[1] | 1 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[247] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1321] | 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: advec_s_bc.f90 1321 2014-03-20 09:40:40Z suehring $ |
---|
| 27 | ! |
---|
| 28 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 29 | ! ONLY-attribute added to USE-statements, |
---|
| 30 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 31 | ! kinds are defined in new module kinds, |
---|
| 32 | ! revision history before 2012 removed, |
---|
| 33 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 34 | ! all variable declaration statements |
---|
[1] | 35 | ! |
---|
[1319] | 36 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 37 | ! module interfaces removed |
---|
| 38 | ! |
---|
[1093] | 39 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 40 | ! unused variables removed |
---|
| 41 | ! |
---|
[1037] | 42 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 43 | ! code put under GPL (PALM 3.9) |
---|
| 44 | ! |
---|
[1011] | 45 | ! 1010 2012-09-20 07:59:54Z raasch |
---|
| 46 | ! cpp switch __nopointer added for pointer free version |
---|
| 47 | ! |
---|
[1] | 48 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
| 49 | ! Initial revision |
---|
| 50 | ! |
---|
| 51 | ! |
---|
| 52 | ! Description: |
---|
| 53 | ! ------------ |
---|
| 54 | ! Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
| 55 | ! Computation in individual steps for each of the three dimensions. |
---|
| 56 | ! Limiting assumptions: |
---|
| 57 | ! So far the scheme has been assuming equidistant grid spacing. As this is not |
---|
| 58 | ! the case in the stretched portion of the z-direction, there dzw(k) is used as |
---|
| 59 | ! a substitute for a constant grid length. This certainly causes incorrect |
---|
| 60 | ! results; however, it is hoped that they are not too apparent for weakly |
---|
| 61 | ! stretched grids. |
---|
| 62 | ! NOTE: This is a provisional, non-optimised version! |
---|
[63] | 63 | !------------------------------------------------------------------------------! |
---|
[1] | 64 | |
---|
[1320] | 65 | USE advection, & |
---|
| 66 | ONLY: aex, bex, dex, eex |
---|
| 67 | |
---|
| 68 | USE arrays_3d, & |
---|
| 69 | ONLY: d, ddzw, dzu, dzw, tend, u, v, w |
---|
| 70 | |
---|
| 71 | USE control_parameters, & |
---|
| 72 | ONLY: dt_3d, bc_pt_t_val, bc_q_t_val, ibc_pt_b, ibc_pt_t, ibc_q_t, & |
---|
| 73 | message_string, pt_slope_offset, sloping_surface, u_gtrans, & |
---|
| 74 | v_gtrans |
---|
| 75 | |
---|
| 76 | USE cpulog, & |
---|
| 77 | ONLY: cpu_log, log_point_s |
---|
| 78 | |
---|
| 79 | USE grid_variables, & |
---|
| 80 | ONLY: ddx, ddy |
---|
| 81 | |
---|
| 82 | USE indices, & |
---|
| 83 | ONLY: nx, nxl, nxr, nyn, nys, nzb, nzt |
---|
| 84 | |
---|
| 85 | USE kinds |
---|
| 86 | |
---|
[1] | 87 | USE pegrid |
---|
| 88 | |
---|
[1320] | 89 | USE statistics, & |
---|
| 90 | ONLY: rmask, statistic_regions, sums_wsts_bc_l |
---|
| 91 | |
---|
| 92 | |
---|
[1] | 93 | IMPLICIT NONE |
---|
| 94 | |
---|
[1320] | 95 | CHARACTER (LEN=*) :: sk_char !: |
---|
[1] | 96 | |
---|
[1320] | 97 | INTEGER(iwp) :: i !: |
---|
| 98 | INTEGER(iwp) :: ix !: |
---|
| 99 | INTEGER(iwp) :: j !: |
---|
| 100 | INTEGER(iwp) :: k !: |
---|
| 101 | INTEGER(iwp) :: ngp !: |
---|
| 102 | INTEGER(iwp) :: sr !: |
---|
| 103 | INTEGER(iwp) :: type_xz_2 !: |
---|
[1] | 104 | |
---|
[1320] | 105 | REAL(wp) :: cim !: |
---|
| 106 | REAL(wp) :: cimf !: |
---|
| 107 | REAL(wp) :: cip !: |
---|
| 108 | REAL(wp) :: cipf !: |
---|
| 109 | REAL(wp) :: d_new !: |
---|
| 110 | REAL(wp) :: denomi !: denominator |
---|
| 111 | REAL(wp) :: fminus !: |
---|
| 112 | REAL(wp) :: fplus !: |
---|
| 113 | REAL(wp) :: f2 !: |
---|
| 114 | REAL(wp) :: f4 !: |
---|
| 115 | REAL(wp) :: f8 !: |
---|
| 116 | REAL(wp) :: f12 !: |
---|
| 117 | REAL(wp) :: f24 !: |
---|
| 118 | REAL(wp) :: f48 !: |
---|
| 119 | REAL(wp) :: f1920 !: |
---|
| 120 | REAL(wp) :: im !: |
---|
| 121 | REAL(wp) :: ip !: |
---|
| 122 | REAL(wp) :: m2 !: |
---|
| 123 | REAL(wp) :: m3 !: |
---|
| 124 | REAL(wp) :: numera !: numerator |
---|
| 125 | REAL(wp) :: snenn !: |
---|
| 126 | REAL(wp) :: sterm !: |
---|
| 127 | REAL(wp) :: tendcy !: |
---|
| 128 | REAL(wp) :: t1 !: |
---|
| 129 | REAL(wp) :: t2 !: |
---|
| 130 | |
---|
| 131 | REAL(wp) :: fmax(2) !: |
---|
| 132 | REAL(wp) :: fmax_l(2) !: |
---|
| 133 | |
---|
[1010] | 134 | #if defined( __nopointer ) |
---|
[1320] | 135 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: sk !: |
---|
[1010] | 136 | #else |
---|
[1320] | 137 | REAL(wp), DIMENSION(:,:,:), POINTER :: sk |
---|
[1010] | 138 | #endif |
---|
[1] | 139 | |
---|
[1320] | 140 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a0 !: |
---|
| 141 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a1 !: |
---|
| 142 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a12 !: |
---|
| 143 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a2 !: |
---|
| 144 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a22 !: |
---|
| 145 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: immb !: |
---|
| 146 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: imme !: |
---|
| 147 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impb !: |
---|
| 148 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impe !: |
---|
| 149 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipmb !: |
---|
| 150 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipme !: |
---|
| 151 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippb !: |
---|
| 152 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippe !: |
---|
| 153 | |
---|
| 154 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sk_p !: |
---|
[1] | 155 | |
---|
[63] | 156 | #if defined( __nec ) |
---|
[1320] | 157 | REAL(sp) :: m1n, m1z !Wichtig: Division !: |
---|
| 158 | REAL(sp), DIMENSION(:,:), ALLOCATABLE :: m1, sw !: |
---|
[1] | 159 | #else |
---|
[1320] | 160 | REAL(wp) :: m1n, m1z |
---|
| 161 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: m1, sw |
---|
[1] | 162 | #endif |
---|
| 163 | |
---|
| 164 | |
---|
| 165 | ! |
---|
| 166 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
[63] | 167 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
[1] | 168 | sk_p = 0.0 |
---|
| 169 | |
---|
| 170 | ! |
---|
| 171 | !-- Assign reciprocal values in order to avoid divisions later |
---|
| 172 | f2 = 0.5 |
---|
| 173 | f4 = 0.25 |
---|
| 174 | f8 = 0.125 |
---|
| 175 | f12 = 0.8333333333333333E-01 |
---|
| 176 | f24 = 0.4166666666666666E-01 |
---|
