 7. * ( u(k+1,j,i) + u(k,j,i) ) & |
---|
2277 | - ( u(k+2,j,i) + u(k-1,j,i) ) ) * adv_mom_3 |
---|
2278 | diss_t(k) = - abs(w_comp) * ( & |
---|
2279 | 3. * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
2280 | - ( u(k+2,j,i) - u(k-1,j,i) ) ) * adv_mom_3 |
---|
2281 | |
---|
2282 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2283 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
2284 | ENDDO |
---|
2285 | ! |
---|
2286 | !-- 2nd order scheme |
---|
2287 | k = nzt |
---|
2288 | flux_d = flux_t(k-1) |
---|
2289 | diss_d = diss_t(k-1) |
---|
2290 | w_comp = w(k,j,i) + w(k,j,i-1) |
---|
2291 | flux_t(k) = w_comp * ( u(k+1,j,i) + u(k,j,i) ) * 0.25 |
---|
2292 | diss_t(k) = diss_2nd( u(nzt+1,j,i), u(nzt+1,j,i), u(k,j,i), & |
---|
2293 | u(k-1,j,i), u(k-2,j,i), w_comp, & |
---|
2294 | 0.25, ddzw(k)) |
---|
2295 | |
---|
2296 | tend(k,j,i) = tend(k,j,i) - ( flux_t(k) + diss_t(k) & |
---|
2297 | - ( flux_d + diss_d ) ) * ddzw(k) |
---|
2298 | ! |
---|
2299 | !-- at last vertical momentum flux is accumulated |
---|
2300 | DO k = nzb_u_inner(j,i), nzt |
---|
2301 | sums_wsus_ws_l(k,:) = sums_wsus_ws_l(k,:) & |
---|
2302 | + ( flux_t(k) + diss_t(k) ) & |
---|
2303 | * weight_substep(intermediate_timestep_count) & |
---|
2304 | * rmask(j,i,:) |
---|
2305 | ENDDO |
---|
2306 | ENDDO |
---|
2307 | ENDDO |
---|
2308 | |
---|
2309 | |
---|
2310 | END SUBROUTINE advec_u_ws |
---|
2311 | |
---|
2312 | |
---|
2313 | ! |
---|
2314 | ! Advection of v - Call for all grid points |
---|
2315 | !------------------------------------------------------------------------------! |
---|
2316 | SUBROUTINE advec_v_ws |
---|
2317 | |
---|
2318 | USE arrays_3d |
---|
2319 | USE constants |
---|
2320 | USE control_parameters |
---|
2321 | USE grid_variables |
---|
2322 | USE indices |
---|
2323 | USE statistics |
---|
2324 | |
---|
2325 | IMPLICIT NONE |
---|
2326 | |
---|
2327 | |
---|
2328 | INTEGER :: i, j, k |
---|
2329 | REAL :: gu, gv, flux_l, flux_s, flux_d, diss_l, diss_s, diss_d, & |
---|
2330 | u_comp, w_comp |
---|
2331 | REAL, DIMENSION(nzb+1:nzt) :: swap_flux_y_local_v, swap_diss_y_local_v |
---|
2332 | REAL, DIMENSION(nzb+1:nzt,nys:nyn) :: swap_flux_x_local_v, & |
---|
2333 | swap_diss_x_local_v |
---|
2334 | REAL, DIMENSION(nzb:nzt+1) :: flux_t, diss_t, flux_n, diss_n, flux_r, & |
---|
2335 | diss_r, v_comp |
---|
2336 | |
---|
2337 | gu = 2.0 * u_gtrans |
---|
2338 | gv = 2.0 * v_gtrans |
---|
2339 | ! |
---|
2340 | !-- First compute the whole left boundary of the processor domain |
---|
2341 | i = nxl |
---|
2342 | DO j = nysv, nyn |
---|
2343 | |
---|
2344 | IF ( boundary_flags(j,i) == 6 ) THEN |
---|
2345 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
2346 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
2347 | swap_flux_x_local_v(k,j) = u_comp * & |
---|
2348 | ( v(k,j,i) + v(k,j,i-1)) * 0.25 |
---|
2349 | swap_diss_x_local_v(k,j) = diss_2nd( v(k,j,i+2), v(k,j,i+1), & |
---|
2350 | v(k,j,i), v(k,j,i-1), & |
---|
2351 | v(k,j,i-1), u_comp, & |
---|
2352 | 0.25, ddx ) |
---|
2353 | ENDDO |
---|
2354 | |
---|
2355 | ELSE |
---|
2356 | |
---|
