
Introdu
tion to the 
loud physi
s module of PALM�Amendments to the dry version of PALM�Mi
hael S
hröter13.3.2000translated and adapted byRieke Heinze15.07.20101 Introdu
tionThe dry version of PALM does not 
ontain any 
loud physi
s. It has been extended toa

ount for a nearly 
omplete water 
y
le and radiation pro
esses:Water 
y
le� evaporation/
ondensation� pre
ipitation� transport of humidity and liquid waterRadiation pro
esses� short-wave radiation� long-wave radiationThe dynami
al pro
esses are 
overed by adve
tion and di�usion and they are des
ribedby the implemented methods. For the 
onsideration of the thermodynami
al pro
essesmodi�
ations are ne
essary in the thermodynami
s of PALM . In doing so evaporationand 
ondensation are treated as adiabati
 pro
esses whereas pre
ipitation and radiationare treated as diabati
 pro
esses. In the dry version of PALM the thermodynami
 variableis the potential temperature θ. The �rst law of thermodynami
s provides the prognosti
equation for θ. The system of thermodynami
 variables has to be extended to deal withphase transitions:
qv = spe
i�
 humidity to deal with water vapour
ql = liquid water 
ontent to deal with the liquid phaseAdditionally, dependen
ies between these variables have to be introdu
ed to des
ribe the
hanges of state (
ondensation s
heme).In introdu
ing the two variables liquid water potential temperature θl and total liquid water
ontent q the treatment of the thermodynami
s is simpli�ed. The liquid water potentialtemperature θl is de�ned by Betts (1973) and represents the potential temperature attainedby evaporating all the liquid water in an air par
el through reversible wet adiabati
 des
ent.In a linearized version it is de�ned as

θl = θ − Lv

cp

(

θ

T

)

ql. (1)
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For the total water 
ontent it is valid:
q = qv + ql. (2)The usage of θl and q as thermodynami
 variables is based on the work of Ogura (1963)and Orville (1965). The advantages of the θl-q system are dis
ussed by Deardor� (1976):� Without pre
ipitation, radiation and freezing pro
esses θl and q are 
onservativequantities (for the whole system).� Therewith, the treatment of grid volumes in whi
h only a fra
tion is saturated issimpli�ed (sub-grid s
ale 
ondensation s
heme).� Parameterizations of the sub-grid s
ale �uxes are retained.� The liquid water 
ontent is not a separate variable (storage spa
e is saved).� For dry 
onve
tion θl mat
hes the potential temperature and q mat
hes the spe
i�
humidity when 
ondensation is disabled.� Phase transitions do not have to be des
ribed as additional terms in the prognosti
equations.2 Model equationsIn 
ombining the prognosti
 equations for dry 
onve
tion with the pro
esses for 
loudphysi
s the following set of prognosti
 and diagnosti
 model equations is gained:Equation of 
ontinuity
∂uj

∂xj
= 0 (3)Equations of motion

∂ui

∂t
= −∂ (ujui)

∂xj
− 1

ρ0

∂π∗

∂xi
− εijkfjuk − εi3kf3ugk

+ g
θv − 〈θv〉

θ0
δi3 −

∂ τij
∂xj

(4)with
π∗ = p∗ +

2

3
ρ0 e (5)

τij = u
′

ju
′

i −
2

3
e δij (6)First law of thermodynami
s

∂θl

∂t
= −∂

(

ujθl

)

∂xj
−
∂ u

′

jθ
′

l

∂xj
+

(

∂θl

∂t

)

RAD

+

(

∂θl

∂t

)

PREC

(7)Conservation equation for the total water 
ontent
∂q

∂t
= −∂ (ujq)

∂xj
−
∂ u

′

jq
′

∂xj
+

(

∂q

∂t

)

PREC

(8)2



Conservation equation for the sub-grid s
ale turbulent kineti
 energy e = 1
2
u

′2
i

∂e

∂t
= −∂ (uje)

∂xj
− u

′

ju
′

i

∂ui

∂xj
+
g

θ0
u

′

3θ
′

v −
∂

∂xj

{

u
′

j

(

e′ +
p′

ρ0

)

}

− ǫ (9)The virtual potential temperature is needed in equation (4) to 
al
ulate the buoyan
y term.It is de�ned by e.g. Sommeria and Deardor� (1977) as
θv =

(

θl +
Lv

cp

(

θ

T

)

ql

)

