source: palm/trunk/DOC/misc/plant_canopy_model.tex @ 1257

Last change on this file since 1257 was 187, checked in by letzel, 16 years ago
  • new: descriptions of plant canopy model and prandtl layer (trunk/DOC/misc)
  • changed: more consistent flux definitions; modification of the integrated version of the profile function for momentum for unstable stratification (wall_fluxes, production_e)
  • bugfix: change definition of us_wall from 1D to 2D (prandtl_fluxes, wall_fluxes)
File size: 7.0 KB
Line 
1\documentclass[11pt,a4paper,titlepage]{scrreprt}
2\documentstyle[Flow]
3\usepackage{graphics}
4\usepackage{german}
5\usepackage{chimuk}
6\usepackage{bibgerm}
7\usepackage{a4wide}
8\usepackage{amsmath}
9\usepackage{flafter}
10\usepackage[dvips]{epsfig}
11\usepackage{texdraw}
12\usepackage{supertabular}
13\usepackage{longtable}
14\usepackage{scrpage}
15\usepackage{fancyheadings}
16\usepackage{flow}
17\frenchspacing
18\sloppy
19\pagestyle{fancyplain}
20\addtolength{\headheight}{\baselineskip}
21\renewcommand{\chaptermark}[1]{\markboth{\thechapter~~#1}{}}
22\renewcommand{\sectionmark}[1]{\markright{\thesection\ #1}}
23\lhead{\fancyplain{}{\bfseries\leftmark}}
24\rhead{}
25%\begin{titlepage}
26%\author{Gerald Steinfeld}
27%\title{Prandtl layer parameterisation in PALM}
28%\end{titlepage}
29\begin{document}
30%\maketitle
31%\tableofcontents
32\pagebreak
33
34\chapter{Plant canopy model in PALM}
35The basic equations used in the LES are the Navier-Stokes equations using the Boussinesq approximation (conservation of momentum; equation \ref{NSG}),
36the equation of continuity (conservation of mass; equation \ref{KON}), the first law of thermodynamics (conservation of energy; equation \ref{1HS}) and
37the conservation equation for a passive scalar (equation \ref{CPS}). All equations are filtered (in PALM by averaging over a discrete grid volume) in
38order to eliminate small-scale perturbations. Thus, the set of equations on that the LES model PALM is based is formed by the following equations: 
39
40\begin{equation} \label{NSG}
41\frac{\partial \overline{u}_i}{\partial t} = - \frac{\partial}{\partial x_k} \overline{u}_k \overline{u}_i - \frac{1}{\rho_0} \frac{\partial \overline{p^{\ast}}}{\partial x_i} - \left ( \epsilon_{ijk} f_j \overline{u}_k - \epsilon_{i3k} f_3 u_{g_k} \right ) + g \frac{\overline{\Theta^{\ast}}}{\Theta_0} \delta_{i3} - \frac{\partial}{\partial x_k} \overline{u_i'u_k'} - c_d a U \overline{u}_i
42\end{equation}
43
44\begin{equation} \label{KON} 
45\frac{\partial \overline{u}}{\partial x_i} = 0
46\end{equation}
47
48\begin{equation} \label{1HS}
49\frac{\partial \overline{\Theta}}{\partial t} = - \frac {\partial}{\partial x_k} \overline{u}_k \overline{\Theta} - \frac{\partial}{\partial x_k} \overline{u_k'\Theta'} + S
50\end{equation}
51
52\begin{equation} \label{CPS}
53\frac{\partial \overline s}{\partial t} = - \frac{\partial}{\partial x_k} \overline{u}_k \overline{s} - \frac{\partial}{\partial x_k} \overline{u_k's'} - c_s a U \left ( \overline{s} - s_l \right )
54\end{equation}
55
56The overline denotes filtered variables, while the prime denotes sub-gridscale, local spatial fluctuations at time t that are not resolved by the model;
57the star denotes a departure of the basic state that is marked by a subscript $0$ and that varies only
58with height; $u_i$ is the velocity in the $x_i$-direction; $\rho$ is the air density; $p$ is the pressure; $f_i=(0,2\Omega cos(\phi),2\Omega sin(\phi))$ 
59is the Coriolis parameter with the angular velocity of the earth $\Omega$; ${u_g}_i$ denotes the components of the geostrophic wind; $g$ is the
60acceleration due to gravity; $\Theta$ is the potential temperature and $s$ denotes the concentration of a passive scalar.