2357 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
2358 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
2359 | swap_flux_x_local_v(k,j) = u_comp * ( & |
---|
2360 | 37. * ( v(k,j,i) + v(k,j,i-1) ) & |
---|
2361 | - 8. * ( v(k,j,i+1) + v(k,j,i-2) ) & |
---|
2362 | + ( v(k,j,i+2) + v(k,j,i-3) ) ) & |
---|
2363 | * adv_mom_5 |
---|
2364 | swap_diss_x_local_v(k,j) = - abs(u_comp) * ( & |
---|
2365 | 10. * ( v(k,j,i) - v(k,j,i-1) ) & |
---|
2366 | -5. * ( v(k,j,i+1) - v(k,j,i-2) ) & |
---|
2367 | + ( v(k,j,i+2) - v(k,j,i-3) ) ) & |
---|
2368 | * adv_mom_5 |
---|
2369 | ENDDO |
---|
2370 | |
---|
2371 | ENDIF |
---|
2372 | |
---|
2373 | ENDDO |
---|
2374 | |
---|
2375 | DO i = nxl, nxr |
---|
2376 | j = nysv |
---|
2377 | IF ( boundary_flags(j,i) == 7 ) THEN |
---|
2378 | |
---|
2379 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
2380 | v_comp(k) = v(k,j,i) + v(k,j-1,i) - gv |
---|
2381 | swap_flux_y_local_v(k) = v_comp(k) * & |
---|
2382 | ( v(k,j,i) + v(k,j-1,i) ) * 0.25 |
---|
2383 | swap_diss_y_local_v(k) = diss_2nd( v(k,j+2,i), v(k,j+1,i), & |
---|
2384 | v(k,j,i), v(k,j-1,i), & |
---|
2385 | v(k,j-1,i), v_comp(k), & |
---|
2386 | 0.25, ddy ) |
---|
2387 | ENDDO |
---|
2388 | |
---|
2389 | ELSE |
---|
2390 | |
---|
2391 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
2392 | v_comp(k) = v(k,j,i) + v(k,j-1,i) - gv |
---|
2393 | swap_flux_y_local_v(k) = v_comp(k) * ( & |
---|
2394 | 37. * ( v(k,j,i) + v(k,j-1,i) ) & |
---|
2395 | - 8. * ( v(k,j+1,i) + v(k,j-2,i) ) & |
---|
2396 | + ( v(k,j+2,i) + v(k,j-3,i) ) ) & |
---|
2397 | * adv_mom_5 |
---|
2398 | swap_diss_y_local_v(k) = - abs(v_comp(k)) * ( & |
---|
2399 | 10. * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
2400 | - 5. * ( v(k,j+1,i) - v(k,j-2,i) ) & |
---|
2401 | + ( v(k,j+2,i) - v(k,j-3,i) ) ) & |
---|
2402 | * adv_mom_5 |
---|
2403 | ENDDO |
---|
2404 | |
---|
2405 | ENDIF |
---|
2406 | |
---|
2407 | DO j = nysv, nyn |
---|
2408 | IF ( boundary_flags(j,i) /= 0 ) THEN |
---|
2409 | ! |
---|
2410 | !-- Degrade the order for Dirichlet bc. at the outflow boundary |
---|
2411 | SELECT CASE ( boundary_flags(j,i) ) |
---|
2412 | |
---|
2413 | CASE ( 1 ) |
---|
2414 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
2415 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
2416 | flux_r(k) = u_comp * ( & |
---|
2417 | 7. * (v(k,j,i+1) + v(k,j,i) ) & |
---|
2418 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) * adv_mom_3 |
---|
2419 | diss_r(k) = - abs(u_comp) * ( & |
---|
2420 | 3. * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
2421 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) * adv_mom_3 |
---|
2422 | ENDDO |
---|
2423 | |
---|
2424 | CASE ( 2 ) |
---|
2425 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
2426 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
2427 | flux_r(k) = u_comp * ( v(k,j,i+1) + v(k,j,i) ) * 0.25 |
---|
2428 | diss_r(k) = diss_2nd( v(k,j,i+1), v(k,j,i+1), & |
---|
2429 | v(k,j,i), v(k,j,i-1), & |
---|
2430 | v(k,j,i-2), u_comp, 0.25, ddx ) |
---|
2431 | ENDDO |
---|
2432 | |
---|
2433 | CASE ( 3 ) |
---|
2434 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
