1 | SUBROUTINE advec_particles |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ------------------ |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: advec_particles.f90 829 2012-02-21 12:24:53Z raasch $ |
---|
11 | ! |
---|
12 | ! 828 2012-02-21 12:00:36Z raasch |
---|
13 | ! fast hall/wang kernels with fixed radius/dissipation classes added, |
---|
14 | ! particle feature color renamed class, routine colker renamed |
---|
15 | ! recalculate_kernel, |
---|
16 | ! lower limit for droplet radius changed from 1E-7 to 1E-8 |
---|
17 | ! |
---|
18 | ! Bugfix: transformation factor for dissipation changed from 1E5 to 1E4 |
---|
19 | ! |
---|
20 | ! 825 2012-02-19 03:03:44Z raasch |
---|
21 | ! droplet growth by condensation may include curvature and solution effects, |
---|
22 | ! initialisation of temporary particle array for resorting removed, |
---|
23 | ! particle attributes speed_x|y|z_sgs renamed rvar1|2|3, |
---|
24 | ! module wang_kernel_mod renamed lpm_collision_kernels_mod, |
---|
25 | ! wang_collision_kernel renamed wang_kernel |
---|
26 | ! |
---|
27 | ! 799 2011-12-21 17:48:03Z franke |
---|
28 | ! Implementation of Wang collision kernel and corresponding new parameter |
---|
29 | ! wang_collision_kernel |
---|
30 | ! |
---|
31 | ! 792 2011-12-01 raasch |
---|
32 | ! particle arrays (particles, particles_temp) implemented as pointers in |
---|
33 | ! order to speed up sorting (see routine sort_particles) |
---|
34 | ! |
---|
35 | ! 759 2011-09-15 13:58:31Z raasch |
---|
36 | ! Splitting of parallel I/O (routine write_particles) |
---|
37 | ! |
---|
38 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
39 | ! Declaration of de_dx, de_dy, de_dz adapted to additional |
---|
40 | ! ghost points. Furthermore the calls of exchange_horiz were modified. |
---|
41 | ! |
---|
42 | ! 622 2010-12-10 08:08:13Z raasch |
---|
43 | ! optional barriers included in order to speed up collective operations |
---|
44 | ! |
---|
45 | ! 519 2010-03-19 05:30:02Z raasch |
---|
46 | ! NetCDF4 output format allows size of particle array to be extended |
---|
47 | ! |
---|
48 | ! 420 2010-01-13 15:10:53Z franke |
---|
49 | ! Own weighting factor for every cloud droplet is implemented and condensation |
---|
50 | ! and collision of cloud droplets are adjusted accordingly. +delta_v, -s_r3, |
---|
51 | ! -s_r4 |
---|
52 | ! Initialization of variables for the (sub-) timestep is moved to the beginning |
---|
53 | ! in order to enable deletion of cloud droplets due to collision processes. |
---|
54 | ! Collision efficiency for large cloud droplets has changed according to table |
---|
55 | ! of Rogers and Yau. (collision_efficiency) |
---|
56 | ! Bugfix: calculation of cloud droplet velocity |
---|
57 | ! Bugfix: transfer of particles at south/left edge when new position |
---|
58 | ! y>=(ny+0.5)*dy-1.e-12 or x>=(nx+0.5)*dx-1.e-12, very rare |
---|
59 | ! Bugfix: calculation of y (collision_efficiency) |
---|
60 | ! |
---|
61 | ! 336 2009-06-10 11:19:35Z raasch |
---|
62 | ! Particle attributes are set with new routine set_particle_attributes. |
---|
63 | ! Vertical particle advection depends on the particle group. |
---|
64 | ! Output of NetCDF messages with aid of message handling routine. |
---|
65 | ! Output of messages replaced by message handling routine |
---|
66 | ! Bugfix: error in check, if particles moved further than one subdomain length. |
---|
67 | ! This check must not be applied for newly released particles |
---|
68 | ! Bugfix: several tail counters are initialized, particle_tail_coordinates is |
---|
69 | ! only written to file if its third index is > 0 |
---|
70 | ! |
---|
71 | ! 212 2008-11-11 09:09:24Z raasch |
---|
72 | ! Bugfix in calculating k index in case of oceans runs (sort_particles) |
---|
73 | ! |
---|
74 | ! 150 2008-02-29 08:19:58Z raasch |
---|
75 | ! Bottom boundary condition and vertical index calculations adjusted for |
---|
76 | ! ocean runs. |
---|
77 | ! |
---|
78 | ! 119 2007-10-17 10:27:13Z raasch |
---|
79 | ! Sorting of particles is controlled by dt_sort_particles and moved from |
---|
80 | ! the SGS timestep loop after the end of this loop. |
---|
81 | ! Bugfix: pleft/pright changed to pnorth/psouth in sendrecv of particle tail |
---|
82 | ! numbers along y |
---|
83 | ! Small bugfixes in the SGS part |
---|
84 | ! |
---|
85 | ! 106 2007-08-16 14:30:26Z raasch |
---|
86 | ! remaining variables iran changed to iran_part |
---|
87 | ! |
---|
88 | ! 95 2007-06-02 16:48:38Z raasch |
---|
89 | ! hydro_press renamed hyp |
---|
90 | ! |
---|
91 | ! 75 2007-03-22 09:54:05Z raasch |
---|
92 | ! Particle reflection at vertical walls implemented in new subroutine |
---|
93 | ! particle_boundary_conds, |
---|
94 | ! vertical walls are regarded in the SGS model, |
---|
95 | ! + user_advec_particles, particles-package is now part of the defaut code, |
---|
96 | ! array arguments in sendrecv calls have to refer to first element (1) due to |
---|
97 | ! mpich (mpiI) interface requirements, |
---|
98 | ! 2nd+3rd argument removed from exchange horiz |
---|
99 | ! |
---|
100 | ! 16 2007-02-15 13:16:47Z raasch |
---|
101 | ! Bugfix: wrong if-clause from revision 1.32 |
---|
102 | ! |
---|
103 | ! r4 | raasch | 2007-02-13 12:33:16 +0100 (Tue, 13 Feb 2007) |
---|
104 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
105 | ! |
---|
106 | ! Revision 1.32 2007/02/11 12:48:20 raasch |
---|
107 | ! Allways the lower level k is used for interpolation |
---|
108 | ! Bugfix: new particles are released only if end_time_prel > simulated_time |
---|
109 | ! Bugfix: transfer of particles when x < -0.5*dx (0.0 before), etc., |
---|
110 | ! index i,j used instead of cartesian (x,y) coordinate to check for |
---|
111 | ! transfer because this failed under very rare conditions |
---|
112 | ! Bugfix: calculation of number of particles with same radius as the current |
---|
113 | ! particle (cloud droplet code) |
---|
114 | ! |
---|
115 | ! Revision 1.31 2006/08/17 09:21:01 raasch |
---|
116 | ! Two more compilation errors removed from the last revision |
---|
117 | ! |
---|
118 | ! Revision 1.30 2006/08/17 09:11:17 raasch |
---|
119 | ! Two compilation errors removed from the last revision |
---|
120 | ! |
---|
121 | ! Revision 1.29 2006/08/04 14:05:01 raasch |
---|
122 | ! Subgrid scale velocities are (optionally) included for calculating the |
---|
123 | ! particle advection, new counters trlp_count_sum, etc. for accumulating |
---|
124 | ! the number of particles exchanged between the subdomains during all |
---|
125 | ! sub-timesteps (if sgs velocities are included), +3d-arrays de_dx/y/z, |
---|
126 | ! izuf renamed iran, output of particle time series |
---|
127 | ! |
---|
128 | ! Revision 1.1 1999/11/25 16:16:06 raasch |
---|
129 | ! Initial revision |
---|
130 | ! |
---|
131 | ! |
---|
132 | ! Description: |
---|
133 | ! ------------ |
---|
134 | ! Particle advection |
---|
135 | !------------------------------------------------------------------------------! |
---|
136 | |
---|
137 | USE arrays_3d |
---|
138 | USE cloud_parameters |
---|
139 | USE constants |
---|
140 | USE control_parameters |
---|
141 | USE cpulog |
---|
142 | USE grid_variables |
---|
143 | USE indices |
---|
144 | USE interfaces |
---|
145 | USE lpm_collision_kernels_mod |
---|
146 | USE netcdf_control |
---|
147 | USE particle_attributes |
---|
148 | USE pegrid |
---|
149 | USE random_function_mod |
---|
150 | USE statistics |
---|
151 | |
---|
152 | IMPLICIT NONE |
---|
153 | |
---|
154 | INTEGER :: agp, deleted_particles, deleted_tails, eclass, i, ie, ii, inc, & |
---|
155 | internal_timestep_count, is, j, jj, js, jtry, k, kk, kw, m, n, & |
---|
156 | nc, nd, nn, num_gp, pse, psi, rclass_l, rclass_s, & |
---|
157 | tlength, trlp_count, trlp_count_sum, trlp_count_recv, & |
---|
158 | trlp_count_recv_sum, trlpt_count, trlpt_count_recv, & |
---|
159 | trnp_count, trnp_count_sum, trnp_count_recv, & |
---|
160 | trnp_count_recv_sum, trnpt_count, trnpt_count_recv, & |
---|
161 | trrp_count, trrp_count_sum, trrp_count_recv, & |
---|
162 | trrp_count_recv_sum, trrpt_count, trrpt_count_recv, & |
---|
163 | trsp_count, trsp_count_sum, trsp_count_recv, & |
---|
164 | trsp_count_recv_sum, trspt_count, trspt_count_recv |
---|
165 | |
---|
166 | INTEGER :: gp_outside_of_building(1:8) |
---|
167 | |
---|
168 | INTEGER, PARAMETER :: maxtry = 40 ! for Rosenbrock method |
---|
169 | |
---|
170 | LOGICAL :: dt_3d_reached, dt_3d_reached_l, prt_position |
---|
171 | |
---|
172 | REAL :: aa, afactor, arg, bb, cc, dd, ddenom, delta_r, delta_v, & |
---|
173 | dens_ratio, de_dt, de_dt_min, de_dx_int, de_dx_int_l, & |
---|
174 | de_dx_int_u, de_dy_int, de_dy_int_l, de_dy_int_u, de_dz_int, & |
---|
175 | de_dz_int_l, de_dz_int_u, diss_int, diss_int_l, diss_int_u, & |
---|
176 | distance, drdt, drdt_ini, drdt_m, dt_ros, dt_ros_last, & |
---|
177 | dt_ros_next, dt_ros_sum, dt_ros_sum_ini, d2rdt2, d2rdtdr, & |
---|
178 | dt_gap, dt_particle, dt_particle_m, d_sum, e_a, e_int, & |
---|
179 | e_int_l, e_int_u, e_mean_int, e_s, err_ros, errmax, exp_arg, & |
---|
180 | exp_term, fs_int, gg, g1, g2, g3, g4, integral, & |
---|
181 | lagr_timescale, lw_max, mean_r, new_r, p_int, pt_int, & |
---|
182 | pt_int_l, pt_int_u, q_int, q_int_l, q_int_u, ql_int, ql_int_l, & |
---|
183 | ql_int_u, random_gauss, r_ros, r_ros_ini, & |
---|
184 | sigma, sl_r3, sl_r4, t_int, u_int, u_int_l, u_int_u,vv_int, & |
---|
185 | v_int, v_int_l, v_int_u, w_int, w_int_l, w_int_u, x, y |
---|
186 | ! |
---|
187 | !-- Parameters for Rosenbrock method |
---|
188 | REAL, PARAMETER :: a21 = 2.0, a31 = 48.0/25.0, a32 = 6.0/25.0, & |
---|
189 | a2x = 1.0, a3x = 3.0/5.0, b1 = 19.0/9.0, b2 = 0.5, & |
---|
190 | b3 = 25.0/108.0, b4 = 125.0/108.0, c21 = -8.0, & |
---|
191 | c31 = 372.0/25.0, c32 = 12.0/5.0, & |
---|
192 | c41 = -112.0/125.0, c42 = -54.0/125.0, & |
---|
193 | c43 = -2.0/5.0, c1x = 0.5, c2x= -3.0/2.0, & |
---|
194 | c3x = 121.0/50.0, c4x = 29.0/250.0, & |
---|
195 | errcon = 0.1296, e1 = 17.0/54.0, e2 = 7.0/36.0, & |
---|
196 | e3 = 0.0, e4 = 125.0/108.0, gam = 0.5, grow = 1.5, & |
---|
197 | pgrow = -0.25, pshrnk = -1.0/3.0, shrnk = 0.5 |
---|
198 | |
---|
199 | REAL, DIMENSION(1:30) :: de_dxi, de_dyi, de_dzi, dissi, d_gp_pl, ei |
---|
200 | |
---|
201 | REAL :: location(1:30,1:3) |
---|
202 | |
---|
203 | REAL, DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: de_dx, de_dy, de_dz |
---|
204 | |
---|
205 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: trlpt, trnpt, trrpt, trspt |
---|
206 | |
---|
207 | TYPE(particle_type) :: tmp_particle |
---|
208 | |
---|
209 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: trlp, trnp, trrp, trsp |
---|
210 | |
---|
211 | |
---|
212 | CALL cpu_log( log_point(25), 'advec_particles', 'start' ) |
---|
213 | |
---|
214 | |
---|
215 | ! |
---|
216 | !-- Write particle data on file for later analysis. |
---|
217 | !-- This has to be done here (before particles are advected) in order |
---|
218 | !-- to allow correct output in case of dt_write_particle_data = dt_prel = |
---|
219 | !-- particle_maximum_age. Otherwise (if output is done at the end of this |
---|
220 | !-- subroutine), the relevant particles would have been already deleted. |
---|
221 | !-- The MOD function allows for changes in the output interval with restart |
---|
222 | !-- runs. |
---|
223 | !-- Attention: change version number for unit 85 (in routine check_open) |
---|
224 | !-- whenever the output format for this unit is changed! |
---|
225 | time_write_particle_data = time_write_particle_data + dt_3d |
---|
226 | IF ( time_write_particle_data >= dt_write_particle_data ) THEN |
---|
227 | |
---|
228 | CALL cpu_log( log_point_s(40), 'advec_part_io', 'start' ) |
---|
229 | CALL check_open( 85 ) |
---|
230 | WRITE ( 85 ) simulated_time, maximum_number_of_particles, & |
---|
231 | number_of_particles |
---|
232 | WRITE ( 85 ) particles |
---|
233 | WRITE ( 85 ) maximum_number_of_tailpoints, maximum_number_of_tails, & |
---|
234 | number_of_tails |
---|
235 | IF ( maximum_number_of_tails > 0 ) THEN |
---|
236 | WRITE ( 85 ) particle_tail_coordinates |
---|
237 | ENDIF |
---|
238 | CALL close_file( 85 ) |
---|
239 | |
---|
240 | IF ( netcdf_output ) CALL output_particles_netcdf |
---|
241 | |
---|
242 | time_write_particle_data = MOD( time_write_particle_data, & |
---|
243 | MAX( dt_write_particle_data, dt_3d ) ) |
---|
244 | CALL cpu_log( log_point_s(40), 'advec_part_io', 'stop' ) |
---|
245 | ENDIF |
---|
246 | |
---|
247 | ! |
---|
248 | !-- Initialize variables for the (sub-) timestep, i.e. for |
---|
249 | !-- marking those particles to be deleted after the timestep |
---|
250 | particle_mask = .TRUE. |
---|
251 | deleted_particles = 0 |
---|
252 | trlp_count_recv = 0 |
---|
253 | trnp_count_recv = 0 |
---|
254 | trrp_count_recv = 0 |
---|
255 | trsp_count_recv = 0 |
---|
256 | trlpt_count_recv = 0 |
---|
257 | trnpt_count_recv = 0 |
---|
258 | trrpt_count_recv = 0 |
---|
259 | trspt_count_recv = 0 |
---|
260 | IF ( use_particle_tails ) THEN |
---|
261 | tail_mask = .TRUE. |
---|
262 | ENDIF |
---|
263 | deleted_tails = 0 |
---|
264 | |
---|
265 | ! |
---|
266 | !-- Calculate exponential term used in case of particle inertia for each |
---|
267 | !-- of the particle groups |
---|
268 | CALL cpu_log( log_point_s(41), 'advec_part_exp', 'start' ) |
---|
269 | DO m = 1, number_of_particle_groups |
---|
270 | IF ( particle_groups(m)%density_ratio /= 0.0 ) THEN |
---|
271 | particle_groups(m)%exp_arg = & |
---|
272 | 4.5 * particle_groups(m)%density_ratio * & |
---|
273 | molecular_viscosity / ( particle_groups(m)%radius )**2 |
---|
274 | particle_groups(m)%exp_term = EXP( -particle_groups(m)%exp_arg * & |
---|
275 | dt_3d ) |
---|
276 | ENDIF |
---|
277 | ENDDO |
---|
278 | CALL cpu_log( log_point_s(41), 'advec_part_exp', 'stop' ) |
---|
279 | |
---|
280 | ! |
---|
281 | !-- Particle (droplet) growth by condensation/evaporation and collision |
---|
282 | IF ( cloud_droplets ) THEN |
---|
283 | |
---|
284 | ! |
---|
285 | !-- Reset summation arrays |
---|
286 | ql_c = 0.0; ql_v = 0.0; ql_vp = 0.0 |
---|
287 | delta_r=0.0; delta_v=0.0 |
---|
288 | |
---|
289 | ! |
---|
290 | !-- Particle growth by condensation/evaporation |
---|
291 | CALL cpu_log( log_point_s(42), 'advec_part_cond', 'start' ) |
---|
292 | DO n = 1, number_of_particles |
---|
293 | ! |
---|
294 | !-- Interpolate temperature and humidity. |
---|
295 | !-- First determine left, south, and bottom index of the arrays. |
---|
296 | i = particles(n)%x * ddx |
---|
297 | j = particles(n)%y * ddy |
---|
298 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
299 | + offset_ocean_nzt ! only exact if equidistant |
---|
300 | |
---|
301 | x = particles(n)%x - i * dx |
---|
302 | y = particles(n)%y - j * dy |
---|
303 | aa = x**2 + y**2 |
---|
304 | bb = ( dx - x )**2 + y**2 |
---|
305 | cc = x**2 + ( dy - y )**2 |
---|
306 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
307 | gg = aa + bb + cc + dd |
---|
308 | |
---|
309 | pt_int_l = ( ( gg - aa ) * pt(k,j,i) + ( gg - bb ) * pt(k,j,i+1) & |
---|
310 | + ( gg - cc ) * pt(k,j+1,i) + ( gg - dd ) * pt(k,j+1,i+1) & |
---|
311 | ) / ( 3.0 * gg ) |
---|
312 | |
---|
313 | pt_int_u = ( ( gg-aa ) * pt(k+1,j,i) + ( gg-bb ) * pt(k+1,j,i+1) & |
---|
314 | + ( gg-cc ) * pt(k+1,j+1,i) + ( gg-dd ) * pt(k+1,j+1,i+1) & |
---|
315 | ) / ( 3.0 * gg ) |
---|
316 | |
---|
317 | pt_int = pt_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
318 | ( pt_int_u - pt_int_l ) |
---|
319 | |
---|
320 | q_int_l = ( ( gg - aa ) * q(k,j,i) + ( gg - bb ) * q(k,j,i+1) & |
---|
321 | + ( gg - cc ) * q(k,j+1,i) + ( gg - dd ) * q(k,j+1,i+1) & |
---|
322 | ) / ( 3.0 * gg ) |
---|
323 | |
---|
324 | q_int_u = ( ( gg-aa ) * q(k+1,j,i) + ( gg-bb ) * q(k+1,j,i+1) & |
---|
325 | + ( gg-cc ) * q(k+1,j+1,i) + ( gg-dd ) * q(k+1,j+1,i+1) & |
---|
326 | ) / ( 3.0 * gg ) |
---|
327 | |
---|
328 | q_int = q_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
329 | ( q_int_u - q_int_l ) |
---|
330 | |
---|
331 | ql_int_l = ( ( gg - aa ) * ql(k,j,i) + ( gg - bb ) * ql(k,j,i+1) & |
---|
332 | + ( gg - cc ) * ql(k,j+1,i) + ( gg - dd ) * ql(k,j+1,i+1) & |
---|
333 | ) / ( 3.0 * gg ) |
---|
334 | |
---|
335 | ql_int_u = ( ( gg-aa ) * ql(k+1,j,i) + ( gg-bb ) * ql(k+1,j,i+1) & |
---|
336 | + ( gg-cc ) * ql(k+1,j+1,i) + ( gg-dd ) * ql(k+1,j+1,i+1) & |
---|
337 | ) / ( 3.0 * gg ) |
---|
338 | |
---|
339 | ql_int = ql_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
340 | ( ql_int_u - ql_int_l ) |
---|
341 | |
---|
342 | ! |
---|
343 | !-- Calculate real temperature and saturation vapor pressure |
---|
344 | p_int = hyp(k) + ( particles(n)%z - zu(k) ) / dz * ( hyp(k+1)-hyp(k) ) |
---|
345 | t_int = pt_int * ( p_int / 100000.0 )**0.286 |
---|
346 | |
---|
347 | e_s = 611.0 * EXP( l_d_rv * ( 3.6609E-3 - 1.0 / t_int ) ) |
---|
348 | |
---|
349 | ! |
---|
350 | !-- Current vapor pressure |
---|
351 | e_a = q_int * p_int / ( 0.378 * q_int + 0.622 ) |
---|
352 | |
---|
353 | ! |
---|
354 | !-- Change in radius by condensation/evaporation |
---|
355 | IF ( particles(n)%radius >= 1.0E-6 .OR. & |
---|
356 | .NOT. curvature_solution_effects ) THEN |
---|
357 | ! |
---|
358 | !-- Approximation for large radii, where curvature and solution |
---|
359 | !-- effects can be neglected |
---|
360 | arg = particles(n)%radius**2 + 2.0 * dt_3d * & |
---|
361 | ( e_a / e_s - 1.0 ) / & |
---|
362 | ( ( l_d_rv / t_int - 1.0 ) * l_v * rho_l / t_int / & |
---|
363 | thermal_conductivity_l + & |
---|
364 | rho_l * r_v * t_int / diff_coeff_l / e_s ) |
---|
365 | IF ( arg < 1.0E-16 ) THEN |
---|
366 | new_r = 1.0E-8 |
---|
367 | ELSE |
---|
368 | new_r = SQRT( arg ) |
---|
369 | ENDIF |
---|
370 | ENDIF |
---|
371 | |
---|
372 | IF ( curvature_solution_effects .AND. & |
---|
373 | ( ( particles(n)%radius < 1.0E-6 ) .OR. ( new_r < 1.0E-6 ) ) ) & |
---|
374 | THEN |
---|
375 | ! |
---|
376 | !-- Curvature and solutions effects are included in growth equation. |
---|
377 | !-- Change in Radius is calculated with 4th-order Rosenbrock method |
---|
378 | !-- for stiff o.d.e's with monitoring local truncation error to adjust |
---|
379 | !-- stepsize (see Numerical recipes in FORTRAN, 2nd edition, p. 731). |
---|
380 | !-- For larger radii the simple analytic method (see ELSE) gives |
---|
381 | !-- almost the same results. |
---|
382 | ! |
---|
383 | !-- Surface tension after (Straka, 2009) |
---|
384 | sigma = 0.0761 - 0.00155 * ( t_int - 273.15 ) |
---|
385 | |
---|
386 | r_ros = particles(n)%radius |
---|
387 | dt_ros_sum = 0.0 ! internal integrated time (s) |
---|
388 | internal_timestep_count = 0 |
---|
389 | |
---|
390 | ddenom = 1.0 / ( rho_l * r_v * t_int / ( e_s * diff_coeff_l ) + & |
---|
391 | ( l_v / ( r_v * t_int ) - 1.0 ) * & |
---|
392 | rho_l * l_v / ( thermal_conductivity_l * t_int )& |
---|
393 | ) |
---|
394 | |
---|
395 | afactor = 2.0 * sigma / ( rho_l * r_v * t_int ) |
---|
396 | |
---|
397 | IF ( particles(n)%rvar3 == -9999999.9 ) THEN |
---|
398 | ! |
---|
399 | !-- First particle timestep. Derivative has to be calculated. |
---|
400 | drdt_m = ddenom / r_ros * ( e_a / e_s - 1.0 - & |
---|
401 | afactor / r_ros + & |
---|
402 | bfactor / r_ros**3 ) |
---|
403 | ELSE |
---|
404 | ! |
---|
405 | !-- Take value from last PALM timestep |
---|
406 | drdt_m = particles(n)%rvar3 |
---|
407 | ENDIF |
---|
408 | ! |
---|
409 | !-- Take internal timestep values from the end of last PALM timestep |
---|
410 | dt_ros_last = particles(n)%rvar1 |
---|
411 | dt_ros_next = particles(n)%rvar2 |
---|
412 | ! |
---|
413 | !-- Internal timestep must not be larger than PALM timestep |
---|
414 | dt_ros = MIN( dt_ros_next, dt_3d ) |
---|
415 | ! |
---|
416 | !-- Integrate growth equation in time unless PALM timestep is reached |
---|
417 | DO WHILE ( dt_ros_sum < dt_3d ) |
---|
418 | |
---|
419 | internal_timestep_count = internal_timestep_count + 1 |
---|
420 | |
---|
421 | ! |
---|
422 | !-- Derivative at starting value |
---|
423 | drdt = ddenom / r_ros * ( e_a / e_s - 1.0 - afactor / r_ros + & |
---|
424 | bfactor / r_ros**3 ) |
---|
425 | drdt_ini = drdt |
---|
426 | dt_ros_sum_ini = dt_ros_sum |
---|
427 | r_ros_ini = r_ros |
---|
428 | |
---|
429 | ! |
---|
430 | !-- Calculate time derivative of dr/dt |
---|
431 | d2rdt2 = ( drdt - drdt_m ) / dt_ros_last |
---|
432 | |
---|
433 | ! |
---|
434 | !-- Calculate radial derivative of dr/dt |
---|
435 | d2rdtdr = ddenom * ( ( 1.0 - e_a/e_s ) / r_ros**2 + & |
---|
436 | 2.0 * afactor / r_ros**3 - & |
---|
437 | 4.0 * bfactor / r_ros**5 ) |
---|
438 | ! |
---|
439 | !-- Adjust stepsize unless required accuracy is reached |
---|
440 | DO jtry = 1, maxtry+1 |
---|
441 | |
---|
442 | IF ( jtry == maxtry+1 ) THEN |
---|
