source: palm/trunk/DOC/app/chapter_4.2.html @ 519

Last change on this file since 519 was 493, checked in by raasch, 15 years ago

New:
---
Output in NetCDF4-format. New d3par-parameter netcdf_data_format.

(check_open, check_parameters, close_file, data_output_2d, data_output_3d, header, modules, netcdf, parin)

Modules to be loaded for compilation (mbuild) or job execution (mrun)
can be given in the configuration file using variable modules. Example:

%modules ifort/11.0.069:netcdf lcsgih parallel

This method replaces the (undocumented) mpilib-variable.

WARNING: All fixed settings of modules in the scripts mbuild, mrun, and subjob
have been removed! Please set the modules variable appropriately in your
configuration file. (mbuild, mrun, subjob)

Changed:


Parameters netcdf_64bit and netcdf_64bit_3d have been removed. Use
netcdf_data_format = 2 for choosing the classic 64bit-offset format (this is
the default). The offset-format can not be set independently for the
3d-output-data any more.

Parameters netcdf_format_mask, netcdf_format_mask_av, and variables
nc_format_mask, format_parallel_io removed. They are replaced by the new
parameter netcdf_data_format. (check_open, close_file,
data_output_mask, header, init_masks, modules, parin)

Errors:


bugfix in trunk/UTIL/Makefile: forgot to compile for interpret_config

Bugfix: timeseries data have to be collected by PE0 (user_statistics)

  • Property svn:keywords set to Id
File size: 289.0 KB
Line 
1<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head>
3
4
5
6
7
8
9
10 
11 
12 
13 
14  <meta content="text/html; charset=ISO-8859-1" http-equiv="content-type"><title>PALM chapter 4.2</title></head><body>
15
16
17
18
19<h3 style="line-height: 100%;"><a name="Kapitel4.2"></a>4.2 <a href="#Laufparameter">Runtime
20parameters</a>, <a href="#particle_parameters">particle parameters</a>, and <a href="#Paketparameter">package
21parameters</a></h3>
22
23
24
25
26
27<h3 style="margin-bottom: 0cm; line-height: 100%;"><a name="Laufparameter"></a>Runtime parameters:</h3>
28
29
30
31
32
33<br>
34
35
36
37
38<br>
39
40
41
42
43<table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2">
44
45
46
47
48 <tbody>
49
50
51
52
53
54    <tr>
55
56
57
58
59
60      <td style="vertical-align: top;"><font size="4"><b>Parameter
61name</b></font></td>
62
63
64
65
66 <td style="vertical-align: top;"><font size="4"><b>Type</b></font></td>
67
68
69
70
71
72      <td style="vertical-align: top;"> 
73     
74     
75     
76     
77      <p><b><font size="4">Default</font></b> <br>
78
79
80
81
82 <b><font size="4">value</font></b></p>
83
84
85
86
87 </td>
88
89
90
91
92
93      <td style="vertical-align: top;"><font size="4"><b>Explanation</b></font></td>
94
95
96
97
98
99    </tr>
100
101
102
103
104 <tr>
105
106
107
108
109 <td style="vertical-align: top;"><a name="averaging_interval"></a><span style="font-weight: bold;">averaging_interval</span><br>
110
111
112
113
114
115      </td>
116
117
118
119
120 <td style="vertical-align: top;">R<br>
121
122
123
124
125 </td>
126
127
128
129
130
131      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
132
133
134
135
136 </td>
137
138
139
140
141
142      <td style="vertical-align: top;">Averaging interval for
143all&nbsp;output of temporally averaged data (in s).<br>
144
145
146
147
148      <br>
149
150
151
152
153This
154parameter defines the time interval length for temporally averaged data
155(vertical profiles, spectra, 2d cross-sections, 3d volume data). By
156default,&nbsp;data are not subject to temporal averaging. The
157interval
158length is limited by the parameter <a href="#dt_data_output_av">dt_data_output_av</a>.
159In any case, <span style="font-weight: bold;">averaging_interval</span>
160&lt;= <span style="font-weight: bold;">dt_data_output_av</span>
161must hold.<br>
162
163
164
165
166      <br>
167
168
169
170
171If
172an interval is defined, then by default the average is calculated from
173the data values of all timesteps lying within this interval. The number
174of time levels entering into the average can be reduced with the
175parameter <a href="#dt_averaging_input">dt_averaging_input</a>.<br>
176
177
178
179
180      <br>
181
182
183
184
185If
186an averaging interval can not be completed at the end of a run, it
187will be finished at the beginning of the next restart run. Thus for
188restart runs, averaging intervals do not
189necessarily begin at the beginning of the run.<br>
190
191
192
193
194      <br>
195
196
197
198
199Parameters
200      <a href="#averaging_interval_pr">averaging_interval_pr</a>
201and <a href="#averaging_interval_sp">averaging_interval_sp</a>
202can be used to define different averaging intervals for vertical
203profile data and spectra, respectively.<br>
204
205
206
207
208 </td>
209
210
211
212
213 </tr>
214
215
216
217
218
219    <tr>
220
221
222
223
224 <td style="vertical-align: top;"> 
225     
226     
227     
228     
229      <p><a name="averaging_interval_pr"></a><b>averaging_interval_pr</b></p>
230
231
232
233
234
235      </td>
236
237
238
239
240 <td style="vertical-align: top;">R<br>
241
242
243
244
245 </td>
246
247
248
249
250
251      <td style="vertical-align: top;"><span style="font-style: italic;">value of <a href="#averaging_interval">averaging_<br>
252
253
254
255
256
257interval</a><br>
258
259
260
261
262
263      </span> </td>
264
265
266
267
268 <td style="vertical-align: top;">
269     
270     
271     
272     
273      <p>Averaging
274interval for output of vertical profiles&nbsp;to
275local
276file <font color="#000000"><font color="#000000"><a href="chapter_3.4.html#DATA_1D_PR_NETCDF">DATA_1D_PR_NETCDF</a>
277      </font></font>and/or&nbsp; <a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>
278(in s).&nbsp; </p>
279
280
281
282
283 
284     
285     
286     
287     
288      <p>If
289this parameter is given a non-zero value, temporally
290averaged vertical profile data are output. By default, profile data
291data are not subject to temporal averaging. The interval length is
292limited by the parameter <a href="#dt_dopr">dt_dopr</a>.
293In any case <b>averaging_interval_pr</b> &lt;= <b>dt_dopr
294      </b>must
295hold.</p>
296
297
298
299
300If an interval is defined, then by default the average
301is calculated
302from the data values of all timesteps lying within this interval. The
303number of time levels entering into the average can be reduced with the
304parameter <a href="#dt_averaging_input_pr">dt_averaging_input_pr</a>.
305     
306     
307     
308     
309      <p>If
310an averaging interval can not be completed at the end of a run, it will
311be finished at the beginning of the next restart run. Thus for restart
312runs, averaging intervals do not
313necessarily begin at the beginning of the run.</p>
314
315
316
317
318 </td>
319
320
321
322
323 </tr>
324
325
326
327
328
329    <tr>
330
331
332
333
334 <td style="vertical-align: top;"><a name="call_psolver_at_all_substeps"></a><span style="font-weight: bold;">call_psolver_at_all_<br>
335
336
337
338
339
340substeps</span></td>
341
342
343
344
345 <td style="vertical-align: top;">L<br>
346
347
348
349
350
351      </td>
352
353
354
355
356 <td style="vertical-align: top;"><span style="font-style: italic;">.T.</span><br>
357
358
359
360
361 </td>
362
363
364
365
366
367      <td style="vertical-align: top;">Switch
368to steer the call of the pressure solver.<br>
369
370
371
372
373 <br>
374
375
376
377
378
379In order to speed-up performance, the Poisson equation for perturbation
380pressure (see <a href="#psolver">psolver</a>) can
381be called only at the last substep of multistep Runge-Kutta
382timestep schemes (see <a href="chapter_4.1.html#timestep_scheme">timestep_scheme</a>)
383by setting <span style="font-weight: bold;">call_psolver_at_all_substeps</span>
384= <span style="font-style: italic;">.F.</span>.
385In many cases, this sufficiently reduces the divergence of the velocity
386field. Nevertheless, small-scale ripples (2-delta-x) may occur. In this
387case and in case
388of non-cyclic lateral boundary conditions, <span style="font-weight: bold;">call_psolver_at_all_timesteps</span>
389= <span style="font-style: italic;">.T.</span>
390should be used.&nbsp;<span style="font-weight: bold;"></span></td>
391
392
393
394
395
396    </tr>
397
398
399
400
401 <tr>
402
403
404
405
406 <td style="vertical-align: top;">
407     
408     
409     
410     
411      <p><a name="fcl_factor"></a><b>cfl_factor</b></p>
412
413
414
415
416
417      </td>
418
419
420
421
422 <td style="vertical-align: top;">R<br>
423
424
425
426
427 </td>
428
429
430
431
432
433      <td style="vertical-align: top;"> 
434     
435     
436     
437     
438      <p><i>0.1,
4390.8 or 0.9</i> <br>
440
441
442
443
444 <i>(see right)</i></p>
445
446
447
448
449
450      </td>
451
452
453
454
455 <td style="vertical-align: top;"> 
456     
457     
458     
459     
460      <p lang="en-GB">Time step limiting factor.&nbsp; </p>
461
462
463
464
465
466     
467     
468     
469     
470      <p><span lang="en-GB">In the model, the <span lang="en-GB">maximum
471allowed </span>time step according to CFL and
472diffusion-criterion
473dt_max is reduced by </span><a href="chapter_4.1.html#dt"><span lang="en-GB">dt</span></a> <span lang="en-GB">=
474dt_max * <b>cfl_factor</b>
475in order to avoid stability problems which may arise in the vicinity of
476the maximum allowed timestep. The condition <i>0.0</i>
477&lt; <b>cfl_factor</b>
478&lt; <i>1.0 </i>applies.<br>
479
480
481
482
483 </span></p>
484
485
486
487
488
489     
490     
491     
492     
493      <p><span lang="en-GB">The default value of
494cfl_factor depends on
495the </span><a href="chapter_4.1.html#timestep_scheme"><span lang="en-GB">timestep_scheme</span></a><span lang="en-GB"> used:<br>
496
497
498
499
500 </span></p>
501
502
503
504
505 
506     
507     
508     
509     
510      <p><span lang="en-GB">For the third order Runge-Kutta scheme it
511is <b>cfl_factor</b> = </span><span style="font-style: italic;">0.9</span><span lang="en-GB">.<br>
512
513
514
515
516 </span></p>
517
518
519
520
521 
522     
523     
524     
525     
526      <p><span lang="en-GB">In case of the leapfrog scheme a quite
527restrictive value of <span style="font-weight: bold;">cfl_factor</span>
528= <span style="font-style: italic;">0.1 </span></span><span lang="en-GB">is used because for larger values the velocity
529divergence
530significantly effects the accuracy of the model results.</span><a href="chapter_4.1.html#scalar_advec"><span lang="en-GB"></span></a><span lang="en-GB"> Possibly larger values may
531be used with the leapfrog scheme but these are to be determined by
532appropriate test runs.<span style="font-family: times new roman;"><br>
533
534
535
536
537
538      </span></span></p>
539
540
541
542
543 <span lang="en-GB"><span style="font-family: times new roman;"></span><font face="Times New Roman">The default value for the Euler
544scheme is <span style="font-weight: bold;">cfl_factor</span>
545= <span style="font-style: italic;">0.8</span> .</font></span></td>
546
547
548
549
550
551    </tr>
552
553
554
555
556    <tr>
557
558
559
560
561 <td style="vertical-align: top;"> 
562     
563     
564     
565     
566      <p><a name="create_disturbances"></a><b>create_disturbances</b></p>
567
568
569
570
571
572      </td>
573
574
575
576
577 <td style="vertical-align: top;">L<br>
578
579
580
581
582 </td>
583
584
585
586
587
588      <td style="vertical-align: top;"><span style="font-style: italic;">.T.</span><br>
589
590
591
592
593 </td>
594
595
596
597
598
599      <td style="vertical-align: top;"> 
600     
601     
602     
603     
604      <p>Switch to
605impose random perturbations to the horizontal
606velocity field.&nbsp; </p>
607
608
609
610
611 
612     
613     
614     
615     
616      <p>With <b>create_disturbances</b>
617= <i>.T.,</i> random
618perturbations can be imposed to the horizontal velocity field at
619certain times e.g. in order to trigger off the onset of convection,
620etc..<br>
621
622
623
624
625 </p>
626
627
628
629
630 
631     
632     
633     
634     
635      <p>The temporal interval between
636these times can be steered with <a href="#dt_disturb">dt_disturb</a>,
637the vertical range of the perturbations with <a href="#disturbance_level_b">disturbance_level_b</a>
638and <a href="#disturbance_level_t">disturbance_level_t</a>,
639and the perturbation amplitude with <a href="#disturbance_amplitude">disturbance_amplitude</a>.
640In case of non-cyclic lateral boundary conditions (see <a href="chapter_4.1.html#bc_lr">bc_lr</a>
641and <a href="chapter_4.1.html#bc_ns">bc_ns</a>),
642the horizontal range of the perturbations is determined by <a href="chapter_4.1.html#inflow_disturbance_begin">inflow_disturbance_begin</a>
643and <a href="chapter_4.1.html#inflow_disturbance_end">inflow_disturbance_end</a>.
644A perturbation is added to each grid point with its individual value
645determined by multiplying the disturbance amplitude with a uniformly
646distributed random number.