(1 + 0.61 q − 1.61 ql) . (10)Therewith, the in�uen
e of 
hanging in density due to 
ondensation is 
onsidered in thebuoyan
y term.The 
losure of the model equations is based on the approa
hes of Deardor� (1980):
u

′

ju
′

i = −Km

(

∂ui

∂xj
+
∂uj

∂xi

)

+
2

3
e δij (11)

u
′

jθ
′

l = −Kh

(

∂θl

∂xj

) (12)
u

′

jq
′ = −Kh

(

∂q

∂xj

) (13)
u

′

j

(

e′ +
p′

ρ0

)

= −2Km
∂e

∂xj
(14)

u
′

3θ
′

v = K1 u
′

3θ
′

l +K2 u
′

3q
′ (15)

Km = 0.1 l
√
e (16)

Kh =

(

1 + 2
l

∆

)

Km (17)
ǫ =

(

0.19 + 0.74
l

∆

)

e
3

2

l
(18)with

l =







min

(

∆, 0.7 d, 0.76
√
e

(

g
θ0

∂θv

∂z

)

−
1

2

)

, ∂θv

∂z > 0

min (∆, 0.7 d) , ∂θv

∂z ≤ 0

(19)and
∆ = (∆x∆y∆z)1/3 (20)At the lower boundary Monin-Obukhov similarity theory is valid ( w′q′ = u∗q∗).Cuijpers and Duynkerke (1993) for example de�ne the 
oe�
ients K1 and K2 as follows:in unsaturated air:
K1 = 1.0 + 0.61 q (21)
K2 = 0.61 θ (22)
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in saturated air:
K1 =

1.0 − q + 1.61 qs

(

1.0 + 0.622 Lv

RT

)

1.0 + 0.622 Lv

RT
Lv

cpT qs

(23)
K2 = θ

((

Lv

cpT

)

K1 − 1.0

) (24)The saturation value of the spe
i�
 humidity 
omes from the trun
ated Taylor expansionof qs(T ):
qs(T ) = qs = qs (Tl) +

(

∂qs
∂T

)

T=Tl

(T − Tl). (25)Using the Clausius-Clapeyron equation
(

∂qs
∂T

)

T=Tl

= 0.622
Lvqs(Tl)

RT 2
l

(26)with
T = Tl +

Lv

cp
ql respe
tively ql = q − qs (27)gives

qs = qs(T l)
(1.0 + β q)

1.0 + β qs(Tl)
. (28)Whereas

qs(T l) = 0.622
es(T l)

p0(z) − 0.377 es(T l)
(29)and

β = 0.622

(

Lv

RT l

)(

Lv

cp T l

)

. (30)The a
tual liquid water temperature is de�ned as
T l =

(

p0(z)

p0(z = 0)

)κ

θl (31)with p0(z = 0) = 1000hPa. The value of the saturation vapour pressure at the temperature
T l is 
al
ulated in the same way as in Bougeault (1982):

es(T l) = 610.78 exp

(

17.269
T l − 273.16

T l − 35.86

)

. (32)The hydrostati
 pressure p0(z) is given by Cuijpers and Duynkerke (1993):
p0(z) = p0(z = 0)

Tref(z)
cp/R

T0

(33)4



with
Tref(z) = T0 −

g

cp
z. (34)The pressure is 
al
ulated on
e at the beginning of a simulation and remains un
hanged.For the referen
e temperature at the earth surfa
e T0 the initial surfa
e temperature isapplied. The ratio of the potential and the a
tual temperature is given by:

θ

T
=

(

p0(z = 0)

p0(z)

)κ

. (35)The liquid water 
ontent ql is needed for the 
al
ulation of the virtual potential temperature(eq. (10)). It is 
al
ulated from the di�eren
e of the total water 
ontent at a single gridpoint and the saturation value at this grid point:
ql =

{

q − qs(T l) if q > qs(T l)

0 else (36)With this approa
h a grid volume is either 
ompletely saturated or 
ompletely unsaturated.The values of the 
loud 
over of a grid volume 
an only be
ome 0 or 1 (0%-or100% s
heme).3 Parameterization of the sour
e terms in the 
onservationequations3.1 Radiation modelThe sour
e term for radiation pro
esses is parameterized via the s
heme of e�e
tive emis-sivity whi
h is based on Cox (1976):
(

∂θl

∂t

)

RAD

= − θ

T

1

ρ cp ∆z

[

∆F (z+) − ∆F (z−)
] (37)