443 | message_string = 'maxtry > 40 in Rosenbrock method' |
---|
444 | CALL message( 'advec_particles', 'PA0347', 2, 2, 0, 6, 0 ) |
---|
445 | ENDIF |
---|
446 | |
---|
447 | aa = 1.0 / ( gam * dt_ros ) - d2rdtdr |
---|
448 | g1 = ( drdt_ini + dt_ros * c1x * d2rdt2 ) / aa |
---|
449 | r_ros = r_ros_ini + a21 * g1 |
---|
450 | drdt = ddenom / r_ros * ( e_a / e_s - 1.0 - & |
---|
451 | afactor / r_ros + & |
---|
452 | bfactor / r_ros**3 ) |
---|
453 | |
---|
454 | g2 = ( drdt + dt_ros * c2x * d2rdt2 + c21 * g1 / dt_ros )& |
---|
455 | / aa |
---|
456 | r_ros = r_ros_ini + a31 * g1 + a32 * g2 |
---|
457 | drdt = ddenom / r_ros * ( e_a / e_s - 1.0 - & |
---|
458 | afactor / r_ros + & |
---|
459 | bfactor / r_ros**3 ) |
---|
460 | |
---|
461 | g3 = ( drdt + dt_ros * c3x * d2rdt2 + & |
---|
462 | ( c31 * g1 + c32 * g2 ) / dt_ros ) / aa |
---|
463 | g4 = ( drdt + dt_ros * c4x * d2rdt2 + & |
---|
464 | ( c41 * g1 + c42 * g2 + c43 * g3 ) / dt_ros ) / aa |
---|
465 | r_ros = r_ros_ini + b1 * g1 + b2 * g2 + b3 * g3 + b4 * g4 |
---|
466 | |
---|
467 | dt_ros_sum = dt_ros_sum_ini + dt_ros |
---|
468 | |
---|
469 | IF ( dt_ros_sum == dt_ros_sum_ini ) THEN |
---|
470 | message_string = 'zero stepsize in Rosenbrock method' |
---|
471 | CALL message( 'advec_particles', 'PA0348', 2, 2, 0, 6, 0 ) |
---|
472 | ENDIF |
---|
473 | ! |
---|
474 | !-- Calculate error |
---|
475 | err_ros = e1*g1 + e2*g2 + e3*g3 + e4*g4 |
---|
476 | errmax = 0.0 |
---|
477 | errmax = MAX( errmax, ABS( err_ros / r_ros_ini ) ) / eps_ros |
---|
478 | ! |
---|
479 | !-- Leave loop if accuracy is sufficient, otherwise try again |
---|
480 | !-- with a reduced stepsize |
---|
481 | IF ( errmax <= 1.0 ) THEN |
---|
482 | EXIT |
---|
483 | ELSE |
---|
484 | dt_ros = SIGN( & |
---|
485 | MAX( ABS( 0.9 * dt_ros * errmax**pshrnk ), & |
---|
486 | shrnk * ABS( dt_ros ) ), & |
---|
487 | dt_ros & |
---|
488 | ) |
---|
489 | ENDIF |
---|
490 | |
---|
491 | ENDDO ! loop for stepsize adjustment |
---|
492 | |
---|
493 | ! |
---|
494 | !-- Calculate next internal timestep |
---|
495 | IF ( errmax > errcon ) THEN |
---|
496 | dt_ros_next = 0.9 * dt_ros * errmax**pgrow |
---|
497 | ELSE |
---|
498 | dt_ros_next = grow * dt_ros |
---|
499 | ENDIF |
---|
500 | |
---|
501 | ! |
---|
502 | !-- Estimated timestep is reduced if the PALM time step is exceeded |
---|
503 | dt_ros_last = dt_ros |
---|
504 | IF ( ( dt_ros_next + dt_ros_sum ) >= dt_3d ) THEN |
---|
505 | dt_ros = dt_3d - dt_ros_sum |
---|
506 | ELSE |
---|
507 | dt_ros = dt_ros_next |
---|
508 | ENDIF |
---|
509 | |
---|
510 | drdt_m = drdt |
---|
511 | |
---|
512 | ENDDO |
---|
513 | ! |
---|
514 | !-- Store derivative and internal timestep values for next PALM step |
---|
515 | particles(n)%rvar1 = dt_ros_last |
---|
516 | particles(n)%rvar2 = dt_ros_next |
---|
517 | particles(n)%rvar3 = drdt_m |
---|
518 | |
---|
519 | new_r = r_ros |
---|
520 | ! |
---|
521 | !-- Radius should not fall below 1E-8 because Rosenbrock method may |
---|
522 | !-- lead to errors otherwise |
---|
523 | new_r = MAX( new_r, 1.0E-8 ) |
---|
524 | |
---|
525 | ENDIF |
---|
526 | |
---|
527 | delta_r = new_r - particles(n)%radius |
---|
528 | |
---|
529 | ! |
---|
530 | !-- Sum up the change in volume of liquid water for the respective grid |
---|
531 | !-- volume (this is needed later on for calculating the release of |
---|
532 | !-- latent heat) |
---|
533 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
534 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
535 | k = particles(n)%z / dz + 1 + offset_ocean_nzt_m1 |
---|
536 | ! only exact if equidistant |
---|
537 | |
---|
538 | ql_c(k,j,i) = ql_c(k,j,i) + particles(n)%weight_factor * & |
---|
539 | rho_l * 1.33333333 * pi * & |
---|
540 | ( new_r**3 - particles(n)%radius**3 ) / & |
---|
541 | ( rho_surface * dx * dy * dz ) |
---|
542 | IF ( ql_c(k,j,i) > 100.0 ) THEN |
---|
543 | WRITE( message_string, * ) 'k=',k,' j=',j,' i=',i, & |
---|
544 | ' ql_c=',ql_c(k,j,i), ' &part(',n,')%wf=', & |
---|
545 | particles(n)%weight_factor,' delta_r=',delta_r |
---|
546 | CALL message( 'advec_particles', 'PA0143', 2, 2, -1, 6, 1 ) |
---|
547 | ENDIF |
---|
548 | |
---|
549 | ! |
---|
550 | !-- Change the droplet radius |
---|
551 | IF ( ( new_r - particles(n)%radius ) < 0.0 .AND. new_r < 0.0 ) & |
---|
552 | THEN |
---|
553 | WRITE( message_string, * ) '#1 k=',k,' j=',j,' i=',i, & |
---|
554 | ' e_s=',e_s, ' e_a=',e_a,' t_int=',t_int, & |
---|
555 | ' &delta_r=',delta_r, & |
---|
556 | ' particle_radius=',particles(n)%radius |
---|
557 | CALL message( 'advec_particles', 'PA0144', 2, 2, -1, 6, 1 ) |
---|
558 | ENDIF |
---|
559 | |
---|
560 | ! |
---|
561 | !-- Sum up the total volume of liquid water (needed below for |
---|
562 | !-- re-calculating the weighting factors) |
---|
563 | ql_v(k,j,i) = ql_v(k,j,i) + particles(n)%weight_factor * new_r**3 |
---|
564 | |
---|
565 | particles(n)%radius = new_r |
---|
566 | |
---|
567 | ! |
---|
568 | !-- Determine radius class of the particle needed for collision |
---|
569 | IF ( ( hall_kernel .OR. wang_kernel ) .AND. use_kernel_tables ) & |
---|
570 | THEN |
---|
571 | particles(n)%class = ( LOG( new_r ) - rclass_lbound ) / & |
---|
572 | ( rclass_ubound - rclass_lbound ) * & |
---|
573 | radius_classes |
---|
574 | particles(n)%class = MIN( particles(n)%class, radius_classes ) |
---|
575 | particles(n)%class = MAX( particles(n)%class, 1 ) |
---|
576 | ENDIF |
---|
577 | |
---|
578 | ENDDO |
---|
579 | CALL cpu_log( log_point_s(42), 'advec_part_cond', 'stop' ) |
---|
580 | |
---|
581 | ! |
---|
582 | !-- Particle growth by collision |
---|
583 | IF ( collision_kernel /= 'none' ) THEN |
---|
584 | |
---|
585 | CALL cpu_log( log_point_s(43), 'advec_part_coll', 'start' ) |
---|
586 | |
---|
587 | DO i = nxl, nxr |
---|
588 | DO j = nys, nyn |
---|
589 | DO k = nzb+1, nzt |
---|
590 | ! |
---|
591 | !-- Collision requires at least two particles in the box |
---|
592 | IF ( prt_count(k,j,i) > 1 ) THEN |
---|
593 | ! |
---|
594 | !-- First, sort particles within the gridbox by their size, |
---|
595 | !-- using Shell's method (see Numerical Recipes) |
---|
596 | !-- NOTE: In case of using particle tails, the re-sorting of |
---|
597 | !-- ---- tails would have to be included here! |
---|
598 | psi = prt_start_index(k,j,i) - 1 |
---|
599 | inc = 1 |
---|
600 | DO WHILE ( inc <= prt_count(k,j,i) ) |
---|
601 | inc = 3 * inc + 1 |
---|
602 | ENDDO |
---|
603 | |
---|
604 | DO WHILE ( inc > 1 ) |
---|
605 | inc = inc / 3 |
---|
606 | DO is = inc+1, prt_count(k,j,i) |
---|
607 | tmp_particle = particles(psi+is) |
---|
608 | js = is |
---|
609 | DO WHILE ( particles(psi+js-inc)%radius > & |
---|
610 | tmp_particle%radius ) |
---|
611 | particles(psi+js) = particles(psi+js-inc) |
---|
612 | js = js - inc |
---|
613 | IF ( js <= inc ) EXIT |
---|
614 | ENDDO |
---|
615 | particles(psi+js) = tmp_particle |
---|
616 | ENDDO |
---|
617 | ENDDO |
---|
618 | |
---|
619 | psi = prt_start_index(k,j,i) |
---|
620 | pse = psi + prt_count(k,j,i)-1 |
---|
621 | |
---|
622 | ! |
---|
623 | !-- Now apply the different kernels |
---|
624 | IF ( ( hall_kernel .OR. wang_kernel ) .AND. & |
---|
625 | use_kernel_tables ) THEN |
---|
626 | ! |
---|
627 | !-- Fast method with pre-calculated efficiencies for |
---|
628 | !-- discrete radius- and dissipation-classes. |
---|
629 | ! |
---|
630 | !-- Determine dissipation class index of this gridbox |
---|
631 | eclass = INT( diss(k,j,i) * 1.0E4 / 1000.0 * & |
---|
632 | dissipation_classes ) + 1 |
---|
633 | IF ( hall_kernel .OR. diss(k,j,i) * 1.0E4 < 0.001 ) THEN |
---|
634 | eclass = 0 ! Hall kernel is used |
---|
635 | ELSE |
---|
636 | eclass = MIN( dissipation_classes, eclass ) |
---|
637 | ENDIF |
---|
638 | |
---|
639 | DO n = pse, psi+1, -1 |
---|
640 | |
---|
641 | integral = 0.0 |
---|
642 | lw_max = 0.0 |
---|
643 | rclass_l = particles(n)%class |
---|
644 | ! |
---|
645 | !-- Calculate growth of collector particle radius using all |
---|
646 | !-- droplets smaller than current droplet |
---|
647 | DO is = psi, n-1 |
---|
648 | |
---|
649 | rclass_s = particles(is)%class |
---|
650 | integral = integral + & |
---|
651 | ( particles(is)%radius**3 * & |
---|
652 | ckernel(rclass_l,rclass_s,eclass) * & |
---|
653 | particles(is)%weight_factor ) |
---|
654 | ! |
---|
655 | !-- Calculate volume of liquid water of the collected |
---|
656 | !-- droplets which is the maximum liquid water available |
---|
657 | !-- for droplet growth |
---|
658 | lw_max = lw_max + ( particles(is)%radius**3 * & |
---|
659 | particles(is)%weight_factor ) |
---|
660 | |
---|
661 | ENDDO |
---|
662 | |
---|
663 | ! |
---|
664 | !-- Change in radius of collector droplet due to collision |
---|
665 | delta_r = 1.0 / ( 3.0 * particles(n)%radius**2 ) * & |
---|
666 | integral * dt_3d * ddx * ddy / dz |
---|
667 | |
---|
668 | ! |
---|
669 | !-- Change in volume of collector droplet due to collision |
---|
670 | delta_v = particles(n)%weight_factor & |
---|
671 | * ( ( particles(n)%radius + delta_r )**3 & |
---|
672 | - particles(n)%radius**3 ) |
---|
673 | |
---|
674 | IF ( lw_max < delta_v .AND. delta_v > 0.0 ) THEN |
---|
675 | !-- replace by message call |
---|
676 | PRINT*, 'Particle has grown to much because the', & |
---|
677 | ' change of volume of particle is larger', & |
---|
678 | ' than liquid water available!' |
---|
679 | |
---|
680 | ELSEIF ( lw_max == delta_v .AND. delta_v > 0.0 ) THEN |
---|
681 | !-- can this case really happen?? |
---|
682 | DO is = psi, n-1 |
---|
683 | |
---|
684 | particles(is)%weight_factor = 0.0 |
---|
685 | particle_mask(is) = .FALSE. |
---|
686 | deleted_particles = deleted_particles + 1 |
---|
687 | |
---|
688 | ENDDO |
---|
689 | |
---|
690 | ELSEIF ( lw_max > delta_v .AND. delta_v > 0.0 ) THEN |
---|
691 | ! |
---|
692 | !-- Calculate new weighting factor of collected droplets |
---|
693 | DO is = psi, n-1 |
---|
694 | |
---|
695 | rclass_s = particles(is)%class |
---|
696 | particles(is)%weight_factor = & |
---|
697 | particles(is)%weight_factor - & |
---|
698 | ( ( ckernel(rclass_l,rclass_s,eclass) * particles(is)%weight_factor & |
---|
699 | / integral ) * delta_v ) |
---|
700 | |
---|
701 | IF ( particles(is)%weight_factor < 0.0 ) THEN |
---|
702 | WRITE( message_string, * ) 'negative ', & |
---|
703 | 'weighting factor: ', & |
---|
704 | particles(is)%weight_factor |
---|
705 | CALL message( 'advec_particles', '', 2, 2,& |
---|
706 | -1, 6, 1 ) |
---|
707 | |
---|
708 | ELSEIF ( particles(is)%weight_factor == 0.0 ) & |
---|
709 | THEN |
---|
710 | |
---|
711 | particles(is)%weight_factor = 0.0 |
---|
712 | particle_mask(is) = .FALSE. |
---|
713 | deleted_particles = deleted_particles + 1 |
---|
714 | |
---|
715 | ENDIF |
---|
716 | |
---|
717 | ENDDO |
---|
718 | |
---|
719 | ENDIF |
---|
720 | |
---|
721 | particles(n)%radius = particles(n)%radius + delta_r |
---|
722 | ql_vp(k,j,i) = ql_vp(k,j,i) + & |
---|
723 | particles(n)%weight_factor & |
---|
724 | * particles(n)%radius**3 |
---|
725 | |
---|
726 | ENDDO |
---|
727 | |
---|
728 | ELSEIF ( ( hall_kernel .OR. wang_kernel ) .AND. & |
---|
729 | .NOT. use_kernel_tables ) THEN |
---|
730 | ! |
---|
731 | !-- Collision efficiencies are calculated for every new |
---|
732 | !-- grid box. First, allocate memory for kernel table. |
---|
733 | !-- Third dimension is 1, because table is re-calculated for |
---|
734 | !-- every new dissipation value. |
---|
735 | ALLOCATE( ckernel(prt_start_index(k,j,i): & |
---|
736 | prt_start_index(k,j,i)+prt_count(k,j,i)-1, & |
---|
737 | prt_start_index(k,j,i): & |
---|
738 | prt_start_index(k,j,i)+prt_count(k,j,i)-1,1:1) ) |
---|
739 | ! |
---|
740 | !-- Now calculate collision efficiencies for this box |
---|
741 | CALL recalculate_kernel( i, j, k ) |
---|
742 | |
---|
743 | DO n = pse, psi+1, -1 |
---|
744 | |
---|
745 | integral = 0.0 |
---|
746 | lw_max = 0.0 |
---|
747 | ! |
---|
748 | !-- Calculate growth of collector particle radius using all |
---|
749 | !-- droplets smaller than current droplet |
---|
750 | DO is = psi, n-1 |
---|
751 | |
---|
752 | integral = integral + particles(is)%radius**3 * & |
---|
753 | ckernel(n,is,1) * & |
---|
754 | particles(is)%weight_factor |
---|
755 | ! |
---|
756 | !-- Calculate volume of liquid water of the collected |
---|
757 | !-- droplets which is the maximum liquid water available |
---|
758 | !-- for droplet growth |
---|
759 | lw_max = lw_max + ( particles(is)%radius**3 * & |
---|
760 | particles(is)%weight_factor ) |
---|
761 | |
---|
762 | ENDDO |
---|
763 | |
---|
764 | ! |
---|
765 | !-- Change in radius of collector droplet due to collision |
---|
766 | delta_r = 1.0 / ( 3.0 * particles(n)%radius**2 ) * & |
---|
767 | integral * dt_3d * ddx * ddy / dz |
---|
768 | |
---|
769 | ! |
---|
770 | !-- Change in volume of collector droplet due to collision |
---|
771 | delta_v = particles(n)%weight_factor & |
---|
772 | * ( ( particles(n)%radius + delta_r )**3 & |
---|
773 | - particles(n)%radius**3 ) |
---|
774 | |
---|
775 | IF ( lw_max < delta_v .AND. delta_v > 0.0 ) THEN |
---|
776 | !-- replace by message call |
---|
777 | PRINT*, 'Particle has grown to much because the', & |
---|
778 | ' change of volume of particle is larger', & |
---|
779 | ' than liquid water available!' |
---|
780 | |
---|
781 | ELSEIF ( lw_max == delta_v .AND. delta_v > 0.0 ) THEN |
---|
782 | !-- can this case really happen?? |
---|
783 | DO is = psi, n-1 |
---|
784 | |
---|
785 | particles(is)%weight_factor = 0.0 |
---|
786 | particle_mask(is) = .FALSE. |
---|
787 | deleted_particles = deleted_particles + 1 |
---|
788 | |
---|
789 | ENDDO |
---|
790 | |
---|
791 | ELSEIF ( lw_max > delta_v .AND. delta_v > 0.0 ) THEN |
---|
792 | ! |
---|
793 | !-- Calculate new weighting factor of collected droplets |
---|
794 | DO is = psi, n-1 |
---|
795 | |
---|
796 | particles(is)%weight_factor = & |
---|
797 | particles(is)%weight_factor - & |
---|
798 | ( ckernel(n,is,1) / integral * delta_v * & |
---|
799 | particles(is)%weight_factor ) |
---|
800 | |
---|
801 | IF ( particles(is)%weight_factor < 0.0 ) THEN |
---|
802 | WRITE( message_string, * ) 'negative ', & |
---|
803 | 'weighting factor: ', & |
---|
804 | particles(is)%weight_factor |
---|
805 | CALL message( 'advec_particles', '', 2, 2,& |
---|
806 | -1, 6, 1 ) |
---|
807 | |
---|
808 | ELSEIF ( particles(is)%weight_factor == 0.0 ) & |
---|
809 | THEN |
---|
810 | |
---|
811 | particles(is)%weight_factor = 0.0 |
---|
812 | particle_mask(is) = .FALSE. |
---|
813 | deleted_particles = deleted_particles + 1 |
---|
814 | |
---|
815 | ENDIF |
---|
816 | |
---|
817 | ENDDO |
---|
818 | |
---|
819 | ENDIF |
---|
820 | |
---|
821 | particles(n)%radius = particles(n)%radius + delta_r |
---|
822 | ql_vp(k,j,i) = ql_vp(k,j,i) + & |
---|
823 | particles(n)%weight_factor & |
---|
824 | * particles(n)%radius**3 |
---|
825 | |
---|
826 | ENDDO |
---|
827 | |
---|
828 | DEALLOCATE( ckernel ) |
---|
829 | |
---|
830 | ELSEIF ( palm_kernel ) THEN |
---|
831 | ! |
---|
832 | !-- PALM collision kernel |
---|
833 | ! |
---|
834 | !-- Calculate the mean radius of all those particles which |
---|
835 | !-- are of smaller size than the current particle and |
---|
836 | !-- use this radius for calculating the collision efficiency |
---|
837 | DO n = psi+prt_count(k,j,i)-1, psi+1, -1 |
---|
838 | |
---|
839 | sl_r3 = 0.0 |
---|
840 | sl_r4 = 0.0 |
---|
841 | |
---|
842 | DO is = n-1, psi, -1 |
---|
843 | IF ( particles(is)%radius < particles(n)%radius ) & |
---|
844 | THEN |
---|
845 | sl_r3 = sl_r3 + particles(is)%weight_factor & |
---|
846 | *( particles(is)%radius**3 ) |
---|
847 | sl_r4 = sl_r4 + particles(is)%weight_factor & |
---|
848 | *( particles(is)%radius**4 ) |
---|
849 | ENDIF |
---|
850 | ENDDO |
---|
851 | |
---|
852 | IF ( ( sl_r3 ) > 0.0 ) THEN |
---|
853 | mean_r = ( sl_r4 ) / ( sl_r3 ) |
---|
854 | |
---|
855 | CALL collision_efficiency( mean_r, & |
---|
856 | particles(n)%radius, & |
---|
857 | effective_coll_efficiency ) |
---|
858 | |
---|
859 | ELSE |
---|
860 | effective_coll_efficiency = 0.0 |
---|
861 | ENDIF |
---|
862 | |
---|
863 | IF ( effective_coll_efficiency > 1.0 .OR. & |
---|
864 | effective_coll_efficiency < 0.0 ) & |
---|
865 | THEN |
---|
866 | WRITE( message_string, * ) 'collision_efficien' , & |
---|
867 | 'cy out of range:' ,effective_coll_efficiency |
---|
868 | CALL message( 'advec_particles', 'PA0145', 2, 2, & |
---|
869 | -1, 6, 1 ) |
---|
870 | ENDIF |
---|
871 | |
---|
872 | ! |
---|
873 | !-- Interpolation of ... |
---|
874 | ii = particles(n)%x * ddx |
---|
875 | jj = particles(n)%y * ddy |
---|
876 | kk = ( particles(n)%z + 0.5 * dz ) / dz |
---|
877 | |
---|
878 | x = particles(n)%x - ii * dx |
---|
879 | y = particles(n)%y - jj * dy |
---|
880 | aa = x**2 + y**2 |
---|
881 | bb = ( dx - x )**2 + y**2 |
---|
882 | cc = x**2 + ( dy - y )**2 |
---|
883 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
884 | gg = aa + bb + cc + dd |
---|
885 | |
---|
886 | ql_int_l = ( (gg-aa) * ql(kk,jj,ii) + (gg-bb) * & |
---|
887 | ql(kk,jj,ii+1) & |
---|
888 | + (gg-cc) * ql(kk,jj+1,ii) + ( gg-dd ) * & |
---|
889 | ql(kk,jj+1,ii+1) & |
---|
890 | ) / ( 3.0 * gg ) |
---|
891 | |
---|
892 | ql_int_u = ( (gg-aa) * ql(kk+1,jj,ii) + (gg-bb) * & |
---|
893 | ql(kk+1,jj,ii+1) & |
---|
894 | + (gg-cc) * ql(kk+1,jj+1,ii) + (gg-dd) * & |
---|
895 | ql(kk+1,jj+1,ii+1) & |
---|
896 | ) / ( 3.0 * gg ) |
---|
897 | |
---|
898 | ql_int = ql_int_l + ( particles(n)%z - zu(kk) ) / dz *& |
---|
899 | ( ql_int_u - ql_int_l ) |
---|
900 | |
---|
901 | ! |
---|
902 | !-- Interpolate u velocity-component |
---|
903 | ii = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
904 | jj = particles(n)%y * ddy |
---|
905 | kk = ( particles(n)%z + 0.5 * dz ) / dz ! only if eqist |
---|
906 | |
---|
907 | IF ( ( particles(n)%z - zu(kk) ) > (0.5*dz) ) kk = kk+1 |
---|
908 | |
---|
909 | x = particles(n)%x + ( 0.5 - ii ) * dx |
---|
910 | y = particles(n)%y - jj * dy |
---|
911 | aa = x**2 + y**2 |
---|
912 | bb = ( dx - x )**2 + y**2 |
---|
913 | cc = x**2 + ( dy - y )**2 |
---|
914 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
915 | gg = aa + bb + cc + dd |
---|
916 | |
---|
917 | u_int_l = ( (gg-aa) * u(kk,jj,ii) + (gg-bb) * & |
---|
918 | u(kk,jj,ii+1) & |
---|
919 | + (gg-cc) * u(kk,jj+1,ii) + (gg-dd) * & |
---|
920 | u(kk,jj+1,ii+1) & |
---|
921 | ) / ( 3.0 * gg ) - u_gtrans |
---|
922 | IF ( kk+1 == nzt+1 ) THEN |
---|
923 | u_int = u_int_l |
---|
924 | ELSE |
---|
925 | u_int_u = ( (gg-aa) * u(kk+1,jj,ii) + (gg-bb) * & |
---|
926 | u(kk+1,jj,ii+1) & |
---|
927 | + (gg-cc) * u(kk+1,jj+1,ii) + (gg-dd) * & |
---|
928 | u(kk+1,jj+1,ii+1) & |
---|
929 | ) / ( 3.0 * gg ) - u_gtrans |
---|
930 | u_int = u_int_l + ( particles(n)%z - zu(kk) ) / dz & |
---|
931 | * ( u_int_u - u_int_l ) |
---|
932 | ENDIF |
---|
933 | |
---|
934 | ! |
---|
935 | !-- Same procedure for interpolation of the v velocity-com- |
---|
936 | !-- ponent (adopt index k from u velocity-component) |
---|
937 | ii = particles(n)%x * ddx |
---|
938 | jj = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
939 | |
---|
940 | x = particles(n)%x - ii * dx |
---|
941 | y = particles(n)%y + ( 0.5 - jj ) * dy |
---|
942 | aa = x**2 + y**2 |
---|
943 | bb = ( dx - x )**2 + y**2 |
---|
944 | cc = x**2 + ( dy - y )**2 |
---|
945 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
946 | gg = aa + bb + cc + dd |
---|
947 | |
---|
948 | v_int_l = ( ( gg-aa ) * v(kk,jj,ii) + ( gg-bb ) * & |
---|
949 | v(kk,jj,ii+1) & |
---|
950 | + ( gg-cc ) * v(kk,jj+1,ii) + ( gg-dd ) * & |
---|
951 | v(kk,jj+1,ii+1) & |
---|
952 | ) / ( 3.0 * gg ) - v_gtrans |
---|
953 | IF ( kk+1 == nzt+1 ) THEN |
---|
954 | v_int = v_int_l |
---|
955 | ELSE |
---|
956 | v_int_u = ( (gg-aa) * v(kk+1,jj,ii) + (gg-bb) * & |
---|
957 | v(kk+1,jj,ii+1) & |
---|
958 | + (gg-cc) * v(kk+1,jj+1,ii) + (gg-dd) * & |
---|
959 | v(kk+1,jj+1,ii+1) & |
---|
960 | ) / ( 3.0 * gg ) - v_gtrans |
---|
961 | v_int = v_int_l + ( particles(n)%z - zu(kk) ) / dz & |
---|
962 | * ( v_int_u - v_int_l ) |
---|
963 | ENDIF |
---|
964 | |
---|
965 | ! |
---|
966 | !-- Same procedure for interpolation of the w velocity-com- |
---|
967 | !-- ponent (adopt index i from v velocity-component) |
---|
968 | jj = particles(n)%y * ddy |
---|
969 | kk = particles(n)%z / dz |
---|
970 | |
---|
971 | x = particles(n)%x - ii * dx |
---|
972 | y = particles(n)%y - jj * dy |
---|
973 | aa = x**2 + y**2 |
---|
974 | bb = ( dx - x )**2 + y**2 |
---|
975 | cc = x**2 + ( dy - y )**2 |
---|
976 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
977 | gg = aa + bb + cc + dd |
---|
978 | |
---|
979 | w_int_l = ( ( gg-aa ) * w(kk,jj,ii) + ( gg-bb ) * & |
---|
980 | w(kk,jj,ii+1) & |
---|
981 | + ( gg-cc ) * w(kk,jj+1,ii) + ( gg-dd ) * & |
