1 | #!/usr/bin/env python3 |
---|
2 | # -*- coding: utf-8 -*- |
---|
3 | #--------------------------------------------------------------------------------# |
---|
4 | # This file is part of the PALM model system. |
---|
5 | # |
---|
6 | # PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | # of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | # either version 3 of the License, or (at your option) any later version. |
---|
9 | # |
---|
10 | # PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | # A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | # |
---|
14 | # You should have received a copy of the GNU General Public License along with |
---|
15 | # PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | # |
---|
17 | # Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
18 | #--------------------------------------------------------------------------------# |
---|
19 | # |
---|
20 | # Current revisions: |
---|
21 | # ----------------- |
---|
22 | # |
---|
23 | # |
---|
24 | # Former revisions: |
---|
25 | # ----------------- |
---|
26 | # $Id: palm_csd 3859 2019-04-03 20:30:31Z eckhard $ |
---|
27 | # Bugfix: wrong variable naming for 'y' |
---|
28 | # |
---|
29 | # 3773 2019-03-01 08:56:57Z maronga |
---|
30 | # Unspecificed changes |
---|
31 | # |
---|
32 | # 3726 2019-02-07 18:22:49Z maronga |
---|
33 | # Removed some more bugs |
---|
34 | # |
---|
35 | # 3688 2019-01-22 10:44:20Z maronga |
---|
36 | # Some unspecified bugfixes |
---|
37 | # |
---|
38 | # 3668 2019-01-14 12:49:24Z maronga |
---|
39 | # Various improvements and bugfixes |
---|
40 | # |
---|
41 | # 3629 2018-12-13 12:18:54Z maronga |
---|
42 | # Added canopy generator calls. Some improvements |
---|
43 | # |
---|
44 | # 3567 2018-11-27 13:59:21Z maronga |
---|
45 | # Initial revisions |
---|
46 | # |
---|
47 | # Description: |
---|
48 | # ------------ |
---|
49 | # Processing tool for creating PIDS conform static drivers from rastered NetCDF |
---|
50 | # input |
---|
51 | # |
---|
52 | # @Author Bjoern Maronga (maronga@muk.uni-hannover.de) |
---|
53 | # |
---|
54 | # @todo Make input files optional |
---|
55 | # @todo Allow for ASCII input of terrain height and building height |
---|
56 | # @todo Modularize reading config file |
---|
57 | # @todo Convert to object-oriented treatment (buidings, trees) |
---|
58 | # @todo Automatically shift child domains so that their origin lies intersects |
---|
59 | # a edge note of the parent grid |
---|
60 | #------------------------------------------------------------------------------# |
---|
61 | |
---|
62 | from palm_csd_files.palm_csd_netcdf_interface import * |
---|
63 | from palm_csd_files.palm_csd_tools import * |
---|
64 | from palm_csd_files.palm_csd_canopy_generator import * |
---|
65 | import numpy as np |
---|
66 | |
---|
67 | |
---|
68 | def read_config_file(): |
---|
69 | |
---|
70 | import configparser |
---|
71 | from math import floor |
---|
72 | import numpy as np |
---|
73 | import os |
---|
74 | import subprocess as sub |
---|
75 | import sys |
---|
76 | |
---|
77 | # Check if configuration files exists and quit otherwise |
---|
78 | input_config = ".csd.config" |
---|
79 | for i in range(1,len(sys.argv)): |
---|
80 | input_config = str(sys.argv[i]) |
---|
81 | |
---|
82 | config = configparser.RawConfigParser(allow_no_value=True) |
---|
83 | |
---|
84 | if ( os.path.isfile(input_config) == False ): |
---|
85 | print ("Error. No configuration file " + input_config + " found.") |
---|
86 | raise SystemExit |
---|
87 | |
---|
88 | config.read(input_config) |
---|
89 | |
---|
90 | |
---|
91 | # Definition of settings |
---|
92 | |
---|
93 | global settings_bridge_width |
---|
94 | global settings_lai_roof_intensive |
---|
95 | global settings_lai_roof_extensive |
---|
96 | global settings_season |
---|
97 | global settings_lai_low_default |
---|
98 | global settings_lai_high_default |
---|
99 | global settings_patch_height_default |
---|
100 | global settings_lai_alpha |
---|
101 | global settings_lai_beta |
---|
102 | global ndomains |
---|
103 | |
---|
104 | # Definition of global configuration parameters |
---|
105 | global global_acronym |
---|
106 | global global_angle |
---|
107 | global global_author |
---|
108 | global global_campaign |
---|
109 | global global_comment |
---|
110 | global global_contact |
---|
111 | global global_data_content |
---|
112 | global global_dependencies |
---|
113 | global global_institution |
---|
114 | global global_keywords |
---|
115 | global global_location |
---|
116 | global global_palm_version |
---|
117 | global global_references |
---|
118 | global global_site |
---|
119 | global global_source |
---|
120 | |
---|
121 | global path_out |
---|
122 | global filename_out |
---|
123 | global version_out |
---|
124 | |
---|
125 | |
---|
126 | # Definition of domain parameters |
---|
127 | global domain_names |
---|
128 | global domain_px |
---|
129 | global domain_x0 |
---|
130 | global domain_y0 |
---|
131 | global domain_x1 |
---|
132 | global domain_y1 |
---|
133 | global domain_nx |
---|
134 | global domain_ny |
---|
135 | global domain_dz |
---|
136 | global domain_3d |
---|
137 | global domain_high_vegetation |
---|
138 | global domain_ip |
---|
139 | global domain_za |
---|
140 | global domain_parent |
---|
141 | global domain_green_roofs |
---|
142 | global domain_street_trees |
---|
143 | global domain_canopy_patches |
---|
144 | |
---|
145 | # Definition of input data parameters |
---|
146 | global input_names |
---|
147 | global input_px |
---|
148 | |
---|
149 | |
---|
150 | global input_file_x |
---|
151 | global input_file_y |
---|
152 | global input_file_x_UTM |
---|
153 | global input_file_y_UTM |
---|
154 | global input_file_lat |
---|
155 | global input_file_lon |
---|
156 | global input_file_zt |
---|
157 | global input_file_buildings_2d |
---|
158 | global input_file_bridges_2d |
---|
159 | global input_file_building_id |
---|
160 | global input_file_bridges_id |
---|
161 | global input_file_building_type |
---|
162 | global input_file_building_type |
---|
163 | global input_file_lai |
---|
164 | global input_file_vegetation_type |
---|
165 | global input_file_vegetation_height |
---|
166 | global input_file_pavement_type |
---|
167 | global input_file_water_type |
---|
168 | global input_file_street_type |
---|
169 | global input_file_street_crossings |
---|
170 | global input_file_soil_type |
---|
171 | global input_file_vegetation_on_roofs |
---|
172 | global input_file_tree_crown_diameter |
---|
173 | global input_file_tree_height |
---|
174 | global input_file_tree_trunk_diameter |
---|
175 | global input_file_tree_type |
---|
176 | global input_file_patch_height |
---|
177 | |
---|
178 | global zt_all |
---|
179 | global zt_min |
---|
180 | |
---|
181 | settings_bridge_width = 3.0 |
---|
182 | settings_lai_roof_intensive = 0.5 |
---|
183 | settings_lai_roof_extensive = 1.0 |
---|
184 | settings_season = "summer" |
---|
185 | settings_lai_high_default = 6.0 |
---|
186 | settings_lai_low_default = 1.0 |
---|
187 | settings_patch_height_default = 10.0 |
---|
188 | settings_lai_alpha = 5.0 |
---|
189 | settings_lai_beta = 3.0 |
---|
190 | ndomains = 0 |
---|
191 | |
---|
192 | global_acronym = "" |
---|
193 | global_angle = "" |
---|
194 | global_author = "" |
---|
195 | global_campaign = "" |
---|
196 | global_comment = "" |
---|
197 | global_contact = "" |
---|
198 | global_data_content = "" |
---|
199 | global_dependencies = "" |
---|
200 | global_institution = "" |
---|
201 | global_keywords = "" |
---|
202 | global_location = "" |
---|
203 | global_palm_version = 6.0 |
---|
204 | global_references = "" |
---|
205 | global_site = "" |
---|
206 | global_source = "" |
---|
207 | |
---|
208 | path_out = "" |
---|
209 | version_out = 1 |
---|
210 | filename_out = "default" |
---|
211 | |
---|
212 | domain_names = [] |
---|
213 | domain_px = [] |
---|
214 | domain_x0 = [] |
---|
215 | domain_y0 = [] |
---|
216 | domain_x1 = [] |
---|
217 | domain_y1 = [] |
---|
218 | domain_nx = [] |
---|
219 | domain_ny = [] |
---|
220 | domain_dz = [] |
---|
221 | domain_3d = [] |
---|
222 | domain_high_vegetation = [] |
---|
223 | domain_ip = [] |
---|