2435 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
2436 | flux_n(k) = ( v_comp(k)- gv ) * ( & |
---|
2437 | 7. * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
2438 | - ( v(k,j+2,i) + v(k,j-1,i) ) ) * adv_mom_3 |
---|
2439 | diss_n(k) = - abs(v_comp(k) - gv) * ( & |
---|
2440 | 3. * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
2441 | - ( v(k,j+2,i) - v(k,j-1,i) ) ) * adv_mom_3 |
---|
2442 | ENDDO |
---|
2443 | |
---|
2444 | CASE ( 4 ) |
---|
2445 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
2446 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
2447 | flux_n(k) = ( v_comp(k) - gv ) * & |
---|
2448 | ( v(k,j+1,i) + v(k,j,i) ) * 0.25 |
---|
2449 | diss_n(k) = diss_2nd( v(k,j+1,i), v(k,j+1,i), & |
---|
2450 | v(k,j,i), v(k,j-1,i), & |
---|
2451 | v(k,j-2,i), v_comp(k), 0.25, ddy) |
---|
2452 | ENDDO |
---|
2453 | |
---|
2454 | CASE ( 5 ) |
---|
2455 | DO k = nzb_w_inner(j,i) + 1, nzt |
---|
2456 | u_comp = u(k,j-1,i) + u(k,j,i) - gu |
---|
2457 | flux_r(k) = u_comp * ( & |
---|
2458 | 7. * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
2459 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) * adv_mom_3 |
---|
2460 | diss_r(k) = - abs(u_comp) * ( & |
---|
2461 | 3. * ( w(k,j,i+1) - w(k,j,i) ) & |
---|
2462 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) * adv_mom_3 |
---|
2463 | ENDDO |
---|
2464 | |
---|
2465 | CASE ( 6 ) |
---|
2466 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
2467 | |
---|
2468 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
2469 | flux_r(k) = u_comp * ( & |
---|
2470 | 7. * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
2471 | - ( v(k,j,i+2) + v(k,j,i-1) ) ) * adv_mom_3 |
---|
2472 | diss_r(k) = - abs(u_comp) * ( & |
---|
2473 | 3. * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
2474 | - ( v(k,j,i+2) - v(k,j,i-1) ) ) * adv_mom_3 |
---|
2475 | ENDDO |
---|
2476 | |
---|
2477 | CASE ( 7 ) |
---|
2478 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
2479 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
2480 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
2481 | 7. * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
2482 | - ( v(k,j+2,i) + v(k,j-1,i) ) ) * adv_mom_3 |
---|
2483 | diss_n(k) = - abs(v_comp(k) - gv) * ( & |
---|
2484 | 3. * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
2485 | - ( v(k,j+2,i) - v(k,j-1,i) ) ) * adv_mom_3 |
---|
2486 | ENDDO |
---|
2487 | |
---|
2488 | CASE DEFAULT |
---|
2489 | |
---|
2490 | END SELECT |
---|
2491 | ! |
---|
2492 | !-- Compute the crosswise 5th order fluxes at the outflow |
---|
2493 | IF ( boundary_flags(j,i) == 1 .OR. boundary_flags(j,i) == 2 & |
---|
2494 | .OR. boundary_flags(j,i) == 5 .OR. boundary_flags(j,i) == 6 ) THEN |
---|
2495 | |
---|
2496 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
2497 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
2498 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
2499 | 37. * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
2500 | - 8. * ( v(k,j+2,i) + v(k,j-1,i) ) & |
---|
2501 | + ( v(k,j+3,i) + v(k,j-2,i) ) ) * adv_mom_5 |
---|