---|
982 | w(kk,jj+1,ii+1) & |
---|
983 | ) / ( 3.0 * gg ) |
---|
984 | IF ( kk+1 == nzt+1 ) THEN |
---|
985 | w_int = w_int_l |
---|
986 | ELSE |
---|
987 | w_int_u = ( (gg-aa) * w(kk+1,jj,ii) + (gg-bb) * & |
---|
988 | w(kk+1,jj,ii+1) & |
---|
989 | + (gg-cc) * w(kk+1,jj+1,ii) + (gg-dd) * & |
---|
990 | w(kk+1,jj+1,ii+1) & |
---|
991 | ) / ( 3.0 * gg ) |
---|
992 | w_int = w_int_l + ( particles(n)%z - zw(kk) ) / dz & |
---|
993 | * ( w_int_u - w_int_l ) |
---|
994 | ENDIF |
---|
995 | |
---|
996 | ! |
---|
997 | !-- Change in radius due to collision |
---|
998 | delta_r = effective_coll_efficiency / 3.0 & |
---|
999 | * pi * sl_r3 * ddx * ddy / dz & |
---|
1000 | * SQRT( ( u_int - particles(n)%speed_x )**2 & |
---|
1001 | + ( v_int - particles(n)%speed_y )**2 & |
---|
1002 | + ( w_int - particles(n)%speed_z )**2 & |
---|
1003 | ) * dt_3d |
---|
1004 | ! |
---|
1005 | !-- Change in volume due to collision |
---|
1006 | delta_v = particles(n)%weight_factor & |
---|
1007 | * ( ( particles(n)%radius + delta_r )**3 & |
---|
1008 | - particles(n)%radius**3 ) |
---|
1009 | |
---|
1010 | ! |
---|
1011 | !-- Check if collected particles provide enough LWC for |
---|
1012 | !-- volume change of collector particle |
---|
1013 | IF ( delta_v >= sl_r3 .AND. sl_r3 > 0.0 ) THEN |
---|
1014 | |
---|
1015 | delta_r = ( ( sl_r3/particles(n)%weight_factor ) & |
---|
1016 | + particles(n)%radius**3 )**( 1./3. ) & |
---|
1017 | - particles(n)%radius |
---|
1018 | |
---|
1019 | DO is = n-1, psi, -1 |
---|
1020 | IF ( particles(is)%radius < & |
---|
1021 | particles(n)%radius ) THEN |
---|
1022 | particles(is)%weight_factor = 0.0 |
---|
1023 | particle_mask(is) = .FALSE. |
---|
1024 | deleted_particles = deleted_particles + 1 |
---|
1025 | ENDIF |
---|
1026 | ENDDO |
---|
1027 | |
---|
1028 | ELSE IF ( delta_v < sl_r3 .AND. sl_r3 > 0.0 ) THEN |
---|
1029 | |
---|
1030 | DO is = n-1, psi, -1 |
---|
1031 | IF ( particles(is)%radius < particles(n)%radius & |
---|
1032 | .AND. sl_r3 > 0.0 ) THEN |
---|
1033 | particles(is)%weight_factor = & |
---|
1034 | ( ( particles(is)%weight_factor & |
---|
1035 | * ( particles(is)%radius**3 ) ) & |
---|
1036 | - ( delta_v & |
---|
1037 | * particles(is)%weight_factor & |
---|
1038 | * ( particles(is)%radius**3 ) & |
---|
1039 | / sl_r3 ) ) & |
---|
1040 | / ( particles(is)%radius**3 ) |
---|
1041 | |
---|
1042 | IF ( particles(is)%weight_factor < 0.0 ) THEN |
---|
1043 | WRITE( message_string, * ) 'negative ', & |
---|
1044 | 'weighting factor: ', & |
---|
1045 | particles(is)%weight_factor |
---|
1046 | CALL message( 'advec_particles', '', 2, & |
---|
1047 | 2, -1, 6, 1 ) |
---|
1048 | ENDIF |
---|
1049 | ENDIF |
---|
1050 | ENDDO |
---|
1051 | ENDIF |
---|
1052 | |
---|
1053 | particles(n)%radius = particles(n)%radius + delta_r |
---|
1054 | ql_vp(k,j,i) = ql_vp(k,j,i) + & |
---|
1055 | particles(n)%weight_factor * & |
---|
1056 | ( particles(n)%radius**3 ) |
---|
1057 | ENDDO |
---|
1058 | |
---|
1059 | ENDIF ! collision kernel |
---|
1060 | |
---|
1061 | ql_vp(k,j,i) = ql_vp(k,j,i) + particles(psi)%weight_factor & |
---|
1062 | * particles(psi)%radius**3 |
---|
1063 | |
---|
1064 | |
---|
1065 | ELSE IF ( prt_count(k,j,i) == 1 ) THEN |
---|
1066 | |
---|
1067 | psi = prt_start_index(k,j,i) |
---|
1068 | ql_vp(k,j,i) = particles(psi)%weight_factor * & |
---|
1069 | particles(psi)%radius**3 |
---|
1070 | ENDIF |
---|
1071 | |
---|
1072 | ! |
---|
1073 | !-- Check if condensation of LWC was conserved during collision |
---|
1074 | !-- process |
---|
1075 | IF ( ql_v(k,j,i) /= 0.0 ) THEN |
---|
1076 | IF ( ql_vp(k,j,i) / ql_v(k,j,i) >= 1.0001 .OR. & |
---|
1077 | ql_vp(k,j,i) / ql_v(k,j,i) <= 0.9999 ) THEN |
---|
1078 | WRITE( message_string, * ) 'LWC is not conserved during',& |
---|
1079 | ' collision! ', & |
---|
1080 | 'LWC after condensation: ', & |
---|
1081 | ql_v(k,j,i), & |
---|
1082 | ' LWC after collision: ', & |
---|
1083 | ql_vp(k,j,i) |
---|
1084 | CALL message( 'advec_particles', '', 2, 2, -1, 6, & |
---|
1085 | 1 ) |
---|
1086 | ENDIF |
---|
1087 | ENDIF |
---|
1088 | |
---|
1089 | ENDDO |
---|
1090 | ENDDO |
---|
1091 | ENDDO |
---|
1092 | |
---|
1093 | ENDIF ! collision handling |
---|
1094 | |
---|
1095 | CALL cpu_log( log_point_s(43), 'advec_part_coll', 'stop' ) |
---|
1096 | |
---|
1097 | ENDIF ! cloud droplet handling |
---|
1098 | |
---|
1099 | |
---|
1100 | ! |
---|
1101 | !-- Particle advection. |
---|
1102 | !-- In case of including the SGS velocities, the LES timestep has probably |
---|
1103 | !-- to be split into several smaller timesteps because of the Lagrangian |
---|
1104 | !-- timescale condition. Because the number of timesteps to be carried out is |
---|
1105 | !-- not known at the beginning, these steps are carried out in an infinite loop |
---|
1106 | !-- with exit condition. |
---|
1107 | ! |
---|
1108 | !-- If SGS velocities are used, gradients of the TKE have to be calculated and |
---|
1109 | !-- boundary conditions have to be set first. Also, horizontally averaged |
---|
1110 | !-- profiles of the SGS TKE and the resolved-scale velocity variances are |
---|
1111 | !-- needed. |
---|
1112 | IF ( use_sgs_for_particles ) THEN |
---|
1113 | |
---|
1114 | ! |
---|
1115 | !-- TKE gradient along x and y |
---|
1116 | DO i = nxl, nxr |
---|
1117 | DO j = nys, nyn |
---|
1118 | DO k = nzb, nzt+1 |
---|
1119 | |
---|
1120 | IF ( k <= nzb_s_inner(j,i-1) .AND. & |
---|
1121 | k > nzb_s_inner(j,i) .AND. & |
---|
1122 | k > nzb_s_inner(j,i+1) ) THEN |
---|
1123 | de_dx(k,j,i) = 2.0 * sgs_wfu_part * & |
---|
1124 | ( e(k,j,i+1) - e(k,j,i) ) * ddx |
---|
1125 | ELSEIF ( k > nzb_s_inner(j,i-1) .AND. & |
---|
1126 | k > nzb_s_inner(j,i) .AND. & |
---|
1127 | k <= nzb_s_inner(j,i+1) ) THEN |
---|
1128 | de_dx(k,j,i) = 2.0 * sgs_wfu_part * & |
---|
1129 | ( e(k,j,i) - e(k,j,i-1) ) * ddx |
---|
1130 | ELSEIF ( k < nzb_s_inner(j,i) .AND. k < nzb_s_inner(j,i+1) ) & |
---|
1131 | THEN |
---|
1132 | de_dx(k,j,i) = 0.0 |
---|
1133 | ELSEIF ( k < nzb_s_inner(j,i-1) .AND. k < nzb_s_inner(j,i) ) & |
---|
1134 | THEN |
---|
1135 | de_dx(k,j,i) = 0.0 |
---|
1136 | ELSE |
---|
1137 | de_dx(k,j,i) = sgs_wfu_part * & |
---|
1138 | ( e(k,j,i+1) - e(k,j,i-1) ) * ddx |
---|
1139 | ENDIF |
---|
1140 | |
---|
1141 | IF ( k <= nzb_s_inner(j-1,i) .AND. & |
---|
1142 | k > nzb_s_inner(j,i) .AND. & |
---|
1143 | k > nzb_s_inner(j+1,i) ) THEN |
---|
1144 | de_dy(k,j,i) = 2.0 * sgs_wfv_part * & |
---|
1145 | ( e(k,j+1,i) - e(k,j,i) ) * ddy |
---|
1146 | ELSEIF ( k > nzb_s_inner(j-1,i) .AND. & |
---|
1147 | k > nzb_s_inner(j,i) .AND. & |
---|
1148 | k <= nzb_s_inner(j+1,i) ) THEN |
---|
1149 | de_dy(k,j,i) = 2.0 * sgs_wfv_part * & |
---|
1150 | ( e(k,j,i) - e(k,j-1,i) ) * ddy |
---|
1151 | ELSEIF ( k < nzb_s_inner(j,i) .AND. k < nzb_s_inner(j+1,i) ) & |
---|
1152 | THEN |
---|
1153 | de_dy(k,j,i) = 0.0 |
---|
1154 | ELSEIF ( k < nzb_s_inner(j-1,i) .AND. k < nzb_s_inner(j,i) ) & |
---|
1155 | THEN |
---|
1156 | de_dy(k,j,i) = 0.0 |
---|
1157 | ELSE |
---|
1158 | de_dy(k,j,i) = sgs_wfv_part * & |
---|
1159 | ( e(k,j+1,i) - e(k,j-1,i) ) * ddy |
---|
1160 | ENDIF |
---|
1161 | |
---|
1162 | ENDDO |
---|
1163 | ENDDO |
---|
1164 | ENDDO |
---|
1165 | |
---|
1166 | ! |
---|
1167 | !-- TKE gradient along z, including bottom and top boundary conditions |
---|
1168 | DO i = nxl, nxr |
---|
1169 | DO j = nys, nyn |
---|
1170 | |
---|
1171 | DO k = nzb_s_inner(j,i)+2, nzt-1 |
---|
1172 | de_dz(k,j,i) = 2.0 * sgs_wfw_part * & |
---|
1173 | ( e(k+1,j,i) - e(k-1,j,i) ) / ( zu(k+1)-zu(k-1) ) |
---|
1174 | ENDDO |
---|
1175 | |
---|
1176 | k = nzb_s_inner(j,i) |
---|
1177 | de_dz(nzb:k,j,i) = 0.0 |
---|
1178 | de_dz(k+1,j,i) = 2.0 * sgs_wfw_part * ( e(k+2,j,i) - e(k+1,j,i) ) & |
---|
1179 | / ( zu(k+2) - zu(k+1) ) |
---|
1180 | de_dz(nzt,j,i) = 0.0 |
---|
1181 | de_dz(nzt+1,j,i) = 0.0 |
---|
1182 | ENDDO |
---|
1183 | ENDDO |
---|
1184 | |
---|
1185 | ! |
---|
1186 | !-- Lateral boundary conditions |
---|
1187 | CALL exchange_horiz( de_dx, nbgp ) |
---|
1188 | CALL exchange_horiz( de_dy, nbgp ) |
---|
1189 | CALL exchange_horiz( de_dz, nbgp ) |
---|
1190 | CALL exchange_horiz( diss, nbgp ) |
---|
1191 | |
---|
1192 | ! |
---|
1193 | !-- Calculate the horizontally averaged profiles of SGS TKE and resolved |
---|
1194 | !-- velocity variances (they may have been already calculated in routine |
---|
1195 | !-- flow_statistics). |
---|
1196 | IF ( .NOT. flow_statistics_called ) THEN |
---|
1197 | ! |
---|
1198 | !-- First calculate horizontally averaged profiles of the horizontal |
---|
1199 | !-- velocities. |
---|
1200 | sums_l(:,1,0) = 0.0 |
---|
1201 | sums_l(:,2,0) = 0.0 |
---|
1202 | |
---|
1203 | DO i = nxl, nxr |
---|
1204 | DO j = nys, nyn |
---|
1205 | DO k = nzb_s_outer(j,i), nzt+1 |
---|
1206 | sums_l(k,1,0) = sums_l(k,1,0) + u(k,j,i) |
---|
1207 | sums_l(k,2,0) = sums_l(k,2,0) + v(k,j,i) |
---|
1208 | ENDDO |
---|
1209 | ENDDO |
---|
1210 | ENDDO |
---|
1211 | |
---|
1212 | #if defined( __parallel ) |
---|
1213 | ! |
---|
1214 | !-- Compute total sum from local sums |
---|
1215 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1216 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, & |
---|
1217 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1218 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1219 | CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, & |
---|
1220 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1221 | #else |
---|
1222 | sums(:,1) = sums_l(:,1,0) |
---|
1223 | sums(:,2) = sums_l(:,2,0) |
---|
1224 | #endif |
---|
1225 | |
---|
1226 | ! |
---|
1227 | !-- Final values are obtained by division by the total number of grid |
---|
1228 | !-- points used for the summation. |
---|
1229 | hom(:,1,1,0) = sums(:,1) / ngp_2dh_outer(:,0) ! u |
---|
1230 | hom(:,1,2,0) = sums(:,2) / ngp_2dh_outer(:,0) ! v |
---|
1231 | |
---|
1232 | ! |
---|
1233 | !-- Now calculate the profiles of SGS TKE and the resolved-scale |
---|
1234 | !-- velocity variances |
---|
1235 | sums_l(:,8,0) = 0.0 |
---|
1236 | sums_l(:,30,0) = 0.0 |
---|
1237 | sums_l(:,31,0) = 0.0 |
---|
1238 | sums_l(:,32,0) = 0.0 |
---|
1239 | DO i = nxl, nxr |
---|
1240 | DO j = nys, nyn |
---|
1241 | DO k = nzb_s_outer(j,i), nzt+1 |
---|
1242 | sums_l(k,8,0) = sums_l(k,8,0) + e(k,j,i) |
---|
1243 | sums_l(k,30,0) = sums_l(k,30,0) + & |
---|
1244 | ( u(k,j,i) - hom(k,1,1,0) )**2 |
---|
1245 | sums_l(k,31,0) = sums_l(k,31,0) + & |
---|
1246 | ( v(k,j,i) - hom(k,1,2,0) )**2 |
---|
1247 | sums_l(k,32,0) = sums_l(k,32,0) + w(k,j,i)**2 |
---|
1248 | ENDDO |
---|
1249 | ENDDO |
---|
1250 | ENDDO |
---|
1251 | |
---|
1252 | #if defined( __parallel ) |
---|
1253 | ! |
---|
1254 | !-- Compute total sum from local sums |
---|
1255 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1256 | CALL MPI_ALLREDUCE( sums_l(nzb,8,0), sums(nzb,8), nzt+2-nzb, & |
---|
1257 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1258 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1259 | CALL MPI_ALLREDUCE( sums_l(nzb,30,0), sums(nzb,30), nzt+2-nzb, & |
---|
1260 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1261 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1262 | CALL MPI_ALLREDUCE( sums_l(nzb,31,0), sums(nzb,31), nzt+2-nzb, & |
---|
1263 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1264 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1265 | CALL MPI_ALLREDUCE( sums_l(nzb,32,0), sums(nzb,32), nzt+2-nzb, & |
---|
1266 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1267 | |
---|
1268 | #else |
---|
1269 | sums(:,8) = sums_l(:,8,0) |
---|
1270 | sums(:,30) = sums_l(:,30,0) |
---|
1271 | sums(:,31) = sums_l(:,31,0) |
---|
1272 | sums(:,32) = sums_l(:,32,0) |
---|
1273 | #endif |
---|
1274 | |
---|
1275 | ! |
---|
1276 | !-- Final values are obtained by division by the total number of grid |
---|
1277 | !-- points used for the summation. |
---|
1278 | hom(:,1,8,0) = sums(:,8) / ngp_2dh_outer(:,0) ! e |
---|
1279 | hom(:,1,30,0) = sums(:,30) / ngp_2dh_outer(:,0) ! u*2 |
---|
1280 | hom(:,1,31,0) = sums(:,31) / ngp_2dh_outer(:,0) ! v*2 |
---|
1281 | hom(:,1,32,0) = sums(:,32) / ngp_2dh_outer(:,0) ! w*2 |
---|
1282 | |
---|
1283 | ENDIF |
---|
1284 | |
---|
1285 | ENDIF |
---|
1286 | |
---|
1287 | ! |
---|
1288 | !-- Initialize variables used for accumulating the number of particles |
---|
1289 | !-- exchanged between the subdomains during all sub-timesteps (if sgs |
---|
1290 | !-- velocities are included). These data are output further below on the |
---|
1291 | !-- particle statistics file. |
---|
1292 | trlp_count_sum = 0 |
---|
1293 | trlp_count_recv_sum = 0 |
---|
1294 | trrp_count_sum = 0 |
---|
1295 | trrp_count_recv_sum = 0 |
---|
1296 | trsp_count_sum = 0 |
---|
1297 | trsp_count_recv_sum = 0 |
---|
1298 | trnp_count_sum = 0 |
---|
1299 | trnp_count_recv_sum = 0 |
---|
1300 | |
---|
1301 | ! |
---|
1302 | !-- Initialize the variable storing the total time that a particle has advanced |
---|
1303 | !-- within the timestep procedure |
---|
1304 | particles(1:number_of_particles)%dt_sum = 0.0 |
---|
1305 | |
---|
1306 | ! |
---|
1307 | !-- Timestep loop. |
---|
1308 | !-- This loop has to be repeated until the advection time of every particle |
---|
1309 | !-- (in the total domain!) has reached the LES timestep (dt_3d) |
---|
1310 | DO |
---|
1311 | |
---|
1312 | CALL cpu_log( log_point_s(44), 'advec_part_advec', 'start' ) |
---|
1313 | |
---|
1314 | ! |
---|
1315 | !-- Initialize the switch used for the loop exit condition checked at the |
---|
1316 | !-- end of this loop. |
---|
1317 | !-- If at least one particle has failed to reach the LES timestep, this |
---|
1318 | !-- switch will be set false. |
---|
1319 | dt_3d_reached_l = .TRUE. |
---|
1320 | |
---|
1321 | DO n = 1, number_of_particles |
---|
1322 | ! |
---|
1323 | !-- Move particles only if the LES timestep has not (approximately) been |
---|
1324 | !-- reached |
---|
1325 | IF ( ( dt_3d - particles(n)%dt_sum ) < 1E-8 ) CYCLE |
---|
1326 | |
---|
1327 | ! |
---|
1328 | !-- Interpolate u velocity-component, determine left, front, bottom |
---|
1329 | !-- index of u-array |
---|
1330 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
1331 | j = particles(n)%y * ddy |
---|
1332 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
1333 | + offset_ocean_nzt ! only exact if equidistant |
---|
1334 | |
---|
1335 | ! |
---|
1336 | !-- Interpolation of the velocity components in the xy-plane |
---|
1337 | x = particles(n)%x + ( 0.5 - i ) * dx |
---|
1338 | y = particles(n)%y - j * dy |
---|
1339 | aa = x**2 + y**2 |
---|
1340 | bb = ( dx - x )**2 + y**2 |
---|
1341 | cc = x**2 + ( dy - y )**2 |
---|
1342 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
1343 | gg = aa + bb + cc + dd |
---|
1344 | |
---|
1345 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
1346 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * u(k,j+1,i+1) & |
---|
1347 | ) / ( 3.0 * gg ) - u_gtrans |
---|
1348 | IF ( k+1 == nzt+1 ) THEN |
---|
1349 | u_int = u_int_l |
---|
1350 | ELSE |
---|
1351 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
1352 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * u(k+1,j+1,i+1) & |
---|
1353 | ) / ( 3.0 * gg ) - u_gtrans |
---|
1354 | u_int = u_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
1355 | ( u_int_u - u_int_l ) |
---|
1356 | ENDIF |
---|
1357 | |
---|
1358 | ! |
---|
1359 | !-- Same procedure for interpolation of the v velocity-component (adopt |
---|
1360 | !-- index k from u velocity-component) |
---|
1361 | i = particles(n)%x * ddx |
---|
1362 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
1363 | |
---|
1364 | x = particles(n)%x - i * dx |
---|
1365 | y = particles(n)%y + ( 0.5 - j ) * dy |
---|
1366 | aa = x**2 + y**2 |
---|
1367 | bb = ( dx - x )**2 + y**2 |
---|
1368 | cc = x**2 + ( dy - y )**2 |
---|
1369 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
1370 | gg = aa + bb + cc + dd |
---|
1371 | |
---|
1372 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
1373 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
1374 | ) / ( 3.0 * gg ) - v_gtrans |
---|
1375 | IF ( k+1 == nzt+1 ) THEN |
---|
1376 | v_int = v_int_l |
---|
1377 | ELSE |
---|
1378 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
1379 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
1380 | ) / ( 3.0 * gg ) - v_gtrans |
---|
1381 | v_int = v_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
1382 | ( v_int_u - v_int_l ) |
---|
1383 | ENDIF |
---|
1384 | |
---|
1385 | ! |
---|
1386 | !-- Same procedure for interpolation of the w velocity-component (adopt |
---|
1387 | !-- index i from v velocity-component) |
---|
1388 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
1389 | j = particles(n)%y * ddy |
---|
1390 | k = particles(n)%z / dz + offset_ocean_nzt_m1 |
---|
1391 | |
---|
1392 | x = particles(n)%x - i * dx |
---|
1393 | y = particles(n)%y - j * dy |
---|
1394 | aa = x**2 + y**2 |
---|
1395 | bb = ( dx - x )**2 + y**2 |
---|
1396 | cc = x**2 + ( dy - y )**2 |
---|
1397 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
1398 | gg = aa + bb + cc + dd |
---|
1399 | |
---|
1400 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
1401 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
1402 | ) / ( 3.0 * gg ) |
---|
1403 | IF ( k+1 == nzt+1 ) THEN |
---|
1404 | w_int = w_int_l |
---|
1405 | ELSE |
---|
1406 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
1407 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
1408 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
1409 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
1410 | ) / ( 3.0 * gg ) |
---|
1411 | w_int = w_int_l + ( particles(n)%z - zw(k) ) / dz * & |
---|
1412 | ( w_int_u - w_int_l ) |
---|
1413 | ENDIF |
---|
1414 | ELSE |
---|
1415 | w_int = 0.0 |
---|
1416 | ENDIF |
---|
1417 | |
---|
1418 | ! |
---|
1419 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
1420 | !-- velocities |
---|
1421 | IF ( use_sgs_for_particles ) THEN |
---|
1422 | ! |
---|
1423 | !-- Interpolate TKE |
---|
1424 | i = particles(n)%x * ddx |
---|
1425 | j = particles(n)%y * ddy |
---|
1426 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
1427 | + offset_ocean_nzt ! only exact if eq.dist |
---|
1428 | |
---|
1429 | IF ( topography == 'flat' ) THEN |
---|
1430 | |
---|
1431 | x = particles(n)%x - i * dx |
---|
1432 | y = particles(n)%y - j * dy |
---|
1433 | aa = x**2 + y**2 |
---|
1434 | bb = ( dx - x )**2 + y**2 |
---|
1435 | cc = x**2 + ( dy - y )**2 |
---|
1436 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
1437 | gg = aa + bb + cc + dd |
---|
1438 | |
---|
1439 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
1440 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
1441 | ) / ( 3.0 * gg ) |
---|
1442 | |
---|
1443 | IF ( k+1 == nzt+1 ) THEN |
---|
1444 | e_int = e_int_l |
---|
1445 | ELSE |
---|
1446 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
1447 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
1448 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
1449 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
1450 | ) / ( 3.0 * gg ) |
---|
1451 | e_int = e_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
1452 | ( e_int_u - e_int_l ) |
---|
1453 | ENDIF |
---|
1454 | |
---|
1455 | ! |
---|
1456 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
1457 | !-- all position variables from above (TKE)) |
---|
1458 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
1459 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
1460 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
1461 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
1462 | ) / ( 3.0 * gg ) |
---|
1463 | |
---|
1464 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
1465 | de_dx_int = de_dx_int_l |
---|
1466 | ELSE |
---|
1467 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
1468 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
1469 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
1470 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
1471 | ) / ( 3.0 * gg ) |
---|
1472 | de_dx_int = de_dx_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
1473 | ( de_dx_int_u - de_dx_int_l ) |
---|
1474 | ENDIF |
---|
1475 | |
---|
1476 | ! |
---|
1477 | !-- Interpolate the TKE gradient along y |
---|
1478 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
1479 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
1480 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
1481 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
1482 | ) / ( 3.0 * gg ) |
---|
1483 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
1484 | de_dy_int = de_dy_int_l |
---|
1485 | ELSE |
---|
1486 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
1487 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