647After this, the arrays of u and v are smoothed by applying a
648Shuman-filter twice and made divergence-free by applying the pressure
649solver.<br>
650
651
652
653
654 </p>
655
656
657
658
659 
660     
661     
662     
663     
664      <p>The random number generator to
665be used can be chosen with <a href="chapter_4.1.html#random_generator">random_generator</a>.<br>
666
667
668
669
670
671      </p>
672
673
674
675
676 
677     
678     
679     
680     
681      <p>As soon as the desired flow features have
682developed
683(e.g.&nbsp; convection has started), further imposing of
684perturbations
685is not necessary and can be omitted (this does not hold for non-cyclic
686lateral boundaries!). This can be steered by assigning
687an upper limit value for the perturbation energy (the perturbation
688energy is defined by the deviation of the velocity from the mean flow)
689using the parameter <a href="#disturbance_energy_limit">disturbance_energy_limit</a>.
690As soon as the perturbation energy has exceeded this energy limit, no
691more random perturbations are assigned<br>
692
693
694
695
696
697.&nbsp; <br>
698
699
700
701
702
703Timesteps where a random perturbation has been imposed are marked in
704the local file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>
705by the character "D" appended to the values of the maximum horizontal
706velocities. </p>
707
708
709
710
711 </td>
712
713
714
715
716 </tr>
717
718
719
720
721 <tr>
722
723
724
725
726 <td style="vertical-align: top;"> 
727     
728     
729     
730     
731      <p><a name="cross_normalized_x"></a><b>cross_normalized_x</b></p>
732
733
734
735
736
737      </td>
738
739
740
741
742 <td style="vertical-align: top;">C*10&nbsp;
743      <br>
744
745
746
747
748&nbsp;&nbsp; (100)</td>
749
750
751
752
753 <td style="vertical-align: top;"><i>100 * ' '</i></td>
754
755
756
757
758
759      <td style="vertical-align: top;"> 
760     
761     
762     
763     
764      <p>Type of
765normalization applied to the x-coordinate of vertical
766profiles to be plotted with <span style="font-weight: bold;">profil</span>.</p>
767
768
769
770
771
772     
773     
774     
775     
776      <p>This parameter only applies for &nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
777= <span style="font-style: italic;">'profil'</span>.</p>
778
779
780
781
782     
783     
784     
785     
786      <p>If
787vertical profiles are plotted with the plot software <span style="font-weight: bold;">profil</span> (data on
788local file <a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>,
789parameters on local file <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/PLOT1D_PAR">PLOT1D_PAR</a>)
790the x-values of the data points can be normalized with respect to
791certain quantities (e.g. the near-surface heat flux) in order to ensure
792a better comparability. This type of normalization then applies to all
793profiles of one coordinate system (panel). The normalization quantities
794are re-calculated for each output time of each individual profile. If
795temporally averaged profiles are output (see <a href="#averaging_interval_pr">averaging_interval_pr</a>),
796then the normalization quantities are also temporally averaged
797accordingly. If the value of a normalization quantity becomes zero,
798then normalization for the total respective coordinate system (panel)
799is switched off automatically (also for the y-axis).<br>
800
801
802
803
804 </p>
805
806
807
808
809
810     
811     
812     
813     
814      <p>By default, the normalization quantities are calculated as the
815horizontal mean of the total model domain and and these values are also
816used for the normalization of profiles from subdomains (see <a href="chapter_4.1.html#statistic_regions">statistic_regions</a>).
817Instead of this, they can be calculated from the data of a certain
818subdomain by using the parameter <a href="#normalizing_region">normalizing_region</a>
819(however, they are used again for all subdomains and even for the total
820domain).&nbsp; </p>
821
822
823
824
825 
826     
827     
828     
829     
830      <p>The user can choose between
831the following normalization
832quantities: <br>
833
834
835
836
837 </p>
838
839
840
841
842 
843     
844     
845     
846     
847      <table style="text-align: left; width: 100%;" cellpadding="2" cellspacing="2">
848
849
850
851
852 <tbody>
853
854
855
856
857 <tr>
858
859
860
861
862 <td style="vertical-align: top;"><i>'wpt0'</i></td>
863
864
865
866
867
868            <td style="vertical-align: top;">Normalization with
869respect
870to the total surface sensible heat
871flux (k=0 ).</td>
872
873
874
875
876 </tr>
877
878
879
880
881 <tr>
882
883
884
885
886 <td style="vertical-align: middle;"><i>'ws2'</i></td>
887
888
889
890
891
892            <td style="vertical-align: top;">Normalization with
893respect
894to w<sub>*</sub> <sup>2</sup>
895(square of the characteristic vertical wind speed of the CBL)</td>
896
897
898
899
900
901          </tr>
902
903
904
905
906 <tr>
907
908
909
910
911 <td style="vertical-align: top;"><i>'tsw2'</i></td>
912
913
914
915
916
917            <td style="vertical-align: top;">Normalization with
918respect
919to the square of the characteristic
920temperature of the CBL theta<sub>*</sub> (this is defined
921as ratio of
922the surface heat flux and w<sub>*</sub>).</td>
923
924
925
926
927 </tr>
928
929
930
931
932
933          <tr>
934
935
936
937
938 <td style="vertical-align: middle;"><i>'ws3'</i></td>
939
940
941
942
943
944            <td style="vertical-align: top;">Normalization with
945respect
946to w<sub>*</sub> <sup>3</sup>.</td>
947
948
949
950
951 </tr>
952
953
954
955
956
957          <tr>
958
959
960
961
962 <td style="vertical-align: middle;"><i>'ws2tsw'</i></td>
963
964
965
966
967
968            <td style="vertical-align: top;">Normalization with
969respect
970to w<sub>*</sub><sup>2</sup>theta<sub>*</sub>
971(for definition of theta<sub>*</sub> see <span style="font-style: italic;">'tsw2'</span>).</td>
972
973
974
975
976
977          </tr>
978
979
980
981
982 <tr>
983
984
985
986
987 <td style="vertical-align: middle;"><i>'wstsw2'</i></td>
988
989
990
991
992
993            <td style="vertical-align: top;">Normalization with
994respect
995to w<sub>*</sub><sup>2 </sup>theta<sub>*</sub>
996(for definition of theta<sub>*</sub> see <span style="font-style: italic;">'tsw2'</span>).</td>
997
998
999
1000
1001
1002          </tr>
1003
1004
1005
1006
1007 
1008       
1009       
1010       
1011       
1012        </tbody> 
1013     
1014     
1015     
1016     
1017      </table>
1018
1019
1020
1021
1022 
1023     
1024     
1025     
1026     
1027      <p>For each
1028coordinate system (panel) to be drawn (see <a href="#cross_profiles">cross_profiles</a>)
1029an individual normalization quantity can be assigned. For example: if <span style="font-weight: bold;">cross_normalized_x</span> =
1030      <span style="font-style: italic;">'ws2'</span><i>,'ws3'</i>,
1031then the
1032x-values in the 1st coordinate system are normalized with respect to w<sub>*</sub><sup>2</sup>
1033and in the 2nd system with respect to w<sub>*</sub><sup>3</sup>.
1034Data
1035of the further coordinate systems (if any are to be drawn) are not
1036normalized.&nbsp; </p>
1037
1038
1039
1040
1041 
1042     
1043     
1044     
1045     
1046      <p>Using a normalization
1047leaves all vertical profile data on
1048local file <a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>
1049unaffected, it only affects the visualization. Within <span style="font-weight: bold;">profil</span>, the
1050normalization is steered
1051by parameter <a href="http://www.muk.uni-hannover.de/institut/software/profil_beschreibung.html#NORMX">normx</a>
1052which may be changed subsequently by the user in the parameter file
1053(local file <a href="chapter_3.4.html#PLOT1D_PAR">PLOT1D_PAR</a>).<br>
1054
1055
1056
1057
1058
1059&nbsp;<br>
1060
1061
1062
1063
1064
1065The assigned normalization quantity is noted in the axes labels of the
1066respective coordinate systems (see <a href="#cross_xtext">cross_xtext</a>).</p>
1067
1068
1069
1070
1071
1072      </td>
1073
1074
1075
1076
1077 </tr>
1078
1079
1080
1081
1082 <tr>
1083
1084
1085
1086
1087 <td style="vertical-align: top;"> 
1088     
1089     
1090     
1091     
1092      <p><a name="cross_normalized_y"></a><b>cross_normalized_y</b></p>
1093
1094
1095
1096
1097
1098      </td>
1099
1100
1101
1102
1103 <td style="vertical-align: top;">C*10&nbsp;
1104      <br>
1105
1106
1107
1108
1109&nbsp;&nbsp; (100)</td>
1110
1111
1112
1113
1114 <td style="vertical-align: top;"><i>100 * ' '</i></td>
1115
1116
1117
1118
1119
1120      <td style="vertical-align: top;"> 
1121     
1122     
1123     
1124     
1125      <p>Type of
1126normalization applied to the y-coordinate of vertical
1127profiles to be plotted with <span style="font-weight: bold;">profil</span>.&nbsp;</p>
1128
1129
1130
1131
1132
1133     
1134     
1135     
1136     
1137      <p>This parameter only applies for &nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
1138= <span style="font-style: italic;">'profil'</span>.</p>
1139
1140
1141
1142
1143     
1144     
1145     
1146     
1147      <p>If
1148vertical profiles are plotted with the plot software <span style="font-weight: bold;">profil</span> (data on
1149local file <a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>,
1150parameter on local file <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/PLOT1D_PAR">PLOT1D_PAR</a>)
1151the y-values of the data points can be normalized with respect to
1152certain quantities (at present only the normalization with respect to
1153the boundary layer height is possible) in order to ensure a better
1154comparability. </p>
1155
1156
1157
1158
1159 
1160     
1161     
1162     
1163     
1164      <p>The user can choose between the
1165following normalization
1166quantities: <br>
1167
1168
1169
1170
1171 </p>
1172
1173
1174
1175
1176 
1177     
1178     
1179     
1180     
1181      <table style="text-align: left; width: 100%;" cellpadding="2" cellspacing="2">
1182
1183
1184
1185
1186 <tbody>
1187
1188
1189
1190
1191 <tr>
1192
1193
1194
1195
1196 <td style="vertical-align: top;"><i>'z_i'</i></td>
1197
1198
1199
1200
1201
1202            <td style="vertical-align: top;">Normalization with
1203respect
1204to the boundary layer height
1205(determined from the height where the heat flux achieves its minimum
1206value).</td>
1207
1208
1209
1210
1211 </tr>
1212
1213
1214
1215
1216 
1217       
1218       
1219       
1220       
1221        </tbody> 
1222     
1223     
1224     
1225     
1226      </table>
1227
1228
1229
1230
1231 
1232     
1233     
1234     
1235     
1236      <p>For
1237further explanations see <a href="#cross_normalized_x">cross_normalized_x.</a></p>
1238
1239
1240
1241
1242
1243      </td>
1244
1245
1246
1247
1248 </tr>
1249
1250
1251
1252
1253 <tr>
1254
1255
1256
1257
1258 <td style="vertical-align: top;"> 
1259     
1260     
1261     
1262     
1263      <p><a name="cross_profiles"></a><b>cross_profiles</b></p>
1264
1265
1266
1267
1268
1269      </td>
1270
1271
1272
1273
1274 <td style="vertical-align: top;">C*100&nbsp;
1275      <br>
1276
1277
1278
1279
1280&nbsp;&nbsp; (100)</td>
1281
1282
1283
1284
1285 <td style="vertical-align: top;">see right<br>
1286
1287
1288
1289
1290 </td>
1291
1292
1293
1294
1295
1296      <td style="vertical-align: top;"> 
1297     
1298     
1299     
1300     
1301      <p>Determines
1302which vertical profiles are to be presented in
1303which coordinate system if the plot software <span style="font-weight: bold;">profil</span> is used.
1304&nbsp; </p>
1305
1306
1307
1308
1309 
1310     
1311     
1312     
1313     
1314      <p>This parameter only applies for
1315&nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
1316= <span style="font-style: italic;">'profil'</span>.</p>
1317
1318
1319
1320
1321     
1322     
1323     
1324     
1325      <p>The
1326default assignment is:&nbsp; </p>
1327
1328
1329
1330
1331 
1332     
1333     
1334     
1335     
1336      <p><b>cross_profiles</b>
1337=&nbsp; </p>
1338
1339
1340
1341
1342 
1343     
1344     
1345     
1346     
1347      <ul>
1348
1349
1350
1351
1352 
1353       
1354       
1355       
1356       
1357        <p><span style="font-family: monospace; font-style: italic;">'
1358u v ',</span><br>
1359
1360
1361
1362
1363 <span style="font-family: monospace; font-style: italic;">' pt
1364',&nbsp; </span><br style="font-family: monospace; font-style: italic;">
1365
1366
1367
1368
1369 <span style="font-family: monospace; font-style: italic;">'
1370w"pt" w*pt* w*pt*BC wpt wptBC ',&nbsp; </span><br style="font-family: monospace; font-style: italic;">
1371
1372
1373
1374
1375 <span style="font-family: monospace; font-style: italic;">'
1376w"u" w*u* wu w"v"w*v* wv ',&nbsp; </span><br style="font-family: monospace; font-style: italic;">
1377
1378
1379
1380
1381 <span style="font-family: monospace; font-style: italic;">' km
1382kh ',</span><br style="font-family: monospace; font-style: italic;">
1383
1384
1385
1386
1387 <span style="font-family: monospace; font-style: italic;">' l '
1388,</span><br>
1389
1390
1391
1392
1393
139414 * <span style="font-family: monospace; font-style: italic;">'
1395'</span></p>
1396
1397
1398
1399
1400 
1401     
1402     
1403     
1404     
1405      </ul>
1406
1407
1408
1409
1410 
1411     
1412     
1413     
1414     
1415      <p>If plot output of
1416vertical profiles is produced (see <a href="#data_output_pr">data_output_pr</a>),
1417the appropriate data are written to the local file <a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>.