| 177 | f48 = 0.2083333333333333E-01 |
---|
| 178 | f1920 = 0.5208333333333333E-03 |
---|
| 179 | |
---|
| 180 | ! |
---|
| 181 | !-- Advection in x-direction: |
---|
| 182 | |
---|
| 183 | ! |
---|
| 184 | !-- Save the quantity to be advected in a local array |
---|
| 185 | !-- add an enlarged boundary in x-direction |
---|
| 186 | DO i = nxl-1, nxr+1 |
---|
| 187 | DO j = nys, nyn |
---|
[63] | 188 | DO k = nzb, nzt+1 |
---|
[1] | 189 | sk_p(k,j,i) = sk(k,j,i) |
---|
| 190 | ENDDO |
---|
| 191 | ENDDO |
---|
| 192 | ENDDO |
---|
| 193 | #if defined( __parallel ) |
---|
[63] | 194 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
[1] | 195 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
| 196 | ! |
---|
| 197 | !-- Send left boundary, receive right boundary |
---|
[1320] | 198 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
| 199 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
[1] | 200 | comm2d, status, ierr ) |
---|
| 201 | ! |
---|
| 202 | !-- Send right boundary, receive left boundary |
---|
[1320] | 203 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
| 204 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
[1] | 205 | comm2d, status, ierr ) |
---|
| 206 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
| 207 | #else |
---|
| 208 | |
---|
| 209 | ! |
---|
| 210 | !-- Cyclic boundary conditions |
---|
| 211 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
| 212 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
| 213 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
| 214 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
| 215 | #endif |
---|
| 216 | |
---|
| 217 | ! |
---|
| 218 | !-- In case of a sloping surface, the additional gridpoints in x-direction |
---|
| 219 | !-- of the temperature field at the left and right boundary of the total |
---|
| 220 | !-- domain must be adjusted by the temperature difference between this distance |
---|
| 221 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
| 222 | IF ( nxl == 0 ) THEN |
---|
| 223 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
| 224 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
| 225 | ENDIF |
---|
| 226 | IF ( nxr == nx ) THEN |
---|
| 227 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
| 228 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
| 229 | ENDIF |
---|
| 230 | ENDIF |
---|
| 231 | |
---|
| 232 | ! |
---|
| 233 | !-- Initialise control density |
---|
| 234 | d = 0.0 |
---|
| 235 | |
---|
| 236 | ! |
---|
| 237 | !-- Determine maxima of the first and second derivative in x-direction |
---|
| 238 | fmax_l = 0.0 |
---|
| 239 | DO i = nxl, nxr |
---|
| 240 | DO j = nys, nyn |
---|
[63] | 241 | DO k = nzb+1, nzt |
---|
[1320] | 242 | numera = ABS( sk_p(k,j,i+1) - 2.0 * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 243 | denomi = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 244 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 245 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
[1] | 246 | ENDDO |
---|
| 247 | ENDDO |
---|
| 248 | ENDDO |
---|
| 249 | #if defined( __parallel ) |
---|
[622] | 250 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 251 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 252 | #else |
---|
| 253 | fmax = fmax_l |
---|
| 254 | #endif |
---|
| 255 | |
---|
| 256 | fmax = 0.04 * fmax |
---|
| 257 | |
---|
| 258 | ! |
---|
| 259 | !-- Allocate temporary arrays |
---|
[1320] | 260 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 261 | a2(nzb+1:nzt,nxl-1:nxr+1), a12(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 262 | a22(nzb+1:nzt,nxl-1:nxr+1), immb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 263 | imme(nzb+1:nzt,nxl-1:nxr+1), impb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 264 | impe(nzb+1:nzt,nxl-1:nxr+1), ipmb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 265 | ipme(nzb+1:nzt,nxl-1:nxr+1), ippb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 266 | ippe(nzb+1:nzt,nxl-1:nxr+1), m1(nzb+1:nzt,nxl-2:nxr+2), & |
---|
| 267 | sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
[1] | 268 | ) |
---|
| 269 | imme = 0.0; impe = 0.0; ipme = 0.0; ippe = 0.0 |
---|
| 270 | |
---|
| 271 | ! |
---|
| 272 | !-- Initialise point of time measuring of the exponential portion (this would |
---|
| 273 | !-- not work if done locally within the loop) |
---|
| 274 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
| 275 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
| 276 | |
---|
| 277 | ! |
---|
| 278 | !-- Outer loop of all j |
---|
| 279 | DO j = nys, nyn |
---|
| 280 | |
---|
| 281 | ! |
---|
| 282 | !-- Compute polynomial coefficients |
---|
| 283 | DO i = nxl-1, nxr+1 |
---|
[63] | 284 | DO k = nzb+1, nzt |
---|
[1] | 285 | a12(k,i) = 0.5 * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
[1320] | 286 | a22(k,i) = 0.5 * ( sk_p(k,j,i+1) - 2.0 * sk_p(k,j,i) & |
---|
[1] | 287 | + sk_p(k,j,i-1) ) |
---|
[1320] | 288 | a0(k,i) = ( 9.0 * sk_p(k,j,i+2) - 116.0 * sk_p(k,j,i+1) & |
---|
| 289 | + 2134.0 * sk_p(k,j,i) - 116.0 * sk_p(k,j,i-1) & |
---|
[1] | 290 | + 9.0 * sk_p(k,j,i-2) ) * f1920 |
---|
[1320] | 291 | a1(k,i) = ( -5.0 * sk_p(k,j,i+2) + 34.0 * sk_p(k,j,i+1) & |
---|
| 292 | - 34.0 * sk_p(k,j,i-1) + 5.0 * sk_p(k,j,i-2) & |
---|
[1] | 293 | ) * f48 |
---|
[1320] | 294 | a2(k,i) = ( -3.0 * sk_p(k,j,i+2) + 36.0 * sk_p(k,j,i+1) & |
---|
| 295 | - 66.0 * sk_p(k,j,i) + 36.0 * sk_p(k,j,i-1) & |
---|
[1] | 296 | - 3.0 * sk_p(k,j,i-2) ) * f48 |
---|
| 297 | ENDDO |
---|
| 298 | ENDDO |
---|
| 299 | |
---|
| 300 | ! |
---|
| 301 | !-- Fluxes using the Bott scheme |
---|
| 302 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 303 | DO i = nxl, nxr |
---|
[63] | 304 | DO k = nzb+1, nzt |
---|
[1] | 305 | cip = MAX( 0.0, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 306 | cim = -MIN( 0.0, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 307 | cipf = 1.0 - 2.0 * cip |
---|
| 308 | cimf = 1.0 - 2.0 * cim |
---|
[1320] | 309 | ip = a0(k,i) * f2 * ( 1.0 - cipf ) & |
---|
| 310 | + a1(k,i) * f8 * ( 1.0 - cipf*cipf ) & |
---|
[1] | 311 | + a2(k,i) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
[1320] | 312 | im = a0(k,i+1) * f2 * ( 1.0 - cimf ) & |
---|
| 313 | - a1(k,i+1) * f8 * ( 1.0 - cimf*cimf ) & |
---|
[1] | 314 | + a2(k,i+1) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
| 315 | ip = MAX( ip, 0.0 ) |
---|
| 316 | im = MAX( im, 0.0 ) |
---|
| 317 | ippb(k,i) = ip * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
| 318 | impb(k,i) = im * MIN( 1.0, sk_p(k,j,i+1) / (ip+im+1E-15) ) |
---|
| 319 | |
---|