1488 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
1489 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
1490 | ) / ( 3.0 * gg ) |
---|
1491 | de_dy_int = de_dy_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
1492 | ( de_dy_int_u - de_dy_int_l ) |
---|
1493 | ENDIF |
---|
1494 | |
---|
1495 | ! |
---|
1496 | !-- Interpolate the TKE gradient along z |
---|
1497 | IF ( particles(n)%z < 0.5 * dz ) THEN |
---|
1498 | de_dz_int = 0.0 |
---|
1499 | ELSE |
---|
1500 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
1501 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
1502 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
1503 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
1504 | ) / ( 3.0 * gg ) |
---|
1505 | |
---|
1506 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
1507 | de_dz_int = de_dz_int_l |
---|
1508 | ELSE |
---|
1509 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
1510 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
1511 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
1512 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
1513 | ) / ( 3.0 * gg ) |
---|
1514 | de_dz_int = de_dz_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
1515 | ( de_dz_int_u - de_dz_int_l ) |
---|
1516 | ENDIF |
---|
1517 | ENDIF |
---|
1518 | |
---|
1519 | ! |
---|
1520 | !-- Interpolate the dissipation of TKE |
---|
1521 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
1522 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
1523 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
1524 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
1525 | ) / ( 3.0 * gg ) |
---|
1526 | |
---|
1527 | IF ( k+1 == nzt+1 ) THEN |
---|
1528 | diss_int = diss_int_l |
---|
1529 | ELSE |
---|
1530 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
1531 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
1532 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
1533 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
1534 | ) / ( 3.0 * gg ) |
---|
1535 | diss_int = diss_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
1536 | ( diss_int_u - diss_int_l ) |
---|
1537 | ENDIF |
---|
1538 | |
---|
1539 | ELSE |
---|
1540 | |
---|
1541 | ! |
---|
1542 | !-- In case that there are buildings it has to be determined |
---|
1543 | !-- how many of the gridpoints defining the particle box are |
---|
1544 | !-- situated within a building |
---|
1545 | !-- gp_outside_of_building(1): i,j,k |
---|
1546 | !-- gp_outside_of_building(2): i,j+1,k |
---|
1547 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
1548 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
1549 | !-- gp_outside_of_building(5): i+1,j,k |
---|
1550 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
1551 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
1552 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
1553 | |
---|
1554 | gp_outside_of_building = 0 |
---|
1555 | location = 0.0 |
---|
1556 | num_gp = 0 |
---|
1557 | |
---|
1558 | IF ( k > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
1559 | num_gp = num_gp + 1 |
---|
1560 | gp_outside_of_building(1) = 1 |
---|
1561 | location(num_gp,1) = i * dx |
---|
1562 | location(num_gp,2) = j * dy |
---|
1563 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1564 | ei(num_gp) = e(k,j,i) |
---|
1565 | dissi(num_gp) = diss(k,j,i) |
---|
1566 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
1567 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
1568 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
1569 | ENDIF |
---|
1570 | |
---|
1571 | IF ( k > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
1572 | THEN |
---|
1573 | num_gp = num_gp + 1 |
---|
1574 | gp_outside_of_building(2) = 1 |
---|
1575 | location(num_gp,1) = i * dx |
---|
1576 | location(num_gp,2) = (j+1) * dy |
---|
1577 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1578 | ei(num_gp) = e(k,j+1,i) |
---|
1579 | dissi(num_gp) = diss(k,j+1,i) |
---|
1580 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
1581 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
1582 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
1583 | ENDIF |
---|
1584 | |
---|
1585 | IF ( k+1 > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
1586 | num_gp = num_gp + 1 |
---|
1587 | gp_outside_of_building(3) = 1 |
---|
1588 | location(num_gp,1) = i * dx |
---|
1589 | location(num_gp,2) = j * dy |
---|
1590 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
1591 | ei(num_gp) = e(k+1,j,i) |
---|
1592 | dissi(num_gp) = diss(k+1,j,i) |
---|
1593 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
1594 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
1595 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
1596 | ENDIF |
---|
1597 | |
---|
1598 | IF ( k+1 > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
1599 | THEN |
---|
1600 | num_gp = num_gp + 1 |
---|
1601 | gp_outside_of_building(4) = 1 |
---|
1602 | location(num_gp,1) = i * dx |
---|
1603 | location(num_gp,2) = (j+1) * dy |
---|
1604 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
1605 | ei(num_gp) = e(k+1,j+1,i) |
---|
1606 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
1607 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
1608 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
1609 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
1610 | ENDIF |
---|
1611 | |
---|
1612 | IF ( k > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
1613 | THEN |
---|
1614 | num_gp = num_gp + 1 |
---|
1615 | gp_outside_of_building(5) = 1 |
---|
1616 | location(num_gp,1) = (i+1) * dx |
---|
1617 | location(num_gp,2) = j * dy |
---|
1618 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1619 | ei(num_gp) = e(k,j,i+1) |
---|
1620 | dissi(num_gp) = diss(k,j,i+1) |
---|
1621 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
1622 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
1623 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
1624 | ENDIF |
---|
1625 | |
---|
1626 | IF ( k > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0 ) & |
---|
1627 | THEN |
---|
1628 | num_gp = num_gp + 1 |
---|
1629 | gp_outside_of_building(6) = 1 |
---|
1630 | location(num_gp,1) = (i+1) * dx |
---|
1631 | location(num_gp,2) = (j+1) * dy |
---|
1632 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1633 | ei(num_gp) = e(k,j+1,i+1) |
---|
1634 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
1635 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
1636 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
1637 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
1638 | ENDIF |
---|
1639 | |
---|
1640 | IF ( k+1 > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
1641 | THEN |
---|
1642 | num_gp = num_gp + 1 |
---|
1643 | gp_outside_of_building(7) = 1 |
---|
1644 | location(num_gp,1) = (i+1) * dx |
---|
1645 | location(num_gp,2) = j * dy |
---|
1646 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
1647 | ei(num_gp) = e(k+1,j,i+1) |
---|
1648 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
1649 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
1650 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
1651 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
1652 | ENDIF |
---|
1653 | |
---|
1654 | IF ( k+1 > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0)& |
---|
1655 | THEN |
---|
1656 | num_gp = num_gp + 1 |
---|
1657 | gp_outside_of_building(8) = 1 |
---|
1658 | location(num_gp,1) = (i+1) * dx |
---|
1659 | location(num_gp,2) = (j+1) * dy |
---|
1660 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
1661 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
1662 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
1663 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
1664 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
1665 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
1666 | ENDIF |
---|
1667 | |
---|
1668 | ! |
---|
1669 | !-- If all gridpoints are situated outside of a building, then the |
---|
1670 | !-- ordinary interpolation scheme can be used. |
---|
1671 | IF ( num_gp == 8 ) THEN |
---|
1672 | |
---|
1673 | x = particles(n)%x - i * dx |
---|
1674 | y = particles(n)%y - j * dy |
---|
1675 | aa = x**2 + y**2 |
---|
1676 | bb = ( dx - x )**2 + y**2 |
---|
1677 | cc = x**2 + ( dy - y )**2 |
---|
1678 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
1679 | gg = aa + bb + cc + dd |
---|
1680 | |
---|
1681 | e_int_l = (( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
1682 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1)& |
---|
1683 | ) / ( 3.0 * gg ) |
---|
1684 | |
---|
1685 | IF ( k+1 == nzt+1 ) THEN |
---|
1686 | e_int = e_int_l |
---|
1687 | ELSE |
---|
1688 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
1689 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
1690 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
1691 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
1692 | ) / ( 3.0 * gg ) |
---|
1693 | e_int = e_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
1694 | ( e_int_u - e_int_l ) |
---|
1695 | ENDIF |
---|
1696 | |
---|
1697 | ! |
---|
1698 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
1699 | !-- and all position variables from above (TKE)) |
---|
1700 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
1701 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
1702 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
1703 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
1704 | ) / ( 3.0 * gg ) |
---|
1705 | |
---|
1706 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
1707 | de_dx_int = de_dx_int_l |
---|
1708 | ELSE |
---|
1709 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
1710 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
1711 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
1712 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
1713 | ) / ( 3.0 * gg ) |
---|
1714 | de_dx_int = de_dx_int_l + ( particles(n)%z - zu(k) ) / & |
---|
1715 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
1716 | ENDIF |
---|
1717 | |
---|
1718 | ! |
---|
1719 | !-- Interpolate the TKE gradient along y |
---|
1720 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
1721 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
1722 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
1723 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
1724 | ) / ( 3.0 * gg ) |
---|
1725 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
1726 | de_dy_int = de_dy_int_l |
---|
1727 | ELSE |
---|
1728 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
1729 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
1730 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
1731 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
1732 | ) / ( 3.0 * gg ) |
---|
1733 | de_dy_int = de_dy_int_l + ( particles(n)%z - zu(k) ) / & |
---|
1734 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
1735 | ENDIF |
---|
1736 | |
---|
1737 | ! |
---|
1738 | !-- Interpolate the TKE gradient along z |
---|
1739 | IF ( particles(n)%z < 0.5 * dz ) THEN |
---|
1740 | de_dz_int = 0.0 |
---|
1741 | ELSE |
---|
1742 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
1743 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
1744 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
1745 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
1746 | ) / ( 3.0 * gg ) |
---|
1747 | |
---|
1748 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
1749 | de_dz_int = de_dz_int_l |
---|
1750 | ELSE |
---|
1751 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
1752 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
1753 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
1754 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
1755 | ) / ( 3.0 * gg ) |
---|
1756 | de_dz_int = de_dz_int_l + ( particles(n)%z - zu(k) ) /& |
---|
1757 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
1758 | ENDIF |
---|
1759 | ENDIF |
---|
1760 | |
---|
1761 | ! |
---|
1762 | !-- Interpolate the dissipation of TKE |
---|
1763 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
1764 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
1765 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
1766 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
1767 | ) / ( 3.0 * gg ) |
---|
1768 | |
---|
1769 | IF ( k+1 == nzt+1 ) THEN |
---|
1770 | diss_int = diss_int_l |
---|
1771 | ELSE |
---|
1772 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
1773 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
1774 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
1775 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
1776 | ) / ( 3.0 * gg ) |
---|
1777 | diss_int = diss_int_l + ( particles(n)%z - zu(k) ) / dz *& |
---|
1778 | ( diss_int_u - diss_int_l ) |
---|
1779 | ENDIF |
---|
1780 | |
---|
1781 | ELSE |
---|
1782 | |
---|
1783 | ! |
---|
1784 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
1785 | !-- Neumann boundary condition has to be applied |
---|
1786 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
1787 | gp_outside_of_building(5) == 0 ) THEN |
---|
1788 | num_gp = num_gp + 1 |
---|
1789 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
1790 | location(num_gp,2) = j * dy |
---|
1791 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1792 | ei(num_gp) = e(k,j,i) |
---|
1793 | dissi(num_gp) = diss(k,j,i) |
---|
1794 | de_dxi(num_gp) = 0.0 |
---|
1795 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
1796 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
1797 | ENDIF |
---|
1798 | |
---|
1799 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
1800 | gp_outside_of_building(1) == 0 ) THEN |
---|
1801 | num_gp = num_gp + 1 |
---|
1802 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
1803 | location(num_gp,2) = j * dy |
---|
1804 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1805 | ei(num_gp) = e(k,j,i+1) |
---|
1806 | dissi(num_gp) = diss(k,j,i+1) |
---|
1807 | de_dxi(num_gp) = 0.0 |
---|
1808 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
1809 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
1810 | ENDIF |
---|
1811 | |
---|
1812 | ! |
---|
1813 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
1814 | !-- then Neumann boundary condition has to be applied |
---|
1815 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
1816 | gp_outside_of_building(6) == 0 ) THEN |
---|
1817 | num_gp = num_gp + 1 |
---|
1818 | location(num_gp,1) = (i+1) * dx |
---|
1819 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
1820 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1821 | ei(num_gp) = e(k,j,i+1) |
---|
1822 | dissi(num_gp) = diss(k,j,i+1) |
---|
1823 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
1824 | de_dyi(num_gp) = 0.0 |
---|
1825 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
1826 | ENDIF |
---|
1827 | |
---|
1828 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
1829 | gp_outside_of_building(5) == 0 ) THEN |
---|
1830 | num_gp = num_gp + 1 |
---|
1831 | location(num_gp,1) = (i+1) * dx |
---|
1832 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
1833 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1834 | ei(num_gp) = e(k,j+1,i+1) |
---|
1835 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
1836 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
1837 | de_dyi(num_gp) = 0.0 |
---|
1838 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
1839 | ENDIF |
---|
1840 | |
---|
1841 | ! |
---|
1842 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
1843 | !-- Neumann boundary condition has to be applied |
---|
1844 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
1845 | gp_outside_of_building(6) == 0 ) THEN |
---|
1846 | num_gp = num_gp + 1 |
---|
1847 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
1848 | location(num_gp,2) = (j+1) * dy |
---|
1849 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1850 | ei(num_gp) = e(k,j+1,i) |
---|
1851 | dissi(num_gp) = diss(k,j+1,i) |
---|
1852 | de_dxi(num_gp) = 0.0 |
---|
1853 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
1854 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
1855 | ENDIF |
---|
1856 | |
---|
1857 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
1858 | gp_outside_of_building(2) == 0 ) THEN |
---|
1859 | num_gp = num_gp + 1 |
---|
1860 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
1861 | location(num_gp,2) = (j+1) * dy |
---|
1862 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1863 | ei(num_gp) = e(k,j+1,i+1) |
---|
1864 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
1865 | de_dxi(num_gp) = 0.0 |
---|
1866 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
1867 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
1868 | ENDIF |
---|
1869 | |
---|
1870 | ! |
---|
1871 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
1872 | !-- Neumann boundary condition has to be applied |
---|
1873 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
1874 | gp_outside_of_building(2) == 0 ) THEN |
---|
1875 | num_gp = num_gp + 1 |
---|
1876 | location(num_gp,1) = i * dx |
---|
1877 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
1878 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1879 | ei(num_gp) = e(k,j,i) |
---|
1880 | dissi(num_gp) = diss(k,j,i) |
---|
1881 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
1882 | de_dyi(num_gp) = 0.0 |
---|
1883 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
1884 | ENDIF |
---|
1885 | |
---|
1886 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
1887 | gp_outside_of_building(1) == 0 ) THEN |
---|
1888 | num_gp = num_gp + 1 |
---|
1889 | location(num_gp,1) = i * dx |
---|
1890 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
1891 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1892 | ei(num_gp) = e(k,j+1,i) |
---|
1893 | dissi(num_gp) = diss(k,j+1,i) |
---|
1894 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
1895 | de_dyi(num_gp) = 0.0 |
---|
1896 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
1897 | ENDIF |
---|
1898 | |
---|
1899 | ! |
---|
1900 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
1901 | !-- Neumann boundary condition has to be applied |
---|
1902 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
1903 | gp_outside_of_building(7) == 0 ) THEN |
---|
1904 | num_gp = num_gp + 1 |
---|
1905 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
1906 | location(num_gp,2) = j * dy |
---|
1907 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
1908 | ei(num_gp) = e(k+1,j,i) |
---|
1909 | dissi(num_gp) = diss(k+1,j,i) |
---|
1910 | de_dxi(num_gp) = 0.0 |
---|
1911 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
1912 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
1913 | ENDIF |
---|
1914 | |
---|
1915 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
1916 | gp_outside_of_building(3) == 0 ) THEN |
---|
1917 | num_gp = num_gp + 1 |
---|
1918 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
1919 | location(num_gp,2) = j * dy |
---|
1920 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
1921 | ei(num_gp) = e(k+1,j,i+1) |
---|
1922 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
1923 | de_dxi(num_gp) = 0.0 |
---|
1924 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
1925 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
1926 | ENDIF |
---|
1927 | |
---|
1928 | ! |
---|
1929 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
1930 | !-- Neumann boundary condition has to be applied |
---|
1931 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
1932 | gp_outside_of_building(8) == 0 ) THEN |
---|
1933 | num_gp = num_gp + 1 |
---|
1934 | location(num_gp,1) = (i+1) * dx |
---|
1935 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
1936 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
1937 | ei(num_gp) = e(k+1,j,i+1) |
---|
1938 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
1939 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
1940 | de_dyi(num_gp) = 0.0 |
---|
1941 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
1942 | ENDIF |
---|
1943 | |
---|
1944 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
1945 | gp_outside_of_building(7) == 0 ) THEN |
---|
1946 | num_gp = num_gp + 1 |
---|
1947 | location(num_gp,1) = (i+1) * dx |
---|
1948 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
1949 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
1950 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
1951 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
1952 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
1953 | de_dyi(num_gp) = 0.0 |
---|
1954 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
1955 | ENDIF |
---|
1956 | |
---|
1957 | ! |
---|