1418Simultaneously, the model produces a parameter file (local name <a href="chapter_3.4.html#PLOT1D_PAR">PLOT1D_PAR</a>)
1419which describes the layout for a plot to be generated with the plot
1420program <span style="font-weight: bold;">profil</span>.
1421The parameter <b>cross_profiles</b>
1422determines how many coordinate systems (panels) the plot contains and
1423which profiles are supposed to be drawn into which panel. <b>cross_profiles</b>
1424expects a character string (up to 100 characters long) for each
1425coordinate system, which consists of the names of the profiles to be
1426drawn into this system (all available profiles and their respective
1427names are described at parameter <a href="#data_output_pr">data_output_pr</a>).
1428The single names have to be separated by one blank (' ') and a blank
1429must be spent also at the beginning and at the end of the
1430string.&nbsp; </p>
1431
1432
1433
1434
1435 
1436     
1437     
1438     
1439     
1440      <p>Example:&nbsp; </p>
1441
1442
1443
1444
1445 
1446     
1447     
1448     
1449     
1450      <ul>
1451
1452
1453
1454
1455
1456       
1457       
1458       
1459       
1460        <p><b>cross_profiles</b> = <span style="font-family: monospace; font-style: italic;">' u v ',
1461' pt '</span></p>
1462
1463
1464
1465
1466 
1467     
1468     
1469     
1470     
1471      </ul>
1472
1473
1474
1475
1476 
1477     
1478     
1479     
1480     
1481      <p>In this case the
1482plot consists of two coordinate systems
1483(panels) with the first panel containing the profiles of the horizontal
1484velocity components (<span style="font-style: italic;">'u'</span>
1485and <span style="font-style: italic;">'v'</span>)
1486of all output times (see <a href="#dt_dopr">dt_dopr</a>)
1487and the second one containing the profiles of the potential temperature
1488(<span style="font-style: italic;">'pt'</span>).<br>
1489
1490
1491
1492
1493
1494      </p>
1495
1496
1497
1498
1499 
1500     
1501     
1502     
1503     
1504      <p>Whether the coordinate systems are actually drawn,
1505depends on
1506whether data of the appropriate profiles were output during the run
1507(profiles to be output have to be selected with the parameter <a href="#data_output_pr">data_output_pr</a>).
1508For example if <b>data_output_pr</b> = <span style="font-style: italic;">'u'</span>, <span style="font-style: italic;">'v'</span> was assigned,
1509then
1510the plot only consists of one panel, since no profiles of the potential
1511temperature were output. On the other hand, if profiles were assigned
1512to <b>data_output_pr </b>whose names do not appear in <b>cross_profiles</b>,
1513then the respective profile data are output (<a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>)
1514but they are not drawn in the plot. <br>
1515
1516
1517
1518
1519 </p>
1520
1521
1522
1523
1524
1525The arrangement of the panels in the plot can be controlled
1526with the parameters <a href="#profile_columns">profile_columns</a>
1527and <a href="#profile_rows">profile_rows</a>.
1528Up to 100 panels systems are allowed in a plot (however, they may be
1529distributed on several pages).</td>
1530
1531
1532
1533
1534 </tr>
1535
1536
1537
1538
1539 <tr>
1540
1541
1542
1543
1544 <td style="vertical-align: top;"> 
1545     
1546     
1547     
1548     
1549      <p><a name="cross_xtext"></a><b>cross_xtext</b></p>
1550
1551
1552
1553
1554
1555      </td>
1556
1557
1558
1559
1560 <td style="vertical-align: top;">C*40&nbsp;
1561      <br>
1562
1563
1564
1565
1566&nbsp;&nbsp; (100)</td>
1567
1568
1569
1570
1571 <td style="vertical-align: top;">see right<br>
1572
1573
1574
1575
1576 </td>
1577
1578
1579
1580
1581
1582      <td style="vertical-align: top;"> 
1583     
1584     
1585     
1586     
1587      <p>x-axis labels
1588of vertical profile coordinate systems to be
1589plotted with <span style="font-weight: bold;">profil</span>.&nbsp;
1590      </p>
1591
1592
1593
1594
1595 
1596     
1597     
1598     
1599     
1600      <p>This parameter only applies for &nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
1601= <span style="font-style: italic;">'profil'</span>.</p>
1602
1603
1604
1605
1606     
1607     
1608     
1609     
1610      <p>The
1611default assignment is:&nbsp; </p>
1612
1613
1614
1615
1616 
1617     
1618     
1619     
1620     
1621      <p><b>cross_xtext</b>
1622=&nbsp; </p>
1623
1624
1625
1626
1627 
1628     
1629     
1630     
1631     
1632      <ul>
1633
1634
1635
1636
1637 
1638       
1639       
1640       
1641       
1642        <p><span style="font-style: italic;">'wind speed in
1643ms&gt;-&gt;1',&nbsp; </span><br style="font-style: italic;">
1644
1645
1646
1647
1648 <span style="font-style: italic;">'pot. temperature in
1649K',&nbsp; </span><br style="font-style: italic;">
1650
1651
1652
1653
1654
1655        <span style="font-style: italic;">'heat flux in K
1656ms&gt;-&gt;1',&nbsp; </span><br style="font-style: italic;">
1657
1658
1659
1660
1661 <span style="font-style: italic;">'momentum flux in
1662m&gt;2s&gt;2',&nbsp; </span><br style="font-style: italic;">
1663
1664
1665
1666
1667 <span style="font-style: italic;">'eddy diffusivity in
1668m&gt;2s&gt;-&gt;1',&nbsp; </span><br style="font-style: italic;">
1669
1670
1671
1672
1673 <span style="font-style: italic;">'mixing length in m',</span>&nbsp;
1674        <br>
1675
1676
1677
1678
167914 * <span style="font-style: italic;">' '</span></p>
1680
1681
1682
1683
1684
1685     
1686     
1687     
1688     
1689      </ul>
1690
1691
1692
1693
1694 
1695     
1696     
1697     
1698     
1699      <p>This parameter can be used to assign x-axis
1700labels to vertical
1701profiles to be plotted with the plot software <span style="font-weight: bold;">profil </span>(for output
1702of vertical
1703profile data see <a href="#data_output_pr">data_output_pr</a>).<br>
1704
1705
1706
1707
1708
1709The labels are assigned to those coordinate systems (panels) defined by
1710      <a href="#cross_profiles">cross_profiles</a>
1711according to their respective order (compare the default values of <b>cross_xtext</b>
1712and <b>cross_profiles</b>). </p>
1713
1714
1715
1716
1717 
1718     
1719     
1720     
1721     
1722      <p>Umlauts
1723are possible (write &#8220; in front of, similar to TeX), as
1724well as super- and subscripts (use "&gt;" or "&lt;" in front of
1725each
1726character), special characters etc. (see UNIRAS manuals) when using the
1727plot software <a href="http://www.muk.uni-hannover.de/institut/software/profil_beschreibung.html#chapter3.2.6">profil</a>.</p>
1728
1729
1730
1731
1732
1733      </td>
1734
1735
1736
1737
1738 </tr>
1739
1740
1741
1742
1743 <tr>
1744
1745
1746
1747
1748 <td style="vertical-align: top;"> 
1749     
1750     
1751     
1752     
1753      <p><a name="cycle_mg"></a><b>cycle_mg</b></p>
1754
1755
1756
1757
1758
1759      </td>
1760
1761
1762
1763
1764 <td style="vertical-align: top;">C*1</td>
1765
1766
1767
1768
1769
1770      <td style="vertical-align: top;"><i>'w'</i></td>
1771
1772
1773
1774
1775
1776      <td style="vertical-align: top;"> 
1777     
1778     
1779     
1780     
1781      <p>Type of cycle
1782to be used with the multi-grid method.&nbsp; </p>
1783
1784
1785
1786
1787 
1788     
1789     
1790     
1791     
1792      <p>This
1793parameter determines which type of cycle is applied in
1794the multi-grid method used for solving the Poisson equation for
1795perturbation pressure (see <a href="#psolver">psolver</a>).
1796It defines in which way it is switched between the fine and coarse
1797grids. So-called v- and w-cycles are realized (i.e. <b>cycle_mg</b>
1798may be assigned the values <i>'v'</i> or <i>'w'</i>).
1799The
1800computational cost of w-cycles is much higher than that of v-cycles,
1801however, w-cycles give a much better convergence. </p>
1802
1803
1804
1805
1806 </td>
1807
1808
1809
1810
1811
1812    </tr>
1813
1814
1815
1816
1817 <tr>
1818
1819
1820
1821
1822 <td style="vertical-align: top;">
1823     
1824     
1825     
1826     
1827      <p><a name="data_output"></a><b>data_output</b></p>
1828
1829
1830
1831
1832
1833      </td>
1834
1835
1836
1837
1838 <td style="vertical-align: top;">C * 10 (100)<br>
1839
1840
1841
1842
1843
1844      </td>
1845
1846
1847
1848
1849 <td style="vertical-align: top;"><span style="font-style: italic;">100 * ' '</span><br>
1850
1851
1852
1853
1854
1855      </td>
1856
1857
1858
1859
1860 <td style="vertical-align: top;">Quantities
1861for which 2d cross section and/or 3d volume data are to be output.<br>
1862
1863
1864
1865
1866      <br>
1867
1868
1869
1870
1871PALM
1872allows the output of instantaneous data as well as of temporally
1873averaged data which is steered by the strings assigned to this
1874parameter (see below).<br>
1875
1876
1877
1878
1879      <br>
1880
1881
1882
1883
1884By default, cross section
1885data are output (depending on the selected cross sections(s), see
1886below)&nbsp; to local files <a href="chapter_3.4.html#DATA_2D_XY_NETCDF">DATA_2D_XY_NETCDF</a>,
1887      <a href="chapter_3.4.html#DATA_2D_XZ_NETCDF">DATA_2D_XZ_NETCDF</a>
1888and/or <a href="chapter_3.4.html#DATA_2D_YZ_NETCDF">DATA_2D_YZ_NETCDF</a>.
1889Volume data are output to file <a href="chapter_3.4.html#DATA_3D_NETCDF">DATA_3D_NETCDF</a>.
1890If the user has switched on the output of temporally averaged data,
1891these are written seperately to local files <a href="chapter_3.4.html#DATA_2D_XY_AV_NETCDF">DATA_2D_XY_AV_NETCDF</a>,
1892      <a href="chapter_3.4.html#DATA_2D_XZ_AV_NETCDF">DATA_2D_XZ_AV_NETCDF</a>,
1893      <a href="chapter_4.3.html#DATA_2D_YZ_AV_NETCDF">DATA_2D_YZ_AV_NETCDF</a>,
1894and <a href="chapter_3.4.html#DATA_3D_AV_NETCDF">DATA_3D_AV_NETCDF</a>,
1895respectively.<br>
1896
1897
1898
1899
1900      <br>
1901
1902
1903
1904
1905The
1906filenames already suggest that all files have NetCDF format.