224 | domain_za = [] |
---|
225 | domain_parent = [] |
---|
226 | domain_green_roofs = [] |
---|
227 | domain_street_trees = [] |
---|
228 | domain_canopy_patches = [] |
---|
229 | |
---|
230 | zt_min = 0.0 |
---|
231 | zt_all = [] |
---|
232 | |
---|
233 | input_names = [] |
---|
234 | input_px = [] |
---|
235 | |
---|
236 | input_file_x = [] |
---|
237 | input_file_y = [] |
---|
238 | input_file_x_UTM = [] |
---|
239 | input_file_y_UTM = [] |
---|
240 | input_file_lat = [] |
---|
241 | input_file_lon = [] |
---|
242 | |
---|
243 | input_file_zt = [] |
---|
244 | input_file_buildings_2d = [] |
---|
245 | input_file_bridges_2d = [] |
---|
246 | input_file_building_id = [] |
---|
247 | input_file_bridges_id = [] |
---|
248 | input_file_building_type = [] |
---|
249 | input_file_lai = [] |
---|
250 | input_file_vegetation_type = [] |
---|
251 | input_file_vegetation_height = [] |
---|
252 | input_file_pavement_type = [] |
---|
253 | input_file_water_type = [] |
---|
254 | input_file_street_type = [] |
---|
255 | input_file_street_crossings = [] |
---|
256 | input_file_soil_type = [] |
---|
257 | input_file_vegetation_on_roofs = [] |
---|
258 | input_file_tree_crown_diameter = [] |
---|
259 | input_file_tree_height = [] |
---|
260 | input_file_tree_trunk_diameter = [] |
---|
261 | input_file_tree_type = [] |
---|
262 | input_file_patch_height = [] |
---|
263 | |
---|
264 | # Load all user parameters from config file |
---|
265 | for i in range(0,len(config.sections())): |
---|
266 | |
---|
267 | read_tmp = config.sections()[i] |
---|
268 | |
---|
269 | if ( read_tmp == 'global' ): |
---|
270 | global_acronym = config.get(read_tmp, 'acronym') |
---|
271 | global_angle = float(config.get(read_tmp, 'rotation_angle')) |
---|
272 | global_author = config.get(read_tmp, 'author') |
---|
273 | global_campaign = config.get(read_tmp, 'campaign') |
---|
274 | global_comment = config.get(read_tmp, 'comment') |
---|
275 | global_contact = config.get(read_tmp, 'contact_person') |
---|
276 | global_data_content = config.get(read_tmp, 'data_content') |
---|
277 | global_dependencies = config.get(read_tmp, 'dependencies') |
---|
278 | global_institution = config.get(read_tmp, 'institution') |
---|
279 | global_keywords = config.get(read_tmp, 'keywords') |
---|
280 | global_location = config.get(read_tmp, 'location') |
---|
281 | global_palm_version = float(config.get(read_tmp, 'palm_version')) |
---|
282 | global_references = config.get(read_tmp, 'references') |
---|
283 | global_site = config.get(read_tmp, 'site') |
---|
284 | global_source = config.get(read_tmp, 'source') |
---|
285 | |
---|
286 | |
---|
287 | if ( read_tmp == 'settings' ): |
---|
288 | settings_lai_roof_intensive = config.get(read_tmp, 'lai_roof_intensive') |
---|
289 | settings_lai_roof_extensive = config.get(read_tmp, 'lai_roof_extensive') |
---|
290 | settings_bridge_width = float(config.get(read_tmp, 'bridge_width')) |
---|
291 | settings_season = config.get(read_tmp, 'season') |
---|
292 | settings_lai_high_default = float(config.get(read_tmp, 'lai_high_vegetation_default')) |
---|
293 | settings_lai_low_default = float(config.get(read_tmp, 'lai_low_vegetation_default')) |
---|
294 | settings_patch_height_default = float(config.get(read_tmp, 'patch_height_default')) |
---|
295 | settings_lai_alpha = float(config.get(read_tmp, 'lai_alpha')) |
---|
296 | settings_lai_beta = float(config.get(read_tmp, 'lai_beta')) |
---|
297 | |
---|
298 | if ( read_tmp == 'output' ): |
---|
299 | path_out = config.get(read_tmp, 'path') |
---|
300 | filename_out = config.get(read_tmp, 'file_out') |
---|
301 | version_out = float(config.get(read_tmp, 'version')) |
---|
302 | |
---|
303 | if ( read_tmp.split("_")[0] == 'domain' ): |
---|
304 | ndomains = ndomains + 1 |
---|
305 | domain_names.append(read_tmp.split("_")[1]) |
---|
306 | domain_px.append(float(config.get(read_tmp, 'pixel_size'))) |
---|
307 | domain_nx.append(int(config.get(read_tmp, 'nx'))) |
---|
308 | domain_ny.append(int(config.get(read_tmp, 'ny'))) |
---|
309 | domain_dz.append(float(config.get(read_tmp, 'dz'))) |
---|
310 | domain_3d.append(config.getboolean(read_tmp, 'buildings_3d')) |
---|
311 | domain_high_vegetation.append(config.getboolean(read_tmp, 'allow_high_vegetation')) |
---|
312 | domain_canopy_patches.append(config.getboolean(read_tmp, 'generate_vegetation_patches')) |
---|
313 | domain_ip.append(config.getboolean(read_tmp, 'interpolate_terrain')) |
---|
314 | domain_za.append(config.getboolean(read_tmp, 'use_palm_z_axis')) |
---|
315 | if domain_ip[ndomains-1] and not domain_za[ndomains-1]: |
---|
316 | domain_za[ndomains-1] = True |
---|
317 | print("+++ Overwrite user setting for use_palm_z_axis") |
---|
318 | |
---|
319 | domain_parent.append(config.get(read_tmp, 'domain_parent')) |
---|
320 | |
---|
321 | domain_x0.append(int(floor(float(config.get(read_tmp, 'origin_x'))/float(config.get(read_tmp, 'pixel_size'))))) |
---|
322 | domain_y0.append(int(floor(float(config.get(read_tmp, 'origin_y'))/float(config.get(read_tmp, 'pixel_size'))))) |
---|
323 | domain_x1.append(int(floor(float(config.get(read_tmp, 'origin_x'))/float(config.get(read_tmp, 'pixel_size'))) + int(config.get(read_tmp, 'nx')))) |
---|
324 | domain_y1.append(int(floor(float(config.get(read_tmp, 'origin_y'))/float(config.get(read_tmp, 'pixel_size'))) + int(config.get(read_tmp, 'ny')))) |
---|
325 | domain_green_roofs.append(config.getboolean(read_tmp, 'vegetation_on_roofs')) |
---|
326 | domain_street_trees.append(config.getboolean(read_tmp, 'street_trees')) |
---|
327 | |
---|
328 | if ( read_tmp.split("_")[0] == 'input' ): |
---|
329 | input_names.append(read_tmp.split("_")[1]) |
---|
330 | input_px.append(float(config.get(read_tmp, 'pixel_size'))) |
---|
331 | input_file_x.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_x')) |
---|
332 | input_file_y.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_y')) |
---|
333 | input_file_lat.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_lat')) |
---|
334 | input_file_lon.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_lon')) |
---|
335 | input_file_x_UTM.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_x_UTM')) |
---|
336 | input_file_y_UTM.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_y_UTM')) |
---|
337 | input_file_zt.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_zt')) |
---|
338 | input_file_buildings_2d.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_buildings_2d')) |
---|
339 | input_file_bridges_2d.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_bridges_2d')) |
---|
340 | input_file_building_id.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_building_id')) |
---|
341 | input_file_bridges_id.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_bridges_id')) |
---|
342 | input_file_building_type.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_building_type')) |
---|
343 | input_file_lai.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_lai')) |
---|
344 | input_file_vegetation_type.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_vegetation_type')) |
---|
345 | input_file_vegetation_height.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_vegetation_height')) |
---|
346 | input_file_pavement_type.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_pavement_type')) |
---|
347 | input_file_water_type.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_water_type')) |
---|
348 | input_file_street_type.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_street_type')) |
---|
349 | input_file_street_crossings.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_street_crossings')) |
---|
350 | input_file_patch_height.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_patch_height')) |
---|
351 | |
---|
352 | tmp = config.get(read_tmp, 'file_tree_crown_diameter') |
---|
353 | if tmp is not None: |
---|
354 | input_file_tree_crown_diameter.append(config.get(read_tmp, 'path') + "/" + tmp) |
---|
355 | else: |
---|
356 | input_file_tree_crown_diameter.append(None) |
---|
357 | input_file_tree_height.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_tree_height')) |
---|
358 | input_file_tree_trunk_diameter.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_tree_trunk_diameter')) |