| 320 | cip = MAX( 0.0, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 321 | cim = -MIN( 0.0, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 322 | cipf = 1.0 - 2.0 * cip |
---|
| 323 | cimf = 1.0 - 2.0 * cim |
---|
[1320] | 324 | ip = a0(k,i-1) * f2 * ( 1.0 - cipf ) & |
---|
| 325 | + a1(k,i-1) * f8 * ( 1.0 - cipf*cipf ) & |
---|
[1] | 326 | + a2(k,i-1) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
[1320] | 327 | im = a0(k,i) * f2 * ( 1.0 - cimf ) & |
---|
| 328 | - a1(k,i) * f8 * ( 1.0 - cimf*cimf ) & |
---|
[1] | 329 | + a2(k,i) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
| 330 | ip = MAX( ip, 0.0 ) |
---|
| 331 | im = MAX( im, 0.0 ) |
---|
| 332 | ipmb(k,i) = ip * MIN( 1.0, sk_p(k,j,i-1) / (ip+im+1E-15) ) |
---|
| 333 | immb(k,i) = im * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
| 334 | ENDDO |
---|
| 335 | ENDDO |
---|
| 336 | |
---|
| 337 | ! |
---|
| 338 | !-- Compute monitor function m1 |
---|
| 339 | DO i = nxl-2, nxr+2 |
---|
[63] | 340 | DO k = nzb+1, nzt |
---|
[1] | 341 | m1z = ABS( sk_p(k,j,i+1) - 2.0 * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 342 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 343 | IF ( m1n /= 0.0 .AND. m1n >= m1z ) THEN |
---|
| 344 | m1(k,i) = m1z / m1n |
---|
| 345 | IF ( m1(k,i) /= 2.0 .AND. m1n < fmax(2) ) m1(k,i) = 0.0 |
---|
| 346 | ELSEIF ( m1n < m1z ) THEN |
---|
| 347 | m1(k,i) = -1.0 |
---|
| 348 | ELSE |
---|
| 349 | m1(k,i) = 0.0 |
---|
| 350 | ENDIF |
---|
| 351 | ENDDO |
---|
| 352 | ENDDO |
---|
| 353 | |
---|
| 354 | ! |
---|
| 355 | !-- Compute switch sw |
---|
| 356 | sw = 0.0 |
---|
| 357 | DO i = nxl-1, nxr+1 |
---|
[63] | 358 | DO k = nzb+1, nzt |
---|
[1320] | 359 | m2 = 2.0 * ABS( a1(k,i) - a12(k,i) ) / & |
---|
[1] | 360 | MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35 ) |
---|
| 361 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0 |
---|
| 362 | |
---|
[1320] | 363 | m3 = 2.0 * ABS( a2(k,i) - a22(k,i) ) / & |
---|
[1] | 364 | MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35 ) |
---|
| 365 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0 |
---|
| 366 | |
---|
| 367 | t1 = 0.35 |
---|
| 368 | t2 = 0.35 |
---|
| 369 | IF ( m1(k,i) == -1.0 ) t2 = 0.12 |
---|
| 370 | |
---|
| 371 | !-- *VOCL STMT,IF(10) |
---|
[1320] | 372 | IF ( m1(k,i-1) == 1.0 .OR. m1(k,i) == 1.0 .OR. m1(k,i+1) == 1.0 & |
---|
| 373 | .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 374 | ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0 .AND. & |
---|
| 375 | m1(k,i) /= -1.0 .AND. m1(k,i+1) /= -1.0 ) & |
---|
[1] | 376 | ) sw(k,i) = 1.0 |
---|
| 377 | ENDDO |
---|
| 378 | ENDDO |
---|
| 379 | |
---|
| 380 | ! |
---|
| 381 | !-- Fluxes using the exponential scheme |
---|
| 382 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 383 | DO i = nxl, nxr |
---|
[63] | 384 | DO k = nzb+1, nzt |
---|
[1] | 385 | |
---|
| 386 | !-- *VOCL STMT,IF(10) |
---|
| 387 | IF ( sw(k,i) == 1.0 ) THEN |
---|
| 388 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
| 389 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 390 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
| 391 | sterm = MIN( sterm, 0.9999 ) |
---|
| 392 | sterm = MAX( sterm, 0.0001 ) |
---|
| 393 | |
---|
| 394 | ix = INT( sterm * 1000 ) + 1 |
---|
| 395 | |
---|
| 396 | cip = MAX( 0.0, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 397 | |
---|
| 398 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
| 399 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 400 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
| 401 | ) & |
---|
| 402 | ) |
---|
| 403 | IF ( sterm == 0.0001 ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 404 | IF ( sterm == 0.9999 ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 405 | |
---|
| 406 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
| 407 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 408 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
| 409 | sterm = MIN( sterm, 0.9999 ) |
---|
| 410 | sterm = MAX( sterm, 0.0001 ) |
---|
| 411 | |
---|
| 412 | ix = INT( sterm * 1000 ) + 1 |
---|
| 413 | |
---|
| 414 | cim = -MIN( 0.0, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 415 | |
---|
| 416 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
| 417 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 418 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
| 419 | ) & |
---|
| 420 | ) |
---|
| 421 | IF ( sterm == 0.0001 ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 422 | IF ( sterm == 0.9999 ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 423 | ENDIF |
---|
| 424 | |
---|
| 425 | !-- *VOCL STMT,IF(10) |
---|
| 426 | IF ( sw(k,i+1) == 1.0 ) THEN |
---|
| 427 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
| 428 | IF ( ABS( snenn ) .LT. 1E-9 ) snenn = 1E-9 |
---|
| 429 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
| 430 | sterm = MIN( sterm, 0.9999 ) |
---|
| 431 | sterm = MAX( sterm, 0.0001 ) |
---|
| 432 | |
---|
| 433 | ix = INT( sterm * 1000 ) + 1 |
---|
| 434 | |
---|
| 435 | cim = -MIN( 0.0, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 436 | |
---|
| 437 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
| 438 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 439 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
| 440 | ) & |
---|
| 441 | ) |
---|
| 442 | IF ( sterm == 0.0001 ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 443 | IF ( sterm == 0.9999 ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 444 | ENDIF |
---|
| 445 | |
---|
| 446 | !-- *VOCL STMT,IF(10) |
---|
| 447 | IF ( sw(k,i-1) == 1.0 ) THEN |
---|
| 448 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
| 449 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 450 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
| 451 | sterm = MIN( sterm, 0.9999 ) |
---|
| 452 | sterm = MAX( sterm, 0.0001 ) |
---|
| 453 | |
---|
| 454 | ix = INT( sterm * 1000 ) + 1 |
---|
| 455 | |
---|
| 456 | cip = MAX( 0.0, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 457 | |
---|
| 458 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
| 459 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 460 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
| 461 | ) & |
---|
| 462 | ) |
---|
| 463 | IF ( sterm == 0.0001 ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 464 | IF ( sterm == 0.9999 ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 465 | ENDIF |
---|
| 466 | |
---|
| 467 | ENDDO |
---|
| 468 | ENDDO |
---|
| 469 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
| 470 | |
---|
| 471 | ! |
---|