1907Informations about the file content (kind of quantities, array
1908dimensions and grid coordinates) are part of the self describing NetCDF
1909format and can be extracted from the NetCDF files using the command
1910"ncdump -c &lt;filename&gt;". See chapter <a href="chapter_4.5.1.html">4.5.1</a> about processing
1911the PALM NetCDF data.<br>
1912
1913
1914
1915
1916      <br>
1917
1918
1919
1920
1921The following quantities are
1922available for output by default (quantity names ending with '*' are only allowed for the output of horizontal cross sections):<br>
1923
1924
1925
1926
1927      <br>
1928
1929
1930
1931
1932     
1933     
1934     
1935     
1936      <table style="text-align: left; width: 576px; height: 481px;" border="1" cellpadding="2" cellspacing="2">
1937
1938
1939
1940
1941        <tbody>
1942
1943
1944
1945
1946          <tr>
1947
1948
1949
1950
1951            <td style="width: 106px;"><span style="font-weight: bold;">quantity
1952name</span></td>
1953
1954
1955
1956
1957            <td style="width: 196px;"><span style="font-weight: bold;">meaning</span></td>
1958
1959
1960
1961
1962            <td><span style="font-weight: bold;">unit</span></td>
1963
1964
1965
1966
1967            <td><span style="font-weight: bold;">remarks</span></td>
1968
1969
1970
1971
1972          </tr>
1973
1974
1975
1976
1977          <tr>
1978
1979
1980
1981
1982            <td style="width: 106px;"><span style="font-style: italic;">e</span></td>
1983
1984
1985
1986
1987            <td style="width: 196px;">SGS TKE</td>
1988
1989
1990
1991
1992            <td>m<sup>2</sup>/s<sup>2</sup></td>
1993
1994
1995
1996
1997            <td><br>
1998</td>
1999
2000
2001
2002
2003          </tr>
2004
2005
2006
2007
2008          <tr>
2009
2010
2011
2012
2013            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">lwp*</span></td>
2014
2015
2016
2017
2018            <td style="width: 196px; vertical-align: top;">liquid water path</td>
2019
2020
2021
2022
2023            <td style="vertical-align: top;">m</td>
2024
2025
2026
2027
2028            <td style="vertical-align: top;">only horizontal cross section
2029is allowed,&nbsp;requires <a href="chapter_4.1.html#cloud_physics">cloud_physics</a>
2030= <span style="font-style: italic;">.TRUE.</span></td>
2031
2032
2033
2034
2035          </tr>
2036
2037
2038
2039
2040          <tr>
2041
2042
2043
2044
2045            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">p</span></td>
2046
2047
2048
2049
2050            <td style="width: 196px; vertical-align: top;">perturpation
2051pressure</td>
2052
2053
2054
2055
2056            <td style="vertical-align: top;">N/m<sup>2</sup>,
2057Pa</td>
2058
2059
2060
2061
2062            <td style="vertical-align: top;"><br>
2063</td>
2064
2065
2066
2067
2068          </tr>
2069
2070
2071
2072
2073          <tr>
2074
2075
2076
2077
2078            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">pc</span></td>
2079
2080
2081
2082
2083            <td style="width: 196px; vertical-align: top;">particle/droplet
2084concentration</td>
2085
2086
2087
2088
2089            <td style="vertical-align: top;">#/gridbox</td>
2090
2091
2092
2093
2094            <td style="vertical-align: top;">requires that particle
2095advection is switched on by <span style="font-weight: bold;">mrun</span>-option
2096"-p particles"</td>
2097
2098
2099
2100
2101          </tr>
2102
2103
2104
2105
2106          <tr>
2107
2108
2109
2110
2111            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">pr</span></td>
2112
2113
2114
2115
2116            <td style="width: 196px; vertical-align: top;">mean
2117particle/droplet radius </td>
2118
2119
2120
2121
2122            <td style="vertical-align: top;">m</td>
2123
2124
2125
2126
2127            <td style="vertical-align: top;">requires that particle
2128advection is switched on by <span style="font-weight: bold;">mrun</span>-option
2129"-p particles"</td>
2130
2131
2132
2133
2134          </tr>
2135
2136
2137
2138
2139          <tr>
2140
2141
2142
2143
2144            <td style="vertical-align: top;"><span style="font-style: italic;">pra*</span></td>
2145
2146
2147
2148
2149            <td style="vertical-align: top;">precipitation amount</td>
2150
2151
2152
2153
2154            <td style="vertical-align: top;">mm</td>
2155
2156
2157
2158
2159            <td style="vertical-align: top;">only horizontal cross section
2160is allowed,&nbsp;requires&nbsp;<a href="chapter_4.1.html#precipitation">precipitation</a>
2161= <span style="font-style: italic;">.TRUE., </span>time interval on which amount refers to is defined by <a href="#precipitation_amount_interval">precipitation_amount_interval</a></td>
2162
2163
2164
2165
2166          </tr>
2167
2168
2169
2170
2171          <tr>
2172
2173
2174
2175
2176            <td style="vertical-align: top;"><span style="font-style: italic;">prr*</span></td>
2177
2178
2179
2180
2181            <td style="vertical-align: top;">precipitation rate</td>
2182
2183
2184
2185
2186            <td style="vertical-align: top;">mm/s</td>
2187
2188
2189
2190
2191            <td style="vertical-align: top;">only horizontal cross section
2192is allowed,&nbsp;requires&nbsp;<a href="chapter_4.1.html#precipitation">precipitation</a>
2193= <span style="font-style: italic;">.TRUE.</span></td>
2194
2195
2196
2197
2198          </tr>
2199
2200
2201
2202
2203          <tr>
2204
2205
2206
2207
2208            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">pt</span></td>
2209
2210
2211
2212
2213            <td style="width: 196px; vertical-align: top;">potential
2214temperature<br>
2215
2216
2217
2218
2219            </td>
2220
2221
2222
2223
2224            <td style="vertical-align: top;">K</td>
2225
2226
2227
2228
2229            <td style="vertical-align: top;"><br>
2230</td>
2231
2232
2233
2234
2235          </tr>
2236
2237
2238
2239
2240          <tr>
2241
2242
2243
2244
2245            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">q</span></td>
2246
2247
2248
2249
2250            <td style="width: 196px; vertical-align: top;">specific humidity
2251(or total water content, if cloud physics is switched on)</td>
2252
2253
2254
2255
2256            <td style="vertical-align: top;">kg/kg</td>
2257
2258
2259
2260
2261            <td style="vertical-align: top;">requires&nbsp;<a href="chapter_4.1.html#humidity">humidity</a> = <span style="font-style: italic;">.TRUE.</span></td>
2262
2263
2264
2265
2266          </tr>
2267
2268
2269
2270
2271          <tr>
2272
2273
2274
2275
2276            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">ql</span></td>
2277
2278
2279
2280
2281            <td style="width: 196px; vertical-align: top;">liquid water
2282content</td>
2283
2284
2285
2286
2287            <td style="vertical-align: top;">kg/kg</td>
2288
2289
2290
2291
2292            <td style="vertical-align: top;">requires <a href="chapter_4.1.html#cloud_physics">cloud_physics</a>
2293= <span style="font-style: italic;">.TRUE.</span>
2294or <a href="chapter_4.1.html#cloud_droplets">cloud_droplets</a>
2295= <span style="font-style: italic;">.TRUE.</span></td>
2296
2297
2298
2299
2300          </tr>
2301
2302
2303
2304
2305          <tr>
2306
2307
2308
2309
2310            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">ql_c</span></td>
2311
2312
2313
2314
2315            <td style="width: 196px; vertical-align: top;">change in liquid
2316water content due to condensation/evaporation during last timestep</td>
2317
2318
2319
2320
2321            <td style="vertical-align: top;">kg/kg</td>
2322
2323
2324
2325
2326            <td style="vertical-align: top;">requires <a href="chapter_4.1.html#cloud_droplets">cloud_droplets</a>
2327= <span style="font-style: italic;">.TRUE.</span></td>
2328
2329
2330
2331
2332          </tr>
2333
2334
2335
2336
2337          <tr>
2338
2339
2340
2341
2342            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">ql_v</span></td>
2343
2344
2345
2346
2347            <td style="width: 196px; vertical-align: top;">volume of liquid
2348water</td>
2349
2350
2351
2352
2353            <td style="vertical-align: top;">m<sup>3</sup>/gridbox</td>
2354
2355
2356
2357
2358            <td style="vertical-align: top;">requires <a href="chapter_4.1.html#cloud_droplets">cloud_droplets</a>
2359= <span style="font-style: italic;">.TRUE.</span></td>
2360
2361
2362
2363
2364          </tr>
2365
2366
2367
2368
2369          <tr>
2370
2371
2372
2373
2374            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">ql_vp</span></td>
2375
2376
2377
2378
2379            <td style="width: 196px; vertical-align: top;">weighting factor</td>
2380
2381
2382
2383
2384            <td style="vertical-align: top;"><br>
2385</td>
2386
2387
2388
2389
2390            <td style="vertical-align: top;">requires <a href="chapter_4.1.html#cloud_droplets">cloud_droplets</a>
2391= <span style="font-style: italic;">.TRUE.</span></td>
2392
2393
2394
2395
2396          </tr>
2397
2398
2399
2400
2401          <tr>
2402
2403            <td>qsws*</td>
2404
2405            <td>latent&nbsp;surface heatflux</td>
2406
2407            <td>kg/kg * m/s</td>
2408
2409            <td>only horizontal cross section is allowed, requires humidity = .TRUE. </td>
2410
2411          </tr>
2412
2413          <tr>
2414
2415
2416
2417
2418            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">qv</span></td>
2419
2420
2421
2422
2423            <td style="width: 196px; vertical-align: top;">water vapor
2424content (specific humidity)</td>
2425
2426
2427
2428
2429            <td style="vertical-align: top;">kg/kg</td>
2430
2431
2432
2433
2434            <td style="vertical-align: top;">requires <a href="chapter_4.1.html#cloud_physics">cloud_physics</a>
2435= <span style="font-style: italic;">.TRUE.</span></td>
2436
2437
2438
2439
2440          </tr>
2441
2442
2443
2444
2445          <tr>
2446
2447
2448
2449
2450            <td align="undefined" valign="undefined"><span style="font-style: italic;">rho</span></td>
2451
2452
2453
2454
2455            <td align="undefined" valign="undefined">potential density</td>
2456
2457
2458
2459
2460            <td align="undefined" valign="undefined">kg/m<sup>3</sup></td>
2461
2462
2463
2464
2465            <td align="undefined" valign="undefined">requires&nbsp;<a href="chapter_4.1.html#ocean">ocean</a>
2466= <span style="font-style: italic;">.TRUE.</span></td>
2467
2468
2469
2470
2471          </tr>
2472
2473
2474
2475
2476          <tr>
2477
2478
2479
2480
2481            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">s</span></td>
2482
2483
2484
2485
2486            <td style="width: 196px; vertical-align: top;">concentration of
2487the scalar</td>
2488
2489
2490
2491
2492            <td style="vertical-align: top;">1/m<sup>3</sup></td>
2493
2494
2495
2496
2497            <td style="vertical-align: top;">requires&nbsp;<a href="chapter_4.1.html#passive_scalar">passive_scalar</a>
2498= <span style="font-style: italic;">.TRUE.</span></td>
2499
2500
2501
2502
2503          </tr>
2504
2505
2506
2507
2508          <tr>
2509
2510
2511
2512
2513            <td align="undefined" valign="undefined"><span style="font-style: italic;">sa</span></td>
2514
2515
2516
2517
2518            <td align="undefined" valign="undefined">salinity</td>
2519
2520
2521
2522
2523            <td align="undefined" valign="undefined">psu</td>
2524
2525
2526
2527
2528            <td align="undefined" valign="undefined">requires&nbsp;<a href="chapter_4.1.html#ocean">ocean</a>
2529= <span style="font-style: italic;">.TRUE.</span></td>
2530
2531
2532
2533
2534          </tr>
2535
2536
2537
2538
2539          <tr>
2540
2541            <td>shf*</td>
2542
2543            <td>sensible surface heatflux</td>
2544
2545            <td>K m/s</td>
2546
2547            <td>only horizontal cross section is allowed</td>
2548
2549          </tr>
2550
2551          <tr>
2552
2553
2554
2555
2556            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">t*</span></td>
2557
2558
2559
2560
2561            <td style="width: 196px; vertical-align: top;">(near surface)
2562characteristic temperature</td>
2563
2564
2565
2566
2567            <td style="vertical-align: top;">K</td>
2568
2569
2570
2571
2572            <td style="vertical-align: top;">only horizontal cross section
2573is allowed</td>
2574
2575
2576
2577
2578          </tr>
2579
2580
2581
2582
2583          <tr>
2584
2585
2586
2587
2588            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">u</span></td>
2589
2590
2591
2592
2593            <td style="width: 196px; vertical-align: top;">u-component of
2594the velocity</td>
2595
2596
2597
2598
2599            <td style="vertical-align: top;">m/s</td>
2600
2601
2602
2603
2604            <td style="vertical-align: top;"><br>
2605</td>
2606
2607
2608
2609
2610          </tr>
2611
2612
2613
2614
2615          <tr>
2616
2617
2618
2619
2620            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">u*</span></td>
2621
2622
2623
2624
2625            <td style="width: 196px; vertical-align: top;">(near surface)
2626friction velocity</td>
2627
2628
2629
2630
2631            <td style="vertical-align: top;">m/s</td>
2632
2633
2634
2635
2636            <td style="vertical-align: top;">only horizontal cross section
2637is allowed</td>
2638
2639
2640
2641
2642          </tr>
2643
2644
2645
2646
2647          <tr>
2648
2649
2650
2651
2652            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">v</span></td>
2653
2654
2655
2656
2657            <td style="width: 196px; vertical-align: top;">v-component of
2658the velocity</td>
2659
2660
2661
2662
2663            <td style="vertical-align: top;">m/s</td>
2664
2665
2666
2667
2668            <td style="vertical-align: top;"><br>
2669</td>
2670
2671
2672
2673
2674          </tr>
2675
2676
2677
2678
2679          <tr>
2680
2681
2682
2683
2684            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">vpt</span></td>
2685
2686
2687
2688
2689            <td style="width: 196px; vertical-align: top;">virtual potential
2690temperature</td>
2691
2692
2693
2694
2695            <td style="vertical-align: top;">K</td>
2696
2697
2698
2699
2700            <td style="vertical-align: top;">requires&nbsp;<a href="chapter_4.1.html#humidity">humidity</a> = <span style="font-style: italic;">.TRUE.</span></td>
2701
2702
2703
2704
2705          </tr>
2706
2707
2708
2709
2710          <tr>
2711
2712
2713
2714
2715            <td style="width: 106px; vertical-align: top;"><span style="font-style: italic;">w</span></td>
2716
2717
2718
2719
2720            <td style="width: 196px; vertical-align: top;">w-component of
2721the velocity</td>
2722
2723
2724
2725
2726            <td style="vertical-align: top;">m/s</td>
2727
2728
2729
2730
2731            <td style="vertical-align: top;"><br>
2732</td>
2733
2734
2735
2736
2737          </tr>
2738
2739
2740
2741
2742          <tr>
2743
2744
2745
2746
2747            <td style="vertical-align: top;"><span style="font-style: italic;">z0*</span></td>
2748
2749
2750
2751
2752            <td style="vertical-align: top;">roughness length</td>
2753
2754
2755
2756
2757            <td style="vertical-align: top;">m</td>
2758
2759
2760
2761
2762            <td><br>
2763</td>
2764
2765
2766
2767
2768          </tr>
2769
2770
2771
2772
2773       
2774       
2775       
2776       
2777        </tbody>
2778     
2779     
2780     
2781     
2782      </table>
2783
2784
2785
2786
2787      <br>
2788
2789
2790
2791
2792Multiple
2793quantities can be assigned, e.g. <span style="font-weight: bold;">data_output</span>
2794= <span style="font-style: italic;">'e'</span>, <span style="font-style: italic;">'u'</span>, <span style="font-style: italic;">'w'</span>.<br>
2795
2796
2797
2798
2799      <br>
2800
2801
2802
2803
2804By
2805assigning the pure strings from the above table, 3d volume data is
2806output. Cross section data can be output by appending the string <span style="font-style: italic;">'_xy'</span>, <span style="font-style: italic;">'_xz'</span>, or <span style="font-style: italic;">'_yz'</span> to the
2807respective quantities. Time averaged&nbsp;output is created by
2808appending the string <span style="font-style: italic;">'_av'
2809      </span>(for
2810cross section data, this string must be appended after the cross
2811section string). Cross section data can also be (additionally) averaged
2812along the direction normal to the respective section (see below).