---|
359 | input_file_tree_type.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_tree_type')) |
---|
360 | input_file_vegetation_on_roofs.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_vegetation_on_roofs')) |
---|
361 | #input_file_soil_type.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_soil_type')) |
---|
362 | return 0 |
---|
363 | |
---|
364 | |
---|
365 | ############################################################ |
---|
366 | |
---|
367 | # Start of main program |
---|
368 | datatypes = { |
---|
369 | "x": "f4", |
---|
370 | "y": "f4", |
---|
371 | "z": "f4", |
---|
372 | "lat": "f4", |
---|
373 | "lon": "f4", |
---|
374 | "E_UTM": "f4", |
---|
375 | "N_UTM": "f4", |
---|
376 | "zt": "f4", |
---|
377 | "buildings_2d": "f4", |
---|
378 | "buildings_3d": "b", |
---|
379 | "bridges_2d": "f4", |
---|
380 | "building_id": "i", |
---|
381 | "bridges_id": "i", |
---|
382 | "building_type": "b", |
---|
383 | "nsurface_fraction": "i", |
---|
384 | "vegetation_type": "b", |
---|
385 | "vegetation_height": "f4", |
---|
386 | "pavement_type": "b", |
---|
387 | "water_type": "b", |
---|
388 | "street_type": "b", |
---|
389 | "street_crossings": "b", |
---|
390 | "soil_type": "b", |
---|
391 | "surface_fraction": "f4", |
---|
392 | "building_pars": "f4", |
---|
393 | "vegetation_pars": "f4", |
---|
394 | "tree_data": "f4", |
---|
395 | "tree_type": "b", |
---|
396 | "nbuilding_pars": "i", |
---|
397 | "nvegetation_pars": "i", |
---|
398 | "zlad": "f4" |
---|
399 | } |
---|
400 | |
---|
401 | fillvalues = { |
---|
402 | "lat": float(-9999.0), |
---|
403 | "lon": float(-9999.0), |
---|
404 | "E_UTM": float(-9999.0), |
---|
405 | "N_UTM": float(-9999.0), |
---|
406 | "zt": float(-9999.0), |
---|
407 | "buildings_2d": float(-9999.0), |
---|
408 | "buildings_3d": np.byte(-127), |
---|
409 | "bridges_2d": float(-9999.0), |
---|
410 | "building_id": int(-9999), |
---|
411 | "bridges_id": int(-9999), |
---|
412 | "building_type": np.byte(-127), |
---|
413 | "nsurface_fraction": int(-9999), |
---|
414 | "vegetation_type": np.byte(-127), |
---|
415 | "vegetation_height": float(-9999.0), |
---|
416 | "pavement_type": np.byte(-127), |
---|
417 | "water_type": np.byte(-127), |
---|
418 | "street_type": np.byte(-127), |
---|
419 | "street_crossings": np.byte(-127), |
---|
420 | "soil_type": np.byte(-127), |
---|
421 | "surface_fraction": float(-9999.0), |
---|
422 | "building_pars": float(-9999.0), |
---|
423 | "vegetation_pars": float(-9999.0), |
---|
424 | "tree_data": float(-9999.0), |
---|
425 | "tree_type": np.byte(-127) |
---|
426 | } |
---|
427 | |
---|
428 | defaultvalues = { |
---|
429 | "lat": float(-9999.0), |
---|
430 | "lon": float(-9999.0), |
---|
431 | "E_UTM": float(-9999.0), |
---|
432 | "N_UTM": float(-9999.0), |
---|
433 | "zt": float(0.0), |
---|
434 | "buildings_2d": float(0.0), |
---|
435 | "buildings_3d": 0, |
---|
436 | "bridges_2d": float(0.0), |
---|
437 | "building_id": int(0), |
---|
438 | "bridges_id": int(0), |
---|
439 | "building_type": 1, |
---|
440 | "nsurface_fraction": int(-9999), |
---|
441 | "vegetation_type": 3, |
---|
442 | "vegetation_height": float(-9999.0), |
---|
443 | "pavement_type": 1, |
---|
444 | "water_type": 1, |
---|
445 | "street_type": 1, |
---|
446 | "street_crossings": 0, |
---|
447 | "soil_type": 1, |
---|
448 | "surface_fraction": float(0.0), |
---|
449 | "buildings_pars": float(-9999.0), |
---|
450 | "tree_data": float(-9999.0), |
---|
451 | "tree_type": 0, |
---|
452 | "vegetation_pars": float(-9999.0) |
---|
453 | } |
---|
454 | |
---|
455 | # Read configuration file and set parameters accordingly |
---|
456 | read_config_file() |
---|
457 | |
---|
458 | |
---|
459 | filename = [] |
---|
460 | ii = [] |
---|
461 | ii_parent = [] |
---|
462 | # Define indices and filenames for all domains and create netCDF files |
---|
463 | for i in range(0,ndomains): |
---|
464 | |
---|
465 | # Calculate indices and input files |
---|
466 | ii.append(input_px.index(domain_px[i])) |
---|
467 | filename.append(path_out + "/" + filename_out + "_" + domain_names[i]) |
---|
468 | if domain_parent[i] is not None: |
---|
469 | ii_parent.append(input_px.index(domain_px[domain_names.index(domain_parent[i])])) |
---|
470 | else: |
---|
471 | ii_parent.append(None) |
---|
472 | |
---|
473 | |
---|
474 | x_UTM = nc_read_from_file_2d(input_file_x[ii[i]], "Band1", domain_x0[i], domain_x0[i]+1, domain_y0[i], domain_y0[i]+1) |
---|
475 | y_UTM = nc_read_from_file_2d(input_file_y[ii[i]], "Band1", domain_x0[i], domain_x0[i]+1, domain_y0[i], domain_y0[i]+1) |
---|
476 | lat = nc_read_from_file_2d(input_file_lat[ii[i]], "Band1", domain_x0[i], domain_x0[i]+1, domain_y0[i], domain_y0[i]+1) |
---|
477 | lon = nc_read_from_file_2d(input_file_lon[ii[i]], "Band1", domain_x0[i], domain_x0[i]+1, domain_y0[i], domain_y0[i]+1) |
---|
478 | |
---|
479 | # Calculate position of origin |
---|
480 | x_UTM_origin = float(x_UTM[0,0]) - 0.5 * (float(x_UTM[0,1]) - float(x_UTM[0,0])) |
---|
481 | y_UTM_origin = float(y_UTM[0,0]) - 0.5 * (float(y_UTM[1,0]) - float(y_UTM[0,0])) |
---|
482 | x_origin = float(lon[0,0]) - 0.5 * (float(lon[0,1]) - float(lon[0,0])) |
---|
483 | y_origin = float(lat[0,0]) - 0.5 * (float(lat[1,0]) - float(lat[0,0])) |
---|
484 | |
---|
485 | # Create NetCDF output file and set global attributes |
---|
486 | nc_create_file(filename[i]) |
---|
487 | nc_write_global_attributes(filename[i],x_UTM_origin,y_UTM_origin,y_origin,x_origin,"",global_acronym,global_angle,global_author,global_campaign,global_comment,global_contact,global_data_content,global_dependencies,global_institution,global_keywords,global_location,global_palm_version,global_references,global_site,global_source,version_out) |
---|
488 | |
---|
489 | del x_UTM, y_UTM, lat, lon |
---|
490 | |
---|
491 | # Process terrain height |
---|
492 | for i in range(0,ndomains): |
---|
493 | |
---|
494 | # Read and write terrain height (zt) |
---|
495 | zt = nc_read_from_file_2d(input_file_zt[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
496 | |
---|
497 | # Final step: add zt array to the global array |
---|
498 | zt_all.append(zt) |
---|
499 | del zt |
---|
500 | |
---|
501 | # Calculate the global (all domains) minimum of the terrain height. This value will be substracted for all |
---|
502 | # data sets |
---|
503 | zt_min = min(zt_all[0].flatten()) |
---|
504 | for i in range(0,ndomains): |
---|
505 | zt_min = min(zt_min,min(zt_all[i].flatten())) |
---|
506 | |
---|
507 | del zt_all[:] |
---|
508 | |
---|
509 | print( "Shift terrain heights by -" + str(zt_min)) |
---|
510 | for i in range(0,ndomains): |
---|
511 | |
---|
512 | # Read and write terrain height (zt) |
---|
513 | zt = nc_read_from_file_2d(input_file_zt[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
514 | x = nc_read_from_file_1d(input_file_x[ii[i]], "x", domain_x0[i], domain_x1[i]) |
---|
515 | y = nc_read_from_file_1d(input_file_y[ii[i]], "y", domain_y0[i], domain_y1[i]) |
---|
516 | |
---|
517 | |
---|
518 | zt = zt - zt_min |
---|
519 | |
---|
520 | nc_write_global_attribute(filename[i], 'origin_z', float(zt_min)) |
---|
521 | |
---|
522 | # If necessary, interpolate parent domain terrain height on child domain grid and blend the two |
---|
523 | if domain_ip[i]: |
---|
524 | parent_id = domain_names.index(domain_parent[i]) |
---|
525 | tmp_x0 = int( domain_x0[i] * domain_px[i] / domain_px[parent_id] ) - 1 |
---|
526 | tmp_y0 = int( domain_y0[i] * domain_px[i] / domain_px[parent_id] ) - 1 |
---|
527 | tmp_x1 = int( domain_x1[i] * domain_px[i] / domain_px[parent_id] ) + 1 |
---|
528 | tmp_y1 = int( domain_y1[i] * domain_px[i] / domain_px[parent_id] ) + 1 |
---|
529 | |
---|
530 | tmp_x = nc_read_from_file_1d(input_file_x[ii_parent[i]], "x", tmp_x0, tmp_x1) |
---|
531 | tmp_y = nc_read_from_file_1d(input_file_y[ii_parent[i]], "y", tmp_y0, tmp_y1) |
---|
532 | |
---|
533 | zt_parent = nc_read_from_file_2d(input_file_zt[ii_parent[i]], 'Band1', tmp_x0, tmp_x1, tmp_y0, tmp_y1) |
---|
534 | |
---|
535 | zt_parent = zt_parent - zt_min |
---|
536 | |
---|
537 | # Interpolate array and bring to PALM grid of child domain |
---|