2502 | diss_n(k) = - abs(v_comp(k) - gv ) * ( & |
---|
2503 | 10. * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
2504 | - 5. * ( v(k,j+2,i) - v(k,j-1,i) ) & |
---|
2505 | + ( v(k,j+3,i) - v(k,j-2,i) ) ) *adv_mom_5 |
---|
2506 | ENDDO |
---|
2507 | |
---|
2508 | ELSE |
---|
2509 | |
---|
2510 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
2511 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
2512 | flux_r(k) = u_comp * ( & |
---|
2513 | 37. * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
2514 | - 8. * ( v(k,j,i+2) + v(k,j,i-1) ) & |
---|
2515 | + ( v(k,j,i+3) + v(k,j,i-2) ) ) * adv_mom_5 |
---|
2516 | diss_r(k) = - abs(u_comp) * ( & |
---|
2517 | 10. * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
2518 | -5. * ( v(k,j,i+2) - v(k,j,i-1) ) & |
---|
2519 | + ( v(k,j,i+3) - v(k,j,i-2) ) ) * adv_mom_5 |
---|
2520 | ENDDO |
---|
2521 | |
---|
2522 | ENDIF |
---|
2523 | |
---|
2524 | |
---|
2525 | ELSE |
---|
2526 | |
---|
2527 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
2528 | u_comp = u(k,j-1,i+1) + u(k,j,i+1) - gu |
---|
2529 | flux_r(k) = u_comp * ( & |
---|
2530 | 37. * ( v(k,j,i+1) + v(k,j,i) ) & |
---|
2531 | - 8. * ( v(k,j,i+2) + v(k,j,i-1) ) & |
---|
2532 | + ( v(k,j,i+3) + v(k,j,i-2) ) ) * adv_mom_5 |
---|
2533 | diss_r(k) = - abs(u_comp) * ( & |
---|
2534 | 10. * ( v(k,j,i+1) - v(k,j,i) ) & |
---|
2535 | -5. * ( v(k,j,i+2) - v(k,j,i-1) ) & |
---|
2536 | + ( v(k,j,i+3) - v(k,j,i-2) ) ) * adv_mom_5 |
---|
2537 | |
---|
2538 | v_comp(k) = v(k,j+1,i) + v(k,j,i) |
---|
2539 | flux_n(k) = ( v_comp(k) - gv ) * ( & |
---|
2540 | 37. * ( v(k,j+1,i) + v(k,j,i) ) & |
---|
2541 | - 8. * ( v(k,j+2,i) + v(k,j-1,i) ) & |
---|
2542 | + ( v(k,j+3,i) + v(k,j-2,i) ) ) * adv_mom_5 |
---|
2543 | diss_n(k) = - abs(v_comp(k) - gv ) * ( & |
---|
2544 | 10. * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
2545 | - 5. * ( v(k,j+2,i) - v(k,j-1,i) ) & |
---|
2546 | + ( v(k,j+3,i) - v(k,j-2,i) ) ) *adv_mom_5 |
---|
2547 | |
---|
2548 | ENDDO |
---|
2549 | ENDIF |
---|
2550 | |
---|
2551 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
2552 | tend(k,j,i) = tend(k,j,i) - ( & |
---|
2553 | ( flux_r(k) + diss_r(k) & |
---|
2554 | - ( swap_flux_x_local_v(k,j) + swap_diss_x_local_v(k,j) ) ) * ddx & |
---|
2555 | + ( flux_n(k) + diss_n(k) & |
---|
2556 | - ( swap_flux_y_local_v(k) + swap_diss_y_local_v(k) ) ) * ddy ) |
---|
2557 | |
---|
2558 | swap_flux_x_local_v(k,j) = flux_r(k) |
---|
2559 | swap_diss_x_local_v(k,j) = diss_r(k) |
---|
2560 | swap_flux_y_local_v(k) = flux_n(k) |
---|
2561 | swap_diss_y_local_v(k) = diss_n(k) |
---|
2562 | |
---|
2563 | sums_vs2_ws_l(k,:) = sums_vs2_ws_l(k,:) & |
---|
2564 | + (flux_n(k) *( v_comp(k) - 2. * hom(k,1,2,:) ) & |
---|
2565 | / ( v_comp(k) - gv + 1.0E-20) & |
---|
2566 | + diss_n(k) * abs(v_comp(k) - 2. * hom(k,1,2,:) ) & |
---|
2567 | /(abs(v_comp(k) - gv) + 1.0E-20 ) ) & |
---|
2568 | * weight_substep(intermediate_timestep_count) * rmask(j,i,:) |
---|
2569 | ENDDO |
---|
2570 | sums_vs2_ws_l(nzb_v_inner(j,i),:) = & |
---|
2571 | sums_vs2_ws_l(nzb_v_inner(j,i)+1,:) |
---|
2572 | ENDDO |
---|
2573 | ENDDO |
---|
|
---|