2813Assignments of quantities can be given in arbitrary
2814order:<br>
2815
2816
2817
2818
2819      <br>
2820
2821
2822
2823
2824Example:<br>
2825
2826
2827
2828
2829      <br>
2830
2831
2832
2833
2834     
2835     
2836     
2837     
2838      <div style="margin-left: 40px;"><span style="font-weight: bold;">data_output</span> = <span style="font-style: italic;">'u'</span>, <span style="font-style: italic;">'pt_xz_av'</span>, <span style="font-style: italic;">'w_xy'</span>, <span style="font-style: italic;">'u_av'</span>.<br>
2839
2840
2841
2842
2843      </div>
2844
2845
2846
2847
2848      <br>
2849
2850
2851
2852
2853This
2854example will create the following output: instantaneous 3d volume data
2855of u-velocity component (by default on file DATA_3D_NETCDF), temporally
2856averaged 3d volume data of u-velocity component (by default on file
2857DATA_3D_AV_NETCDF), instantaneous horizontal cross section data of
2858w-velocity component (by default on file DATA_2D_XY_NETCDF), and
2859temporally averaged vertical cross section data of potential
2860temperature (by default on file DATA_2D_XZ_AV_NETCDF).<br>
2861
2862
2863
2864
2865      <br>
2866
2867
2868
2869
2870The
2871user is allowed to extend the above list of quantities by defining his
2872own output quantities (see the user-parameter <a href="chapter_4.3.html#data_output_user">data_output_user</a>).<br>
2873
2874
2875
2876
2877      <br>
2878
2879
2880
2881
2882The
2883time interval of the output times is determined via <a href="#dt_data_output">dt_data_output</a>.
2884This is valid for all types of output quantities by default. Individual
2885time intervals for instantaneous &nbsp;(!) 3d and section data can
2886be
2887declared using <a href="#dt_do3d">dt_do3d</a>, <a href="#dt_do2d_xy">dt_do2d_xy</a>, <a href="#dt_do2d_xz">dt_do2d_xz</a>, and <a href="#dt_do2d_yz">dt_do2d_yz</a>.<br>
2888
2889
2890
2891
2892      <br>
2893
2894
2895
2896
2897Also,
2898an individual time interval for output of temporally averaged data can
2899be assigned using parameter <a href="#dt_data_output_av">dt_data_output_av</a>.
2900This applies to both 3d volume and cross section data. The length of
2901the averaging interval is controlled via parameter <a href="#averaging_interval">averaging_interval</a>.<br>
2902
2903
2904
2905
2906      <br>
2907
2908
2909
2910
2911The
2912parameter <a href="#skip_time_data_output">skip_time_data_output</a>
2913can be used to shift data output activities for a given time interval.
2914Individual intervals can be set using <a href="#skip_time_do3d">skip_time_do3d</a>,
2915      <a href="#skip_time_do2d_xy">skip_time_do2d_xy</a>, <a href="#skip_time_do2d_xz">skip_time_do2d_xz</a>, <a href="#skip_time_do2d_yz">skip_time_do2d_yz</a>, and <a href="#skip_time_data_output_av">skip_time_data_output_av</a>.<br>
2916
2917
2918
2919
2920     
2921     
2922     
2923     
2924      <p>With
2925the parameter <a href="chapter_4.2.html#nz_do3d">nz_do3d</a>&nbsp;
2926the output can be limited in the vertical direction up to a certain
2927grid point.<br>
2928
2929
2930
2931
2932 </p>
2933
2934
2935
2936
2937 Cross sections extend through the
2938total model
2939domain. In the two horizontal directions all grid points with 0
2940&lt;= i
2941&lt;= nx+1 and 0 &lt;= j
2942&lt;= ny+1 are output so that in case of cyclic boundary conditions
2943the
2944complete total domain is represented. The location(s) of the cross
2945sections can be defined with parameters <a href="#section_xy">section_xy</a>,
2946      <a href="#section_xz">section_xz</a>, and <a href="#section_yz">section_yz</a>. Assigning <span style="font-weight: bold;">section_..</span> = <span style="font-style: italic;">-1</span>
2947causes&nbsp;the output data to be averaged along the direction
2948normal to the respective section.<br>
2949
2950
2951
2952
2953      <br>
2954
2955
2956
2957
2958      <br>
2959
2960
2961
2962
2963      <span style="font-weight: bold;">Output of user defined quantities:</span><br>
2964
2965
2966
2967
2968      <br>
2969
2970
2971
2972
2973Beside
2974the standard quantities from the above list, the user can output any
2975other quantities. These have to be defined and calculated within the
2976user-defined code (see <a href="chapter_3.5.4.html">3.5.4</a>).
2977They can be selected for output with the user-parameter <a href="chapter_4.3.html#data_output_user">data_output_user</a>
2978for which the same rules apply as for <span style="font-weight: bold;">data_output</span>.
2979Output of the user defined quantities (time interval, averaging,
2980selection of cross sections, etc.) is controlled with the parameters
2981listed above and data are written to the same file(s) as the standard
2982quantities.<br>
2983
2984
2985
2986
2987      <br>
2988
2989
2990
2991
2992     
2993     
2994     
2995     
2996      <p style="font-weight: bold;">Output
2997on parallel machines:</p>
2998
2999
3000
3001
3002     
3003     
3004     
3005     
3006      <p>
3007By default, with parallel runs, processors output only data
3008of their respective subdomains into seperate local files (file names
3009are
3010constructed by appending the four digit processor ID, e.g.
3011&lt;filename&gt;_0000, &lt;filename&gt;_0001, etc.).
3012After PALM has
3013finished, the contents of these individual
3014files are sampled into one final file<span style="font-weight: bold;"></span>
3015using the program <tt><font style="font-size: 11pt;" size="2">combine_plot_fields.x</font></tt>
3016(to be started e.g. by a suitable OUTPUT command in the <span style="font-weight: bold;">mrun</span>
3017configuration file).</p>
3018
3019
3020
3021
3022 
3023     
3024     
3025     
3026     
3027      <p>Alternatively, PALM is able to
3028collect all grid points of a
3029cross section on PE0 before output is done. In this case only
3030one&nbsp;
3031output file (DATA_2D_XY_NETCDF, etc.) is created and <tt><font style="font-size: 11pt;" size="2">combine_plot_fields.x</font></tt>
3032does not have to be called. In case of very large numbers of horizontal
3033gridpoints, sufficient
3034memory is required on PE0.&nbsp; This method can be used by
3035assigning <a href="chapter_4.2.html#data_output_2d_on_each_pe">data_output_2d_on_each_pe</a>
3036= <i>.F.</i>.</p>
3037
3038
3039
3040
3041     
3042     
3043     
3044     
3045      <p>3d volume data output is
3046always handled seperately by each processor so that <span style="font-family: monospace;">combine_plot_fields.x</span>
3047has to be called anyway after PALM has been finished.</p>
3048
3049
3050
3051
3052     
3053     
3054     
3055     
3056      <p><br>
3057
3058
3059
3060
3061      <span style="font-weight: bold;">Old formats:</span></p>
3062
3063
3064
3065
3066
3067     
3068     
3069     
3070     
3071      <p>Beside
3072the NetCDF format,&nbsp;2d cross section data and 3d volume data
3073can
3074also be output, for historical reasons, in a different (binary) format
3075using parameter <a href="#data_output_format">data_output_format</a>.</p>
3076
3077
3078
3079
3080     
3081     
3082     
3083     
3084      <p>By
3085assigning <span style="font-weight: bold;">data_output_format
3086      </span>= <span style="font-style: italic;">'avs'</span>,
3087the 3d volume data is output to the local file <a href="chapter_3.4.html#PLOT3D_DATA">PLOT3D_DATA</a>.
3088Output is in FORTRAN binary format&nbsp;readable by
3089the plot software <span style="font-weight: bold;">AVS</span>.&nbsp;
3090The order of data on the file follows the order used in the assignment
3091for <b>data_output</b> (e.g. <b>data_output</b>
3092= <span style="font-style: italic;">'p'</span>, <span style="font-style: italic;">'v'</span>,...&nbsp;
3093means that the file starts with the pressure data, followed by the
3094v-component of the velocity, etc.). Both instantaneous and time
3095averaged data are written on this file! Additional to this file, PALM
3096creates
3097a second binary file (local name <a href="chapter_3.4.html#PLOT3D_COOR">PLOT3D_COOR</a>)
3098with coordinate information needed by <span style="font-weight: bold;">AVS</span>.
3099As third and
3100fourth file two ASCII files are created (AVS-FLD-format, local name <a href="chapter_3.4.html#PLOT3D_FLD">PLOT3D_FLD</a>
3101and <a href="chapter_3.4.html#PLOT3D_FLD_COOR">PLOT3D_FLD_COOR</a>),
3102which describe the contents of the data file and/or coordinate file
3103and are used by AVS. However, AVS expects the content description in
3104one file. This needs the local file PLOT3D_FLD_COOR to be appended to
3105the file
3106PLOT3D_FLD (by suitable OUTPUT command in the <span style="font-weight: bold;">mrun</span>
3107configuration file: &#8220;<span style="font-family: monospace;">cat
3108PLOT3D_FLD_COOR &gt;&gt; PLOT3D_FLD</span>&#8221;)
3109after PALM has
3110finished.&nbsp;To reduce the amount of data, output to this file
3111can be done
3112in
3113compressed form (see <a href="chapter_4.2.html#do3d_compress">do3d_compress</a>).
3114Further details about plotting 3d volume data with <span style="font-weight: bold;">AVS </span>can be found in
3115      <a href="chapter_4.5.5.html">chapter
31164.5.5</a>.</p>
3117
3118
3119
3120
3121By assigning <span style="font-weight: bold;">data_output_format </span>=
3122      <span style="font-style: italic;">'iso2d'</span>,
3123the cross section data is output to the local files <a href="chapter_3.4.html#PLOT2D_XY">PLOT2D_XY</a>, <a href="chapter_3.4.html#PLOT2D_XZ">PLOT2D_XZ</a>, and <a href="chapter_3.4.html#PLOT2D_YZ">PLOT2D_YZ</a>.
3124Output is in FORTRAN binary format&nbsp;readable by
3125the plot software&nbsp;<span style="font-weight: bold;">iso2d</span>.&nbsp;
3126The order of data on the files follows the order used in the assignment
3127for <b>data_output</b> (e.g. <b>data_output</b>
3128= <span style="font-style: italic;">'p_xy'</span>, <span style="font-style: italic;">'v_xy_av'</span>,...&nbsp;
3129means that the file containing the horizontal cross section data starts
3130with the instantaneous pressure data, followed by the
3131temporally averaged v-component of the velocity, etc.). Both
3132instantaneous and time averaged data are written on this
3133file!Additional to these binary files, PALM
3134creates NAMELIST parameter files
3135(local names <a href="chapter_3.4.html#PLOT2D_XY_GLOBAL">PLOT2D_XY_GLOBAL</a>,
3136      <a href="chapter_3.4.html#PLOT2D_XY_LOCAL">PLOT2D_XY_LOCAL</a>,
3137      <a href="chapter_3.4.html#PLOT2D_XZ_GLOBAL">PLOT2D_XZ_GLOBAL</a>,
3138      <a href="chapter_3.4.html#PLOT2D_XZ_LOCAL">PLOT2D_XZ_LOCAL</a>,
3139      <a href="chapter_3.4.html#PLOT2D_YZ_GLOBAL">PLOT2D_YZ_GLOBAL</a>,
3140      <a href="chapter_3.4.html#PLOT2D_YZ_LOCAL">PLOT2D_YZ_LOCAL</a>)
3141which can be used as parameter input files for the plot software <a href="http://www.muk.uni-hannover.de/institut/software/iso2d_beschreibung.html">iso2d</a>.
3142That needs local files with suffix _LOCAL to be appended to the
3143respective files with suffix _GLOBAL (by
3144suitable OUTPUT commands in the <span style="font-weight: bold;">mrun</span>
3145configuration file, e.g.: &#8220;<span style="font-family: monospace;">cat
3146PLOT2D_XY_LOCAL &gt;&gt; PLOT2D_XY_GLOBAL</span>&#8221;)
3147after PALM has
3148finished. Cross sections can be directly plotted with <span style="font-weight: bold;">iso2d</span> using the
3149respective data and
3150parameter file. The plot layout is steered via the parameter input
3151file.
3152The values of these <span style="font-weight: bold;">iso2d</span>
3153parameters are determined by a set of mostly internal PALM parameters
3154(exception: <a href="chapter_4.2.html#z_max_do2d">z_max_do2d</a>).
3155All parameter values can be changed by editing the parameter input
3156file.&nbsp;Further details about plotting 2d cross sections with <span style="font-weight: bold;">iso2d </span>can be found
3157in <a href="chapter_4.5.4.html">chapter
31584.5.4</a>.<br>
3159
3160
3161
3162
3163      <br>
3164
3165
3166
3167
3168      <span style="font-weight: bold;">Important:</span><br>
3169
3170
3171
3172
3173There
3174is no guarantee that iso2d- and avs-output will be available in future
3175PALM versions (later than 3.0). </td>
3176
3177
3178
3179
3180 </tr>
3181
3182
3183
3184
3185 <tr>
3186
3187
3188
3189
3190 <td style="vertical-align: top;"><a name="data_output_format"></a><span style="font-weight: bold;">data_output_format</span><br>
3191
3192
3193
3194
3195
3196      </td>
3197
3198
3199
3200
3201 <td style="vertical-align: top;">C * 10 (10) </td>
3202
3203
3204
3205
3206
3207      <td style="vertical-align: top;"><span style="font-style: italic;">'netcdf'</span> </td>
3208
3209
3210
3211
3212
3213      <td style="vertical-align: top;">Format of output data.<br>
3214
3215
3216
3217
3218      <br>
3219
3220
3221
3222
3223By
3224default, all data (profiles, time
3225series, spectra, particle data, cross sections, volume data) are output
3226in NetCDF 64bit-offset format (see chapter <a href="chapter_4.5.1.html">4.5.1</a>).