538 | zt_ip = interpolate_2d(zt_parent,tmp_x,tmp_y,x,y) |
---|
539 | zt_ip = bring_to_palm_grid(zt_ip,x,y,domain_dz[parent_id]) |
---|
540 | |
---|
541 | |
---|
542 | # Shift the child terrain height according to the parent mean terrain height |
---|
543 | print("shifting: -" + str(np.mean(zt)) + " +" + str(np.mean(zt_ip))) |
---|
544 | #zt = zt - np.min(zt) + np.min(zt_ip) |
---|
545 | zt = zt - np.mean(zt) + np.mean(zt_ip) |
---|
546 | |
---|
547 | |
---|
548 | # Blend over the parent and child terrain height within a radius of 50 px |
---|
549 | zt = blend_array_2d(zt,zt_ip,50) |
---|
550 | # zt = zt_ip |
---|
551 | |
---|
552 | # Final step: add zt array to the global array |
---|
553 | |
---|
554 | zt_all.append(zt) |
---|
555 | del zt |
---|
556 | |
---|
557 | |
---|
558 | # Read and shift x and y coordinates, shift terrain height according to its minimum value and write all data |
---|
559 | # to file |
---|
560 | for i in range(0,ndomains): |
---|
561 | # Read horizontal grid variables from zt file and write them to output file |
---|
562 | x = nc_read_from_file_1d(input_file_x[ii[i]], "x", domain_x0[i], domain_x1[i]) |
---|
563 | y = nc_read_from_file_1d(input_file_y[ii[i]], "y", domain_y0[i], domain_y1[i]) |
---|
564 | x = x - min(x.flatten()) + domain_px[i]/2.0 |
---|
565 | y = y - min(y.flatten()) + domain_px[i]/2.0 |
---|
566 | nc_write_dimension(filename[i], 'x', x, datatypes["x"]) |
---|
567 | nc_write_dimension(filename[i], 'y', y, datatypes["y"]) |
---|
568 | nc_write_attribute(filename[i], 'x', 'long_name', 'x') |
---|
569 | nc_write_attribute(filename[i], 'x', 'standard_name','projection_x_coordinate') |
---|
570 | nc_write_attribute(filename[i], 'x', 'units', 'm') |
---|
571 | nc_write_attribute(filename[i], 'y', 'long_name', 'y') |
---|
572 | nc_write_attribute(filename[i], 'y', 'standard_name', 'projection_y_coordinate') |
---|
573 | nc_write_attribute(filename[i], 'y', 'units', 'm') |
---|
574 | |
---|
575 | lat = nc_read_from_file_2d(input_file_lat[ii[i]], "Band1", domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
576 | lon = nc_read_from_file_2d(input_file_lon[ii[i]], "Band1", domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
577 | |
---|
578 | nc_write_to_file_2d(filename[i], 'lat', lat, datatypes["lat"],'y','x',fillvalues["lat"]) |
---|
579 | nc_write_to_file_2d(filename[i], 'lon', lon, datatypes["lon"],'y','x',fillvalues["lon"]) |
---|
580 | |
---|
581 | nc_write_attribute(filename[i], 'lat', 'long_name', 'latitude') |
---|
582 | nc_write_attribute(filename[i], 'lat', 'standard_name','latitude') |
---|
583 | nc_write_attribute(filename[i], 'lat', 'units', 'degrees_north') |
---|
584 | |
---|
585 | nc_write_attribute(filename[i], 'lon', 'long_name', 'longitude') |
---|
586 | nc_write_attribute(filename[i], 'lon', 'standard_name','longitude') |
---|
587 | nc_write_attribute(filename[i], 'lon', 'units', 'degrees_east') |
---|
588 | |
---|
589 | x_UTM = nc_read_from_file_2d(input_file_x_UTM[ii[i]], "Band1", domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
590 | y_UTM = nc_read_from_file_2d(input_file_y_UTM[ii[i]], "Band1", domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
591 | |
---|
592 | |
---|
593 | nc_write_to_file_2d(filename[i], 'E_UTM', x_UTM, datatypes["E_UTM"],'y','x',fillvalues["E_UTM"]) |
---|
594 | nc_write_to_file_2d(filename[i], 'N_UTM', y_UTM, datatypes["N_UTM"],'y','x',fillvalues["N_UTM"]) |
---|
595 | |
---|
596 | nc_write_attribute(filename[i], 'E_UTM', 'long_name', 'easting') |
---|
597 | nc_write_attribute(filename[i], 'E_UTM', 'standard_name','projection_x_coorindate') |
---|
598 | nc_write_attribute(filename[i], 'E_UTM', 'units', 'm') |
---|
599 | |
---|
600 | nc_write_attribute(filename[i], 'N_UTM', 'long_name', 'northing') |
---|
601 | nc_write_attribute(filename[i], 'N_UTM', 'standard_name','projection_y_coorindate') |
---|
602 | nc_write_attribute(filename[i], 'N_UTM', 'units', 'm') |
---|
603 | |
---|
604 | nc_write_crs(filename[i]) |
---|
605 | |
---|
606 | |
---|
607 | |
---|
608 | # If necessary, bring terrain height to PALM's vertical grid. This is either forced by the user or implicitly |
---|
609 | # by using interpolation for a child domain |
---|
610 | if domain_za[i]: |
---|
611 | zt_all[i] = bring_to_palm_grid(zt_all[i],x,y,domain_dz[i]) |
---|
612 | |
---|
613 | nc_write_to_file_2d(filename[i], 'zt', zt_all[i], datatypes["zt"],'y','x',fillvalues["zt"]) |
---|
614 | nc_write_attribute(filename[i], 'zt', 'long_name', 'orography') |
---|
615 | nc_write_attribute(filename[i], 'zt', 'units', 'm') |
---|
616 | nc_write_attribute(filename[i], 'zt', 'res_orig', domain_px[i]) |
---|
617 | nc_write_attribute(filename[i], 'zt', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
618 | nc_write_attribute(filename[i], 'zt', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
619 | |
---|
620 | del zt_all |
---|
621 | |
---|
622 | |
---|
623 | # Process building height, id, and type |
---|
624 | for i in range(0,ndomains): |
---|
625 | buildings_2d = nc_read_from_file_2d(input_file_buildings_2d[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
626 | |
---|
627 | building_id = nc_read_from_file_2d(input_file_building_id[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
628 | |
---|
629 | building_type = nc_read_from_file_2d(input_file_building_type[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
630 | building_type[building_type >= 254] = fillvalues["building_type"] |
---|
631 | building_type = np.where(building_type < 1,defaultvalues["building_type"],building_type) |
---|
632 | |
---|
633 | check = check_arrays_2(buildings_2d,building_id,fillvalues["buildings_2d"],fillvalues["building_id"]) |
---|
634 | if not check: |
---|
635 | buildings_2d = np.where(building_id != fillvalues["building_id"],buildings_2d,fillvalues["buildings_2d"]) |
---|
636 | building_id = np.where(buildings_2d == fillvalues["buildings_2d"],fillvalues["building_id"],building_id) |
---|
637 | print("Data check #1 " + str(check_arrays_2(buildings_2d,building_id,fillvalues["buildings_2d"],fillvalues["building_id"]))) |
---|
638 | |
---|
639 | check = check_arrays_2(buildings_2d,building_type,fillvalues["buildings_2d"],fillvalues["building_type"]) |
---|
640 | if not check: |
---|
641 | building_type = np.where(buildings_2d == fillvalues["buildings_2d"],fillvalues["building_type"],building_type) |
---|
642 | building_type = np.where((building_type == fillvalues["building_type"]) & (buildings_2d != fillvalues["buildings_2d"]),defaultvalues["building_type"],building_type) |
---|
643 | print("Data check #2 " + str(check_arrays_2(buildings_2d,building_type,fillvalues["buildings_2d"],fillvalues["building_type"]))) |
---|
644 | |
---|
645 | |
---|
646 | nc_write_to_file_2d(filename[i], 'buildings_2d', buildings_2d, datatypes["buildings_2d"],'y','x',fillvalues["buildings_2d"]) |
---|
647 | nc_write_attribute(filename[i], 'buildings_2d', 'long_name', 'buildings') |
---|
648 | nc_write_attribute(filename[i], 'buildings_2d', 'units', 'm') |
---|
649 | nc_write_attribute(filename[i], 'buildings_2d', 'res_orig', domain_px[i]) |
---|
650 | nc_write_attribute(filename[i], 'buildings_2d', 'lod', 1) |
---|
651 | nc_write_attribute(filename[i], 'buildings_2d', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
652 | nc_write_attribute(filename[i], 'buildings_2d', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
653 | |
---|
654 | nc_write_to_file_2d(filename[i], 'building_id', building_id, datatypes["building_id"],'y','x',fillvalues["building_id"]) |
---|
655 | nc_write_attribute(filename[i], 'building_id', 'long_name', 'building id') |
---|
656 | nc_write_attribute(filename[i], 'building_id', 'units', '') |
---|
657 | nc_write_attribute(filename[i], 'building_id', 'res _orig', domain_px[i]) |
---|
658 | nc_write_attribute(filename[i], 'building_id', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
659 | nc_write_attribute(filename[i], 'building_id', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
660 | |
---|
661 | nc_write_to_file_2d(filename[i], 'building_type', building_type, datatypes["building_type"],'y','x',fillvalues["building_type"]) |
---|
662 | nc_write_attribute(filename[i], 'building_type', 'long_name', 'building type') |