| 472 | !-- Prognostic equation |
---|
| 473 | DO i = nxl, nxr |
---|
[63] | 474 | DO k = nzb+1, nzt |
---|
[1320] | 475 | fplus = ( 1.0 - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
[1] | 476 | - ( 1.0 - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
[1320] | 477 | fminus = ( 1.0 - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
[1] | 478 | - ( 1.0 - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
[1320] | 479 | tendcy = fplus - fminus |
---|
[1] | 480 | ! |
---|
| 481 | !-- Removed in order to optimize speed |
---|
| 482 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35 ) |
---|
[1320] | 483 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7 ) tendcy = 0.0 |
---|
[1] | 484 | ! |
---|
| 485 | !-- Density correction because of possible remaining divergences |
---|
| 486 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
[1320] | 487 | sk_p(k,j,i) = ( ( 1.0 + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
[1] | 488 | ( 1.0 + d_new ) |
---|
| 489 | d(k,j,i) = d_new |
---|
| 490 | ENDDO |
---|
| 491 | ENDDO |
---|
| 492 | |
---|
| 493 | ENDDO ! End of the advection in x-direction |
---|
| 494 | |
---|
| 495 | ! |
---|
| 496 | !-- Deallocate temporary arrays |
---|
[1320] | 497 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
[1] | 498 | ippb, ippe, m1, sw ) |
---|
| 499 | |
---|
| 500 | |
---|
| 501 | ! |
---|
| 502 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
| 503 | #if defined( __parallel ) |
---|
[63] | 504 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
[1320] | 505 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
[1] | 506 | type_xz_2, ierr ) |
---|
| 507 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
| 508 | ! |
---|
| 509 | !-- Send front boundary, receive rear boundary |
---|
| 510 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
[1320] | 511 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
| 512 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
[1] | 513 | comm2d, status, ierr ) |
---|
| 514 | ! |
---|
| 515 | !-- Send rear boundary, receive front boundary |
---|
[1320] | 516 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
| 517 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
[1] | 518 | comm2d, status, ierr ) |
---|
| 519 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
| 520 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
| 521 | #else |
---|
| 522 | DO i = nxl, nxr |
---|
[63] | 523 | DO k = nzb+1, nzt |
---|
[1] | 524 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
| 525 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
| 526 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
| 527 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
| 528 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
| 529 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
| 530 | ENDDO |
---|
| 531 | ENDDO |
---|
| 532 | #endif |
---|
| 533 | |
---|
| 534 | ! |
---|
| 535 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
| 536 | fmax_l = 0.0 |
---|
| 537 | DO i = nxl, nxr |
---|
| 538 | DO j = nys, nyn |
---|
[63] | 539 | DO k = nzb+1, nzt |
---|
[1320] | 540 | numera = ABS( sk_p(k,j+1,i) - 2.0 * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 541 | denomi = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 542 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 543 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
[1] | 544 | ENDDO |
---|
| 545 | ENDDO |
---|
| 546 | ENDDO |
---|
| 547 | #if defined( __parallel ) |
---|
[622] | 548 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 549 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 550 | #else |
---|
| 551 | fmax = fmax_l |
---|
| 552 | #endif |
---|
| 553 | |
---|
| 554 | fmax = 0.04 * fmax |
---|
| 555 | |
---|
| 556 | ! |
---|
| 557 | !-- Allocate temporary arrays |
---|
[1320] | 558 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 559 | a2(nzb+1:nzt,nys-1:nyn+1), a12(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 560 | a22(nzb+1:nzt,nys-1:nyn+1), immb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 561 | imme(nzb+1:nzt,nys-1:nyn+1), impb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 562 | impe(nzb+1:nzt,nys-1:nyn+1), ipmb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 563 | ipme(nzb+1:nzt,nys-1:nyn+1), ippb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 564 | ippe(nzb+1:nzt,nys-1:nyn+1), m1(nzb+1:nzt,nys-2:nyn+2), & |
---|
| 565 | sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
[1] | 566 | ) |
---|
| 567 | imme = 0.0; impe = 0.0; ipme = 0.0; ippe = 0.0 |
---|
| 568 | |
---|
| 569 | ! |
---|
| 570 | !-- Outer loop of all i |
---|
| 571 | DO i = nxl, nxr |
---|
| 572 | |
---|
| 573 | ! |
---|
| 574 | !-- Compute polynomial coefficients |
---|
| 575 | DO j = nys-1, nyn+1 |
---|
[63] | 576 | DO k = nzb+1, nzt |
---|
[1] | 577 | a12(k,j) = 0.5 * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
[1320] | 578 | a22(k,j) = 0.5 * ( sk_p(k,j+1,i) - 2.0 * sk_p(k,j,i) & |
---|
[1] | 579 | + sk_p(k,j-1,i) ) |
---|
[1320] | 580 | a0(k,j) = ( 9.0 * sk_p(k,j+2,i) - 116.0 * sk_p(k,j+1,i) & |
---|
| 581 | + 2134.0 * sk_p(k,j,i) - 116.0 * sk_p(k,j-1,i) & |
---|
[1] | 582 | + 9.0 * sk_p(k,j-2,i) ) * f1920 |
---|
[1320] | 583 | a1(k,j) = ( -5.0 * sk_p(k,j+2,i) + 34.0 * sk_p(k,j+1,i) & |
---|
| 584 | - 34.0 * sk_p(k,j-1,i) + 5.0 * sk_p(k,j-2,i) & |
---|
[1] | 585 | ) * f48 |
---|
[1320] | 586 | a2(k,j) = ( -3.0 * sk_p(k,j+2,i) + 36.0 * sk_p(k,j+1,i) & |
---|
| 587 | - 66.0 * sk_p(k,j,i) + 36.0 * sk_p(k,j-1,i) & |
---|
[1] | 588 | - 3.0 * sk_p(k,j-2,i) ) * f48 |
---|
| 589 | ENDDO |
---|
| 590 | ENDDO |
---|
| 591 | |
---|
| 592 | ! |
---|
| 593 | !-- Fluxes using the Bott scheme |
---|
| 594 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 595 | DO j = nys, nyn |
---|
[63] | 596 | DO k = nzb+1, nzt |
---|
[1] | 597 | cip = MAX( 0.0, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 598 | cim = -MIN( 0.0, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 599 | cipf = 1.0 - 2.0 * cip |
---|
| 600 | cimf = 1.0 - 2.0 * cim |
---|
[1320] | 601 | ip = a0(k,j) * f2 * ( 1.0 - cipf ) & |
---|
| 602 | + a1(k,j) * f8 * ( 1.0 - cipf*cipf ) & |
---|
[1] | 603 | + a2(k,j) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
[1320] | 604 | im = a0(k,j+1) * f2 * ( 1.0 - cimf ) & |
---|
| 605 | - a1(k,j+1) * f8 * ( 1.0 - cimf*cimf ) & |
---|
[1] | 606 | + a2(k,j+1) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
| 607 | ip = MAX( ip, 0.0 ) |
---|
| 608 | im = MAX( im, 0.0 ) |
---|
| 609 | ippb(k,j) = ip * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