3227Exception: restart data (local files <a href="chapter_3.4.html#BININ">BININ</a>, <a href="chapter_3.4.html#BINOUT">BINOUT</a>, <a href="chapter_3.4.html#PARTICLE_RESTART_DATA_IN">PARTICLE_RESTART_DATA_IN</a>,
3228      <a href="chapter_3.4.html#PARTICLE_RESTART_DATA_OUT">PARTICLE_RESTART_DATA_OUT</a>)
3229are always output in FORTRAN binary format.<br>
3230
3231
3232
3233
3234      <br>
3235
3236
3237
3238
3239The
3240numerical precision of the NetCDF output is determined with parameter <a href="chapter_4.1.html#netcdf_precision">netcdf_precision</a>.<br>
3241
3242
3243
3244
3245      <br>Other NetCDF formats (classic, NetCDF4/HDF5) can be selected with parameter <a href="#netcdf_data_format">netcdf_data_format</a>.<br>
3246
3247
3248
3249
3250      <br>
3251
3252
3253
3254
3255For historical
3256reasons, other data formats are still available. Beside 'netcdf', <span style="font-weight: bold;">data_output_format</span>
3257may be assigned the following values:<br>
3258
3259
3260
3261
3262      <br>
3263
3264
3265
3266
3267     
3268     
3269     
3270     
3271      <table style="text-align: left; width: 594px; height: 104px;" border="1" cellpadding="2" cellspacing="2">
3272
3273
3274
3275
3276        <tbody>
3277
3278
3279
3280
3281          <tr>
3282
3283
3284
3285
3286            <td style="vertical-align: top;"><span style="font-style: italic;">'profil'</span></td>
3287
3288
3289
3290
3291            <td>output
3292of profiles,&nbsp;time series and spectra in ASCII format to be
3293read by the graphic software <span style="font-weight: bold;">profil
3294            </span>(see chapters <a href="chapter_4.5.2.html">4.5.2</a>,
3295            <a href="#chapter_4.5.3.html">4.5.3</a>)</td>
3296
3297
3298
3299
3300          </tr>
3301
3302
3303
3304
3305          <tr>
3306
3307
3308
3309
3310            <td style="vertical-align: top;"><span style="font-style: italic;">'iso2d'</span></td>
3311
3312
3313
3314
3315            <td>output
3316of 2d cross-sections in FORTRAN binary format to be read by the graphic
3317software <span style="font-weight: bold;">iso2d</span>
3318(see chapter <a href="chapter_4.5.4.html">4.5.4</a>)</td>
3319
3320
3321
3322
3323          </tr>
3324
3325
3326
3327
3328          <tr>
3329
3330
3331
3332
3333            <td style="vertical-align: top;"><span style="font-style: italic;">'avs'</span></td>
3334
3335
3336
3337
3338            <td>output
3339of 3d volume data in FORTRAN binary format to be read by the graphic
3340software <span style="font-weight: bold;">AVS</span>
3341(see chapter <a href="chapter_4.5.5.html">4.5.5</a>)</td>
3342
3343
3344
3345
3346          </tr>
3347
3348
3349
3350
3351       
3352       
3353       
3354       
3355        </tbody>
3356     
3357     
3358     
3359     
3360      </table>
3361
3362
3363
3364
3365      <br>
3366
3367
3368
3369
3370Multiple
3371values can be assigned to <span style="font-weight: bold;">data_output_format</span>,
3372i.e. if the user wants to have both the "old" data format suitable for <span style="font-weight: bold;">iso2d</span> as well as
3373cross section data in NetCDF format, then <span style="font-weight: bold;">data_output_format</span> =
3374      <span style="font-style: italic;">'iso2d'</span>, <span style="font-style: italic;">'netcdf'</span> has to be
3375assigned.<br>
3376
3377
3378
3379
3380      <br>
3381
3382
3383
3384
3385      <span style="font-weight: bold;">Warning:</span>
3386There is no guarantee that the "old" formats will be available in
3387future PALM versions (beyond 3.0)!<br>
3388
3389
3390
3391
3392 </td>
3393
3394
3395
3396
3397 </tr>
3398
3399
3400
3401
3402 <tr>
3403
3404
3405
3406
3407
3408      <td style="vertical-align: top;"> 
3409     
3410     
3411     
3412     
3413      <p><a name="data_output_pr"></a><b>data_output_pr</b></p>
3414
3415
3416
3417
3418
3419      </td>
3420
3421
3422
3423
3424 <td style="vertical-align: top;">C *
342510&nbsp; <br>
3426
3427
3428
3429
3430
3431(100)</td>
3432
3433
3434
3435
3436 <td style="vertical-align: top;"><i>100
3437* ' '</i></td>
3438
3439
3440
3441
3442 <td style="vertical-align: top;">
3443     
3444     
3445     
3446     
3447      <p>Quantities for which vertical profiles (horizontally averaged)
3448are to be output.&nbsp; </p>
3449
3450
3451
3452
3453 
3454     
3455     
3456     
3457     
3458      <p>By default vertical
3459profile data is output to the local file <a href="chapter_3.4.html#DATA_1D_PR_NETCDF">DATA_1D_PR_NETCDF</a>.
3460The file's format is NetCDF.&nbsp; Further details about processing
3461NetCDF data are given in chapter <a href="chapter_4.5.1.html">4.5.1</a>.</p>
3462
3463
3464
3465
3466     
3467     
3468     
3469     
3470      <p>For
3471historical reasons, data can also be output in ASCII-format on local
3472file <a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>
3473which is readable by the graphic software <span style="font-weight: bold;">profil</span>. See
3474parameter <a href="#data_output_format">data_output_format</a>
3475for defining the format in which data shall be output.<br>
3476
3477
3478
3479
3480 </p>
3481
3482
3483
3484
3485
3486     
3487     
3488     
3489     
3490      <p>For horizontally averaged vertical
3491profiles always <span style="font-weight: bold;">all</span>
3492vertical
3493grid points (0 &lt;= k &lt;= nz+1) are output to file. Vertical
3494profile data refers to the total domain but profiles for subdomains can
3495also be output (see <a href="chapter_4.1.html#statistic_regions">statistic_regions</a>).&nbsp;
3496      </p>
3497
3498
3499
3500
3501 
3502     
3503     
3504     
3505     
3506      <p>The temporal interval of the output times of
3507profiles is
3508assigned via the parameter <a href="chapter_4.2.html#dt_dopr">dt_dopr</a>.
3509Within the file <a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>,
3510the profiles are ordered with respect to their
3511output times.</p>
3512
3513
3514
3515
3516     
3517     
3518     
3519     
3520      <p>Profiles can also be temporally
3521averaged (see <a href="chapter_4.2.html#averaging_interval_pr">averaging_interval_pr</a>).<br>
3522
3523
3524
3525
3526
3527      </p>
3528
3529
3530
3531
3532 
3533     
3534     
3535     
3536     
3537      <p>The following list shows the values which can be
3538assigned to <span style="font-weight: bold;">data_output_pr</span>.
3539The profile data is either defined on
3540u-v-levels (variables marked in <font color="#ff6600">red</font>)
3541or
3542on w-levels (<font color="#33ff33">green</font>).
3543According to this,
3544the
3545z-coordinates of the individual profiles vary. Beyond that, with a
3546Prandtl layer switched on (<a href="chapter_4.1.html#prandtl_layer">prandtl_layer</a>)
3547the lowest output
3548level is z = zu(1) instead of z = zw(0) for profiles <i>w''
3549u'',w''v"</i>, <i>wu</i> and <i>wv</i>
3550. Turbulence quantities such as&nbsp;<span style="font-style: italic;">w*u* &nbsp;</span>or <span style="font-style: italic;">u*2</span> are calculated from turbulent fluctuations that are defined as deviations from the instantaneous horizontal average.
3551
3552
3553 </p>
3554
3555
3556
3557
3558 
3559     
3560     
3561     
3562     
3563      <table style="text-align: left; width: 100%;" cellpadding="2" cellspacing="2">
3564
3565
3566
3567
3568 <tbody>
3569
3570
3571
3572
3573 <tr>
3574
3575
3576
3577
3578 <td style="vertical-align: top;"><font color="#ff6600"><i>u</i></font></td>
3579
3580
3581
3582
3583
3584            <td style="vertical-align: top;">u-component of the
3585velocity (in m/s).</td>
3586
3587
3588
3589
3590 </tr>
3591
3592
3593
3594
3595 <tr>
3596
3597
3598
3599
3600 <td style="vertical-align: top;"><font color="#ff6600"><i>v</i></font></td>
3601
3602
3603
3604
3605
3606            <td style="vertical-align: top;">v-component of the
3607velocity (in m/s).</td>
3608
3609
3610
3611
3612 </tr>
3613
3614
3615
3616
3617 <tr>
3618
3619
3620
3621
3622 <td style="vertical-align: top;"><font color="#33ff33"><i>w</i></font></td>
3623
3624
3625
3626
3627
3628            <td style="vertical-align: top;">w-component of the
3629velocity (in m/s).</td>
3630
3631
3632
3633
3634 </tr>
3635
3636
3637
3638
3639 <tr>
3640
3641
3642
3643
3644 <td style="vertical-align: top;"><font color="#ff6600"><i>pt</i></font></td>
3645
3646
3647
3648
3649
3650            <td style="vertical-align: top;">Potential temperature (in
3651K).</td>
3652
3653
3654
3655
3656 </tr>
3657
3658
3659
3660
3661 <tr>
3662
3663
3664
3665
3666 <td style="vertical-align: top;"><font color="#ff6600"><i>vpt</i></font></td>
3667
3668
3669
3670
3671
3672            <td style="vertical-align: top;">Virtual potential
3673temperature (in K).</td>
3674
3675
3676
3677
3678 </tr>
3679
3680
3681
3682
3683 <tr>
3684
3685
3686
3687
3688 <td style="vertical-align: top;"><font color="#ff6600"><i>lpt</i></font></td>
3689
3690
3691
3692
3693
3694            <td style="vertical-align: top;">Potential liquid water
3695temperature (in K).</td>
3696
3697
3698
3699
3700 </tr>
3701
3702
3703
3704
3705 <tr>
3706
3707
3708
3709
3710 <td style="vertical-align: top;"><font color="#ff6600"><i>q</i></font></td>
3711
3712
3713
3714
3715
3716            <td style="vertical-align: top;">Total water content
3717(in kg/kg).</td>
3718
3719
3720
3721
3722 </tr>
3723
3724
3725
3726
3727 <tr>
3728
3729
3730
3731
3732 <td style="vertical-align: top;"><font color="#ff6600"><i>qv</i></font></td>
3733
3734
3735
3736
3737
3738            <td style="vertical-align: top;">Specific humidity (in
3739kg/kg).</td>
3740
3741
3742
3743
3744 </tr>
3745
3746
3747
3748
3749 <tr>
3750
3751
3752
3753
3754 <td style="vertical-align: top;"><font color="#ff6600"><i>ql</i></font></td>
3755
3756
3757
3758
3759
3760            <td style="vertical-align: top;">Liquid water content
3761(in kg/kg).</td>
3762
3763
3764
3765
3766 </tr>
3767
3768
3769
3770
3771 <tr>
3772
3773
3774
3775
3776            <td align="undefined" valign="undefined"><span style="font-style: italic; color: rgb(255, 102, 0);">rho</span></td>
3777
3778
3779
3780
3781            <td align="undefined" valign="undefined">Potential density (in kg/m<sup>3</sup>).</td>
3782
3783
3784
3785
3786          </tr>
3787
3788
3789
3790
3791          <tr>
3792
3793
3794
3795
3796 <td style="vertical-align: middle; font-style: italic;"><font color="#ff6600">s</font></td>
3797
3798
3799
3800
3801
3802            <td style="vertical-align: top;">Scalar concentration (in
3803kg/m<sup>3</sup>).</td>
3804
3805
3806
3807
3808 </tr>
3809
3810
3811
3812
3813 <tr>
3814
3815
3816
3817
3818            <td align="undefined" valign="undefined"><span style="font-style: italic; background-color: rgb(255, 255, 255); color: rgb(255, 102, 0);">sa</span></td>
3819
3820
3821
3822
3823            <td align="undefined" valign="undefined">Salinity (in psu).</td>
3824
3825
3826
3827
3828          </tr>
3829
3830
3831
3832
3833          <tr>
3834
3835
3836
3837
3838 <td style="vertical-align: middle;"><font color="#ff6600"><i>e</i></font></td>
3839
3840
3841
3842
3843
3844            <td style="vertical-align: top;">Turbulent kinetic energy
3845(TKE, subgrid-scale) (in m<sup>2</sup>/s<sup>2</sup>).</td>
3846
3847
3848
3849
3850
3851          </tr>
3852
3853
3854
3855
3856 <tr>
3857
3858
3859
3860
3861 <td style="vertical-align: middle;"><font color="#ff6600"><i>e*</i></font></td>
3862
3863
3864
3865
3866
3867            <td style="vertical-align: top;">Perturbation energy
3868(resolved) (in m<sup>2</sup>/s<sup>2</sup>).</td>
3869
3870
3871
3872
3873
3874          </tr>
3875
3876
3877
3878
3879 <tr>
3880
3881            <td align="undefined" valign="undefined"><span style="font-style: italic; color: rgb(255, 0, 0);">p</span></td>
3882