---|
663 | nc_write_attribute(filename[i], 'building_type', 'units', '') |
---|
664 | nc_write_attribute(filename[i], 'building_type', 'res_orig', domain_px[i]) |
---|
665 | nc_write_attribute(filename[i], 'building_type', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
666 | nc_write_attribute(filename[i], 'building_type', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
667 | |
---|
668 | del buildings_2d |
---|
669 | del building_id |
---|
670 | del building_type |
---|
671 | |
---|
672 | # Create 3d buildings if necessary. In that course, read bridge objects and add them to building layer |
---|
673 | for i in range(0,ndomains): |
---|
674 | |
---|
675 | if domain_3d[i]: |
---|
676 | x = nc_read_from_file_2d_all(filename[i], 'x') |
---|
677 | y = nc_read_from_file_2d_all(filename[i], 'y') |
---|
678 | buildings_2d = nc_read_from_file_2d_all(filename[i], 'buildings_2d') |
---|
679 | building_id = nc_read_from_file_2d_all(filename[i], 'building_id') |
---|
680 | |
---|
681 | bridges_2d = nc_read_from_file_2d(input_file_bridges_2d[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
682 | bridges_id = nc_read_from_file_2d(input_file_bridges_id[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
683 | |
---|
684 | bridges_2d = np.where(bridges_2d == 0.0,fillvalues["bridges_2d"],bridges_2d) |
---|
685 | building_id = np.where(bridges_2d == fillvalues["bridges_2d"],building_id,bridges_id) |
---|
686 | |
---|
687 | if np.any(buildings_2d != fillvalues["buildings_2d"]): |
---|
688 | buildings_3d, z = make_3d_from_2d(buildings_2d,x,y,domain_dz[i]) |
---|
689 | if np.any(bridges_2d != fillvalues["bridges_2d"]): |
---|
690 | buildings_3d = make_3d_from_bridges_2d(buildings_3d,bridges_2d,x,y,domain_dz[i],settings_bridge_width,fillvalues["bridges_2d"]) |
---|
691 | else: |
---|
692 | print("Skipping creation of 3D bridges (no bridges in domain)") |
---|
693 | |
---|
694 | |
---|
695 | nc_write_dimension(filename[i], 'z', z, datatypes["z"]) |
---|
696 | nc_write_attribute(filename[i], 'z', 'long_name', 'z') |
---|
697 | nc_write_attribute(filename[i], 'z', 'units', 'm') |
---|
698 | |
---|
699 | nc_overwrite_to_file_2d(filename[i], 'building_id', building_id) |
---|
700 | |
---|
701 | nc_write_to_file_3d(filename[i], 'buildings_3d', buildings_3d, datatypes["buildings_3d"],'z','y','x',fillvalues["buildings_3d"]) |
---|
702 | nc_write_attribute(filename[i], 'buildings_3d', 'long_name', 'buildings 3d') |
---|
703 | nc_write_attribute(filename[i], 'buildings_3d', 'units', '') |
---|
704 | nc_write_attribute(filename[i], 'buildings_3d', 'res_orig', domain_px[i]) |
---|
705 | nc_write_attribute(filename[i], 'buildings_3d', 'lod', 2) |
---|
706 | |
---|
707 | del buildings_3d |
---|
708 | |
---|
709 | else: |
---|
710 | print("Skipping creation of 3D buildings (no buildings in domain)") |
---|
711 | |
---|
712 | |
---|
713 | del bridges_2d, bridges_id, building_id, buildings_2d |
---|
714 | |
---|
715 | |
---|
716 | |
---|
717 | # Read vegetation type, water_type, pavement_type, soil_type and make fields consistent |
---|
718 | for i in range(0,ndomains): |
---|
719 | |
---|
720 | building_type = nc_read_from_file_2d_all(filename[i], 'building_type') |
---|
721 | |
---|
722 | vegetation_type = nc_read_from_file_2d(input_file_vegetation_type[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
723 | vegetation_type[vegetation_type == 255] = fillvalues["vegetation_type"] |
---|
724 | vegetation_type = np.where((vegetation_type < 1) & (vegetation_type != fillvalues["vegetation_type"]),defaultvalues["vegetation_type"],vegetation_type) |
---|
725 | |
---|
726 | pavement_type = nc_read_from_file_2d(input_file_pavement_type[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
727 | pavement_type[pavement_type == 255] = fillvalues["pavement_type"] |
---|
728 | pavement_type = np.where((pavement_type < 1) & (pavement_type != fillvalues["pavement_type"]),defaultvalues["pavement_type"],pavement_type) |
---|
729 | |
---|
730 | water_type = nc_read_from_file_2d(input_file_water_type[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
731 | water_type[water_type == 255] = fillvalues["water_type"] |
---|
732 | water_type = np.where((water_type < 1) & (water_type != fillvalues["water_type"]),defaultvalues["water_type"],water_type) |
---|
733 | |
---|
734 | # to do: replace by real soil input data |
---|
735 | soil_type = nc_read_from_file_2d(input_file_vegetation_type[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
736 | soil_type[soil_type == 255] = fillvalues["soil_type"] |
---|
737 | soil_type = np.where((soil_type < 1) & (soil_type != fillvalues["soil_type"]),defaultvalues["soil_type"],soil_type) |
---|
738 | |
---|
739 | # Make arrays consistent |
---|
740 | # #1 Set vegetation type to missing for pixel where a pavement type is set |
---|
741 | vegetation_type = np.where((vegetation_type != fillvalues["vegetation_type"]) & (pavement_type != fillvalues["pavement_type"]),fillvalues["vegetation_type"],vegetation_type) |
---|
742 | |
---|
743 | # #2 Set vegetation type to missing for pixel where a building type is set |
---|
744 | vegetation_type = np.where((vegetation_type != fillvalues["vegetation_type"]) & (building_type != fillvalues["building_type"]) ,fillvalues["vegetation_type"],vegetation_type) |
---|
745 | |
---|
746 | # #3 Set vegetation type to missing for pixel where a building type is set |
---|
747 | vegetation_type = np.where((vegetation_type != fillvalues["vegetation_type"]) & (water_type != fillvalues["water_type"]),fillvalues["vegetation_type"],vegetation_type) |
---|
748 | |
---|
749 | # #4 Remove pavement for pixels with buildings |
---|
750 | pavement_type = np.where((pavement_type != fillvalues["pavement_type"]) & (building_type != fillvalues["building_type"]),fillvalues["pavement_type"],pavement_type) |
---|
751 | |
---|
752 | # #5 Remove pavement for pixels with water. |
---|
753 | pavement_type = np.where((pavement_type != fillvalues["pavement_type"]) & (water_type != fillvalues["water_type"]),fillvalues["pavement_type"],pavement_type) |
---|
754 | |
---|
755 | # #6 Remove water for pixels with buildings |
---|
756 | water_type = np.where((water_type != fillvalues["water_type"]) & (building_type != fillvalues["building_type"]),fillvalues["water_type"],water_type) |
---|
757 | |
---|
758 | # Correct vegetation_type when a vegetation height is available and is indicative of low vegeetation |
---|
759 | vegetation_height = nc_read_from_file_2d(input_file_vegetation_height[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
760 | |
---|
761 | vegetation_type = np.where((vegetation_height != fillvalues["vegetation_height"]) & (vegetation_height == 0.0) & ((vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18)), 3, vegetation_type) |
---|
762 | vegetation_height = np.where((vegetation_height != fillvalues["vegetation_height"]) & (vegetation_height == 0.0) & ((vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18)), fillvalues["vegetation_height"],vegetation_height) |
---|
763 | |
---|
764 | # Check for consistency and fill empty fields with default vegetation type |
---|
765 | consistency_array, test = check_consistency_4(vegetation_type,building_type,pavement_type,water_type,fillvalues["vegetation_type"],fillvalues["building_type"],fillvalues["pavement_type"],fillvalues["water_type"]) |
---|
766 | |
---|
767 | if test: |
---|
768 | vegetation_type = np.where(consistency_array == 0,defaultvalues["vegetation_type"],vegetation_type) |
---|
769 | consistency_array, test = check_consistency_4(vegetation_type,building_type,pavement_type,water_type,fillvalues["vegetation_type"],fillvalues["building_type"],fillvalues["pavement_type"],fillvalues["water_type"]) |
---|
770 | |
---|
771 | # #7 to be removed: set default soil type everywhere |
---|
772 | soil_type = np.where((vegetation_type != fillvalues["vegetation_type"]) | (pavement_type != fillvalues["pavement_type"]),defaultvalues["soil_type"],fillvalues["soil_type"]) |
---|
773 | |
---|
774 | |
---|
775 | # Check for consistency and fill empty fields with default vegetation type |
---|