1958 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
1959 | !-- Neumann boundary condition has to be applied |
---|
1960 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
1961 | gp_outside_of_building(8) == 0 ) THEN |
---|
1962 | num_gp = num_gp + 1 |
---|
1963 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
1964 | location(num_gp,2) = (j+1) * dy |
---|
1965 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
1966 | ei(num_gp) = e(k+1,j+1,i) |
---|
1967 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
1968 | de_dxi(num_gp) = 0.0 |
---|
1969 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
1970 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
1971 | ENDIF |
---|
1972 | |
---|
1973 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
1974 | gp_outside_of_building(4) == 0 ) THEN |
---|
1975 | num_gp = num_gp + 1 |
---|
1976 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
1977 | location(num_gp,2) = (j+1) * dy |
---|
1978 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
1979 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
1980 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
1981 | de_dxi(num_gp) = 0.0 |
---|
1982 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
1983 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
1984 | ENDIF |
---|
1985 | |
---|
1986 | ! |
---|
1987 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
1988 | !-- Neumann boundary condition has to be applied |
---|
1989 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
1990 | gp_outside_of_building(4) == 0 ) THEN |
---|
1991 | num_gp = num_gp + 1 |
---|
1992 | location(num_gp,1) = i * dx |
---|
1993 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
1994 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
1995 | ei(num_gp) = e(k+1,j,i) |
---|
1996 | dissi(num_gp) = diss(k+1,j,i) |
---|
1997 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
1998 | de_dyi(num_gp) = 0.0 |
---|
1999 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
2000 | ENDIF |
---|
2001 | |
---|
2002 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
2003 | gp_outside_of_building(3) == 0 ) THEN |
---|
2004 | num_gp = num_gp + 1 |
---|
2005 | location(num_gp,1) = i * dx |
---|
2006 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
2007 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
2008 | ei(num_gp) = e(k+1,j+1,i) |
---|
2009 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
2010 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
2011 | de_dyi(num_gp) = 0.0 |
---|
2012 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
2013 | ENDIF |
---|
2014 | |
---|
2015 | ! |
---|
2016 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
2017 | !-- Neumann boundary condition has to be applied |
---|
2018 | !-- (only one case as only building beneath is possible) |
---|
2019 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
2020 | gp_outside_of_building(3) == 1 ) THEN |
---|
2021 | num_gp = num_gp + 1 |
---|
2022 | location(num_gp,1) = i * dx |
---|
2023 | location(num_gp,2) = j * dy |
---|
2024 | location(num_gp,3) = k * dz |
---|
2025 | ei(num_gp) = e(k+1,j,i) |
---|
2026 | dissi(num_gp) = diss(k+1,j,i) |
---|
2027 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
2028 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
2029 | de_dzi(num_gp) = 0.0 |
---|
2030 | ENDIF |
---|
2031 | |
---|
2032 | ! |
---|
2033 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
2034 | !-- Neumann boundary condition has to be applied |
---|
2035 | !-- (only one case as only building beneath is possible) |
---|
2036 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
2037 | gp_outside_of_building(7) == 1 ) THEN |
---|
2038 | num_gp = num_gp + 1 |
---|
2039 | location(num_gp,1) = (i+1) * dx |
---|
2040 | location(num_gp,2) = j * dy |
---|
2041 | location(num_gp,3) = k * dz |
---|
2042 | ei(num_gp) = e(k+1,j,i+1) |
---|
2043 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
2044 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
2045 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
2046 | de_dzi(num_gp) = 0.0 |
---|
2047 | ENDIF |
---|
2048 | |
---|
2049 | ! |
---|
2050 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
2051 | !-- Neumann boundary condition has to be applied |
---|
2052 | !-- (only one case as only building beneath is possible) |
---|
2053 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
2054 | gp_outside_of_building(4) == 1 ) THEN |
---|
2055 | num_gp = num_gp + 1 |
---|
2056 | location(num_gp,1) = i * dx |
---|
2057 | location(num_gp,2) = (j+1) * dy |
---|
2058 | location(num_gp,3) = k * dz |
---|
2059 | ei(num_gp) = e(k+1,j+1,i) |
---|
2060 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
2061 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
2062 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
2063 | de_dzi(num_gp) = 0.0 |
---|
2064 | ENDIF |
---|
2065 | |
---|
2066 | ! |
---|
2067 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
2068 | !-- Neumann boundary condition has to be applied |
---|
2069 | !-- (only one case as only building beneath is possible) |
---|
2070 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
2071 | gp_outside_of_building(8) == 1 ) THEN |
---|
2072 | num_gp = num_gp + 1 |
---|
2073 | location(num_gp,1) = (i+1) * dx |
---|
2074 | location(num_gp,2) = (j+1) * dy |
---|
2075 | location(num_gp,3) = k * dz |
---|
2076 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
2077 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
2078 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
2079 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
2080 | de_dzi(num_gp) = 0.0 |
---|
2081 | ENDIF |
---|
2082 | |
---|
2083 | ! |
---|
2084 | !-- Carry out the interpolation |
---|
2085 | IF ( num_gp == 1 ) THEN |
---|
2086 | ! |
---|
2087 | !-- If only one of the gridpoints is situated outside of the |
---|
2088 | !-- building, it follows that the values at the particle |
---|
2089 | !-- location are the same as the gridpoint values |
---|
2090 | e_int = ei(num_gp) |
---|
2091 | diss_int = dissi(num_gp) |
---|
2092 | de_dx_int = de_dxi(num_gp) |
---|
2093 | de_dy_int = de_dyi(num_gp) |
---|
2094 | de_dz_int = de_dzi(num_gp) |
---|
2095 | ELSE IF ( num_gp > 1 ) THEN |
---|
2096 | |
---|
2097 | d_sum = 0.0 |
---|
2098 | ! |
---|
2099 | !-- Evaluation of the distances between the gridpoints |
---|
2100 | !-- contributing to the interpolated values, and the particle |
---|
2101 | !-- location |
---|
2102 | DO agp = 1, num_gp |
---|
2103 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
2104 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
2105 | + ( particles(n)%z-location(agp,3) )**2 |
---|
2106 | d_sum = d_sum + d_gp_pl(agp) |
---|
2107 | ENDDO |
---|
2108 | |
---|
2109 | ! |
---|
2110 | !-- Finally the interpolation can be carried out |
---|
2111 | e_int = 0.0 |
---|
2112 | diss_int = 0.0 |
---|
2113 | de_dx_int = 0.0 |
---|
2114 | de_dy_int = 0.0 |
---|
2115 | de_dz_int = 0.0 |
---|
2116 | DO agp = 1, num_gp |
---|
2117 | e_int = e_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
2118 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
2119 | diss_int = diss_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
2120 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
2121 | de_dx_int = de_dx_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
2122 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
2123 | de_dy_int = de_dy_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
2124 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
2125 | de_dz_int = de_dz_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
2126 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
2127 | ENDDO |
---|
2128 | |
---|
2129 | ENDIF |
---|
2130 | |
---|
2131 | ENDIF |
---|
2132 | |
---|
2133 | ENDIF |
---|
2134 | |
---|
2135 | ! |
---|
2136 | !-- Vertically interpolate the horizontally averaged SGS TKE and |
---|
2137 | !-- resolved-scale velocity variances and use the interpolated values |
---|
2138 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
2139 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
2140 | !-- of turbulent kinetic energy. |
---|
2141 | IF ( k == 0 ) THEN |
---|
2142 | e_mean_int = hom(0,1,8,0) |
---|
2143 | ELSE |
---|
2144 | e_mean_int = hom(k,1,8,0) + & |
---|
2145 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
2146 | ( zu(k+1) - zu(k) ) * & |
---|
2147 | ( particles(n)%z - zu(k) ) |
---|
2148 | ENDIF |
---|
2149 | |
---|
2150 | kw = particles(n)%z / dz |
---|
2151 | |
---|
2152 | IF ( k == 0 ) THEN |
---|
2153 | aa = hom(k+1,1,30,0) * ( particles(n)%z / & |
---|
2154 | ( 0.5 * ( zu(k+1) - zu(k) ) ) ) |
---|
2155 | bb = hom(k+1,1,31,0) * ( particles(n)%z / & |
---|
2156 | ( 0.5 * ( zu(k+1) - zu(k) ) ) ) |
---|
2157 | cc = hom(kw+1,1,32,0) * ( particles(n)%z / & |
---|
2158 | ( 1.0 * ( zw(kw+1) - zw(kw) ) ) ) |
---|
2159 | ELSE |
---|
2160 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
2161 | ( ( particles(n)%z - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
2162 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
2163 | ( ( particles(n)%z - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
2164 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) *& |
---|
2165 | ( ( particles(n)%z - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
2166 | ENDIF |
---|
2167 | |
---|
2168 | vv_int = ( 1.0 / 3.0 ) * ( aa + bb + cc ) |
---|
2169 | |
---|
2170 | fs_int = ( 2.0 / 3.0 ) * e_mean_int / & |
---|
2171 | ( vv_int + ( 2.0 / 3.0 ) * e_mean_int ) |
---|
2172 | |
---|
2173 | ! |
---|
2174 | !-- Calculate the Lagrangian timescale according to the suggestion of |
---|
2175 | !-- Weil et al. (2004). |
---|
2176 | lagr_timescale = ( 4.0 * e_int ) / & |
---|
2177 | ( 3.0 * fs_int * c_0 * diss_int ) |
---|
2178 | |
---|
2179 | ! |
---|
2180 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
2181 | !-- complete the current LES timestep. |
---|
2182 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
2183 | dt_particle = MIN( dt_3d, 0.025 * lagr_timescale, dt_gap ) |
---|
2184 | |
---|
2185 | ! |
---|
2186 | !-- The particle timestep should not be too small in order to prevent |
---|
2187 | !-- the number of particle timesteps of getting too large |
---|
2188 | IF ( dt_particle < dt_min_part .AND. dt_min_part < dt_gap ) & |
---|
2189 | THEN |
---|
2190 | dt_particle = dt_min_part |
---|
2191 | ENDIF |
---|
2192 | |
---|
2193 | ! |
---|
2194 | !-- Calculate the SGS velocity components |
---|
2195 | IF ( particles(n)%age == 0.0 ) THEN |
---|
2196 | ! |
---|
2197 | !-- For new particles the SGS components are derived from the SGS |
---|
2198 | !-- TKE. Limit the Gaussian random number to the interval |
---|
2199 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
2200 | !-- from becoming unrealistically large. |
---|
2201 | particles(n)%rvar1 = SQRT( 2.0 * sgs_wfu_part * e_int ) * & |
---|
2202 | ( random_gauss( iran_part, 5.0 ) & |
---|
2203 | - 1.0 ) |
---|
2204 | particles(n)%rvar2 = SQRT( 2.0 * sgs_wfv_part * e_int ) * & |
---|
2205 | ( random_gauss( iran_part, 5.0 ) & |
---|
2206 | - 1.0 ) |
---|
2207 | particles(n)%rvar3 = SQRT( 2.0 * sgs_wfw_part * e_int ) * & |
---|
2208 | ( random_gauss( iran_part, 5.0 ) & |
---|
2209 | - 1.0 ) |
---|
2210 | |
---|
2211 | ELSE |
---|
2212 | |
---|
2213 | ! |
---|
2214 | !-- Restriction of the size of the new timestep: compared to the |
---|
2215 | !-- previous timestep the increase must not exceed 200% |
---|
2216 | |
---|
2217 | dt_particle_m = particles(n)%age - particles(n)%age_m |
---|
2218 | IF ( dt_particle > 2.0 * dt_particle_m ) THEN |
---|
2219 | dt_particle = 2.0 * dt_particle_m |
---|
2220 | ENDIF |
---|
2221 | |
---|
2222 | ! |
---|
2223 | !-- For old particles the SGS components are correlated with the |
---|
2224 | !-- values from the previous timestep. Random numbers have also to |
---|
2225 | !-- be limited (see above). |
---|
2226 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
2227 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
2228 | !-- -e_int/dt_particle. This value is used as a lower boundary |
---|
2229 | !-- value for the change of TKE |
---|
2230 | |
---|
2231 | de_dt_min = - e_int / dt_particle |
---|
2232 | |
---|
2233 | de_dt = ( e_int - particles(n)%e_m ) / dt_particle_m |
---|
2234 | |
---|
2235 | IF ( de_dt < de_dt_min ) THEN |
---|
2236 | de_dt = de_dt_min |
---|
2237 | ENDIF |
---|
2238 | |
---|
2239 | particles(n)%rvar1 = particles(n)%rvar1 - & |
---|
2240 | fs_int * c_0 * diss_int * particles(n)%rvar1 * & |
---|
2241 | dt_particle / ( 4.0 * sgs_wfu_part * e_int ) + & |
---|
2242 | ( 2.0 * sgs_wfu_part * de_dt * & |
---|
2243 | particles(n)%rvar1 / & |
---|
2244 | ( 2.0 * sgs_wfu_part * e_int ) + de_dx_int & |
---|
2245 | ) * dt_particle / 2.0 + & |
---|
2246 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
2247 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) * & |
---|
2248 | SQRT( dt_particle ) |
---|
2249 | |
---|
2250 | particles(n)%rvar2 = particles(n)%rvar2 - & |
---|
2251 | fs_int * c_0 * diss_int * particles(n)%rvar2 * & |
---|
2252 | dt_particle / ( 4.0 * sgs_wfv_part * e_int ) + & |
---|
2253 | ( 2.0 * sgs_wfv_part * de_dt * & |
---|
2254 | particles(n)%rvar2 / & |
---|
2255 | ( 2.0 * sgs_wfv_part * e_int ) + de_dy_int & |
---|
2256 | ) * dt_particle / 2.0 + & |
---|
2257 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
2258 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) * & |
---|
2259 | SQRT( dt_particle ) |
---|
2260 | |
---|
2261 | particles(n)%rvar3 = particles(n)%rvar3 - & |
---|
2262 | fs_int * c_0 * diss_int * particles(n)%rvar3 * & |
---|
2263 | dt_particle / ( 4.0 * sgs_wfw_part * e_int ) + & |
---|
2264 | ( 2.0 * sgs_wfw_part * de_dt * & |
---|
2265 | particles(n)%rvar3 / & |
---|
2266 | ( 2.0 * sgs_wfw_part * e_int ) + de_dz_int & |
---|
2267 | ) * dt_particle / 2.0 + & |
---|
2268 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
2269 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) * & |
---|
2270 | SQRT( dt_particle ) |
---|
2271 | |
---|
2272 | ENDIF |
---|
2273 | |
---|
2274 | u_int = u_int + particles(n)%rvar1 |
---|
2275 | v_int = v_int + particles(n)%rvar2 |
---|
2276 | w_int = w_int + particles(n)%rvar3 |
---|
2277 | |
---|
2278 | ! |
---|
2279 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
2280 | !-- for calculating the SGS particle velocities at the next timestep |
---|
2281 | particles(n)%e_m = e_int |
---|
2282 | |
---|
2283 | ELSE |
---|
2284 | ! |
---|
2285 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
2286 | !-- be set |
---|
2287 | dt_particle = dt_3d |
---|
2288 | |
---|
2289 | ENDIF |
---|
2290 | |
---|
2291 | ! |
---|
2292 | !-- Remember the old age of the particle ( needed to prevent that a |
---|
2293 | !-- particle crosses several PEs during one timestep and for the |
---|
2294 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
2295 | particles(n)%age_m = particles(n)%age |
---|
2296 | |
---|
2297 | |
---|
2298 | ! |
---|
2299 | !-- Particle advection |
---|
2300 | IF ( particle_groups(particles(n)%group)%density_ratio == 0.0 ) THEN |
---|
2301 | ! |
---|
2302 | !-- Pure passive transport (without particle inertia) |
---|
2303 | particles(n)%x = particles(n)%x + u_int * dt_particle |
---|
2304 | particles(n)%y = particles(n)%y + v_int * dt_particle |
---|
2305 | particles(n)%z = particles(n)%z + w_int * dt_particle |
---|
2306 | |
---|
2307 | particles(n)%speed_x = u_int |
---|
2308 | particles(n)%speed_y = v_int |
---|
2309 | particles(n)%speed_z = w_int |
---|
2310 | |
---|
2311 | ELSE |
---|
2312 | ! |
---|
2313 | !-- Transport of particles with inertia |
---|
2314 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
2315 | dt_particle |
---|
2316 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
2317 | dt_particle |
---|
2318 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
2319 | dt_particle |
---|
2320 | |
---|
2321 | ! |
---|
2322 | !-- Update of the particle velocity |
---|
2323 | dens_ratio = particle_groups(particles(n)%group)%density_ratio |
---|
2324 | IF ( cloud_droplets ) THEN |
---|
2325 | exp_arg = 4.5 * dens_ratio * molecular_viscosity / & |
---|
2326 | ( particles(n)%radius )**2 * & |
---|
2327 | ( 1.0 + 0.15 * ( 2.0 * particles(n)%radius * & |
---|
2328 | SQRT( ( u_int - particles(n)%speed_x )**2 + & |
---|
2329 | ( v_int - particles(n)%speed_y )**2 + & |
---|
2330 | ( w_int - particles(n)%speed_z )**2 ) / & |
---|
2331 | molecular_viscosity )**0.687 & |
---|
2332 | ) |
---|
2333 | exp_term = EXP( -exp_arg * dt_particle ) |
---|
2334 | ELSEIF ( use_sgs_for_particles ) THEN |
---|
2335 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
2336 | exp_term = EXP( -exp_arg * dt_particle ) |
---|
2337 | ELSE |
---|
2338 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
2339 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
2340 | ENDIF |
---|
2341 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
2342 | u_int * ( 1.0 - exp_term ) |
---|
2343 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
2344 | v_int * ( 1.0 - exp_term ) |
---|
2345 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
2346 | ( w_int - ( 1.0 - dens_ratio ) * g / exp_arg ) & |
---|
2347 | * ( 1.0 - exp_term ) |
---|
2348 | ENDIF |
---|
2349 | |
---|
2350 | ! |
---|
2351 | !-- Increment the particle age and the total time that the particle |
---|
2352 | !-- has advanced within the particle timestep procedure |
---|
2353 | particles(n)%age = particles(n)%age + dt_particle |
---|
2354 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle |
---|
2355 | |
---|
2356 | ! |
---|
2357 | !-- Check whether there is still a particle that has not yet completed |
---|
2358 | !-- the total LES timestep |
---|
2359 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8 ) THEN |
---|
2360 | dt_3d_reached_l = .FALSE. |
---|
2361 | ENDIF |
---|
2362 | |
---|
2363 | ENDDO ! advection loop |
---|
2364 | |
---|
2365 | ! |
---|
2366 | !-- Particle reflection from walls |
---|
2367 | CALL particle_boundary_conds |
---|
2368 | |
---|
2369 | ! |
---|
2370 | !-- User-defined actions after the calculation of the new particle position |
---|
2371 | CALL user_advec_particles |
---|
2372 | |
---|
2373 | ! |
---|
2374 | !-- Find out, if all particles on every PE have completed the LES timestep |
---|
2375 | !-- and set the switch corespondingly |
---|
2376 | #if defined( __parallel ) |
---|
2377 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2378 | CALL MPI_ALLREDUCE( dt_3d_reached_l, dt_3d_reached, 1, MPI_LOGICAL, & |
---|
2379 | MPI_LAND, comm2d, ierr ) |
---|
2380 | #else |
---|
2381 | dt_3d_reached = dt_3d_reached_l |
---|
2382 | #endif |
---|
2383 | |
---|
2384 | CALL cpu_log( log_point_s(44), 'advec_part_advec', 'stop' ) |
---|
2385 | |
---|
2386 | ! |
---|
2387 | !-- Increment time since last release |
---|
2388 | IF ( dt_3d_reached ) time_prel = time_prel + dt_3d |
---|
2389 | |
---|
2390 | ! WRITE ( 9, * ) '*** advec_particles: ##0.4' |
---|
2391 | ! CALL local_flush( 9 ) |
---|
2392 | ! nd = 0 |
---|
2393 | ! DO n = 1, number_of_particles |
---|
2394 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
2395 | ! ENDDO |
---|
2396 | ! IF ( nd /= deleted_particles ) THEN |
---|
2397 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
2398 | ! CALL local_flush( 9 ) |
---|
2399 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2400 | ! ENDIF |
---|
2401 | |
---|
2402 | ! |
---|
2403 | !-- If necessary, release new set of particles |
---|
2404 | IF ( time_prel >= dt_prel .AND. end_time_prel > simulated_time .AND. & |
---|
2405 | dt_3d_reached ) THEN |
---|
2406 | |
---|
2407 | ! |
---|
2408 | !-- Check, if particle storage must be extended |
---|
2409 | IF ( number_of_particles + number_of_initial_particles > & |
---|
2410 | maximum_number_of_particles ) THEN |
---|
2411 | IF ( netcdf_output .AND. netcdf_data_format < 3 ) THEN |
---|
2412 | message_string = 'maximum_number_of_particles ' // & |
---|
2413 | 'needs to be increased ' // & |
---|
2414 | '&but this is not allowed with ' // & |
---|
2415 | 'netcdf_data_format < 3' |
---|
2416 | CALL message( 'advec_particles', 'PA0146', 2, 2, -1, 6, 1 ) |
---|
2417 | ELSE |
---|
2418 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_prt_memory dt_prel' |
---|
2419 | ! CALL local_flush( 9 ) |
---|
2420 | CALL allocate_prt_memory( number_of_initial_particles ) |
---|
2421 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_prt_memory dt_prel' |
---|
2422 | ! CALL local_flush( 9 ) |
---|
2423 | ENDIF |
---|
2424 | ENDIF |
---|
2425 | |
---|
2426 | ! |
---|
2427 | !-- Check, if tail storage must be extended |
---|
2428 | IF ( use_particle_tails ) THEN |
---|
2429 | IF ( number_of_tails + number_of_initial_tails > & |