| 610 | impb(k,j) = im * MIN( 1.0, sk_p(k,j+1,i) / (ip+im+1E-15) ) |
---|
| 611 | |
---|
| 612 | cip = MAX( 0.0, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 613 | cim = -MIN( 0.0, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 614 | cipf = 1.0 - 2.0 * cip |
---|
| 615 | cimf = 1.0 - 2.0 * cim |
---|
[1320] | 616 | ip = a0(k,j-1) * f2 * ( 1.0 - cipf ) & |
---|
| 617 | + a1(k,j-1) * f8 * ( 1.0 - cipf*cipf ) & |
---|
[1] | 618 | + a2(k,j-1) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
[1320] | 619 | im = a0(k,j) * f2 * ( 1.0 - cimf ) & |
---|
| 620 | - a1(k,j) * f8 * ( 1.0 - cimf*cimf ) & |
---|
[1] | 621 | + a2(k,j) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
| 622 | ip = MAX( ip, 0.0 ) |
---|
| 623 | im = MAX( im, 0.0 ) |
---|
| 624 | ipmb(k,j) = ip * MIN( 1.0, sk_p(k,j-1,i) / (ip+im+1E-15) ) |
---|
| 625 | immb(k,j) = im * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
| 626 | ENDDO |
---|
| 627 | ENDDO |
---|
| 628 | |
---|
| 629 | ! |
---|
| 630 | !-- Compute monitor function m1 |
---|
| 631 | DO j = nys-2, nyn+2 |
---|
[63] | 632 | DO k = nzb+1, nzt |
---|
[1] | 633 | m1z = ABS( sk_p(k,j+1,i) - 2.0 * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 634 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 635 | IF ( m1n /= 0.0 .AND. m1n >= m1z ) THEN |
---|
| 636 | m1(k,j) = m1z / m1n |
---|
| 637 | IF ( m1(k,j) /= 2.0 .AND. m1n < fmax(2) ) m1(k,j) = 0.0 |
---|
| 638 | ELSEIF ( m1n < m1z ) THEN |
---|
| 639 | m1(k,j) = -1.0 |
---|
| 640 | ELSE |
---|
| 641 | m1(k,j) = 0.0 |
---|
| 642 | ENDIF |
---|
| 643 | ENDDO |
---|
| 644 | ENDDO |
---|
| 645 | |
---|
| 646 | ! |
---|
| 647 | !-- Compute switch sw |
---|
| 648 | sw = 0.0 |
---|
| 649 | DO j = nys-1, nyn+1 |
---|
[63] | 650 | DO k = nzb+1, nzt |
---|
[1320] | 651 | m2 = 2.0 * ABS( a1(k,j) - a12(k,j) ) / & |
---|
[1] | 652 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35 ) |
---|
| 653 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0 |
---|
| 654 | |
---|
[1320] | 655 | m3 = 2.0 * ABS( a2(k,j) - a22(k,j) ) / & |
---|
[1] | 656 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35 ) |
---|
| 657 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0 |
---|
| 658 | |
---|
| 659 | t1 = 0.35 |
---|
| 660 | t2 = 0.35 |
---|
| 661 | IF ( m1(k,j) == -1.0 ) t2 = 0.12 |
---|
| 662 | |
---|
| 663 | !-- *VOCL STMT,IF(10) |
---|
[1320] | 664 | IF ( m1(k,j-1) == 1.0 .OR. m1(k,j) == 1.0 .OR. m1(k,j+1) == 1.0 & |
---|
| 665 | .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 666 | ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0 .AND. & |
---|
| 667 | m1(k,j) /= -1.0 .AND. m1(k,j+1) /= -1.0 ) & |
---|
[1] | 668 | ) sw(k,j) = 1.0 |
---|
| 669 | ENDDO |
---|
| 670 | ENDDO |
---|
| 671 | |
---|
| 672 | ! |
---|
| 673 | !-- Fluxes using exponential scheme |
---|
| 674 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 675 | DO j = nys, nyn |
---|
[63] | 676 | DO k = nzb+1, nzt |
---|
[1] | 677 | |
---|
| 678 | !-- *VOCL STMT,IF(10) |
---|
| 679 | IF ( sw(k,j) == 1.0 ) THEN |
---|
| 680 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
| 681 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 682 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
| 683 | sterm = MIN( sterm, 0.9999 ) |
---|
| 684 | sterm = MAX( sterm, 0.0001 ) |
---|
| 685 | |
---|
| 686 | ix = INT( sterm * 1000 ) + 1 |
---|
| 687 | |
---|
| 688 | cip = MAX( 0.0, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 689 | |
---|
| 690 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
| 691 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 692 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
| 693 | ) & |
---|
| 694 | ) |
---|
| 695 | IF ( sterm == 0.0001 ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 696 | IF ( sterm == 0.9999 ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 697 | |
---|
| 698 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
| 699 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 700 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
| 701 | sterm = MIN( sterm, 0.9999 ) |
---|
| 702 | sterm = MAX( sterm, 0.0001 ) |
---|
| 703 | |
---|
| 704 | ix = INT( sterm * 1000 ) + 1 |
---|
| 705 | |
---|
| 706 | cim = -MIN( 0.0, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 707 | |
---|
| 708 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
| 709 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 710 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
| 711 | ) & |
---|
| 712 | ) |
---|
| 713 | IF ( sterm == 0.0001 ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 714 | IF ( sterm == 0.9999 ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 715 | ENDIF |
---|
| 716 | |
---|
| 717 | !-- *VOCL STMT,IF(10) |
---|
| 718 | IF ( sw(k,j+1) == 1.0 ) THEN |
---|
| 719 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
| 720 | IF ( ABS( snenn ) .LT. 1E-9 ) snenn = 1E-9 |
---|
| 721 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
| 722 | sterm = MIN( sterm, 0.9999 ) |
---|
| 723 | sterm = MAX( sterm, 0.0001 ) |
---|
| 724 | |
---|
| 725 | ix = INT( sterm * 1000 ) + 1 |
---|
| 726 | |
---|
| 727 | cim = -MIN( 0.0, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 728 | |
---|
| 729 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
| 730 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 731 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
| 732 | ) & |
---|
| 733 | ) |
---|
| 734 | IF ( sterm == 0.0001 ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 735 | IF ( sterm == 0.9999 ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 736 | ENDIF |
---|
| 737 | |
---|
| 738 | !-- *VOCL STMT,IF(10) |
---|
| 739 | IF ( sw(k,j-1) == 1.0 ) THEN |
---|
| 740 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
| 741 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 742 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
| 743 | sterm = MIN( sterm, 0.9999 ) |
---|
| 744 | sterm = MAX( sterm, 0.0001 ) |
---|
| 745 | |
---|
| 746 | ix = INT( sterm * 1000 ) + 1 |
---|
| 747 | |
---|
| 748 | cip = MAX( 0.0, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 749 | |
---|
| 750 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
| 751 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 752 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
| 753 | ) & |
---|
| 754 | ) |
---|
| 755 | IF ( sterm == 0.0001 ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 756 | IF ( sterm == 0.9999 ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 757 | ENDIF |
---|
| 758 | |
---|
| 759 | ENDDO |
---|
| 760 | ENDDO |
---|