776 | consistency_array, test = check_consistency_3(vegetation_type,pavement_type,soil_type,fillvalues["vegetation_type"],fillvalues["pavement_type"],fillvalues["soil_type"]) |
---|
777 | |
---|
778 | # Create surface_fraction array |
---|
779 | x = nc_read_from_file_2d_all(filename[i], 'x') |
---|
780 | y = nc_read_from_file_2d_all(filename[i], 'y') |
---|
781 | nsurface_fraction = np.arange(0,3) |
---|
782 | surface_fraction = np.ones((len(nsurface_fraction),len(y),len(x))) |
---|
783 | |
---|
784 | surface_fraction[0,:,:] = np.where(vegetation_type != fillvalues["vegetation_type"], 1.0, 0.0) |
---|
785 | surface_fraction[1,:,:] = np.where(pavement_type != fillvalues["pavement_type"], 1.0, 0.0) |
---|
786 | surface_fraction[2,:,:] = np.where(water_type != fillvalues["water_type"], 1.0, 0.0) |
---|
787 | |
---|
788 | nc_write_dimension(filename[i], 'nsurface_fraction', nsurface_fraction, datatypes["nsurface_fraction"]) |
---|
789 | nc_write_to_file_3d(filename[i], 'surface_fraction', surface_fraction, datatypes["surface_fraction"],'nsurface_fraction','y','x',fillvalues["surface_fraction"]) |
---|
790 | nc_write_attribute(filename[i], 'surface_fraction', 'long_name', 'surface fraction') |
---|
791 | nc_write_attribute(filename[i], 'surface_fraction', 'units', '') |
---|
792 | nc_write_attribute(filename[i], 'surface_fraction', 'res_orig', domain_px[i]) |
---|
793 | del surface_fraction |
---|
794 | |
---|
795 | nc_write_to_file_2d(filename[i], 'vegetation_type', vegetation_type, datatypes["vegetation_type"],'y','x',fillvalues["vegetation_type"]) |
---|
796 | nc_write_attribute(filename[i], 'vegetation_type', 'long_name', 'vegetation type') |
---|
797 | nc_write_attribute(filename[i], 'vegetation_type', 'units', '') |
---|
798 | nc_write_attribute(filename[i], 'vegetation_type', 'res_orig', domain_px[i]) |
---|
799 | nc_write_attribute(filename[i], 'vegetation_type', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
800 | nc_write_attribute(filename[i], 'vegetation_type', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
801 | del vegetation_type |
---|
802 | |
---|
803 | nc_write_to_file_2d(filename[i], 'pavement_type', pavement_type, datatypes["pavement_type"],'y','x',fillvalues["pavement_type"]) |
---|
804 | nc_write_attribute(filename[i], 'pavement_type', 'long_name', 'pavement type') |
---|
805 | nc_write_attribute(filename[i], 'pavement_type', 'units', '') |
---|
806 | nc_write_attribute(filename[i], 'pavement_type', 'res_orig', domain_px[i]) |
---|
807 | nc_write_attribute(filename[i], 'pavement_type', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
808 | nc_write_attribute(filename[i], 'pavement_type', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
809 | del pavement_type |
---|
810 | |
---|
811 | nc_write_to_file_2d(filename[i], 'water_type', water_type, datatypes["water_type"],'y','x',fillvalues["water_type"]) |
---|
812 | nc_write_attribute(filename[i], 'water_type', 'long_name', 'water type') |
---|
813 | nc_write_attribute(filename[i], 'water_type', 'units', '') |
---|
814 | nc_write_attribute(filename[i], 'water_type', 'res_orig', domain_px[i]) |
---|
815 | nc_write_attribute(filename[i], 'water_type', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
816 | nc_write_attribute(filename[i], 'water_type', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
817 | del water_type |
---|
818 | |
---|
819 | nc_write_to_file_2d(filename[i], 'soil_type', soil_type, datatypes["soil_type"],'y','x',fillvalues["soil_type"]) |
---|
820 | nc_write_attribute(filename[i], 'soil_type', 'long_name', 'soil type') |
---|
821 | nc_write_attribute(filename[i], 'soil_type', 'units', '') |
---|
822 | nc_write_attribute(filename[i], 'soil_type', 'res_orig', domain_px[i]) |
---|
823 | nc_write_attribute(filename[i], 'soil_type', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
824 | nc_write_attribute(filename[i], 'soil_type', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
825 | del soil_type |
---|
826 | |
---|
827 | del x |
---|
828 | del y |
---|
829 | |
---|
830 | # pixels with bridges get building_type = 7 = bridge. This does not change the _type setting for the under-bridge |
---|
831 | # area NOTE: when bridges are present the consistency check will fail at the moment |
---|
832 | if domain_3d[i]: |
---|
833 | if np.any(building_type != fillvalues["building_type"]): |
---|
834 | |
---|
835 | bridges_2d = nc_read_from_file_2d(input_file_bridges_2d[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
836 | bridges_2d = np.where(bridges_2d == 0.0,fillvalues["bridges_2d"],bridges_2d) |
---|
837 | building_type = np.where(bridges_2d != fillvalues["bridges_2d"],7,building_type) |
---|
838 | nc_overwrite_to_file_2d(filename[i], 'building_type', building_type) |
---|
839 | |
---|
840 | del building_type |
---|
841 | del bridges_2d |
---|
842 | |
---|
843 | # Read/write street type and street crossings |
---|
844 | for i in range(0,ndomains): |
---|
845 | |
---|
846 | street_type = nc_read_from_file_2d(input_file_street_type[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
847 | street_type[street_type == 255] = fillvalues["street_type"] |
---|
848 | street_type = np.where((street_type < 1) & (street_type != fillvalues["street_type"]),defaultvalues["street_type"],street_type) |
---|
849 | |
---|
850 | pavement_type = nc_read_from_file_2d_all(filename[i], 'pavement_type') |
---|
851 | street_type = np.where((pavement_type == fillvalues["pavement_type"]),fillvalues["street_type"],street_type) |
---|
852 | |
---|
853 | nc_write_to_file_2d(filename[i], 'street_type', street_type, datatypes["street_type"],'y','x',fillvalues["street_type"]) |
---|
854 | nc_write_attribute(filename[i], 'street_type', 'long_name', 'street type') |
---|
855 | nc_write_attribute(filename[i], 'street_type', 'units', '') |
---|
856 | nc_write_attribute(filename[i], 'street_type', 'res_orig', domain_px[i]) |
---|
857 | nc_write_attribute(filename[i], 'street_type', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
858 | nc_write_attribute(filename[i], 'street_type', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
859 | del street_type |
---|
860 | |
---|
861 | street_crossings = nc_read_from_file_2d(input_file_street_crossings[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
862 | street_crossings[street_crossings == 255] = fillvalues["street_crossings"] |
---|
863 | street_crossings = np.where((street_crossings < 1) & (street_crossings != fillvalues["street_crossings"]),defaultvalues["street_crossings"],street_crossings) |
---|
864 | |
---|
865 | nc_write_to_file_2d(filename[i], 'street_crossing', street_crossings, datatypes["street_crossings"],'y','x',fillvalues["street_crossings"]) |
---|
866 | nc_write_attribute(filename[i], 'street_crossing', 'long_name', 'street crossings') |
---|
867 | nc_write_attribute(filename[i], 'street_crossing', 'units', '') |
---|
868 | nc_write_attribute(filename[i], 'street_crossing', 'res_orig', domain_px[i]) |
---|
869 | nc_write_attribute(filename[i], 'street_crossing', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
870 | nc_write_attribute(filename[i], 'street_crossing', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
871 | del street_crossings |
---|
872 | |
---|
873 | |
---|
874 | # Read/write vegetation on roofs |
---|
875 | for i in range(0,ndomains): |
---|
876 | if domain_green_roofs[i]: |
---|
877 | green_roofs = nc_read_from_file_2d(input_file_vegetation_on_roofs[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
878 | buildings_2d = nc_read_from_file_2d_all(filename[i], 'buildings_2d') |
---|
879 | |
---|
880 | |
---|
881 | x = nc_read_from_file_2d_all(filename[i], 'x') |
---|
882 | y = nc_read_from_file_2d_all(filename[i], 'y') |
---|
883 | nbuilding_pars = np.arange(0,46) |
---|
884 | building_pars = np.ones((len(nbuilding_pars),len(y),len(x))) |
---|
885 | building_pars[:,:,:] = fillvalues["building_pars"] |
---|
886 | |
---|
887 | # assign green fraction on roofs |
---|
888 | building_pars[3,:,:] = np.where( (buildings_2d != fillvalues["buildings_2d"] ) & ( green_roofs != fillvalues["building_pars"] ),1.0,fillvalues["building_pars"]) |
---|
889 | |
---|
890 | # assign leaf area index for vegetation on roofs |
---|