∆F des
ribes the di�eren
e between upward and downward irradian
e at the grid pointabove (z+) and below (z−) the level in whi
h θl is de�ned.The upward and downward irradian
e F^ and F_ are de�ned as follows:
F^(z) = B(0) + ε^(z, 0) (B(z) −B(0)) (38)
F_(z) = F_(ztop) + ε_(z, ztop) (B(z) − F_(ztop)) (39)

F_(ztop) des
ribes the impinging irradian
e at the upper boundary of the model domainwhi
h has to be pres
ribed. B(0) and B(z) represent the bla
k body emission at theground and the height z respe
tively. ε^(z, 0) and ε_(z, ztop) stand for the e�e
tive 
loudemissivity of the liquid water between the ground and the level z and between z and theupper boundary of the model domain ztop respe
tively. They are de�ned as
ε^(z, 0) = 1 − exp (−a · LWP (0, z)) (40)

ε_(z, ztop) = 1 − exp (−b · LWP (z, ztop)) (41)
LWP (z1, z2) des
ribes the liquid water path whi
h is the verti
ally added 
ontent of liquidwater above ea
h grid 
olumn:

LWP (z1, z2) =

∫ z2

z1

dz ρ · ql. (42)5



a and b are 
alled mass absorption 
oe�
ients. Their empiri
al values are based onStephans (1978) with a = 130m2kg−1 and b = 158m2kg−1.The assumptions for the validity of this parameterization are:� Horizontal divergen
es in radiation are negle
ted.� Only absorption and emission of long-wave radiation due to water vapour and 
louddroplets is 
onsidered.� The atmosphere is assumed to have 
onstant in-situ temperature above and belowthe regarded level ex
ept for the earth surfa
e.3.2 Pre
ipitation modelThe sour
e term for pre
ipitation pro
esses is parameterized via a simpli�ed s
heme ofKessler (1969):
(

∂q

∂t

)

PREC

=

{

(

ql − qlcrit

)

/τ ql > qlcrit

0 ql ≤ qlcrit

(43)The pre
ipitation leaves the grid volume immediately if the threshold of the liquid water
ontent qlcrit = 0.5 g/kg is ex
eeded. Hen
e, evaporation of the rain drops does not o

ur.
τ is a retarding time s
ale with a value of 1000 s.The in�uen
e of the pre
ipitation on the temperature is as follows:

(

∂θl

∂t

)

PREC

= −Lv

cp

(

θ

T

) (

∂q

∂t

)

PREC

(44)List of symbolsVariable Des
ription Value
B bla
k body radiation
cp heat 
apa
ity for dry air with p=
onst 1005 J K−1kg−1

d normal distan
e to the nearest solid surfa
e
e sub-grid s
ale turbulent kineti
 energy
es saturation vapour pressure
fi Coriolis parameter i ∈ {1, 2, 3}
F^ upward irradian
e
F_ downward irradian
e
i, j, k integer indi
es
Kh turbulent di�usion 
oe�
ient for momentum
Km turbulent di�usion 
oe�
ient for heat
K1 
oe�
ient
K2 
oe�
ient
l mixing length
Lv heat of evaporation 2.5 · 106 J kg−16



LWP liquid water path
R gas 
onstant for dry air 287 J K−1kg−1

T a
tual temperature
Tl a
tual liquid water temperature
u, v, w, ui velo
ity 
omponents, i ∈ {1, 2, 3}
p0 hydrostati
 pressure
q total water 
ontent
ql liquid water 
ontent
qlcrit threshold for the formation of pre
ipitation
qs spe
i�
 humidity in 
ase of saturation
qv spe
i�
 humidity
x, y, z, xi Cartesian 
oordinates, i ∈ {1, 2, 3}
∆ 
hara
teristi
 grid length
ǫ dissipation of sub-grid s
ale turbulent kineti
 energy
ε^ upward e�e
tive 
loud emissivity
ε_ downward e�e
tive 
loud emissivity
κ R/cp 0.286
ρ air density
τ time s
ale for the Kessler s
heme
θ potential temperature
θl liquid water potential temperature
θv virtual potential temperature
θ0 referen
e value for the potential temperature
ψ resolved s
ale variable
ψ

′ sub-grid s
ale variable
ψ∗ departure from the basi
 state (Boussinesq approxima-tion)
〈ψ〉 horizontal meanReferen
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