---|
2430 | maximum_number_of_tails ) THEN |
---|
2431 | IF ( netcdf_output .AND. netcdf_data_format < 3 ) THEN |
---|
2432 | message_string = 'maximum_number_of_tails ' // & |
---|
2433 | 'needs to be increased ' // & |
---|
2434 | '&but this is not allowed wi' // & |
---|
2435 | 'th netcdf_data_format < 3' |
---|
2436 | CALL message( 'advec_particles', 'PA0147', 2, 2, -1, 6, 1 ) |
---|
2437 | ELSE |
---|
2438 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_tail_memory dt_prel' |
---|
2439 | ! CALL local_flush( 9 ) |
---|
2440 | CALL allocate_tail_memory( number_of_initial_tails ) |
---|
2441 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_tail_memory dt_prel' |
---|
2442 | ! CALL local_flush( 9 ) |
---|
2443 | ENDIF |
---|
2444 | ENDIF |
---|
2445 | ENDIF |
---|
2446 | |
---|
2447 | ! |
---|
2448 | !-- The MOD function allows for changes in the output interval with |
---|
2449 | !-- restart runs. |
---|
2450 | time_prel = MOD( time_prel, MAX( dt_prel, dt_3d ) ) |
---|
2451 | IF ( number_of_initial_particles /= 0 ) THEN |
---|
2452 | is = number_of_particles+1 |
---|
2453 | ie = number_of_particles+number_of_initial_particles |
---|
2454 | particles(is:ie) = initial_particles(1:number_of_initial_particles) |
---|
2455 | ! |
---|
2456 | !-- Add random fluctuation to particle positions. Particles should |
---|
2457 | !-- remain in the subdomain. |
---|
2458 | IF ( random_start_position ) THEN |
---|
2459 | DO n = is, ie |
---|
2460 | IF ( psl(particles(n)%group) /= psr(particles(n)%group) ) & |
---|
2461 | THEN |
---|
2462 | particles(n)%x = particles(n)%x + & |
---|
2463 | ( random_function( iran_part ) - 0.5 ) *& |
---|
2464 | pdx(particles(n)%group) |
---|
2465 | IF ( particles(n)%x <= ( nxl - 0.5 ) * dx ) THEN |
---|
2466 | particles(n)%x = ( nxl - 0.4999999999 ) * dx |
---|
2467 | ELSEIF ( particles(n)%x >= ( nxr + 0.5 ) * dx ) THEN |
---|
2468 | particles(n)%x = ( nxr + 0.4999999999 ) * dx |
---|
2469 | ENDIF |
---|
2470 | ENDIF |
---|
2471 | IF ( pss(particles(n)%group) /= psn(particles(n)%group) ) & |
---|
2472 | THEN |
---|
2473 | particles(n)%y = particles(n)%y + & |
---|
2474 | ( random_function( iran_part ) - 0.5 ) *& |
---|
2475 | pdy(particles(n)%group) |
---|
2476 | IF ( particles(n)%y <= ( nys - 0.5 ) * dy ) THEN |
---|
2477 | particles(n)%y = ( nys - 0.4999999999 ) * dy |
---|
2478 | ELSEIF ( particles(n)%y >= ( nyn + 0.5 ) * dy ) THEN |
---|
2479 | particles(n)%y = ( nyn + 0.4999999999 ) * dy |
---|
2480 | ENDIF |
---|
2481 | ENDIF |
---|
2482 | IF ( psb(particles(n)%group) /= pst(particles(n)%group) ) & |
---|
2483 | THEN |
---|
2484 | particles(n)%z = particles(n)%z + & |
---|
2485 | ( random_function( iran_part ) - 0.5 ) *& |
---|
2486 | pdz(particles(n)%group) |
---|
2487 | ENDIF |
---|
2488 | ENDDO |
---|
2489 | ENDIF |
---|
2490 | |
---|
2491 | ! |
---|
2492 | !-- Set the beginning of the new particle tails and their age |
---|
2493 | IF ( use_particle_tails ) THEN |
---|
2494 | DO n = is, ie |
---|
2495 | ! |
---|
2496 | !-- New particles which should have a tail, already have got a |
---|
2497 | !-- provisional tail id unequal zero (see init_particles) |
---|
2498 | IF ( particles(n)%tail_id /= 0 ) THEN |
---|
2499 | number_of_tails = number_of_tails + 1 |
---|
2500 | nn = number_of_tails |
---|
2501 | particles(n)%tail_id = nn ! set the final tail id |
---|
2502 | particle_tail_coordinates(1,1,nn) = particles(n)%x |
---|
2503 | particle_tail_coordinates(1,2,nn) = particles(n)%y |
---|
2504 | particle_tail_coordinates(1,3,nn) = particles(n)%z |
---|
2505 | particle_tail_coordinates(1,4,nn) = particles(n)%class |
---|
2506 | particles(n)%tailpoints = 1 |
---|
2507 | IF ( minimum_tailpoint_distance /= 0.0 ) THEN |
---|
2508 | particle_tail_coordinates(2,1,nn) = particles(n)%x |
---|
2509 | particle_tail_coordinates(2,2,nn) = particles(n)%y |
---|
2510 | particle_tail_coordinates(2,3,nn) = particles(n)%z |
---|
2511 | particle_tail_coordinates(2,4,nn) = particles(n)%class |
---|
2512 | particle_tail_coordinates(1:2,5,nn) = 0.0 |
---|
2513 | particles(n)%tailpoints = 2 |
---|
2514 | ENDIF |
---|
2515 | ENDIF |
---|
2516 | ENDDO |
---|
2517 | ENDIF |
---|
2518 | ! WRITE ( 9, * ) '*** advec_particles: after setting the beginning of new tails' |
---|
2519 | ! CALL local_flush( 9 ) |
---|
2520 | |
---|
2521 | number_of_particles = number_of_particles + & |
---|
2522 | number_of_initial_particles |
---|
2523 | ENDIF |
---|
2524 | |
---|
2525 | ENDIF |
---|
2526 | |
---|
2527 | ! WRITE ( 9, * ) '*** advec_particles: ##0.5' |
---|
2528 | ! CALL local_flush( 9 ) |
---|
2529 | ! nd = 0 |
---|
2530 | ! DO n = 1, number_of_particles |
---|
2531 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
2532 | ! ENDDO |
---|
2533 | ! IF ( nd /= deleted_particles ) THEN |
---|
2534 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
2535 | ! CALL local_flush( 9 ) |
---|
2536 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2537 | ! ENDIF |
---|
2538 | |
---|
2539 | ! IF ( number_of_particles /= number_of_tails ) THEN |
---|
2540 | ! WRITE (9,*) '--- advec_particles: #2' |
---|
2541 | ! WRITE (9,*) ' #of p=',number_of_particles,' #of t=',number_of_tails |
---|
2542 | ! CALL local_flush( 9 ) |
---|
2543 | ! ENDIF |
---|
2544 | ! DO n = 1, number_of_particles |
---|
2545 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
2546 | ! THEN |
---|
2547 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
2548 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
2549 | ! CALL local_flush( 9 ) |
---|
2550 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2551 | ! ENDIF |
---|
2552 | ! ENDDO |
---|
2553 | |
---|
2554 | #if defined( __parallel ) |
---|
2555 | ! |
---|
2556 | !-- As soon as one particle has moved beyond the boundary of the domain, it |
---|
2557 | !-- is included in the relevant transfer arrays and marked for subsequent |
---|
2558 | !-- deletion on this PE. |
---|
2559 | !-- First run for crossings in x direction. Find out first the number of |
---|
2560 | !-- particles to be transferred and allocate temporary arrays needed to store |
---|
2561 | !-- them. |
---|
2562 | !-- For a one-dimensional decomposition along y, no transfer is necessary, |
---|
2563 | !-- because the particle remains on the PE. |
---|
2564 | trlp_count = 0 |
---|
2565 | trlpt_count = 0 |
---|
2566 | trrp_count = 0 |
---|
2567 | trrpt_count = 0 |
---|
2568 | IF ( pdims(1) /= 1 ) THEN |
---|
2569 | ! |
---|
2570 | !-- First calculate the storage necessary for sending and receiving the |
---|
2571 | !-- data |
---|
2572 | DO n = 1, number_of_particles |
---|
2573 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
2574 | ! |
---|
2575 | !-- Above calculation does not work for indices less than zero |
---|
2576 | IF ( particles(n)%x < -0.5 * dx ) i = -1 |
---|
2577 | |
---|
2578 | IF ( i < nxl ) THEN |
---|
2579 | trlp_count = trlp_count + 1 |
---|
2580 | IF ( particles(n)%tail_id /= 0 ) trlpt_count = trlpt_count + 1 |
---|
2581 | ELSEIF ( i > nxr ) THEN |
---|
2582 | trrp_count = trrp_count + 1 |
---|
2583 | IF ( particles(n)%tail_id /= 0 ) trrpt_count = trrpt_count + 1 |
---|
2584 | ENDIF |
---|
2585 | ENDDO |
---|
2586 | IF ( trlp_count == 0 ) trlp_count = 1 |
---|
2587 | IF ( trlpt_count == 0 ) trlpt_count = 1 |
---|
2588 | IF ( trrp_count == 0 ) trrp_count = 1 |
---|
2589 | IF ( trrpt_count == 0 ) trrpt_count = 1 |
---|
2590 | |
---|
2591 | ALLOCATE( trlp(trlp_count), trrp(trrp_count) ) |
---|
2592 | |
---|
2593 | trlp = particle_type( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
2594 | 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
2595 | 0.0, 0, 0, 0, 0 ) |
---|
2596 | trrp = particle_type( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
2597 | 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
2598 | 0.0, 0, 0, 0, 0 ) |
---|
2599 | |
---|
2600 | IF ( use_particle_tails ) THEN |
---|
2601 | ALLOCATE( trlpt(maximum_number_of_tailpoints,5,trlpt_count), & |
---|
2602 | trrpt(maximum_number_of_tailpoints,5,trrpt_count) ) |
---|
2603 | tlength = maximum_number_of_tailpoints * 5 |
---|
2604 | ENDIF |
---|
2605 | |
---|
2606 | trlp_count = 0 |
---|
2607 | trlpt_count = 0 |
---|
2608 | trrp_count = 0 |
---|
2609 | trrpt_count = 0 |
---|
2610 | |
---|
2611 | ENDIF |
---|
2612 | |
---|
2613 | ! WRITE ( 9, * ) '*** advec_particles: ##1' |
---|
2614 | ! CALL local_flush( 9 ) |
---|
2615 | ! nd = 0 |
---|
2616 | ! DO n = 1, number_of_particles |
---|
2617 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
2618 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
2619 | ! THEN |
---|
2620 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
2621 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
2622 | ! CALL local_flush( 9 ) |
---|
2623 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2624 | ! ENDIF |
---|
2625 | ! ENDDO |
---|
2626 | ! IF ( nd /= deleted_particles ) THEN |
---|
2627 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
2628 | ! CALL local_flush( 9 ) |
---|
2629 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2630 | ! ENDIF |
---|
2631 | |
---|
2632 | DO n = 1, number_of_particles |
---|
2633 | |
---|
2634 | nn = particles(n)%tail_id |
---|
2635 | |
---|
2636 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
2637 | ! |
---|
2638 | !-- Above calculation does not work for indices less than zero |
---|
2639 | IF ( particles(n)%x < - 0.5 * dx ) i = -1 |
---|
2640 | |
---|
2641 | IF ( i < nxl ) THEN |
---|
2642 | IF ( i < 0 ) THEN |
---|
2643 | ! |
---|
2644 | !-- Apply boundary condition along x |
---|
2645 | IF ( ibc_par_lr == 0 ) THEN |
---|
2646 | ! |
---|
2647 | !-- Cyclic condition |
---|
2648 | IF ( pdims(1) == 1 ) THEN |
---|
2649 | particles(n)%x = ( nx + 1 ) * dx + particles(n)%x |
---|
2650 | particles(n)%origin_x = ( nx + 1 ) * dx + & |
---|
2651 | particles(n)%origin_x |
---|
2652 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2653 | i = particles(n)%tailpoints |
---|
2654 | particle_tail_coordinates(1:i,1,nn) = ( nx + 1 ) * dx & |
---|
2655 | + particle_tail_coordinates(1:i,1,nn) |
---|
2656 | ENDIF |
---|
2657 | ELSE |
---|
2658 | trlp_count = trlp_count + 1 |
---|
2659 | trlp(trlp_count) = particles(n) |
---|
2660 | trlp(trlp_count)%x = ( nx + 1 ) * dx + trlp(trlp_count)%x |
---|
2661 | trlp(trlp_count)%origin_x = trlp(trlp_count)%origin_x + & |
---|
2662 | ( nx + 1 ) * dx |
---|
2663 | particle_mask(n) = .FALSE. |
---|
2664 | deleted_particles = deleted_particles + 1 |
---|
2665 | |
---|
2666 | IF ( trlp(trlp_count)%x >= (nx + 0.5)* dx - 1.e-12 ) THEN |
---|
2667 | trlp(trlp_count)%x = trlp(trlp_count)%x - 1.e-10 |
---|
2668 | trlp(trlp_count)%origin_x = trlp(trlp_count)%origin_x & |
---|
2669 | - 1 |
---|
2670 | ENDIF |
---|
2671 | |
---|
2672 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2673 | trlpt_count = trlpt_count + 1 |
---|
2674 | trlpt(:,:,trlpt_count) = & |
---|
2675 | particle_tail_coordinates(:,:,nn) |
---|
2676 | trlpt(:,1,trlpt_count) = ( nx + 1 ) * dx + & |
---|
2677 | trlpt(:,1,trlpt_count) |
---|
2678 | tail_mask(nn) = .FALSE. |
---|
2679 | deleted_tails = deleted_tails + 1 |
---|
2680 | ENDIF |
---|
2681 | ENDIF |
---|
2682 | |
---|
2683 | ELSEIF ( ibc_par_lr == 1 ) THEN |
---|
2684 | ! |
---|
2685 | !-- Particle absorption |
---|
2686 | particle_mask(n) = .FALSE. |
---|
2687 | deleted_particles = deleted_particles + 1 |
---|
2688 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2689 | tail_mask(nn) = .FALSE. |
---|
2690 | deleted_tails = deleted_tails + 1 |
---|
2691 | ENDIF |
---|
2692 | |
---|
2693 | ELSEIF ( ibc_par_lr == 2 ) THEN |
---|
2694 | ! |
---|
2695 | !-- Particle reflection |
---|
2696 | particles(n)%x = -particles(n)%x |
---|
2697 | particles(n)%speed_x = -particles(n)%speed_x |
---|
2698 | |
---|
2699 | ENDIF |
---|
2700 | ELSE |
---|
2701 | ! |
---|
2702 | !-- Store particle data in the transfer array, which will be send |
---|
2703 | !-- to the neighbouring PE |
---|
2704 | trlp_count = trlp_count + 1 |
---|
2705 | trlp(trlp_count) = particles(n) |
---|
2706 | particle_mask(n) = .FALSE. |
---|
2707 | deleted_particles = deleted_particles + 1 |
---|
2708 | |
---|
2709 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2710 | trlpt_count = trlpt_count + 1 |
---|
2711 | trlpt(:,:,trlpt_count) = particle_tail_coordinates(:,:,nn) |
---|
2712 | tail_mask(nn) = .FALSE. |
---|
2713 | deleted_tails = deleted_tails + 1 |
---|
2714 | ENDIF |
---|
2715 | ENDIF |
---|
2716 | |
---|
2717 | ELSEIF ( i > nxr ) THEN |
---|
2718 | IF ( i > nx ) THEN |
---|
2719 | ! |
---|
2720 | !-- Apply boundary condition along x |
---|
2721 | IF ( ibc_par_lr == 0 ) THEN |
---|
2722 | ! |
---|
2723 | !-- Cyclic condition |
---|
2724 | IF ( pdims(1) == 1 ) THEN |
---|
2725 | particles(n)%x = particles(n)%x - ( nx + 1 ) * dx |
---|
2726 | particles(n)%origin_x = particles(n)%origin_x - & |
---|
2727 | ( nx + 1 ) * dx |
---|
2728 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2729 | i = particles(n)%tailpoints |
---|
2730 | particle_tail_coordinates(1:i,1,nn) = - ( nx+1 ) * dx & |
---|
2731 | + particle_tail_coordinates(1:i,1,nn) |
---|
2732 | ENDIF |
---|
2733 | ELSE |
---|
2734 | trrp_count = trrp_count + 1 |
---|
2735 | trrp(trrp_count) = particles(n) |
---|
2736 | trrp(trrp_count)%x = trrp(trrp_count)%x - ( nx + 1 ) * dx |
---|
2737 | trrp(trrp_count)%origin_x = trrp(trrp_count)%origin_x - & |
---|
2738 | ( nx + 1 ) * dx |
---|
2739 | particle_mask(n) = .FALSE. |
---|
2740 | deleted_particles = deleted_particles + 1 |
---|
2741 | |
---|
2742 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2743 | trrpt_count = trrpt_count + 1 |
---|
2744 | trrpt(:,:,trrpt_count) = & |
---|
2745 | particle_tail_coordinates(:,:,nn) |
---|
2746 | trrpt(:,1,trrpt_count) = trrpt(:,1,trrpt_count) - & |
---|
2747 | ( nx + 1 ) * dx |
---|
2748 | tail_mask(nn) = .FALSE. |
---|
2749 | deleted_tails = deleted_tails + 1 |
---|
2750 | ENDIF |
---|
2751 | ENDIF |
---|
2752 | |
---|
2753 | ELSEIF ( ibc_par_lr == 1 ) THEN |
---|
2754 | ! |
---|
2755 | !-- Particle absorption |
---|
2756 | particle_mask(n) = .FALSE. |
---|
2757 | deleted_particles = deleted_particles + 1 |
---|
2758 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2759 | tail_mask(nn) = .FALSE. |
---|
2760 | deleted_tails = deleted_tails + 1 |
---|
2761 | ENDIF |
---|
2762 | |
---|
2763 | ELSEIF ( ibc_par_lr == 2 ) THEN |
---|
2764 | ! |
---|
2765 | !-- Particle reflection |
---|
2766 | particles(n)%x = 2 * ( nx * dx ) - particles(n)%x |
---|
2767 | particles(n)%speed_x = -particles(n)%speed_x |
---|
2768 | |
---|
2769 | ENDIF |
---|
2770 | ELSE |
---|
2771 | ! |
---|
2772 | !-- Store particle data in the transfer array, which will be send |
---|
2773 | !-- to the neighbouring PE |
---|
2774 | trrp_count = trrp_count + 1 |
---|
2775 | trrp(trrp_count) = particles(n) |
---|
2776 | particle_mask(n) = .FALSE. |
---|
2777 | deleted_particles = deleted_particles + 1 |
---|
2778 | |
---|
2779 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2780 | trrpt_count = trrpt_count + 1 |
---|
2781 | trrpt(:,:,trrpt_count) = particle_tail_coordinates(:,:,nn) |
---|
2782 | tail_mask(nn) = .FALSE. |
---|
2783 | deleted_tails = deleted_tails + 1 |
---|
2784 | ENDIF |
---|
2785 | ENDIF |
---|
2786 | |
---|
2787 | ENDIF |
---|
2788 | ENDDO |
---|
2789 | |
---|
2790 | ! WRITE ( 9, * ) '*** advec_particles: ##2' |
---|
2791 | ! CALL local_flush( 9 ) |
---|
2792 | ! nd = 0 |
---|
2793 | ! DO n = 1, number_of_particles |
---|
2794 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
2795 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
2796 | ! THEN |
---|
2797 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
2798 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
2799 | ! CALL local_flush( 9 ) |
---|
2800 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2801 | ! ENDIF |
---|
2802 | ! ENDDO |
---|
2803 | ! IF ( nd /= deleted_particles ) THEN |
---|
2804 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
2805 | ! CALL local_flush( 9 ) |
---|
2806 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2807 | ! ENDIF |
---|
2808 | |
---|
2809 | ! |
---|
2810 | !-- Send left boundary, receive right boundary (but first exchange how many |
---|
2811 | !-- and check, if particle storage must be extended) |
---|
2812 | IF ( pdims(1) /= 1 ) THEN |
---|
2813 | |
---|
2814 | CALL cpu_log( log_point_s(23), 'sendrcv_particles', 'start' ) |
---|
2815 | CALL MPI_SENDRECV( trlp_count, 1, MPI_INTEGER, pleft, 0, & |
---|
2816 | trrp_count_recv, 1, MPI_INTEGER, pright, 0, & |
---|
2817 | comm2d, status, ierr ) |
---|
2818 | |
---|
2819 | IF ( number_of_particles + trrp_count_recv > & |
---|
2820 | maximum_number_of_particles ) & |
---|
2821 | THEN |
---|
2822 | IF ( netcdf_output .AND. netcdf_data_format < 3 ) THEN |
---|
2823 | message_string = 'maximum_number_of_particles ' // & |
---|
2824 | 'needs to be increased ' // & |
---|
2825 | '&but this is not allowed with ' // & |
---|
2826 | 'netcdf-data_format < 3' |
---|
2827 | CALL message( 'advec_particles', 'PA0146', 2, 2, -1, 6, 1 ) |
---|
2828 | ELSE |
---|
2829 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_prt_memory trrp' |
---|
2830 | ! CALL local_flush( 9 ) |
---|
2831 | CALL allocate_prt_memory( trrp_count_recv ) |
---|
2832 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_prt_memory trrp' |
---|
2833 | ! CALL local_flush( 9 ) |
---|
2834 | ENDIF |
---|
2835 | ENDIF |
---|
2836 | |
---|
2837 | CALL MPI_SENDRECV( trlp(1)%age, trlp_count, mpi_particle_type, & |
---|
2838 | pleft, 1, particles(number_of_particles+1)%age, & |
---|
2839 | trrp_count_recv, mpi_particle_type, pright, 1, & |
---|
2840 | comm2d, status, ierr ) |
---|
2841 | |
---|
2842 | IF ( use_particle_tails ) THEN |
---|
2843 | |
---|
2844 | CALL MPI_SENDRECV( trlpt_count, 1, MPI_INTEGER, pleft, 0, & |
---|
2845 | trrpt_count_recv, 1, MPI_INTEGER, pright, 0, & |
---|
2846 | comm2d, status, ierr ) |
---|
2847 | |
---|
2848 | IF ( number_of_tails+trrpt_count_recv > maximum_number_of_tails ) & |
---|
2849 | THEN |
---|
2850 | IF ( netcdf_output .AND. netcdf_data_format < 3 ) THEN |
---|
2851 | message_string = 'maximum_number_of_tails ' // & |
---|
2852 | 'needs to be increased ' // & |
---|
2853 | '&but this is not allowed wi'// & |
---|
2854 | 'th netcdf_data_format < 3' |
---|
2855 | CALL message( 'advec_particles', 'PA0147', 2, 2, -1, 6, 1 ) |
---|
2856 | ELSE |
---|
2857 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_tail_memory trrpt' |
---|
2858 | ! CALL local_flush( 9 ) |
---|
2859 | CALL allocate_tail_memory( trrpt_count_recv ) |
---|
2860 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_tail_memory trrpt' |
---|
2861 | ! CALL local_flush( 9 ) |
---|
2862 | ENDIF |
---|
2863 | ENDIF |
---|
2864 | |
---|
2865 | CALL MPI_SENDRECV( trlpt(1,1,1), trlpt_count*tlength, MPI_REAL, & |
---|
2866 | pleft, 1, & |
---|
2867 | particle_tail_coordinates(1,1,number_of_tails+1), & |
---|
2868 | trrpt_count_recv*tlength, MPI_REAL, pright, 1, & |
---|
2869 | comm2d, status, ierr ) |
---|
2870 | ! |
---|
2871 | !-- Update the tail ids for the transferred particles |
---|
2872 | nn = number_of_tails |
---|
2873 | DO n = number_of_particles+1, number_of_particles+trrp_count_recv |
---|
2874 | IF ( particles(n)%tail_id /= 0 ) THEN |
---|
2875 | nn = nn + 1 |
---|
2876 | particles(n)%tail_id = nn |
---|
2877 | ENDIF |
---|
2878 | ENDDO |
---|
2879 | |
---|
2880 | ENDIF |
---|
2881 | |
---|
2882 | number_of_particles = number_of_particles + trrp_count_recv |
---|
2883 | number_of_tails = number_of_tails + trrpt_count_recv |
---|
2884 | ! IF ( number_of_particles /= number_of_tails ) THEN |
---|
2885 | ! WRITE (9,*) '--- advec_particles: #3' |
---|
2886 | ! WRITE (9,*) ' #of p=',number_of_particles,' #of t=',number_of_tails |
---|
2887 | ! CALL local_flush( 9 ) |
---|
2888 | ! ENDIF |
---|
2889 | |
---|
2890 | ! |
---|
2891 | !-- Send right boundary, receive left boundary |
---|
2892 | CALL MPI_SENDRECV( trrp_count, 1, MPI_INTEGER, pright, 0, & |
---|
2893 | trlp_count_recv, 1, MPI_INTEGER, pleft, 0, & |
---|
2894 | comm2d, status, ierr ) |
---|
2895 | |
---|
2896 | IF ( number_of_particles + trlp_count_recv > & |
---|
2897 | maximum_number_of_particles ) & |
---|
2898 | THEN |
---|
2899 | IF ( netcdf_output .AND. netcdf_data_format < 3 ) THEN |
---|
2900 | message_string = 'maximum_number_of_particles ' // & |
---|
2901 | 'needs to be increased ' // & |
---|
2902 | '&but this is not allowed with '// & |
---|
2903 | 'netcdf_data_format < 3' |
---|
2904 | CALL message( 'advec_particles', 'PA0146', 2, 2, -1, 6, 1 ) |
---|
2905 | ELSE |
---|
2906 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_prt_memory trlp' |
---|
2907 | ! CALL local_flush( 9 ) |
---|
2908 | CALL allocate_prt_memory( trlp_count_recv ) |