| 761 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
| 762 | |
---|
| 763 | ! |
---|
| 764 | !-- Prognostic equation |
---|
| 765 | DO j = nys, nyn |
---|
[63] | 766 | DO k = nzb+1, nzt |
---|
[1320] | 767 | fplus = ( 1.0 - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
[1] | 768 | - ( 1.0 - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
[1320] | 769 | fminus = ( 1.0 - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
[1] | 770 | - ( 1.0 - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
[1320] | 771 | tendcy = fplus - fminus |
---|
[1] | 772 | ! |
---|
| 773 | !-- Removed in order to optimise speed |
---|
| 774 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35 ) |
---|
[1320] | 775 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7 ) tendcy = 0.0 |
---|
[1] | 776 | ! |
---|
| 777 | !-- Density correction because of possible remaining divergences |
---|
| 778 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
[1320] | 779 | sk_p(k,j,i) = ( ( 1.0 + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
[1] | 780 | ( 1.0 + d_new ) |
---|
| 781 | d(k,j,i) = d_new |
---|
| 782 | ENDDO |
---|
| 783 | ENDDO |
---|
| 784 | |
---|
| 785 | ENDDO ! End of the advection in y-direction |
---|
| 786 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 787 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
| 788 | |
---|
| 789 | ! |
---|
| 790 | !-- Deallocate temporary arrays |
---|
[1320] | 791 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
[1] | 792 | ippb, ippe, m1, sw ) |
---|
| 793 | |
---|
| 794 | |
---|
| 795 | ! |
---|
| 796 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
| 797 | !-- UP flow_statistics) |
---|
| 798 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0 |
---|
| 799 | |
---|
| 800 | ! |
---|
| 801 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
| 802 | IF ( sk_char == 'pt' ) THEN |
---|
| 803 | |
---|
| 804 | ! |
---|
| 805 | !-- Temperature boundary condition at the bottom boundary |
---|
| 806 | IF ( ibc_pt_b == 0 ) THEN |
---|
| 807 | ! |
---|
| 808 | !-- Dirichlet (fixed surface temperature) |
---|
| 809 | DO i = nxl, nxr |
---|
| 810 | DO j = nys, nyn |
---|
| 811 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 812 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 813 | ENDDO |
---|
| 814 | ENDDO |
---|
| 815 | |
---|
| 816 | ELSE |
---|
| 817 | ! |
---|
| 818 | !-- Neumann (i.e. here zero gradient) |
---|
| 819 | DO i = nxl, nxr |
---|
| 820 | DO j = nys, nyn |
---|
[216] | 821 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[63] | 822 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 823 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 824 | ENDDO |
---|
| 825 | ENDDO |
---|
| 826 | |
---|
| 827 | ENDIF |
---|
| 828 | |
---|
| 829 | ! |
---|
| 830 | !-- Temperature boundary condition at the top boundary |
---|
[63] | 831 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
[1] | 832 | ! |
---|
[63] | 833 | !-- Dirichlet or Neumann (zero gradient) |
---|
[1] | 834 | DO i = nxl, nxr |
---|
| 835 | DO j = nys, nyn |
---|
[63] | 836 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 837 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 838 | ENDDO |
---|
| 839 | ENDDO |
---|
| 840 | |
---|
[63] | 841 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
[1] | 842 | ! |
---|
[63] | 843 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
[1] | 844 | DO i = nxl, nxr |
---|
| 845 | DO j = nys, nyn |
---|
| 846 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
[63] | 847 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
[1] | 848 | ENDDO |
---|
| 849 | ENDDO |
---|
| 850 | |
---|
| 851 | ENDIF |
---|
| 852 | |
---|
[97] | 853 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
[1] | 854 | |
---|
| 855 | ! |
---|
[97] | 856 | !-- Salinity boundary condition at the bottom boundary. |
---|
| 857 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
| 858 | DO i = nxl, nxr |
---|
| 859 | DO j = nys, nyn |
---|
[216] | 860 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[97] | 861 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 862 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 863 | ENDDO |
---|
[97] | 864 | ENDDO |
---|
[1] | 865 | |
---|
| 866 | ! |
---|
[97] | 867 | !-- Salinity boundary condition at the top boundary. |
---|
| 868 | !-- Dirichlet or Neumann (zero gradient) |
---|
| 869 | DO i = nxl, nxr |
---|
| 870 | DO j = nys, nyn |
---|
| 871 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 872 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 873 | ENDDO |
---|
[97] | 874 | ENDDO |
---|
[1] | 875 | |
---|
[97] | 876 | ELSEIF ( sk_char == 'q' ) THEN |
---|
[1] | 877 | |
---|
| 878 | ! |
---|
[97] | 879 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
| 880 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
| 881 | DO i = nxl, nxr |
---|
| 882 | DO j = nys, nyn |
---|
[216] | 883 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[97] | 884 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 885 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 886 | ENDDO |
---|
| 887 | ENDDO |
---|
| 888 | |
---|
| 889 | ! |
---|
[63] | 890 | !-- Specific humidity boundary condition at the top boundary |
---|
[1] | 891 | IF ( ibc_q_t == 0 ) THEN |
---|
| 892 | ! |
---|
| 893 | !-- Dirichlet |
---|
| 894 | DO i = nxl, nxr |
---|
| 895 | DO j = nys, nyn |
---|
[63] | 896 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 897 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 898 | ENDDO |
---|
| 899 | ENDDO |
---|
| 900 | |
---|
| 901 | ELSE |
---|
| 902 | ! |
---|
[63] | 903 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
[1] | 904 | DO i = nxl, nxr |
---|
| 905 | DO j = nys, nyn |
---|
| 906 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
[63] | 907 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
[1] | 908 | ENDDO |
---|
| 909 | ENDDO |
---|
| 910 | |
---|
| 911 | ENDIF |
---|
| 912 | |
---|
| 913 | ELSEIF ( sk_char == 'e' ) THEN |
---|
| 914 | |
---|
| 915 | ! |
---|
| 916 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
[97] | 917 | DO i = nxl, nxr |
---|
| 918 | DO j = nys, nyn |
---|
[216] | 919 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[97] | 920 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 921 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 922 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 923 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 924 | ENDDO |
---|
| 925 | ENDDO |
---|
[1] | 926 | |
---|
| 927 | ELSE |
---|
| 928 | |
---|