3883            <td align="undefined" valign="undefined">Perturbation pressure (in Pa)</td>
3884
3885          </tr>
3886
3887          <tr>
3888
3889
3890
3891
3892 <td style="vertical-align: middle;"><font color="#ff6600"><i>km</i></font></td>
3893
3894
3895
3896
3897
3898            <td style="vertical-align: top;">Eddy diffusivity for
3899momentum (in m<sup>2</sup>/s).</td>
3900
3901
3902
3903
3904 </tr>
3905
3906
3907
3908
3909 <tr>
3910
3911
3912
3913
3914
3915            <td style="vertical-align: middle;"><font color="#ff6600"><i>kh</i></font></td>
3916
3917
3918
3919
3920
3921            <td style="vertical-align: top;">Eddy diffusivity for heat
3922(in m<sup>2</sup>/s).</td>
3923
3924
3925
3926
3927 </tr>
3928
3929
3930
3931
3932 <tr>
3933
3934
3935
3936
3937 <td style="vertical-align: top;"><font color="#ff6600"><i>l</i></font></td>
3938
3939
3940
3941
3942
3943            <td style="vertical-align: top;">Mixing length (in m).</td>
3944
3945
3946
3947
3948
3949          </tr>
3950
3951
3952
3953
3954 <tr>
3955
3956
3957
3958
3959 <td style="vertical-align: middle;"><font color="#33ff33"><i>w"u"</i></font></td>
3960
3961
3962
3963
3964
3965            <td style="vertical-align: top;">u-component of the
3966subgrid-scale vertical momentum flux (in m<sup>2</sup>/s<sup>2</sup>).</td>
3967
3968
3969
3970
3971
3972          </tr>
3973
3974
3975
3976
3977 <tr>
3978
3979
3980
3981
3982 <td style="vertical-align: middle;"><font color="#33ff33"><i>w*u*</i></font></td>
3983
3984
3985
3986
3987
3988            <td style="vertical-align: top;">u-component of the
3989resolved vertical momentum flux (in m<sup>2</sup>/s<sup>2</sup>).</td>
3990
3991
3992
3993
3994
3995          </tr>
3996
3997
3998
3999
4000 <tr>
4001
4002
4003
4004
4005 <td style="vertical-align: middle;"><font color="#33ff33"><i>wu</i></font></td>
4006
4007
4008
4009
4010
4011            <td style="vertical-align: top;">u-component of the total
4012vertical momentum flux (<i>w"u"</i> + <i>w*u*</i>)
4013(in m<sup>2</sup>/s<sup>2</sup>).</td>
4014
4015
4016
4017
4018 </tr>
4019
4020
4021
4022
4023
4024          <tr>
4025
4026
4027
4028
4029 <td style="vertical-align: middle;"><font color="#33ff33"><i>w"v"</i></font></td>
4030
4031
4032
4033
4034
4035            <td style="vertical-align: top;">v-component of the
4036subgrid-scale vertical momentum flux (in m<sup>2</sup>/s<sup>2</sup>).</td>
4037
4038
4039
4040
4041
4042          </tr>
4043
4044
4045
4046
4047 <tr>
4048
4049
4050
4051
4052 <td style="vertical-align: middle;"><font color="#33ff33"><i>w*v*</i></font></td>
4053
4054
4055
4056
4057
4058            <td style="vertical-align: top;">v-component of the
4059resolved vertical momentum flux (in m<sup>2</sup>/s<sup>2</sup>).</td>
4060
4061
4062
4063
4064
4065          </tr>
4066
4067
4068
4069
4070 <tr>
4071
4072
4073
4074
4075 <td style="vertical-align: middle;"><font color="#33ff33"><i>wv</i></font></td>
4076
4077
4078
4079
4080
4081            <td style="vertical-align: top;">v-component of the total
4082vertical momentum flux (<i>w"v"</i> + <i>w*v*</i>)
4083(in m<sup>2</sup>/s<sup>2</sup>).</td>
4084
4085
4086
4087
4088 </tr>
4089
4090
4091
4092
4093
4094          <tr>
4095
4096
4097
4098
4099 <td style="vertical-align: top;"><font color="#33ff33"><i>w"pt"</i></font></td>
4100
4101
4102
4103
4104
4105            <td style="vertical-align: top;">Subgrid-scale vertical
4106sensible heat flux (in K m/s).</td>
4107
4108
4109
4110
4111 </tr>
4112
4113
4114
4115
4116 <tr>
4117
4118
4119
4120
4121 <td style="vertical-align: top;"><font color="#33ff33"><i>w*pt*</i></font></td>
4122
4123
4124
4125
4126
4127            <td style="vertical-align: top;">Resolved vertical
4128sensible
4129heat flux (in K m/s).</td>
4130
4131
4132
4133
4134 </tr>
4135
4136
4137
4138
4139 <tr>
4140
4141
4142
4143
4144 <td style="vertical-align: top;"><font color="#33ff33"><i>wpt</i></font></td>
4145
4146
4147
4148
4149
4150            <td style="vertical-align: top;">Total vertical sensible
4151heat flux (<i>w"pt"</i> + <i>w*pt*</i>)
4152(in K
4153m/s).</td>
4154
4155
4156
4157
4158 </tr>
4159
4160
4161
4162
4163 <tr>
4164
4165
4166
4167
4168 <td style="vertical-align: top;"><font color="#33ff33"><i>w*pt*BC</i></font></td>
4169
4170
4171
4172
4173
4174            <td style="vertical-align: top;">Subgrid-scale vertical
4175sensible heat flux using the
4176Bott-Chlond scheme (in K m/s).</td>
4177
4178
4179
4180
4181 </tr>
4182
4183
4184
4185
4186 <tr>
4187
4188
4189
4190
4191 <td style="vertical-align: top;"><font color="#33ff33"><i>wptBC</i></font></td>
4192
4193
4194
4195
4196
4197            <td style="vertical-align: top;">Total vertical sensible
4198heat flux using the Bott-Chlond scheme
4199(<i>w"pt"</i>
4200+ <i>w*pt*BC</i>) (in K m/s).</td>
4201
4202
4203
4204
4205 </tr>
4206
4207
4208
4209
4210 <tr>
4211
4212
4213
4214
4215
4216            <td style="vertical-align: top;"><font color="#33ff33"><i>w"vpt"</i></font></td>
4217
4218
4219
4220
4221
4222            <td style="vertical-align: top;">Subgrid-scale vertical
4223buoyancy flux (in K m/s).</td>
4224
4225
4226
4227
4228 </tr>
4229
4230
4231
4232
4233 <tr>
4234
4235
4236
4237
4238 <td style="vertical-align: top;"><font color="#33ff33"><i>w*vpt*</i></font></td>
4239
4240
4241
4242
4243
4244            <td style="vertical-align: top;">Resolved vertical
4245buoyancy
4246flux (in K m/s).</td>
4247
4248
4249
4250
4251 </tr>
4252
4253
4254
4255
4256 <tr>
4257
4258
4259
4260
4261 <td style="vertical-align: top;"><font color="#33ff33"><i>wvpt</i></font></td>
4262
4263
4264
4265
4266
4267            <td style="vertical-align: top;">Total vertical buoyancy
4268flux (w"vpt" + w*vpt*) (in K m/s).</td>
4269
4270
4271
4272
4273 </tr>
4274
4275
4276
4277
4278 <tr>
4279
4280
4281
4282
4283 <td style="vertical-align: top;"><font color="#33ff33"><i>w"q"</i></font></td>
4284
4285
4286
4287
4288
4289            <td style="vertical-align: top;">Subgrid-scale vertical
4290water flux (in kg/kg m/s).</td>
4291
4292
4293
4294
4295 </tr>
4296
4297
4298
4299
4300 <tr>
4301
4302
4303
4304
4305 <td style="vertical-align: top;"><font color="#33ff33"><i>w*q*</i></font></td>
4306
4307
4308
4309
4310
4311            <td style="vertical-align: top;">Resolved vertical water
4312flux (in kg/kg m/s).</td>
4313
4314
4315
4316
4317 </tr>
4318
4319
4320
4321
4322 <tr>
4323
4324
4325
4326
4327 <td style="vertical-align: top;"><font color="#33ff33"><i>wq</i></font></td>
4328
4329
4330
4331
4332
4333            <td style="vertical-align: top;">Total vertical water flux
4334(w"q" + w*q*) (in kg/kg m/s).</td>
4335
4336
4337
4338
4339 </tr>
4340
4341
4342
4343
4344 <tr>
4345
4346
4347
4348
4349 <td style="vertical-align: top;"><font color="#33ff33"><i>w"qv"</i></font></td>
4350
4351
4352
4353
4354
4355            <td style="vertical-align: top;">Subgrid-scale vertical
4356latent heat flux (in kg/kg m/s).</td>
4357
4358
4359
4360
4361 </tr>
4362
4363
4364
4365
4366 <tr>
4367
4368
4369
4370
4371 <td style="vertical-align: top;"><font color="#33ff33"><i>w*qv*</i></font></td>
4372
4373
4374
4375
4376
4377            <td style="vertical-align: top;">Resolved vertical latent
4378heat flux (in kg/kg m/s).</td>
4379
4380
4381
4382
4383 </tr>
4384
4385
4386
4387
4388 <tr>
4389
4390
4391
4392
4393 <td style="vertical-align: top;"><font color="#33ff33"><i>wqv</i></font></td>
4394
4395
4396
4397
4398
4399            <td style="vertical-align: top;">Total vertical latent
4400heat
4401flux (w"qv" + w*qv*) (in kg/kg m/s).</td>
4402
4403
4404
4405
4406 </tr>
4407
4408
4409
4410
4411 <tr>
4412
4413
4414
4415
4416
4417            <td style="vertical-align: middle;"><font color="#33ff33"><i>w"s"</i></font></td>
4418
4419
4420
4421
4422
4423            <td style="vertical-align: top;">Subgrid-scale vertical
4424scalar concentration flux (in kg/m<sup>3 </sup>m/s).</td>
4425
4426
4427
4428
4429
4430          </tr>
4431
4432
4433
4434
4435 <tr>
4436
4437
4438
4439
4440 <td style="vertical-align: middle;"><font color="#33ff33"><i>w*s*</i></font></td>
4441
4442
4443
4444
4445
4446            <td style="vertical-align: top;">Resolved vertical scalar
4447concentration flux (in kg/m<sup>3</sup> m/s).</td>
4448
4449
4450
4451
4452 </tr>
4453
4454
4455
4456
4457
4458          <tr>
4459
4460
4461
4462
4463 <td style="vertical-align: middle;"><font color="#33ff33"><i>ws</i></font></td>
4464
4465
4466
4467
4468
4469            <td style="vertical-align: top;">Total vertical scalar
4470concentration flux (w"s" + w*s*) (in kg/m<sup>3 </sup>m/s).</td>
4471
4472
4473
4474
4475
4476          </tr>
4477
4478
4479
4480
4481 <tr>
4482
4483
4484
4485
4486            <td align="undefined" valign="undefined"><span style="font-style: italic; color: rgb(51, 255, 51);">w"sa"</span></td>
4487
4488
4489
4490
4491            <td align="undefined" valign="undefined">Subgrid-scale vertical
4492salinity flux (in psu<sup> </sup>m/s).</td>
4493
4494
4495
4496
4497          </tr>
4498
4499
4500
4501
4502          <tr>
4503
4504
4505
4506
4507            <td align="undefined" valign="undefined"><span style="font-style: italic; color: rgb(51, 255, 51);">w*sa*</span></td>
4508
4509
4510
4511
4512            <td align="undefined" valign="undefined">Resolved vertical salinity flux (in psu m/s).</td>
4513
4514
4515
4516
4517          </tr>
4518
4519
4520
4521
4522          <tr>
4523
4524
4525
4526
4527            <td align="undefined" valign="undefined"><span style="font-style: italic; color: rgb(51, 255, 51);">wsa</span></td>
4528
4529
4530
4531
4532            <td align="undefined" valign="undefined">Total vertical salinity flux (w"sa" + w*sa*) (in psu<sup> </sup>m/s).</td>
4533
4534
4535
4536
4537          </tr>
4538
4539
4540
4541
4542          <tr>
4543
4544
4545
4546
4547 <td style="vertical-align: top;"><font color="#33ff33"><i>w*e*</i></font></td>
4548
4549
4550
4551
4552
4553            <td style="vertical-align: top;">Vertical flux of
4554perturbation energy (resolved)</td>
4555
4556
4557
4558
4559 </tr>
4560
4561
4562
4563
4564 <tr>
4565
4566
4567
4568
4569 <td style="vertical-align: top;"><font color="#ff6600"><i>u*2</i></font></td>
4570
4571
4572
4573
4574
4575            <td style="vertical-align: top;">Variance of the
4576u-velocity
4577component (resolved)</td>
4578
4579
4580
4581
4582 </tr>
4583
4584
4585
4586
4587 <tr>
4588
4589
4590
4591
4592 <td style="vertical-align: top;"><font color="#ff6600"><i>v*2</i></font></td>
4593
4594
4595
4596
4597
4598            <td style="vertical-align: top;">Variance of the
4599v-velocity
4600component (resolved)</td>
4601
4602
4603
4604
4605 </tr>
4606
4607
4608
4609
4610 <tr>
4611
4612
4613
4614
4615 <td style="vertical-align: top;"><font color="#33ff33"><i>w*2</i></font></td>
4616
4617
4618
4619
4620
4621            <td style="vertical-align: top;">Variance of the w-velocity
4622component (resolved)</td>
4623
4624
4625
4626
4627 </tr>
4628
4629
4630
4631
4632 <tr>
4633
4634
4635
4636
4637 <td style="vertical-align: top;"><font color="#ff6600"><i>pt*2</i></font></td>
4638
4639
4640
4641
4642
4643            <td style="vertical-align: top;">Variance of the potential
4644temperature (resolved)</td>
4645
4646
4647
4648
4649 </tr>
4650
4651
4652
4653
4654 <tr>
4655
4656
4657
4658
4659 <td style="vertical-align: top;"><font color="#33ff33"><i>w*3</i></font></td>
4660
4661
4662
4663
4664
4665            <td style="vertical-align: top;">Third moment of the
4666w-velocity component (resolved)</td>
4667
4668
4669
4670
4671 </tr>
4672
4673
4674
4675
4676 <tr>
4677
4678
4679
4680
4681 <td style="vertical-align: middle;"><font color="#33ff33"><i>Sw</i></font></td>
4682
4683
4684
4685
4686
4687            <td style="vertical-align: top;">Skewness of the
4688w-velocity
4689component (resolved, S<sub>w</sub>
4690= W<sup>3</sup>/(w<sup>2</sup>)<sup>1.5</sup>)</td>