---|
2909 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_prt_memory trlp' |
---|
2910 | ! CALL local_flush( 9 ) |
---|
2911 | ENDIF |
---|
2912 | ENDIF |
---|
2913 | |
---|
2914 | CALL MPI_SENDRECV( trrp(1)%age, trrp_count, mpi_particle_type, & |
---|
2915 | pright, 1, particles(number_of_particles+1)%age, & |
---|
2916 | trlp_count_recv, mpi_particle_type, pleft, 1, & |
---|
2917 | comm2d, status, ierr ) |
---|
2918 | |
---|
2919 | IF ( use_particle_tails ) THEN |
---|
2920 | |
---|
2921 | CALL MPI_SENDRECV( trrpt_count, 1, MPI_INTEGER, pright, 0, & |
---|
2922 | trlpt_count_recv, 1, MPI_INTEGER, pleft, 0, & |
---|
2923 | comm2d, status, ierr ) |
---|
2924 | |
---|
2925 | IF ( number_of_tails+trlpt_count_recv > maximum_number_of_tails ) & |
---|
2926 | THEN |
---|
2927 | IF ( netcdf_output .AND. netcdf_data_format < 3 ) THEN |
---|
2928 | message_string = 'maximum_number_of_tails ' // & |
---|
2929 | 'needs to be increased ' // & |
---|
2930 | '&but this is not allowed wi'// & |
---|
2931 | 'th netcdf_data_format < 3' |
---|
2932 | CALL message( 'advec_particles', 'PA0147', 2, 2, -1, 6, 1 ) |
---|
2933 | ELSE |
---|
2934 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_tail_memory trlpt' |
---|
2935 | ! CALL local_flush( 9 ) |
---|
2936 | CALL allocate_tail_memory( trlpt_count_recv ) |
---|
2937 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_tail_memory trlpt' |
---|
2938 | ! CALL local_flush( 9 ) |
---|
2939 | ENDIF |
---|
2940 | ENDIF |
---|
2941 | |
---|
2942 | CALL MPI_SENDRECV( trrpt(1,1,1), trrpt_count*tlength, MPI_REAL, & |
---|
2943 | pright, 1, & |
---|
2944 | particle_tail_coordinates(1,1,number_of_tails+1), & |
---|
2945 | trlpt_count_recv*tlength, MPI_REAL, pleft, 1, & |
---|
2946 | comm2d, status, ierr ) |
---|
2947 | ! |
---|
2948 | !-- Update the tail ids for the transferred particles |
---|
2949 | nn = number_of_tails |
---|
2950 | DO n = number_of_particles+1, number_of_particles+trlp_count_recv |
---|
2951 | IF ( particles(n)%tail_id /= 0 ) THEN |
---|
2952 | nn = nn + 1 |
---|
2953 | particles(n)%tail_id = nn |
---|
2954 | ENDIF |
---|
2955 | ENDDO |
---|
2956 | |
---|
2957 | ENDIF |
---|
2958 | |
---|
2959 | number_of_particles = number_of_particles + trlp_count_recv |
---|
2960 | number_of_tails = number_of_tails + trlpt_count_recv |
---|
2961 | ! IF ( number_of_particles /= number_of_tails ) THEN |
---|
2962 | ! WRITE (9,*) '--- advec_particles: #4' |
---|
2963 | ! WRITE (9,*) ' #of p=',number_of_particles,' #of t=',number_of_tails |
---|
2964 | ! CALL local_flush( 9 ) |
---|
2965 | ! ENDIF |
---|
2966 | |
---|
2967 | IF ( use_particle_tails ) THEN |
---|
2968 | DEALLOCATE( trlpt, trrpt ) |
---|
2969 | ENDIF |
---|
2970 | DEALLOCATE( trlp, trrp ) |
---|
2971 | |
---|
2972 | CALL cpu_log( log_point_s(23), 'sendrcv_particles', 'pause' ) |
---|
2973 | |
---|
2974 | ENDIF |
---|
2975 | |
---|
2976 | ! WRITE ( 9, * ) '*** advec_particles: ##3' |
---|
2977 | ! CALL local_flush( 9 ) |
---|
2978 | ! nd = 0 |
---|
2979 | ! DO n = 1, number_of_particles |
---|
2980 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
2981 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
2982 | ! THEN |
---|
2983 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
2984 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
2985 | ! CALL local_flush( 9 ) |
---|
2986 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2987 | ! ENDIF |
---|
2988 | ! ENDDO |
---|
2989 | ! IF ( nd /= deleted_particles ) THEN |
---|
2990 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
2991 | ! CALL local_flush( 9 ) |
---|
2992 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2993 | ! ENDIF |
---|
2994 | |
---|
2995 | ! |
---|
2996 | !-- Check whether particles have crossed the boundaries in y direction. Note |
---|
2997 | !-- that this case can also apply to particles that have just been received |
---|
2998 | !-- from the adjacent right or left PE. |
---|
2999 | !-- Find out first the number of particles to be transferred and allocate |
---|
3000 | !-- temporary arrays needed to store them. |
---|
3001 | !-- For a one-dimensional decomposition along x, no transfer is necessary, |
---|
3002 | !-- because the particle remains on the PE. |
---|
3003 | trsp_count = 0 |
---|
3004 | trspt_count = 0 |
---|
3005 | trnp_count = 0 |
---|
3006 | trnpt_count = 0 |
---|
3007 | IF ( pdims(2) /= 1 ) THEN |
---|
3008 | ! |
---|
3009 | !-- First calculate the storage necessary for sending and receiving the |
---|
3010 | !-- data |
---|
3011 | DO n = 1, number_of_particles |
---|
3012 | IF ( particle_mask(n) ) THEN |
---|
3013 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
3014 | ! |
---|
3015 | !-- Above calculation does not work for indices less than zero |
---|
3016 | IF ( particles(n)%y < -0.5 * dy ) j = -1 |
---|
3017 | |
---|
3018 | IF ( j < nys ) THEN |
---|
3019 | trsp_count = trsp_count + 1 |
---|
3020 | IF ( particles(n)%tail_id /= 0 ) trspt_count = trspt_count+1 |
---|
3021 | ELSEIF ( j > nyn ) THEN |
---|
3022 | trnp_count = trnp_count + 1 |
---|
3023 | IF ( particles(n)%tail_id /= 0 ) trnpt_count = trnpt_count+1 |
---|
3024 | ENDIF |
---|
3025 | ENDIF |
---|
3026 | ENDDO |
---|
3027 | IF ( trsp_count == 0 ) trsp_count = 1 |
---|
3028 | IF ( trspt_count == 0 ) trspt_count = 1 |
---|
3029 | IF ( trnp_count == 0 ) trnp_count = 1 |
---|
3030 | IF ( trnpt_count == 0 ) trnpt_count = 1 |
---|
3031 | |
---|
3032 | ALLOCATE( trsp(trsp_count), trnp(trnp_count) ) |
---|
3033 | |
---|
3034 | trsp = particle_type( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
3035 | 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
3036 | 0.0, 0, 0, 0, 0 ) |
---|
3037 | trnp = particle_type( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
3038 | 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
3039 | 0.0, 0, 0, 0, 0 ) |
---|
3040 | |
---|
3041 | IF ( use_particle_tails ) THEN |
---|
3042 | ALLOCATE( trspt(maximum_number_of_tailpoints,5,trspt_count), & |
---|
3043 | trnpt(maximum_number_of_tailpoints,5,trnpt_count) ) |
---|
3044 | tlength = maximum_number_of_tailpoints * 5 |
---|
3045 | ENDIF |
---|
3046 | |
---|
3047 | trsp_count = 0 |
---|
3048 | trspt_count = 0 |
---|
3049 | trnp_count = 0 |
---|
3050 | trnpt_count = 0 |
---|
3051 | |
---|
3052 | ENDIF |
---|
3053 | |
---|
3054 | ! WRITE ( 9, * ) '*** advec_particles: ##4' |
---|
3055 | ! CALL local_flush( 9 ) |
---|
3056 | ! nd = 0 |
---|
3057 | ! DO n = 1, number_of_particles |
---|
3058 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
3059 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
3060 | ! THEN |
---|
3061 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
3062 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
3063 | ! CALL local_flush( 9 ) |
---|
3064 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3065 | ! ENDIF |
---|
3066 | ! ENDDO |
---|
3067 | ! IF ( nd /= deleted_particles ) THEN |
---|
3068 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
3069 | ! CALL local_flush( 9 ) |
---|
3070 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3071 | ! ENDIF |
---|
3072 | |
---|
3073 | DO n = 1, number_of_particles |
---|
3074 | |
---|
3075 | nn = particles(n)%tail_id |
---|
3076 | ! |
---|
3077 | !-- Only those particles that have not been marked as 'deleted' may be |
---|
3078 | !-- moved. |
---|
3079 | IF ( particle_mask(n) ) THEN |
---|
3080 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
3081 | ! |
---|
3082 | !-- Above calculation does not work for indices less than zero |
---|
3083 | IF ( particles(n)%y < -0.5 * dy ) j = -1 |
---|
3084 | |
---|
3085 | IF ( j < nys ) THEN |
---|
3086 | IF ( j < 0 ) THEN |
---|
3087 | ! |
---|
3088 | !-- Apply boundary condition along y |
---|
3089 | IF ( ibc_par_ns == 0 ) THEN |
---|
3090 | ! |
---|
3091 | !-- Cyclic condition |
---|
3092 | IF ( pdims(2) == 1 ) THEN |
---|
3093 | particles(n)%y = ( ny + 1 ) * dy + particles(n)%y |
---|
3094 | particles(n)%origin_y = ( ny + 1 ) * dy + & |
---|
3095 | particles(n)%origin_y |
---|
3096 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3097 | i = particles(n)%tailpoints |
---|
3098 | particle_tail_coordinates(1:i,2,nn) = ( ny+1 ) * dy& |
---|
3099 | + particle_tail_coordinates(1:i,2,nn) |
---|
3100 | ENDIF |
---|
3101 | ELSE |
---|
3102 | trsp_count = trsp_count + 1 |
---|
3103 | trsp(trsp_count) = particles(n) |
---|
3104 | trsp(trsp_count)%y = ( ny + 1 ) * dy + & |
---|
3105 | trsp(trsp_count)%y |
---|
3106 | trsp(trsp_count)%origin_y = trsp(trsp_count)%origin_y & |
---|
3107 | + ( ny + 1 ) * dy |
---|
3108 | particle_mask(n) = .FALSE. |
---|
3109 | deleted_particles = deleted_particles + 1 |
---|
3110 | |
---|
3111 | IF ( trsp(trsp_count)%y >= (ny+0.5)* dy - 1.e-12 ) THEN |
---|
3112 | trsp(trsp_count)%y = trsp(trsp_count)%y - 1.e-10 |
---|
3113 | trsp(trsp_count)%origin_y = & |
---|
3114 | trsp(trsp_count)%origin_y - 1 |
---|
3115 | ENDIF |
---|
3116 | |
---|
3117 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3118 | trspt_count = trspt_count + 1 |
---|
3119 | trspt(:,:,trspt_count) = & |
---|
3120 | particle_tail_coordinates(:,:,nn) |
---|
3121 | trspt(:,2,trspt_count) = ( ny + 1 ) * dy + & |
---|
3122 | trspt(:,2,trspt_count) |
---|
3123 | tail_mask(nn) = .FALSE. |
---|
3124 | deleted_tails = deleted_tails + 1 |
---|
3125 | ENDIF |
---|
3126 | ENDIF |
---|
3127 | |
---|
3128 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
3129 | ! |
---|
3130 | !-- Particle absorption |
---|
3131 | particle_mask(n) = .FALSE. |
---|
3132 | deleted_particles = deleted_particles + 1 |
---|
3133 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3134 | tail_mask(nn) = .FALSE. |
---|
3135 | deleted_tails = deleted_tails + 1 |
---|
3136 | ENDIF |
---|
3137 | |
---|
3138 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
3139 | ! |
---|
3140 | !-- Particle reflection |
---|
3141 | particles(n)%y = -particles(n)%y |
---|
3142 | particles(n)%speed_y = -particles(n)%speed_y |
---|
3143 | |
---|
3144 | ENDIF |
---|
3145 | ELSE |
---|
3146 | ! |
---|
3147 | !-- Store particle data in the transfer array, which will be send |
---|
3148 | !-- to the neighbouring PE |
---|
3149 | trsp_count = trsp_count + 1 |
---|
3150 | trsp(trsp_count) = particles(n) |
---|
3151 | particle_mask(n) = .FALSE. |
---|
3152 | deleted_particles = deleted_particles + 1 |
---|
3153 | |
---|
3154 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3155 | trspt_count = trspt_count + 1 |
---|
3156 | trspt(:,:,trspt_count) = particle_tail_coordinates(:,:,nn) |
---|
3157 | tail_mask(nn) = .FALSE. |
---|
3158 | deleted_tails = deleted_tails + 1 |
---|
3159 | ENDIF |
---|
3160 | ENDIF |
---|
3161 | |
---|
3162 | ELSEIF ( j > nyn ) THEN |
---|
3163 | IF ( j > ny ) THEN |
---|
3164 | ! |
---|
3165 | !-- Apply boundary condition along x |
---|
3166 | IF ( ibc_par_ns == 0 ) THEN |
---|
3167 | ! |
---|
3168 | !-- Cyclic condition |
---|
3169 | IF ( pdims(2) == 1 ) THEN |
---|
3170 | particles(n)%y = particles(n)%y - ( ny + 1 ) * dy |
---|
3171 | particles(n)%origin_y = particles(n)%origin_y - & |
---|
3172 | ( ny + 1 ) * dy |
---|
3173 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3174 | i = particles(n)%tailpoints |
---|
3175 | particle_tail_coordinates(1:i,2,nn) = - (ny+1) * dy& |
---|
3176 | + particle_tail_coordinates(1:i,2,nn) |
---|
3177 | ENDIF |
---|
3178 | ELSE |
---|
3179 | trnp_count = trnp_count + 1 |
---|
3180 | trnp(trnp_count) = particles(n) |
---|
3181 | trnp(trnp_count)%y = trnp(trnp_count)%y - & |
---|
3182 | ( ny + 1 ) * dy |
---|
3183 | trnp(trnp_count)%origin_y = trnp(trnp_count)%origin_y & |
---|
3184 | - ( ny + 1 ) * dy |
---|
3185 | particle_mask(n) = .FALSE. |
---|
3186 | deleted_particles = deleted_particles + 1 |
---|
3187 | |
---|
3188 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3189 | trnpt_count = trnpt_count + 1 |
---|
3190 | trnpt(:,:,trnpt_count) = & |
---|
3191 | particle_tail_coordinates(:,:,nn) |
---|
3192 | trnpt(:,2,trnpt_count) = trnpt(:,2,trnpt_count) - & |
---|
3193 | ( ny + 1 ) * dy |
---|
3194 | tail_mask(nn) = .FALSE. |
---|
3195 | deleted_tails = deleted_tails + 1 |
---|
3196 | ENDIF |
---|
3197 | ENDIF |
---|
3198 | |
---|
3199 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
3200 | ! |
---|
3201 | !-- Particle absorption |
---|
3202 | particle_mask(n) = .FALSE. |
---|
3203 | deleted_particles = deleted_particles + 1 |
---|
3204 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3205 | tail_mask(nn) = .FALSE. |
---|
3206 | deleted_tails = deleted_tails + 1 |
---|
3207 | ENDIF |
---|
3208 | |
---|
3209 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
3210 | ! |
---|
3211 | !-- Particle reflection |
---|
3212 | particles(n)%y = 2 * ( ny * dy ) - particles(n)%y |
---|
3213 | particles(n)%speed_y = -particles(n)%speed_y |
---|
3214 | |
---|
3215 | ENDIF |
---|
3216 | ELSE |
---|
3217 | ! |
---|
3218 | !-- Store particle data in the transfer array, which will be send |
---|
3219 | !-- to the neighbouring PE |
---|
3220 | trnp_count = trnp_count + 1 |
---|
3221 | trnp(trnp_count) = particles(n) |
---|
3222 | particle_mask(n) = .FALSE. |
---|
3223 | deleted_particles = deleted_particles + 1 |
---|
3224 | |
---|
3225 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3226 | trnpt_count = trnpt_count + 1 |
---|
3227 | trnpt(:,:,trnpt_count) = particle_tail_coordinates(:,:,nn) |
---|
3228 | tail_mask(nn) = .FALSE. |
---|
3229 | deleted_tails = deleted_tails + 1 |
---|
3230 | ENDIF |
---|
3231 | ENDIF |
---|
3232 | |
---|
3233 | ENDIF |
---|
3234 | ENDIF |
---|
3235 | ENDDO |
---|
3236 | |
---|
3237 | ! WRITE ( 9, * ) '*** advec_particles: ##5' |
---|
3238 | ! CALL local_flush( 9 ) |
---|
3239 | ! nd = 0 |
---|
3240 | ! DO n = 1, number_of_particles |
---|
3241 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
3242 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
3243 | ! THEN |
---|
3244 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
3245 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
3246 | ! CALL local_flush( 9 ) |
---|
3247 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3248 | ! ENDIF |
---|
3249 | ! ENDDO |
---|
3250 | ! IF ( nd /= deleted_particles ) THEN |
---|
3251 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
3252 | ! CALL local_flush( 9 ) |
---|
3253 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3254 | ! ENDIF |
---|
3255 | |
---|
3256 | ! |
---|
3257 | !-- Send front boundary, receive back boundary (but first exchange how many |
---|
3258 | !-- and check, if particle storage must be extended) |
---|
3259 | IF ( pdims(2) /= 1 ) THEN |
---|
3260 | |
---|
3261 | CALL cpu_log( log_point_s(23), 'sendrcv_particles', 'continue' ) |
---|
3262 | CALL MPI_SENDRECV( trsp_count, 1, MPI_INTEGER, psouth, 0, & |
---|
3263 | trnp_count_recv, 1, MPI_INTEGER, pnorth, 0, & |
---|
3264 | comm2d, status, ierr ) |
---|
3265 | |
---|
3266 | IF ( number_of_particles + trnp_count_recv > & |
---|
3267 | maximum_number_of_particles ) & |
---|
3268 | THEN |
---|
3269 | IF ( netcdf_output .AND. netcdf_data_format < 3 ) THEN |
---|
3270 | message_string = 'maximum_number_of_particles ' // & |
---|
3271 | 'needs to be increased ' // & |
---|
3272 | '&but this is not allowed with '// & |
---|
3273 | 'netcdf_data_format < 3' |
---|
3274 | CALL message( 'advec_particles', 'PA0146', 2, 2, -1, 6, 1 ) |
---|
3275 | ELSE |
---|
3276 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_prt_memory trnp' |
---|
3277 | ! CALL local_flush( 9 ) |
---|
3278 | CALL allocate_prt_memory( trnp_count_recv ) |
---|
3279 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_prt_memory trnp' |
---|
3280 | ! CALL local_flush( 9 ) |
---|
3281 | ENDIF |
---|
3282 | ENDIF |
---|
3283 | |
---|
3284 | CALL MPI_SENDRECV( trsp(1)%age, trsp_count, mpi_particle_type, & |
---|
3285 | psouth, 1, particles(number_of_particles+1)%age, & |
---|
3286 | trnp_count_recv, mpi_particle_type, pnorth, 1, & |
---|
3287 | comm2d, status, ierr ) |
---|
3288 | |
---|
3289 | IF ( use_particle_tails ) THEN |
---|
3290 | |
---|
3291 | CALL MPI_SENDRECV( trspt_count, 1, MPI_INTEGER, psouth, 0, & |
---|
3292 | trnpt_count_recv, 1, MPI_INTEGER, pnorth, 0, & |
---|
3293 | comm2d, status, ierr ) |
---|
3294 | |
---|
3295 | IF ( number_of_tails+trnpt_count_recv > maximum_number_of_tails ) & |
---|
3296 | THEN |
---|
3297 | IF ( netcdf_output .AND. netcdf_data_format < 3 ) THEN |
---|
3298 | message_string = 'maximum_number_of_tails ' // & |
---|
3299 | 'needs to be increased ' // & |
---|
3300 | '&but this is not allowed wi' // & |
---|
3301 | 'th netcdf_data_format < 3' |
---|
3302 | CALL message( 'advec_particles', 'PA0147', 2, 2, -1, 6, 1 ) |
---|
3303 | ELSE |
---|
3304 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_tail_memory trnpt' |
---|
3305 | ! CALL local_flush( 9 ) |
---|
3306 | CALL allocate_tail_memory( trnpt_count_recv ) |
---|
3307 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_tail_memory trnpt' |
---|
3308 | ! CALL local_flush( 9 ) |
---|
3309 | ENDIF |
---|
3310 | ENDIF |
---|
3311 | |
---|
3312 | CALL MPI_SENDRECV( trspt(1,1,1), trspt_count*tlength, MPI_REAL, & |
---|
3313 | psouth, 1, & |
---|
3314 | particle_tail_coordinates(1,1,number_of_tails+1), & |
---|
3315 | trnpt_count_recv*tlength, MPI_REAL, pnorth, 1, & |
---|
3316 | comm2d, status, ierr ) |
---|
3317 | |
---|
3318 | ! |
---|
3319 | !-- Update the tail ids for the transferred particles |
---|
3320 | nn = number_of_tails |
---|
3321 | DO n = number_of_particles+1, number_of_particles+trnp_count_recv |
---|
3322 | IF ( particles(n)%tail_id /= 0 ) THEN |
---|
3323 | nn = nn + 1 |
---|
3324 | particles(n)%tail_id = nn |
---|
3325 | ENDIF |
---|
3326 | ENDDO |
---|
3327 | |
---|
3328 | ENDIF |
---|
3329 | |
---|
3330 | number_of_particles = number_of_particles + trnp_count_recv |
---|
3331 | number_of_tails = number_of_tails + trnpt_count_recv |
---|
3332 | ! IF ( number_of_particles /= number_of_tails ) THEN |
---|
3333 | ! WRITE (9,*) '--- advec_particles: #5' |
---|
3334 | ! WRITE (9,*) ' #of p=',number_of_particles,' #of t=',number_of_tails |
---|
3335 | ! CALL local_flush( 9 ) |
---|
3336 | ! ENDIF |
---|
3337 | |
---|
3338 | ! |
---|
3339 | !-- Send back boundary, receive front boundary |
---|
3340 | CALL MPI_SENDRECV( trnp_count, 1, MPI_INTEGER, pnorth, 0, & |
---|
3341 | trsp_count_recv, 1, MPI_INTEGER, psouth, 0, & |
---|
3342 | comm2d, status, ierr ) |
---|
3343 | |
---|
3344 | IF ( number_of_particles + trsp_count_recv > & |
---|
3345 | maximum_number_of_particles ) & |
---|
3346 | THEN |
---|
3347 | IF ( netcdf_output .AND. netcdf_data_format < 3 ) THEN |
---|
3348 | message_string = 'maximum_number_of_particles ' // & |
---|
3349 | 'needs to be increased ' // & |
---|
3350 | '&but this is not allowed with ' // & |
---|
3351 | 'netcdf_data_format < 3' |
---|
3352 | CALL message( 'advec_particles', 'PA0146', 2, 2, -1, 6, 1 ) |
---|
3353 | ELSE |
---|
3354 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_prt_memory trsp' |
---|
3355 | ! CALL local_flush( 9 ) |
---|
3356 | CALL allocate_prt_memory( trsp_count_recv ) |
---|
3357 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_prt_memory trsp' |
---|
3358 | ! CALL local_flush( 9 ) |
---|
3359 | ENDIF |
---|
3360 | ENDIF |
---|
3361 | |
---|
3362 | CALL MPI_SENDRECV( trnp(1)%age, trnp_count, mpi_particle_type, & |
---|
3363 | pnorth, 1, particles(number_of_particles+1)%age, & |
---|
3364 | trsp_count_recv, mpi_particle_type, psouth, 1, & |
---|
3365 | comm2d, status, ierr ) |
---|
3366 | |
---|
3367 | IF ( use_particle_tails ) THEN |
---|
3368 | |
---|
3369 | CALL MPI_SENDRECV( trnpt_count, 1, MPI_INTEGER, pnorth, 0, & |
---|
3370 | trspt_count_recv, 1, MPI_INTEGER, psouth, 0, & |
---|
3371 | comm2d, status, ierr ) |
---|
3372 | |
---|
3373 | IF ( number_of_tails+trspt_count_recv > maximum_number_of_tails ) & |
---|
3374 | THEN |
---|
3375 | IF ( netcdf_output .AND. netcdf_data_format < 3 ) THEN |
---|
3376 | message_string = 'maximum_number_of_tails ' // & |
---|
3377 | 'needs to be increased ' // & |
---|
3378 | '&but this is not allowed wi'// & |
---|
3379 | 'th NetCDF output switched on' |
---|
3380 | CALL message( 'advec_particles', 'PA0147', 2, 2, -1, 6, 1 ) |
---|
3381 | ELSE |
---|
3382 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_tail_memory trspt' |
---|
3383 | ! CALL local_flush( 9 ) |
---|
3384 | CALL allocate_tail_memory( trspt_count_recv ) |
---|
3385 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_tail_memory trspt' |
---|
3386 | ! CALL local_flush( 9 ) |
---|
3387 | ENDIF |
---|
3388 | ENDIF |
---|
3389 | |
---|
3390 | CALL MPI_SENDRECV( trnpt(1,1,1), trnpt_count*tlength, MPI_REAL, & |
---|
3391 | pnorth, 1, & |
---|
3392 | particle_tail_coordinates(1,1,number_of_tails+1), & |
---|