[1320] | 929 | WRITE( message_string, * ) 'no vertical boundary condi', & |
---|
[1] | 930 | 'tion for variable "', sk_char, '"' |
---|
[247] | 931 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
| 932 | |
---|
[1] | 933 | ENDIF |
---|
| 934 | |
---|
| 935 | ! |
---|
| 936 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
| 937 | fmax_l = 0.0 |
---|
| 938 | DO i = nxl, nxr |
---|
| 939 | DO j = nys, nyn |
---|
[63] | 940 | DO k = nzb, nzt+1 |
---|
[1320] | 941 | numera = ABS( sk_p(k+1,j,i) - 2.0 * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 942 | denomi = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
| 943 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 944 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
[1] | 945 | ENDDO |
---|
| 946 | ENDDO |
---|
| 947 | ENDDO |
---|
| 948 | #if defined( __parallel ) |
---|
[622] | 949 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 950 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 951 | #else |
---|
| 952 | fmax = fmax_l |
---|
| 953 | #endif |
---|
| 954 | |
---|
| 955 | fmax = 0.04 * fmax |
---|
| 956 | |
---|
| 957 | ! |
---|
| 958 | !-- Allocate temporary arrays |
---|
[1320] | 959 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), & |
---|
| 960 | a2(nzb:nzt+1,nys:nyn), a12(nzb:nzt+1,nys:nyn), & |
---|
| 961 | a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
| 962 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), & |
---|
| 963 | impe(nzb+1:nzt,nys:nyn), ipmb(nzb+1:nzt,nys:nyn), & |
---|
| 964 | ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
| 965 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), & |
---|
| 966 | sw(nzb:nzt+1,nys:nyn) & |
---|
[1] | 967 | ) |
---|
| 968 | imme = 0.0; impe = 0.0; ipme = 0.0; ippe = 0.0 |
---|
| 969 | |
---|
| 970 | ! |
---|
| 971 | !-- Outer loop of all i |
---|
| 972 | DO i = nxl, nxr |
---|
| 973 | |
---|
| 974 | ! |
---|
| 975 | !-- Compute polynomial coefficients |
---|
| 976 | DO j = nys, nyn |
---|
[63] | 977 | DO k = nzb, nzt+1 |
---|
[1] | 978 | a12(k,j) = 0.5 * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
[1320] | 979 | a22(k,j) = 0.5 * ( sk_p(k+1,j,i) - 2.0 * sk_p(k,j,i) & |
---|
[1] | 980 | + sk_p(k-1,j,i) ) |
---|
[1320] | 981 | a0(k,j) = ( 9.0 * sk_p(k+2,j,i) - 116.0 * sk_p(k+1,j,i) & |
---|
| 982 | + 2134.0 * sk_p(k,j,i) - 116.0 * sk_p(k-1,j,i) & |
---|
[1] | 983 | + 9.0 * sk_p(k-2,j,i) ) * f1920 |
---|
[1320] | 984 | a1(k,j) = ( -5.0 * sk_p(k+2,j,i) + 34.0 * sk_p(k+1,j,i) & |
---|
| 985 | - 34.0 * sk_p(k-1,j,i) + 5.0 * sk_p(k-2,j,i) & |
---|
[1] | 986 | ) * f48 |
---|
[1320] | 987 | a2(k,j) = ( -3.0 * sk_p(k+2,j,i) + 36.0 * sk_p(k+1,j,i) & |
---|
| 988 | - 66.0 * sk_p(k,j,i) + 36.0 * sk_p(k-1,j,i) & |
---|
[1] | 989 | - 3.0 * sk_p(k-2,j,i) ) * f48 |
---|
| 990 | ENDDO |
---|
| 991 | ENDDO |
---|
| 992 | |
---|
| 993 | ! |
---|
| 994 | !-- Fluxes using the Bott scheme |
---|
| 995 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 996 | DO j = nys, nyn |
---|
[63] | 997 | DO k = nzb+1, nzt |
---|
[1] | 998 | cip = MAX( 0.0, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 999 | cim = -MIN( 0.0, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1000 | cipf = 1.0 - 2.0 * cip |
---|
| 1001 | cimf = 1.0 - 2.0 * cim |
---|
[1320] | 1002 | ip = a0(k,j) * f2 * ( 1.0 - cipf ) & |
---|
| 1003 | + a1(k,j) * f8 * ( 1.0 - cipf*cipf ) & |
---|
[1] | 1004 | + a2(k,j) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
[1320] | 1005 | im = a0(k+1,j) * f2 * ( 1.0 - cimf ) & |
---|
| 1006 | - a1(k+1,j) * f8 * ( 1.0 - cimf*cimf ) & |
---|
[1] | 1007 | + a2(k+1,j) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
| 1008 | ip = MAX( ip, 0.0 ) |
---|
| 1009 | im = MAX( im, 0.0 ) |
---|
| 1010 | ippb(k,j) = ip * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
| 1011 | impb(k,j) = im * MIN( 1.0, sk_p(k+1,j,i) / (ip+im+1E-15) ) |
---|
| 1012 | |
---|
| 1013 | cip = MAX( 0.0, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1014 | cim = -MIN( 0.0, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1015 | cipf = 1.0 - 2.0 * cip |
---|
| 1016 | cimf = 1.0 - 2.0 * cim |
---|
[1320] | 1017 | ip = a0(k-1,j) * f2 * ( 1.0 - cipf ) & |
---|
| 1018 | + a1(k-1,j) * f8 * ( 1.0 - cipf*cipf ) & |
---|
[1] | 1019 | + a2(k-1,j) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
[1320] | 1020 | im = a0(k,j) * f2 * ( 1.0 - cimf ) & |
---|
| 1021 | - a1(k,j) * f8 * ( 1.0 - cimf*cimf ) & |
---|
[1] | 1022 | + a2(k,j) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
| 1023 | ip = MAX( ip, 0.0 ) |
---|
| 1024 | im = MAX( im, 0.0 ) |
---|
| 1025 | ipmb(k,j) = ip * MIN( 1.0, sk_p(k-1,j,i) / (ip+im+1E-15) ) |
---|
| 1026 | immb(k,j) = im * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
| 1027 | ENDDO |
---|
| 1028 | ENDDO |
---|
| 1029 | |
---|
| 1030 | ! |
---|
| 1031 | !-- Compute monitor function m1 |
---|
| 1032 | DO j = nys, nyn |
---|
[63] | 1033 | DO k = nzb-1, nzt+2 |
---|
[1] | 1034 | m1z = ABS( sk_p(k+1,j,i) - 2.0 * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1035 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1036 | IF ( m1n /= 0.0 .AND. m1n >= m1z ) THEN |
---|
| 1037 | m1(k,j) = m1z / m1n |
---|
| 1038 | IF ( m1(k,j) /= 2.0 .AND. m1n < fmax(2) ) m1(k,j) = 0.0 |
---|
| 1039 | ELSEIF ( m1n < m1z ) THEN |
---|
| 1040 | m1(k,j) = -1.0 |
---|
| 1041 | ELSE |
---|
| 1042 | m1(k,j) = 0.0 |
---|
| 1043 | ENDIF |
---|
| 1044 | ENDDO |
---|
| 1045 | ENDDO |
---|
| 1046 | |
---|
| 1047 | ! |
---|
| 1048 | !-- Compute switch sw |
---|
| 1049 | sw = 0.0 |
---|
| 1050 | DO j = nys, nyn |
---|
[63] | 1051 | DO k = nzb, nzt+1 |
---|
[1320] | 1052 | m2 = 2.0 * ABS( a1(k,j) - a12(k,j) ) / & |
---|
[1] | 1053 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35 ) |
---|
| 1054 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0 |
---|
| 1055 | |
---|
[1320] | 1056 | m3 = 2.0 * ABS( a2(k,j) - a22(k,j) ) / & |
---|
[1] | 1057 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35 ) |
---|
| 1058 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0 |
---|
| 1059 | |
---|
| 1060 | t1 = 0.35 |
---|
| 1061 | t2 = 0.35 |
---|
| 1062 | IF ( m1(k,j) == -1.0 ) t2 = 0.12 |
---|
| 1063 | |
---|
| 1064 | !-- *VOCL STMT,IF(10) |
---|
[1320] | 1065 | IF ( m1(k-1,j) == 1.0 .OR. m1(k,j) == 1.0 .OR. m1(k+1,j) == 1.0 & |
---|
| 1066 | .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 1067 | ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0 .AND. & |
---|
| 1068 | m1(k,j) /= -1.0 .AND. m1(k+1,j) /= -1.0 ) & |
---|
[1] | 1069 | ) sw(k,j) = 1.0 |
---|
| 1070 | ENDDO |
---|
| 1071 | ENDDO |
---|
| 1072 | |
---|
| 1073 | ! |