891 | building_pars[4,:,:] = np.where( ( buildings_2d != fillvalues["buildings_2d"] ) & ( green_roofs == 1.0 ),settings_lai_roof_intensive,fillvalues["building_pars"]) |
---|
892 | building_pars[4,:,:] = np.where( ( buildings_2d != fillvalues["buildings_2d"] ) & ( green_roofs == 2.0 ),settings_lai_roof_extensive,building_pars[4,:,:]) |
---|
893 | |
---|
894 | |
---|
895 | nc_write_dimension(filename[i], 'nbuilding_pars', nbuilding_pars, datatypes["nbuilding_pars"]) |
---|
896 | nc_write_to_file_3d(filename[i], 'building_pars', building_pars, datatypes["building_pars"],'nbuilding_pars','y','x',fillvalues["building_pars"]) |
---|
897 | nc_write_attribute(filename[i], 'building_pars', 'long_name', 'building_pars') |
---|
898 | nc_write_attribute(filename[i], 'building_pars', 'units', '') |
---|
899 | nc_write_attribute(filename[i], 'building_pars', 'res_orig', domain_px[i]) |
---|
900 | nc_write_attribute(filename[i], 'building_pars', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
901 | nc_write_attribute(filename[i], 'building_pars', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
902 | |
---|
903 | del building_pars, buildings_2d, x, y |
---|
904 | |
---|
905 | |
---|
906 | # Read tree data and create LAD and BAD arrays using the canopy generator |
---|
907 | for i in range(0,ndomains): |
---|
908 | lai = nc_read_from_file_2d(input_file_lai[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
909 | |
---|
910 | vegetation_type = nc_read_from_file_2d_all(filename[i], 'vegetation_type') |
---|
911 | |
---|
912 | lai = np.where(vegetation_type == fillvalues["vegetation_type"],fillvalues["vegetation_pars"],lai) |
---|
913 | |
---|
914 | |
---|
915 | x = nc_read_from_file_2d_all(filename[i], 'x') |
---|
916 | y = nc_read_from_file_2d_all(filename[i], 'y') |
---|
917 | nvegetation_pars = np.arange(0,12) |
---|
918 | vegetation_pars = np.ones((len(nvegetation_pars),len(y),len(x))) |
---|
919 | vegetation_pars[:,:,:] = fillvalues["vegetation_pars"] |
---|
920 | |
---|
921 | vegetation_pars[1,:,:] = lai |
---|
922 | |
---|
923 | |
---|
924 | # Write out first version of LAI. Will later be overwritten. |
---|
925 | nc_write_dimension(filename[i], 'nvegetation_pars', nvegetation_pars, datatypes["nvegetation_pars"]) |
---|
926 | nc_write_to_file_3d(filename[i], 'vegetation_pars', vegetation_pars, datatypes["vegetation_pars"],'nvegetation_pars','y','x',fillvalues["vegetation_pars"]) |
---|
927 | nc_write_attribute(filename[i], 'vegetation_pars', 'long_name', 'vegetation_pars') |
---|
928 | nc_write_attribute(filename[i], 'vegetation_pars', 'units', '') |
---|
929 | nc_write_attribute(filename[i], 'vegetation_pars', 'res_orig', domain_px[i]) |
---|
930 | nc_write_attribute(filename[i], 'vegetation_pars', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
931 | nc_write_attribute(filename[i], 'vegetation_pars', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
932 | |
---|
933 | del lai, vegetation_pars, vegetation_type |
---|
934 | |
---|
935 | # Read tree data and create LAD and BAD arrays using the canopy generator |
---|
936 | for i in range(0,ndomains): |
---|
937 | if domain_street_trees[i]: |
---|
938 | |
---|
939 | vegetation_pars = nc_read_from_file_2d_all(filename[i], 'vegetation_pars') |
---|
940 | |
---|
941 | lai = np.copy(vegetation_pars[1,:,:]) |
---|
942 | |
---|
943 | x = nc_read_from_file_2d_all(filename[i], 'x') |
---|
944 | y = nc_read_from_file_2d_all(filename[i], 'y') |
---|
945 | |
---|
946 | # Save lai data as default for low and high vegetation |
---|
947 | lai_low = lai |
---|
948 | lai_high = lai |
---|
949 | |
---|
950 | # Read all tree parameters from file |
---|
951 | tree_height = nc_read_from_file_2d(input_file_tree_height[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
952 | |
---|
953 | if (input_file_tree_crown_diameter[ii[i]] is not None): |
---|
954 | tree_crown_diameter = nc_read_from_file_2d(input_file_tree_crown_diameter[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
955 | tree_crown_diameter = np.where( (tree_crown_diameter == 0.0) | (tree_crown_diameter == -1.0) ,fillvalues["tree_data"],tree_crown_diameter) |
---|
956 | else: |
---|
957 | tree_crown_diameter = np.ones((len(y),len(x))) |
---|
958 | tree_crown_diameter[:,:] = fillvalues["tree_data"] |
---|
959 | |
---|
960 | |
---|
961 | tree_trunk_diameter = nc_read_from_file_2d(input_file_tree_trunk_diameter[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
962 | tree_type = nc_read_from_file_2d(input_file_tree_type[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
963 | patch_height = nc_read_from_file_2d(input_file_patch_height[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
964 | |
---|
965 | # Remove missing values from the data. Reasonable values will be set by the tree generator |
---|
966 | tree_height = np.where( (tree_height == 0.0) | (tree_height == -1.0) ,fillvalues["tree_data"],tree_height) |
---|
967 | tree_trunk_diameter = np.where( (tree_trunk_diameter == 0.0) | (tree_trunk_diameter == -1.0) ,fillvalues["tree_data"],tree_trunk_diameter) |
---|
968 | tree_type = np.where( (tree_type == 0.0) | (tree_type == -1.0) ,fillvalues["tree_data"],tree_type) |
---|
969 | patch_height = np.where( patch_height == -1.0 ,fillvalues["tree_data"],patch_height) |
---|
970 | |
---|
971 | # Convert trunk diameter from cm to m |
---|
972 | tree_trunk_diameter = np.where(tree_trunk_diameter != fillvalues["tree_data"], tree_trunk_diameter * 0.01,tree_trunk_diameter) |
---|
973 | |
---|
974 | |
---|
975 | # Temporarily change missing value for tree_type |
---|
976 | tree_type = np.where( (tree_type == fillvalues["tree_type"]),fillvalues["tree_data"],tree_type) |
---|
977 | |
---|
978 | # Compare patch height array with vegetation type and correct accordingly |
---|
979 | vegetation_type = nc_read_from_file_2d_all(filename[i], 'vegetation_type') |
---|
980 | |
---|
981 | |
---|
982 | # For zero-height patches, set vegetation_type to short grass and remove these pixels from the patch height array |
---|
983 | vegetation_type = np.where( (patch_height == 0.0) & ( (vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18) ),3,vegetation_type) |
---|
984 | patch_type = np.where( (patch_height == 0.0) & ( (vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18) ),fillvalues["tree_data"],patch_height) |
---|
985 | |
---|
986 | |
---|
987 | max_tree_height = max(tree_height.flatten()) |
---|
988 | max_patch_height = max(patch_height.flatten()) |
---|
989 | |
---|
990 | if ( (max_tree_height != fillvalues["tree_data"]) | (max_patch_height == fillvalues["tree_data"]) ): |
---|
991 | |
---|
992 | lad, bad, tree_ids, zlad = generate_single_tree_lad(x,y,domain_dz[i],max_tree_height,max_patch_height,tree_type,tree_height,tree_crown_diameter,tree_trunk_diameter,lai,settings_season,fillvalues["tree_data"]) |
---|
993 | |
---|
994 | |
---|
995 | # Remove LAD volumes that are inside buildings |
---|
996 | buildings_2d = nc_read_from_file_2d_all(filename[i], 'buildings_2d') |
---|
997 | for k in range(0,len(zlad)-1): |
---|
998 | |
---|
999 | lad[k,:,:] = np.where(buildings_2d == fillvalues["buildings_2d"],lad[k,:,:],fillvalues["tree_data"]) |
---|
1000 | bad[k,:,:] = np.where(buildings_2d == fillvalues["buildings_2d"],bad[k,:,:],fillvalues["tree_data"]) |
---|
1001 | tree_ids[k,:,:] = np.where(buildings_2d == fillvalues["buildings_2d"],tree_ids[k,:,:],fillvalues["tree_data"]) |
---|
1002 | |
---|
1003 | del buildings_2d |
---|
1004 | |
---|
1005 | nc_write_dimension(filename[i], 'zlad', zlad, datatypes["tree_data"]) |
---|
1006 | nc_write_to_file_3d(filename[i], 'lad', lad, datatypes["tree_data"],'zlad','y','x',fillvalues["tree_data"]) |
---|
1007 | nc_write_attribute(filename[i], 'lad', 'long_name', 'leaf area density') |
---|
1008 | nc_write_attribute(filename[i], 'lad', 'units', '') |
---|
1009 | nc_write_attribute(filename[i], 'lad', 'res_orig', domain_px[i]) |
---|
1010 | nc_write_attribute(filename[i], 'lad', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
1011 | nc_write_attribute(filename[i], 'lad', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
1012 | |
---|
1013 | nc_write_to_file_3d(filename[i], 'bad', bad, datatypes["tree_data"],'zlad','y','x',fillvalues["tree_data"]) |