3393 | trspt_count_recv*tlength, MPI_REAL, psouth, 1, & |
---|
3394 | comm2d, status, ierr ) |
---|
3395 | ! |
---|
3396 | !-- Update the tail ids for the transferred particles |
---|
3397 | nn = number_of_tails |
---|
3398 | DO n = number_of_particles+1, number_of_particles+trsp_count_recv |
---|
3399 | IF ( particles(n)%tail_id /= 0 ) THEN |
---|
3400 | nn = nn + 1 |
---|
3401 | particles(n)%tail_id = nn |
---|
3402 | ENDIF |
---|
3403 | ENDDO |
---|
3404 | |
---|
3405 | ENDIF |
---|
3406 | |
---|
3407 | number_of_particles = number_of_particles + trsp_count_recv |
---|
3408 | number_of_tails = number_of_tails + trspt_count_recv |
---|
3409 | ! IF ( number_of_particles /= number_of_tails ) THEN |
---|
3410 | ! WRITE (9,*) '--- advec_particles: #6' |
---|
3411 | ! WRITE (9,*) ' #of p=',number_of_particles,' #of t=',number_of_tails |
---|
3412 | ! CALL local_flush( 9 ) |
---|
3413 | ! ENDIF |
---|
3414 | |
---|
3415 | IF ( use_particle_tails ) THEN |
---|
3416 | DEALLOCATE( trspt, trnpt ) |
---|
3417 | ENDIF |
---|
3418 | DEALLOCATE( trsp, trnp ) |
---|
3419 | |
---|
3420 | CALL cpu_log( log_point_s(23), 'sendrcv_particles', 'stop' ) |
---|
3421 | |
---|
3422 | ENDIF |
---|
3423 | |
---|
3424 | ! WRITE ( 9, * ) '*** advec_particles: ##6' |
---|
3425 | ! CALL local_flush( 9 ) |
---|
3426 | ! nd = 0 |
---|
3427 | ! DO n = 1, number_of_particles |
---|
3428 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
3429 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
3430 | ! THEN |
---|
3431 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
3432 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
3433 | ! CALL local_flush( 9 ) |
---|
3434 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3435 | ! ENDIF |
---|
3436 | ! ENDDO |
---|
3437 | ! IF ( nd /= deleted_particles ) THEN |
---|
3438 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
3439 | ! CALL local_flush( 9 ) |
---|
3440 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3441 | ! ENDIF |
---|
3442 | |
---|
3443 | #else |
---|
3444 | |
---|
3445 | ! |
---|
3446 | !-- Apply boundary conditions |
---|
3447 | DO n = 1, number_of_particles |
---|
3448 | |
---|
3449 | nn = particles(n)%tail_id |
---|
3450 | |
---|
3451 | IF ( particles(n)%x < -0.5 * dx ) THEN |
---|
3452 | |
---|
3453 | IF ( ibc_par_lr == 0 ) THEN |
---|
3454 | ! |
---|
3455 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
3456 | particles(n)%x = ( nx + 1 ) * dx + particles(n)%x |
---|
3457 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3458 | i = particles(n)%tailpoints |
---|
3459 | particle_tail_coordinates(1:i,1,nn) = ( nx + 1 ) * dx + & |
---|
3460 | particle_tail_coordinates(1:i,1,nn) |
---|
3461 | ENDIF |
---|
3462 | ELSEIF ( ibc_par_lr == 1 ) THEN |
---|
3463 | ! |
---|
3464 | !-- Particle absorption |
---|
3465 | particle_mask(n) = .FALSE. |
---|
3466 | deleted_particles = deleted_particles + 1 |
---|
3467 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3468 | tail_mask(nn) = .FALSE. |
---|
3469 | deleted_tails = deleted_tails + 1 |
---|
3470 | ENDIF |
---|
3471 | ELSEIF ( ibc_par_lr == 2 ) THEN |
---|
3472 | ! |
---|
3473 | !-- Particle reflection |
---|
3474 | particles(n)%x = -dx - particles(n)%x |
---|
3475 | particles(n)%speed_x = -particles(n)%speed_x |
---|
3476 | ENDIF |
---|
3477 | |
---|
3478 | ELSEIF ( particles(n)%x >= ( nx + 0.5 ) * dx ) THEN |
---|
3479 | |
---|
3480 | IF ( ibc_par_lr == 0 ) THEN |
---|
3481 | ! |
---|
3482 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
3483 | particles(n)%x = particles(n)%x - ( nx + 1 ) * dx |
---|
3484 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3485 | i = particles(n)%tailpoints |
---|
3486 | particle_tail_coordinates(1:i,1,nn) = - ( nx + 1 ) * dx + & |
---|
3487 | particle_tail_coordinates(1:i,1,nn) |
---|
3488 | ENDIF |
---|
3489 | ELSEIF ( ibc_par_lr == 1 ) THEN |
---|
3490 | ! |
---|
3491 | !-- Particle absorption |
---|
3492 | particle_mask(n) = .FALSE. |
---|
3493 | deleted_particles = deleted_particles + 1 |
---|
3494 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3495 | tail_mask(nn) = .FALSE. |
---|
3496 | deleted_tails = deleted_tails + 1 |
---|
3497 | ENDIF |
---|
3498 | ELSEIF ( ibc_par_lr == 2 ) THEN |
---|
3499 | ! |
---|
3500 | !-- Particle reflection |
---|
3501 | particles(n)%x = ( nx + 1 ) * dx - particles(n)%x |
---|
3502 | particles(n)%speed_x = -particles(n)%speed_x |
---|
3503 | ENDIF |
---|
3504 | |
---|
3505 | ENDIF |
---|
3506 | |
---|
3507 | IF ( particles(n)%y < -0.5 * dy ) THEN |
---|
3508 | |
---|
3509 | IF ( ibc_par_ns == 0 ) THEN |
---|
3510 | ! |
---|
3511 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
3512 | particles(n)%y = ( ny + 1 ) * dy + particles(n)%y |
---|
3513 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3514 | i = particles(n)%tailpoints |
---|
3515 | particle_tail_coordinates(1:i,2,nn) = ( ny + 1 ) * dy + & |
---|
3516 | particle_tail_coordinates(1:i,2,nn) |
---|
3517 | ENDIF |
---|
3518 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
3519 | ! |
---|
3520 | !-- Particle absorption |
---|
3521 | particle_mask(n) = .FALSE. |
---|
3522 | deleted_particles = deleted_particles + 1 |
---|
3523 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3524 | tail_mask(nn) = .FALSE. |
---|
3525 | deleted_tails = deleted_tails + 1 |
---|
3526 | ENDIF |
---|
3527 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
3528 | ! |
---|
3529 | !-- Particle reflection |
---|
3530 | particles(n)%y = -dy - particles(n)%y |
---|
3531 | particles(n)%speed_y = -particles(n)%speed_y |
---|
3532 | ENDIF |
---|
3533 | |
---|
3534 | ELSEIF ( particles(n)%y >= ( ny + 0.5 ) * dy ) THEN |
---|
3535 | |
---|
3536 | IF ( ibc_par_ns == 0 ) THEN |
---|
3537 | ! |
---|
3538 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
3539 | particles(n)%y = particles(n)%y - ( ny + 1 ) * dy |
---|
3540 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3541 | i = particles(n)%tailpoints |
---|
3542 | particle_tail_coordinates(1:i,2,nn) = - ( ny + 1 ) * dy + & |
---|
3543 | particle_tail_coordinates(1:i,2,nn) |
---|
3544 | ENDIF |
---|
3545 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
3546 | ! |
---|
3547 | !-- Particle absorption |
---|
3548 | particle_mask(n) = .FALSE. |
---|
3549 | deleted_particles = deleted_particles + 1 |
---|
3550 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3551 | tail_mask(nn) = .FALSE. |
---|
3552 | deleted_tails = deleted_tails + 1 |
---|
3553 | ENDIF |
---|
3554 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
3555 | ! |
---|
3556 | !-- Particle reflection |
---|
3557 | particles(n)%y = ( ny + 1 ) * dy - particles(n)%y |
---|
3558 | particles(n)%speed_y = -particles(n)%speed_y |
---|
3559 | ENDIF |
---|
3560 | |
---|
3561 | ENDIF |
---|
3562 | ENDDO |
---|
3563 | |
---|
3564 | #endif |
---|
3565 | |
---|
3566 | ! |
---|
3567 | !-- Apply boundary conditions to those particles that have crossed the top or |
---|
3568 | !-- bottom boundary and delete those particles, which are older than allowed |
---|
3569 | DO n = 1, number_of_particles |
---|
3570 | |
---|
3571 | nn = particles(n)%tail_id |
---|
3572 | |
---|
3573 | ! |
---|
3574 | !-- Stop if particles have moved further than the length of one |
---|
3575 | !-- PE subdomain (newly released particles have age = age_m!) |
---|
3576 | IF ( particles(n)%age /= particles(n)%age_m ) THEN |
---|
3577 | IF ( ABS(particles(n)%speed_x) > & |
---|
3578 | ((nxr-nxl+2)*dx)/(particles(n)%age-particles(n)%age_m) .OR. & |
---|
3579 | ABS(particles(n)%speed_y) > & |
---|
3580 | ((nyn-nys+2)*dy)/(particles(n)%age-particles(n)%age_m) ) THEN |
---|
3581 | |
---|
3582 | WRITE( message_string, * ) 'particle too fast. n = ', n |
---|
3583 | CALL message( 'advec_particles', 'PA0148', 2, 2, -1, 6, 1 ) |
---|
3584 | ENDIF |
---|
3585 | ENDIF |
---|
3586 | |
---|
3587 | IF ( particles(n)%age > particle_maximum_age .AND. & |
---|
3588 | particle_mask(n) ) & |
---|
3589 | THEN |
---|
3590 | particle_mask(n) = .FALSE. |
---|
3591 | deleted_particles = deleted_particles + 1 |
---|
3592 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3593 | tail_mask(nn) = .FALSE. |
---|
3594 | deleted_tails = deleted_tails + 1 |
---|
3595 | ENDIF |
---|
3596 | ENDIF |
---|
3597 | |
---|
3598 | IF ( particles(n)%z >= zu(nz) .AND. particle_mask(n) ) THEN |
---|
3599 | IF ( ibc_par_t == 1 ) THEN |
---|
3600 | ! |
---|
3601 | !-- Particle absorption |
---|
3602 | particle_mask(n) = .FALSE. |
---|
3603 | deleted_particles = deleted_particles + 1 |
---|
3604 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3605 | tail_mask(nn) = .FALSE. |
---|
3606 | deleted_tails = deleted_tails + 1 |
---|
3607 | ENDIF |
---|
3608 | ELSEIF ( ibc_par_t == 2 ) THEN |
---|
3609 | ! |
---|
3610 | !-- Particle reflection |
---|
3611 | particles(n)%z = 2.0 * zu(nz) - particles(n)%z |
---|
3612 | particles(n)%speed_z = -particles(n)%speed_z |
---|
3613 | IF ( use_sgs_for_particles .AND. & |
---|
3614 | particles(n)%rvar3 > 0.0 ) THEN |
---|
3615 | particles(n)%rvar3 = -particles(n)%rvar3 |
---|
3616 | ENDIF |
---|
3617 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3618 | particle_tail_coordinates(1,3,nn) = 2.0 * zu(nz) - & |
---|
3619 | particle_tail_coordinates(1,3,nn) |
---|
3620 | ENDIF |
---|
3621 | ENDIF |
---|
3622 | ENDIF |
---|
3623 | IF ( particles(n)%z < zw(0) .AND. particle_mask(n) ) THEN |
---|
3624 | IF ( ibc_par_b == 1 ) THEN |
---|
3625 | ! |
---|
3626 | !-- Particle absorption |
---|
3627 | particle_mask(n) = .FALSE. |
---|
3628 | deleted_particles = deleted_particles + 1 |
---|
3629 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3630 | tail_mask(nn) = .FALSE. |
---|
3631 | deleted_tails = deleted_tails + 1 |
---|
3632 | ENDIF |
---|
3633 | ELSEIF ( ibc_par_b == 2 ) THEN |
---|
3634 | ! |
---|
3635 | !-- Particle reflection |
---|
3636 | particles(n)%z = 2.0 * zw(0) - particles(n)%z |
---|
3637 | particles(n)%speed_z = -particles(n)%speed_z |
---|
3638 | IF ( use_sgs_for_particles .AND. & |
---|
3639 | particles(n)%rvar3 < 0.0 ) THEN |
---|
3640 | particles(n)%rvar3 = -particles(n)%rvar3 |
---|
3641 | ENDIF |
---|
3642 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3643 | particle_tail_coordinates(1,3,nn) = 2.0 * zu(nz) - & |
---|
3644 | particle_tail_coordinates(1,3,nn) |
---|
3645 | ENDIF |
---|
3646 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3647 | particle_tail_coordinates(1,3,nn) = 2.0 * zw(0) - & |
---|
3648 | particle_tail_coordinates(1,3,nn) |
---|
3649 | ENDIF |
---|
3650 | ENDIF |
---|
3651 | ENDIF |
---|
3652 | ENDDO |
---|
3653 | |
---|
3654 | ! WRITE ( 9, * ) '*** advec_particles: ##7' |
---|
3655 | ! CALL local_flush( 9 ) |
---|
3656 | ! nd = 0 |
---|
3657 | ! DO n = 1, number_of_particles |
---|
3658 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
3659 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
3660 | ! THEN |
---|
3661 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
3662 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
3663 | ! CALL local_flush( 9 ) |
---|
3664 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3665 | ! ENDIF |
---|
3666 | ! ENDDO |
---|
3667 | ! IF ( nd /= deleted_particles ) THEN |
---|
3668 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
3669 | ! CALL local_flush( 9 ) |
---|
3670 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3671 | ! ENDIF |
---|
3672 | |
---|
3673 | ! |
---|
3674 | !-- Pack particles (eliminate those marked for deletion), |
---|
3675 | !-- determine new number of particles |
---|
3676 | IF ( number_of_particles > 0 .AND. deleted_particles > 0 ) THEN |
---|
3677 | nn = 0 |
---|
3678 | nd = 0 |
---|
3679 | DO n = 1, number_of_particles |
---|
3680 | IF ( particle_mask(n) ) THEN |
---|
3681 | nn = nn + 1 |
---|
3682 | particles(nn) = particles(n) |
---|
3683 | ELSE |
---|
3684 | nd = nd + 1 |
---|
3685 | ENDIF |
---|
3686 | ENDDO |
---|
3687 | ! IF ( nd /= deleted_particles ) THEN |
---|
3688 | ! WRITE (9,*) '*** advec_part nd=',nd,' deleted_particles=',deleted_particles |
---|
3689 | ! CALL local_flush( 9 ) |
---|
3690 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3691 | ! ENDIF |
---|
3692 | |
---|
3693 | number_of_particles = number_of_particles - deleted_particles |
---|
3694 | ! |
---|
3695 | !-- Pack the tails, store the new tail ids and re-assign it to the |
---|
3696 | !-- respective |
---|
3697 | !-- particles |
---|
3698 | IF ( use_particle_tails ) THEN |
---|
3699 | nn = 0 |
---|
3700 | nd = 0 |
---|
3701 | DO n = 1, number_of_tails |
---|
3702 | IF ( tail_mask(n) ) THEN |
---|
3703 | nn = nn + 1 |
---|
3704 | particle_tail_coordinates(:,:,nn) = & |
---|
3705 | particle_tail_coordinates(:,:,n) |
---|
3706 | new_tail_id(n) = nn |
---|
3707 | ELSE |
---|
3708 | nd = nd + 1 |
---|
3709 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_tails,' #oftails)' |
---|
3710 | ! WRITE (9,*) ' id=',new_tail_id(n) |
---|
3711 | ! CALL local_flush( 9 ) |
---|
3712 | ENDIF |
---|
3713 | ENDDO |
---|
3714 | ENDIF |
---|
3715 | |
---|
3716 | ! IF ( nd /= deleted_tails .AND. use_particle_tails ) THEN |
---|
3717 | ! WRITE (9,*) '*** advec_part nd=',nd,' deleted_tails=',deleted_tails |
---|
3718 | ! CALL local_flush( 9 ) |
---|
3719 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3720 | ! ENDIF |
---|
3721 | |
---|
3722 | number_of_tails = number_of_tails - deleted_tails |
---|
3723 | |
---|
3724 | ! nn = 0 |
---|
3725 | DO n = 1, number_of_particles |
---|
3726 | IF ( particles(n)%tail_id /= 0 ) THEN |
---|
3727 | ! nn = nn + 1 |
---|
3728 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id > number_of_tails ) THEN |
---|
3729 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
3730 | ! WRITE (9,*) ' tail_id=',particles(n)%tail_id |
---|
3731 | ! WRITE (9,*) ' new_tail_id=', new_tail_id(particles(n)%tail_id), & |
---|
3732 | ! ' of (',number_of_tails,')' |
---|
3733 | ! CALL local_flush( 9 ) |
---|
3734 | ! ENDIF |
---|
3735 | particles(n)%tail_id = new_tail_id(particles(n)%tail_id) |
---|
3736 | ENDIF |
---|
3737 | ENDDO |
---|
3738 | |
---|
3739 | ! IF ( nn /= number_of_tails .AND. use_particle_tails ) THEN |
---|
3740 | ! WRITE (9,*) '*** advec_part #of_tails=',number_of_tails,' nn=',nn |
---|
3741 | ! CALL local_flush( 9 ) |
---|
3742 | ! DO n = 1, number_of_particles |
---|
3743 | ! WRITE (9,*) 'prt# ',n,' tail_id=',particles(n)%tail_id, & |
---|
3744 | ! ' x=',particles(n)%x, ' y=',particles(n)%y, & |
---|
3745 | ! ' z=',particles(n)%z |
---|
3746 | ! ENDDO |
---|
3747 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3748 | ! ENDIF |
---|
3749 | |
---|
3750 | ENDIF |
---|
3751 | |
---|
3752 | ! IF ( number_of_particles /= number_of_tails ) THEN |
---|
3753 | ! WRITE (9,*) '--- advec_particles: #7' |
---|
3754 | ! WRITE (9,*) ' #of p=',number_of_particles,' #of t=',number_of_tails |
---|
3755 | ! CALL local_flush( 9 ) |
---|
3756 | ! ENDIF |
---|
3757 | ! WRITE ( 9, * ) '*** advec_particles: ##8' |
---|
3758 | ! CALL local_flush( 9 ) |
---|
3759 | ! DO n = 1, number_of_particles |
---|
3760 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
3761 | ! THEN |
---|
3762 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
3763 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
3764 | ! CALL local_flush( 9 ) |
---|
3765 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3766 | ! ENDIF |
---|
3767 | ! ENDDO |
---|
3768 | |
---|
3769 | ! WRITE ( 9, * ) '*** advec_particles: ##9' |
---|
3770 | ! CALL local_flush( 9 ) |
---|
3771 | ! DO n = 1, number_of_particles |
---|
3772 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
3773 | ! THEN |
---|
3774 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
3775 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
3776 | ! CALL local_flush( 9 ) |
---|
3777 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3778 | ! ENDIF |
---|
3779 | ! ENDDO |
---|
3780 | |
---|
3781 | ! |
---|
3782 | !-- Accumulate the number of particles transferred between the subdomains |
---|
3783 | #if defined( __parallel ) |
---|
3784 | trlp_count_sum = trlp_count_sum + trlp_count |
---|
3785 | trlp_count_recv_sum = trlp_count_recv_sum + trlp_count_recv |
---|
3786 | trrp_count_sum = trrp_count_sum + trrp_count |
---|
3787 | trrp_count_recv_sum = trrp_count_recv_sum + trrp_count_recv |
---|
3788 | trsp_count_sum = trsp_count_sum + trsp_count |
---|
3789 | trsp_count_recv_sum = trsp_count_recv_sum + trsp_count_recv |
---|
3790 | trnp_count_sum = trnp_count_sum + trnp_count |
---|
3791 | trnp_count_recv_sum = trnp_count_recv_sum + trnp_count_recv |
---|
3792 | #endif |
---|
3793 | |
---|
3794 | IF ( dt_3d_reached ) EXIT |
---|
3795 | |
---|
3796 | ! |
---|
3797 | !-- Initialize variables for the next (sub-) timestep, i.e. for marking those |
---|
3798 | !-- particles to be deleted after the timestep |
---|
3799 | particle_mask = .TRUE. |
---|
3800 | deleted_particles = 0 |
---|
3801 | trlp_count_recv = 0 |
---|
3802 | trnp_count_recv = 0 |
---|
3803 | trrp_count_recv = 0 |
---|
3804 | trsp_count_recv = 0 |
---|
3805 | trlpt_count_recv = 0 |
---|
3806 | trnpt_count_recv = 0 |
---|
3807 | trrpt_count_recv = 0 |
---|
3808 | trspt_count_recv = 0 |
---|
3809 | IF ( use_particle_tails ) THEN |
---|
3810 | tail_mask = .TRUE. |
---|
3811 | ENDIF |
---|
3812 | deleted_tails = 0 |
---|
3813 | |
---|
3814 | ENDDO ! timestep loop |
---|
3815 | |
---|
3816 | ! |
---|
3817 | !-- Sort particles in the sequence the gridboxes are stored in the memory |
---|
3818 | time_sort_particles = time_sort_particles + dt_3d |
---|
3819 | IF ( time_sort_particles >= dt_sort_particles ) THEN |
---|
3820 | CALL sort_particles |
---|
3821 | time_sort_particles = MOD( time_sort_particles, & |
---|
3822 | MAX( dt_sort_particles, dt_3d ) ) |
---|
3823 | ENDIF |
---|
3824 | |
---|
3825 | IF ( cloud_droplets ) THEN |
---|
3826 | |
---|
3827 | CALL cpu_log( log_point_s(45), 'advec_part_reeval_we', 'start' ) |
---|
3828 | |
---|
3829 | ql = 0.0; ql_v = 0.0; ql_vp = 0.0 |
---|
3830 | |
---|
3831 | ! |
---|
3832 | !-- Calculate the liquid water content |
---|
3833 | DO i = nxl, nxr |
---|
3834 | DO j = nys, nyn |
---|
3835 | DO k = nzb, nzt+1 |
---|
3836 | |
---|
3837 | ! |
---|
3838 | !-- Calculate the total volume in the boxes (ql_v, weighting factor |
---|
3839 | !-- has to beincluded) |
---|
3840 | psi = prt_start_index(k,j,i) |
---|
3841 | DO n = psi, psi+prt_count(k,j,i)-1 |
---|
3842 | ql_v(k,j,i) = ql_v(k,j,i) + particles(n)%weight_factor * & |
---|
3843 | particles(n)%radius**3 |
---|
3844 | ENDDO |
---|
3845 | |
---|
3846 | ! |
---|
3847 | !-- Calculate the liquid water content |
---|
3848 | IF ( ql_v(k,j,i) /= 0.0 ) THEN |
---|
3849 | ql(k,j,i) = ql(k,j,i) + rho_l * 1.33333333 * pi * & |
---|
3850 | ql_v(k,j,i) / & |
---|
3851 | ( rho_surface * dx * dy * dz ) |
---|
3852 | |
---|
3853 | IF ( ql(k,j,i) < 0.0 ) THEN |
---|
3854 | WRITE( message_string, * ) 'LWC out of range: ' , & |
---|
3855 | ql(k,j,i) |
---|
3856 | CALL message( 'advec_particles', '', 2, 2, -1, 6, 1 ) |
---|
3857 | ENDIF |
---|
3858 | |
---|
3859 | ELSE |
---|
3860 | ql(k,j,i) = 0.0 |
---|
3861 | ENDIF |
---|
3862 | |
---|
3863 | ENDDO |
---|
3864 | ENDDO |
---|
3865 | ENDDO |
---|
3866 | |
---|
3867 | CALL cpu_log( log_point_s(45), 'advec_part_reeval_we', 'stop' ) |
---|
3868 | |
---|
3869 | ENDIF |
---|
3870 | |
---|
3871 | ! |
---|
3872 | !-- Set particle attributes. |
---|
3873 | !-- Feature is not available if collision is activated, because the respective |
---|
3874 | !-- particle attribute (class) is then used for storing the particle radius |
---|
3875 | !-- class. |
---|
3876 | IF ( collision_kernel == 'none' ) CALL set_particle_attributes |
---|
3877 | |
---|
3878 | ! |
---|
3879 | !-- Set particle attributes defined by the user |
---|
3880 | CALL user_particle_attributes |
---|
3881 | |
---|
3882 | ! |
---|
3883 | !-- If necessary, add the actual particle positions to the particle tails |
---|
3884 | IF ( use_particle_tails ) THEN |
---|
3885 | |
---|
3886 | distance = 0.0 |
---|
3887 | DO n = 1, number_of_particles |
---|
3888 | |
---|
3889 | nn = particles(n)%tail_id |
---|
3890 | |
---|
3891 | IF ( nn /= 0 ) THEN |
---|
3892 | ! |
---|
3893 | !-- Calculate the distance between the actual particle position and the |
---|
3894 | !-- next tailpoint |
---|
3895 | ! WRITE ( 9, * ) '*** advec_particles: ##10.1 nn=',nn |
---|
3896 | ! CALL local_flush( 9 ) |
---|
3897 | IF ( minimum_tailpoint_distance /= 0.0 ) THEN |
---|
3898 | distance = ( particle_tail_coordinates(1,1,nn) - & |
---|
3899 | particle_tail_coordinates(2,1,nn) )**2 + & |
---|
3900 | ( particle_tail_coordinates(1,2,nn) - & |
---|
3901 | particle_tail_coordinates(2,2,nn) )**2 + & |
---|
3902 | ( particle_tail_coordinates(1,3,nn) - & |
---|
3903 | particle_tail_coordinates(2,3, |
---|