61The sub-gridscale fluxes in equations \ref{NSG}, \ref{1HS} and \ref{CPS} are parameterised by a 1.5-order closure model using resolved-scale variables
62and the sub-gridscale turbulent kinetic energy $\overline{e}$. Thus, an additional prognostic equation has to be solved for the sub-gridscale turbulent
63kinetic energy $\overline{e}$:     
64
65\begin{equation} \label{TKE}
66\frac{\partial \overline e}{\partial t} = - \frac{\partial}{\partial x_k} \overline{u}_k \overline{e} - \tau_{ij} \frac{\partial \overline{u}_i}{\partial x_j} + \frac{g}{\Theta_0} \overline{u_3'\Theta_j'} - \frac{\partial}{\partial x_j} \left ( \overline{u_j' \left ( e + \frac{p'}{\rho_0} \right ) } \right ) - \epsilon - 2 c_d a U \overline{e}.
67\end{equation}
68
69Here, $\tau_{ij}$ denotes the sub-gridscale stress tensor. The final terms in equations \ref{NSG}, \ref{1HS}, \ref{CPS} and \ref{TKE} represent the sink
70or source of momentum, heat and the passive scalar due to canopy elements, respectively. Thus, these terms do only occur within the plant canopy, while
71they vanish outside the plant canopy (in PALM this distinction between canopy layer and the remaining area is realised by the specification of a height
72index that contains the information up to which vertical grid level the plant canopy extends; the additional terms for the plant canopy layer are
73only evaluated for grid levels smaller or equal that plant canopy height index). The additional, canopy related source and sink sources, are considered in
74PALM in the same way as in the models of WATANABE (2004, Boundary-Layer Meteorol., 112, 307-341) and SHAW AND SCHUMANN
75(1992, Boundary-Layer Meteorol., 61, 47-64).   
76$c_d$ and $c_s$ are the leaf drag coefficient and the scalar exchange
77coefficient for a leaf, respectively; $a$ is the leaf area density; $U$ is the instantaneous local wind speed, defined as
78\begin{equation}
79U = \left (  \overline{u}^2 + \overline{v}^2 + \overline{w}^2 \right )^{\frac{1}{2}},
80\end{equation}
81and $s_l$ is the scalar concentration at a leaf surface.
82The heat source distribution $S(z)$ in convective conditions has been given by BROWN AND COVEY (1966, Agric. Meteorol., 3, 73-96) and SHAW AND SCHUMANN
83(1992). The assumption that leads to the heat source distribution is that short-wave solar radiation penetrates the plant canopy and warms the foliage
84which, in turn, warms the air in contact with it. The heat source is distributed in such a way that the heat flux $Q$ at the top of the canopy, $z=h$, is
85prescribed and that the heat flux within the canopy follows a declining exponential function of the downward cumulative leaf area index. The decline of
86heat flux with decreasing height is similar to the decline of net radiation that has been described by BROWN AND COVEY (1966). The heat source $S(z)$ that
87is included in equation \ref{1HS} is the vertical derivative of the upward kinematic vertical heat flux $Q$   
88\begin{equation}
89S = \frac{\partial Q}{\partial z}.
90\end{equation}
91According to the explanations given above the upward kinematic vertical heat flux $Q$ is evaluated as
92\begin{equation} \label{kvh}
93Q(z) = Q(h) exp(- \alpha F(z)),
94\end{equation}
95where $F$ is the downward cumulative leaf area index (non-dimensional) determined by integration over the leaf area density $a$ 
96\begin{equation}
97F = \int_z^h a dz
98\end{equation}
99and $\alpha$ is an extinction coefficient that is set by default to 0.6 in PALM.
100
101The final term in equation \ref{TKE} represents the sink for sub-gridscale turbulent kinetic energy
102due to the rapid dissipation of wake turbulence formed in the lee of canopy elements. This term is included
103on the assumption that individual wake motions behind canopy elements are of even smaller scale than those
104making up the bulk of sub-gridscale kinetic energy. For simulations in that the grid length is of the
105order of the scale of wake turbulence modifications within equation \ref{TKE} might be necessary. KANDA
106AND HINO (1994, Boundary-Layer Meteorol., 68, 237-257) made a suggestion how equation \ref{TKE} has to be
107modified for such cases.
108
109\end{document}
Note: See TracBrowser for help on using the repository browser.