---|
| 1074 | !-- Fluxes using exponential scheme |
---|
| 1075 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1076 | DO j = nys, nyn |
---|
[63] | 1077 | DO k = nzb+1, nzt |
---|
[1] | 1078 | |
---|
| 1079 | !-- *VOCL STMT,IF(10) |
---|
| 1080 | IF ( sw(k,j) == 1.0 ) THEN |
---|
| 1081 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
| 1082 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 1083 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
| 1084 | sterm = MIN( sterm, 0.9999 ) |
---|
| 1085 | sterm = MAX( sterm, 0.0001 ) |
---|
| 1086 | |
---|
| 1087 | ix = INT( sterm * 1000 ) + 1 |
---|
| 1088 | |
---|
| 1089 | cip = MAX( 0.0, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1090 | |
---|
| 1091 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
| 1092 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1093 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
| 1094 | ) & |
---|
| 1095 | ) |
---|
| 1096 | IF ( sterm == 0.0001 ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1097 | IF ( sterm == 0.9999 ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1098 | |
---|
| 1099 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
| 1100 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 1101 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
| 1102 | sterm = MIN( sterm, 0.9999 ) |
---|
| 1103 | sterm = MAX( sterm, 0.0001 ) |
---|
| 1104 | |
---|
| 1105 | ix = INT( sterm * 1000 ) + 1 |
---|
| 1106 | |
---|
| 1107 | cim = -MIN( 0.0, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1108 | |
---|
| 1109 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
| 1110 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1111 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
| 1112 | ) & |
---|
| 1113 | ) |
---|
| 1114 | IF ( sterm == 0.0001 ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1115 | IF ( sterm == 0.9999 ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1116 | ENDIF |
---|
| 1117 | |
---|
| 1118 | !-- *VOCL STMT,IF(10) |
---|
| 1119 | IF ( sw(k+1,j) == 1.0 ) THEN |
---|
| 1120 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
| 1121 | IF ( ABS( snenn ) .LT. 1E-9 ) snenn = 1E-9 |
---|
| 1122 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
| 1123 | sterm = MIN( sterm, 0.9999 ) |
---|
| 1124 | sterm = MAX( sterm, 0.0001 ) |
---|
| 1125 | |
---|
| 1126 | ix = INT( sterm * 1000 ) + 1 |
---|
| 1127 | |
---|
| 1128 | cim = -MIN( 0.0, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1129 | |
---|
| 1130 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
| 1131 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1132 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
| 1133 | ) & |
---|
| 1134 | ) |
---|
| 1135 | IF ( sterm == 0.0001 ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1136 | IF ( sterm == 0.9999 ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1137 | ENDIF |
---|
| 1138 | |
---|
| 1139 | !-- *VOCL STMT,IF(10) |
---|
| 1140 | IF ( sw(k-1,j) == 1.0 ) THEN |
---|
| 1141 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
| 1142 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 1143 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
| 1144 | sterm = MIN( sterm, 0.9999 ) |
---|
| 1145 | sterm = MAX( sterm, 0.0001 ) |
---|
| 1146 | |
---|
| 1147 | ix = INT( sterm * 1000 ) + 1 |
---|
| 1148 | |
---|
| 1149 | cip = MAX( 0.0, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1150 | |
---|
| 1151 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
| 1152 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1153 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
| 1154 | ) & |
---|
| 1155 | ) |
---|
| 1156 | IF ( sterm == 0.0001 ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1157 | IF ( sterm == 0.9999 ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1158 | ENDIF |
---|
| 1159 | |
---|
| 1160 | ENDDO |
---|
| 1161 | ENDDO |
---|
| 1162 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
| 1163 | |
---|
| 1164 | ! |
---|
| 1165 | !-- Prognostic equation |
---|
| 1166 | DO j = nys, nyn |
---|
[63] | 1167 | DO k = nzb+1, nzt |
---|
[1320] | 1168 | fplus = ( 1.0 - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
[1] | 1169 | - ( 1.0 - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
[1320] | 1170 | fminus = ( 1.0 - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
[1] | 1171 | - ( 1.0 - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
[1320] | 1172 | tendcy = fplus - fminus |
---|
[1] | 1173 | ! |
---|
| 1174 | !-- Removed in order to optimise speed |
---|
| 1175 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35 ) |
---|
[1320] | 1176 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7 ) tendcy = 0.0 |
---|
[1] | 1177 | ! |
---|
| 1178 | !-- Density correction because of possible remaining divergences |
---|
| 1179 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
[1320] | 1180 | sk_p(k,j,i) = ( ( 1.0 + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
[1] | 1181 | ( 1.0 + d_new ) |
---|
| 1182 | ! |
---|
| 1183 | !-- Store heat flux for subsequent statistics output. |
---|
| 1184 | !-- array m1 is here used as temporary storage |
---|
| 1185 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
| 1186 | ENDDO |
---|
| 1187 | ENDDO |
---|
| 1188 | |
---|
| 1189 | ! |
---|
| 1190 | !-- Sum up heat flux in order to order to obtain horizontal averages |
---|
| 1191 | IF ( sk_char == 'pt' ) THEN |
---|
| 1192 | DO sr = 0, statistic_regions |
---|
| 1193 | DO j = nys, nyn |
---|
[63] | 1194 | DO k = nzb+1, nzt |
---|
[1320] | 1195 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + & |
---|
[1] | 1196 | m1(k,j) * rmask(j,i,sr) |
---|
| 1197 | ENDDO |
---|
| 1198 | ENDDO |
---|
| 1199 | ENDDO |
---|
| 1200 | ENDIF |
---|
| 1201 | |
---|
| 1202 | ENDDO ! End of the advection in z-direction |
---|
| 1203 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1204 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
| 1205 | |
---|
| 1206 | ! |
---|
| 1207 | !-- Deallocate temporary arrays |
---|
[1320] | 1208 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
[1] | 1209 | ippb, ippe, m1, sw ) |
---|
| 1210 | |
---|
| 1211 | ! |
---|
| 1212 | !-- Store results as tendency and deallocate local array |
---|
| 1213 | DO i = nxl, nxr |
---|
| 1214 | DO j = nys, nyn |
---|
[63] | 1215 | DO k = nzb+1, nzt |
---|
[1] | 1216 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
| 1217 | ENDDO |
---|
| 1218 | ENDDO |
---|
| 1219 | ENDDO |
---|
| 1220 | |
---|
| 1221 | DEALLOCATE( sk_p ) |
---|
| 1222 | |
---|
| 1223 | END SUBROUTINE advec_s_bc |
---|