---|
1014 | nc_write_attribute(filename[i], 'bad', 'long_name', 'basal area density') |
---|
1015 | nc_write_attribute(filename[i], 'bad', 'units', '') |
---|
1016 | nc_write_attribute(filename[i], 'bad', 'res_orig', domain_px[i]) |
---|
1017 | nc_write_attribute(filename[i], 'bad', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
1018 | nc_write_attribute(filename[i], 'bad', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
1019 | |
---|
1020 | nc_write_to_file_3d(filename[i], 'tree_id', tree_ids, datatypes["tree_data"],'zlad','y','x',fillvalues["tree_data"]) |
---|
1021 | nc_write_attribute(filename[i], 'tree_id', 'long_name', 'tree id') |
---|
1022 | nc_write_attribute(filename[i], 'tree_id', 'units', '') |
---|
1023 | nc_write_attribute(filename[i], 'tree_id', 'res_orig', domain_px[i]) |
---|
1024 | nc_write_attribute(filename[i], 'tree_id', 'coordinates', 'E_UTM N_UTM lon lat') |
---|
1025 | nc_write_attribute(filename[i], 'tree_id', 'grid_mapping', 'E_UTM N_UTM lon lat') |
---|
1026 | |
---|
1027 | del lai, lad, bad, tree_ids, zlad |
---|
1028 | |
---|
1029 | del vegetation_pars, tree_height, tree_crown_diameter, tree_trunk_diameter, tree_type, patch_height, x, y |
---|
1030 | |
---|
1031 | |
---|
1032 | # Create vegetation patches for locations with high vegetation type |
---|
1033 | for i in range(0,ndomains): |
---|
1034 | if domain_canopy_patches[i]: |
---|
1035 | |
---|
1036 | # Load vegetation_type and lad array (at level z = 0) for re-processing |
---|
1037 | vegetation_type = nc_read_from_file_2d_all(filename[i], 'vegetation_type') |
---|
1038 | lad = nc_read_from_file_3d_all(filename[i], 'lad') |
---|
1039 | zlad = nc_read_from_file_1d_all(filename[i], 'zlad') |
---|
1040 | patch_height = nc_read_from_file_2d(input_file_patch_height[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) |
---|
1041 | vegetation_pars = nc_read_from_file_3d_all(filename[i], 'vegetation_pars') |
---|
1042 | lai = vegetation_pars[1,:,:] |
---|
1043 | |
---|
1044 | |
---|
1045 | # Determine all pixels that do not already have an LAD but which are high vegetation to a dummy value of 1.0 and remove all other pixels |
---|
1046 | lai_high = np.where( (lad[0,:,:] == fillvalues["tree_data"]) & ( ( (vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18) ) & ( (patch_height == fillvalues["tree_data"]) | (patch_height >= domain_dz[i])) ),1.0,fillvalues["tree_data"]) |
---|
1047 | |
---|
1048 | # Now, assign either the default LAI for high vegetation or keep 1.0 from the lai_high array. |
---|
1049 | lai_high = np.where( (lai_high != fillvalues["tree_data"]) & (lai == fillvalues["tree_data"]), settings_lai_high_default, lai_high) |
---|
1050 | |
---|
1051 | # If lai values are available in the lai array, write them on the lai_high array |
---|
1052 | lai_high = np.where( (lai_high != fillvalues["tree_data"]) & (lai != fillvalues["tree_data"]), lai, lai_high) |
---|
1053 | |
---|
1054 | # Define a patch height wherever it is missing, but where a high vegetation LAI was set |
---|
1055 | patch_height = np.where ( (lai_high != fillvalues["tree_data"]) & (patch_height == fillvalues["tree_data"]), settings_patch_height_default, patch_height) |
---|
1056 | |
---|
1057 | # Remove pixels where street trees were already set |
---|
1058 | patch_height = np.where ( (lad[0,:,:] != fillvalues["tree_data"]), fillvalues["tree_data"], patch_height) |
---|
1059 | |
---|
1060 | # Remove patch heights that have no lai_high value |
---|
1061 | patch_height = np.where ( (lai_high == fillvalues["tree_data"]), fillvalues["tree_data"], patch_height) |
---|
1062 | |
---|
1063 | # For missing LAI values, set either the high vegetation default or the low vegetation default |
---|
1064 | lai_high = np.where( (patch_height > 2.0) & (patch_height != fillvalues["tree_data"]) & (lai_high == fillvalues["tree_data"]),settings_lai_high_default,lai_high) |
---|
1065 | lai_high = np.where( (patch_height <= 2.0) & (patch_height != fillvalues["tree_data"]) & (lai_high == fillvalues["tree_data"]),settings_lai_low_default,lai_high) |
---|
1066 | |
---|
1067 | if ( max(patch_height.flatten()) >= (2.0 * domain_dz[i]) ): |
---|
1068 | print(" start calculating LAD (this might take some time)") |
---|
1069 | |
---|
1070 | |
---|
1071 | lad_patch, patch_nz, status = process_patch(domain_dz[i],patch_height,max(zlad),lai_high,settings_lai_alpha,settings_lai_beta) |
---|
1072 | |
---|
1073 | lad[0:patch_nz+1,:,:] = np.where( (lad[0:patch_nz+1,:,:] == fillvalues["tree_data"]),lad_patch[0:patch_nz+1,:,:], lad[0:patch_nz+1,:,:] ) |
---|
1074 | |
---|
1075 | # Remove high vegetation wherever it is replaced by a leaf area density. This should effectively remove all high vegetation pixels |
---|
1076 | vegetation_type = np.where((lad[0,:,:] != fillvalues["tree_data"]) & (vegetation_type != fillvalues["vegetation_type"]),3,vegetation_type) |
---|
1077 | |
---|
1078 | # If desired, remove all high vegetation. TODO: check if this is still necessary |
---|
1079 | if not domain_high_vegetation[i]: |
---|
1080 | vegetation_type = np.where((vegetation_type != fillvalues["vegetation_type"]) & ( (vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18) ),3,vegetation_type) |
---|
1081 | |
---|
1082 | |
---|
1083 | # Set default low LAI for pixels with an LAD (short grass below trees) |
---|
1084 | lai_low = np.where( (lad[0,:,:] == fillvalues["tree_data"]), lai, settings_lai_low_default) |
---|
1085 | |
---|
1086 | # Fill low vegetation pixels without LAI set or with LAI = 0 with default value |
---|
1087 | lai_low = np.where( ( (lai_low == fillvalues["tree_data"]) | (lai_low == 0.0) ) & (vegetation_type != fillvalues["vegetation_type"] ), settings_lai_low_default, lai_low) |
---|
1088 | |
---|
1089 | # Remove lai for pixels that have no vegetation_type |
---|
1090 | lai_low = np.where( vegetation_type != fillvalues["vegetation_type"], lai_low, fillvalues["tree_data"]) |
---|
1091 | |
---|
1092 | # Overwrite lai in vegetation_parameters |
---|
1093 | vegetation_pars[1,:,:] = np.copy(lai_low) |
---|
1094 | nc_overwrite_to_file_3d(filename[i], 'vegetation_pars', vegetation_pars) |
---|
1095 | |
---|
1096 | # Overwrite lad array |
---|
1097 | nc_overwrite_to_file_3d(filename[i], 'lad', lad) |
---|
1098 | |
---|
1099 | nc_overwrite_to_file_2d(filename[i], 'vegetation_type', vegetation_type) |
---|
1100 | |
---|
1101 | |
---|
1102 | del vegetation_type, lad, lai, patch_height, vegetation_pars, zlad |
---|
1103 | |
---|
1104 | # Final consistency check |
---|
1105 | for i in range(0,ndomains): |
---|
1106 | vegetation_type = nc_read_from_file_2d_all(filename[i], 'vegetation_type') |
---|
1107 | pavement_type = nc_read_from_file_2d_all(filename[i], 'pavement_type') |
---|
1108 | building_type = nc_read_from_file_2d_all(filename[i], 'building_type') |
---|
1109 | water_type = nc_read_from_file_2d_all(filename[i], 'water_type') |
---|
1110 | soil_type = nc_read_from_file_2d_all(filename[i], 'soil_type') |
---|
1111 | |
---|
1112 | # Check for consistency and fill empty fields with default vegetation type |
---|
1113 | consistency_array, test = check_consistency_4(vegetation_type,building_type,pavement_type,water_type,fillvalues["vegetation_type"],fillvalues["building_type"],fillvalues["pavement_type"],fillvalues["water_type"]) |
---|
1114 | |
---|
1115 | # Check for consistency and fill empty fields with default vegetation type |
---|
1116 | consistency_array, test = check_consistency_3(vegetation_type,pavement_type,soil_type,fillvalues["vegetation_type"],fillvalues["pavement_type"],fillvalues["soil_type"]) |
---|
1117 | |
---|
1118 | surface_fraction = nc_read_from_file_3d_all(filename[i], 'surface_fraction') |
---|
1119 | surface_fraction[0,:,:] = np.where(vegetation_type != fillvalues["vegetation_type"], 1.0, 0.0) |
---|
1120 | surface_fraction[1,:,:] = np.where(pavement_type != fillvalues["pavement_type"], 1.0, 0.0) |
---|
1121 | surface_fraction[2,:,:] = np.where(water_type != fillvalues["water_type"], 1.0, 0.0) |
---|
1122 | nc_overwrite_to_file_3d(filename[i], 'surface_fraction', surface_fraction) |
---|
1123 | |
---|
1124 | del vegetation_type, pavement_type, building_type, water_type, soil_type |
---|