4691
4692
4693
4694
4695
4696          </tr>
4697
4698
4699
4700
4701 <tr>
4702
4703
4704
4705
4706 <td style="vertical-align: top;"><font color="#33ff33"><i>w*2pt*</i></font></td>
4707
4708
4709
4710
4711
4712            <td style="vertical-align: top;">Third moment (resolved)</td>
4713
4714
4715
4716
4717
4718          </tr>
4719
4720
4721
4722
4723 <tr>
4724
4725
4726
4727
4728 <td style="vertical-align: top;"><font color="#33ff33"><i>w*pt*2</i></font></td>
4729
4730
4731
4732
4733
4734            <td style="vertical-align: top;">Third moment (resolved)</td>
4735
4736
4737
4738
4739
4740          </tr>
4741
4742
4743
4744
4745 <tr>
4746
4747
4748
4749
4750 <td style="vertical-align: top;"><font color="#ff6666"><i>w*u*u*/dz</i></font></td>
4751
4752
4753
4754
4755
4756            <td style="vertical-align: top;">Energy production by
4757shear
4758(resolved)</td>
4759
4760
4761
4762
4763 </tr>
4764
4765
4766
4767
4768 <tr>
4769
4770
4771
4772
4773 <td style="vertical-align: top;"><font color="#ff6666"><i>w*p*/dz</i></font></td>
4774
4775
4776
4777
4778
4779            <td style="vertical-align: top;">Energy production by
4780turbulent transport of pressure
4781fluctuations (resolved)</td>
4782
4783
4784
4785
4786 </tr>
4787
4788
4789
4790
4791 <tr>
4792
4793
4794
4795
4796 <td style="vertical-align: top;"><font color="#ff6666"><i>w"e/dz</i></font></td>
4797
4798
4799
4800
4801
4802            <td style="vertical-align: top;">Energy production by
4803transport of resolved-scale TKE</td>
4804
4805
4806
4807
4808 </tr>
4809
4810
4811
4812
4813 
4814       
4815       
4816       
4817       
4818        </tbody>
4819     
4820     
4821     
4822     
4823      </table>
4824
4825
4826
4827
4828 <br>
4829
4830
4831
4832
4833Beyond that, initial profiles (t=0) of some
4834variables can additionally be
4835output (this output is only done once
4836with the first plot output and not repeated with the profile output at
4837later
4838times). The names of these profiles result from the ones specified
4839above leaded by a hash "#".&nbsp; Allowed values are:<br>
4840
4841
4842
4843
4844 
4845     
4846     
4847     
4848     
4849      <ul>
4850
4851
4852
4853
4854
4855       
4856       
4857       
4858       
4859        <p><i>#u</i>, <i>#v</i>, <i>#pt</i>,
4860        <i>#km</i>, <i>#kh</i>, <i>#l, #lpt, #q, #qv, #s, #sa, #vpt</i></p>
4861
4862
4863
4864
4865
4866     
4867     
4868     
4869     
4870      </ul>
4871
4872
4873
4874
4875 
4876     
4877     
4878     
4879     
4880      <p>Profile names preceded by a hash automatically imply that
4881profiles for these variables are also output at later times. It is not
4882necessary and not allowed to specify the same profile name with and
4883without hash simultaneously(this would lead to an NetCDF error). </p>
4884
4885
4886     
4887     
4888      <p>These initial profiles have been either set by
4889the user or
4890have been calculated by a 1d-model prerun.</p>
4891
4892
4893
4894
4895The
4896user is allowed to extend the above list of quantities by defining his
4897own output quantities (see the user-parameter <a href="chapter_4.3.html#data_output_pr_user">data_output_pr_user</a>).<br>
4898
4899
4900
4901
4902      <br>
4903
4904
4905
4906
4907In case
4908of ASCII data output to local file PLOT1D_DATA,
4909PALM additionally creates a NAMELIST parameter file (local name <a href="chapter_3.4.html#PLOT1D_PAR">PLOT1D_PAR</a>)
4910which can be used as parameter input file for the plot software <a href="http://www.muk.uni-hannover.de/institut/software/profil_intro.html">profil</a>.
4911Profiles can be directly plotted with <span style="font-weight: bold;">profil</span>
4912using these two files. The
4913plot layout is
4914steered via the parameter input file. The values of these <span style="font-weight: bold;">profil</span>-parameters
4915are determined by
4916a set of PALM parameters (<a href="chapter_4.2.html#profile_columns">profile_columns</a>,
4917      <a href="chapter_4.2.html#profile_rows">profile_rows</a>,
4918      <a href="chapter_4.2.html#z_max_do1d">z_max_do1d</a>,
4919      <a href="chapter_4.2.html#cross_profiles">cross_profiles</a>,
4920etc.) All parameter values can be changed by editing the parameter
4921input
4922file. <br>
4923
4924
4925
4926
4927      <br>
4928
4929
4930
4931
4932Further details about plotting vertical
4933profiles with <span style="font-weight: bold;">profil </span>can
4934be found in <a href="chapter_4.5.2.html">chapter
49354.5.2</a></td>
4936
4937
4938
4939
4940 </tr>
4941
4942
4943
4944
4945 <tr>
4946
4947
4948
4949
4950 <td style="vertical-align: top;"> 
4951     
4952     
4953     
4954     
4955      <p><a name="data_output_2d_on_each_pe"></a><b>data_output_2d_on</b>
4956      <br>
4957
4958
4959
4960
4961 <b>_each_pe</b></p>
4962
4963
4964
4965
4966 </td>
4967
4968
4969
4970
4971 <td style="vertical-align: top;">L<br>
4972
4973
4974
4975
4976 </td>
4977
4978
4979
4980
4981 <td style="vertical-align: top;"><span style="font-style: italic;">.T.</span><br>
4982
4983
4984
4985
4986 </td>
4987
4988
4989
4990
4991
4992      <td style="vertical-align: top;">Output 2d cross section
4993data by one or
4994all processors.&nbsp; 
4995     
4996     
4997     
4998     
4999      <p>In runs with several processors, by
5000default, each processor
5001outputs cross section data of its subdomain&nbsp;into an individual
5002file. After PALM
5003has finished, the contents of these files have to be sampled into one
5004file<span style="font-weight: bold;"></span> using
5005the program <tt>combine_plot_fields.x</tt>.&nbsp; </p>
5006
5007
5008
5009
5010
5011     
5012     
5013     
5014     
5015      <p>Alternatively, by assigning <b>data_output_2d_on_each_pe</b>
5016= <i>.F.,</i>
5017the respective data is gathered on PE0 and output is done directly
5018into one file, so <tt>combine_plot_fields.x</tt> does not
5019have to be
5020called. However, in case of very large numbers of horizontal
5021gridpoints, sufficient
5022memory is required on PE0. </p>
5023
5024
5025
5026
5027 </td>
5028
5029
5030
5031
5032 </tr>
5033
5034
5035
5036
5037
5038    <tr>
5039
5040
5041
5042
5043 <td style="vertical-align: top;"> 
5044     
5045     
5046     
5047     
5048      <p><a name="disturbance_amplitude"></a><b>disturbance<br>
5049
5050
5051
5052
5053
5054_amplitude</b></p>
5055
5056
5057
5058
5059 </td>
5060
5061
5062
5063
5064 <td style="vertical-align: top;">R</td>
5065
5066
5067
5068
5069 <td style="vertical-align: top;"><i>0.25</i></td>
5070
5071
5072
5073
5074
5075      <td style="vertical-align: top;"> 
5076     
5077     
5078     
5079     
5080      <p>Maximum
5081perturbation amplitude of the random perturbations
5082imposed to the horizontal velocity field (in m/s).&nbsp; </p>
5083
5084
5085
5086
5087
5088     
5089     
5090     
5091     
5092      <p>The parameter <a href="#create_disturbances">create_disturbances</a>
5093describes how to impose random perturbations to the horizontal velocity
5094field. Since the perturbation procedure includes two filter operations,
5095the amplitude assigned by <b>disturbance_amplitude</b> is
5096only an
5097approximate value of the real magnitude of the perturbation.</p>
5098
5099
5100
5101
5102 </td>
5103
5104
5105
5106
5107
5108    </tr>
5109
5110
5111
5112
5113 <tr>
5114
5115
5116
5117
5118 <td style="vertical-align: top;">
5119     
5120     
5121     
5122     
5123      <p><a name="disturbance_energy_limit"></a><b>disturbance_energy</b>
5124      <br>
5125
5126
5127
5128
5129 <b>_limit</b></p>
5130
5131
5132
5133
5134 </td>
5135
5136
5137
5138
5139 <td style="vertical-align: top;">R</td>
5140
5141
5142
5143
5144 <td style="vertical-align: top;"><i>0.01</i></td>
5145
5146
5147
5148
5149
5150      <td style="vertical-align: top; font-family: Helvetica,Arial,sans-serif;"> 
5151     
5152     
5153     
5154     
5155      <p lang="en-GB">Upper
5156limit value of the perturbation energy of
5157the velocity field used as a criterion for imposing random
5158perturbations (in m<sup>2</sup>/s<sup>2</sup>).&nbsp;
5159      </p>
5160
5161
5162
5163
5164 
5165     
5166     
5167     
5168     
5169      <p><span lang="en-GB">The parameter </span><a href="#create_disturbances"><span lang="en-GB">create_disturbances</span></a><span lang="en-GB">
5170describes how to impose
5171random perturbations to the horizontal velocity field. The perturbation
5172energy is defined as the volume average (over the total model domain)
5173of the squares of the deviations of the velocity components from the
5174mean flow (horizontal average). If the perturbation energy exceeds the
5175assigned value, random perturbations to the fields of horizontal
5176velocities are imposed no more. The value of this parameter usually
5177must be determined by trial and error (it depends e.g. on the total
5178number of grid points).</span>  </p>
5179
5180
5181
5182
5183 </td>
5184
5185
5186
5187
5188
5189    </tr>
5190
5191
5192
5193
5194 <tr>
5195
5196
5197
5198
5199 <td style="vertical-align: top;">
5200     
5201     
5202     
5203     
5204      <p><a name="disturbance_level_b"></a><b>disturbance_level_b</b></p>
5205
5206
5207
5208
5209
5210      </td>
5211
5212
5213
5214
5215 <td style="vertical-align: top;">R</td>
5216
5217
5218
5219
5220
5221      <td style="vertical-align: top;"><i>zu(3) or<br>
5222
5223
5224
5225
5226zu(nz*2/3)<br>
5227
5228
5229
5230
5231see right</i></td>
5232
5233
5234
5235
5236
5237      <td style="vertical-align: top; font-family: Helvetica,Arial,sans-serif;"> 
5238     
5239     
5240     
5241     
5242      <p lang="en-GB"><font size="3">Lower
5243limit of the vertical range for which random perturbations are to be
5244imposed on the horizontal wind field (</font>in <font size="3">m).&nbsp;
5245      </font> </p>
5246
5247
5248
5249
5250 
5251     
5252     
5253     
5254     
5255      <p><span lang="en-GB">This
5256parameter must hold the condition zu(3) &lt;= <b>disturbance_level_b</b>
5257&lt;= zu(</span><a href="chapter_4.1.html#nz"><span lang="en-GB">nz-2</span></a><span lang="en-GB">)</span><span lang="en-GB">. Additionally, <b>disturbance_level_b</b>
5258&lt;= </span><a href="#disturbance_level_t"><span lang="en-GB">disturbance_level_t</span></a>
5259      <span lang="en-GB">must
5260also hold.</span></p>
5261
5262
5263
5264
5265     
5266     
5267     
5268     
5269      <p><span lang="en-GB">In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>) </span><span lang="en-GB">the default value is <span style="font-weight: bold;">disturbance_level_b</span> = <span style="font-style: italic;">zu(nz * 2 / 3) </span>(negative).</span><a href="chapter_4.1.html#nz"><span lang="en-GB"></span></a><span lang="en-GB"></span><span lang="en-GB"></span></p>
5270
5271
5272
5273
5274 
5275     
5276     
5277     
5278     
5279      <p><span lang="en-GB">The
5280parameter </span><a href="#create_disturbances"><span lang="en-GB">create_disturbances</span></a><span lang="en-GB">
5281describes how to impose
5282random perturbations to the horizontal velocity field</span><span lang="en-GB">.</span>
5283       </p>
5284
5285
5286
5287
5288 </td>
5289
5290
5291
5292
5293 </tr>
5294
5295
5296
5297
5298 <tr>
5299
5300
5301
5302
5303 <td style="vertical-align: top;"> 
5304     
5305     
5306     
5307     
5308      <p><a name="disturbance_level_t"></a><b>disturbance_level_t</b></p>
5309
5310
5311
5312
5313
5314      </td>
5315
5316
5317
5318
5319 <td style="vertical-align: top;">R</td>
5320
5321
5322
5323
5324
5325      <td style="vertical-align: top;"><i>zu(nz/3) or<br>
5326
5327
5328
5329
5330zu(nzt-3)<br>
5331
5332
5333
5334
5335see right</i></td>
5336
5337
5338
5339
5340
5341      <td style="vertical-align: top; font-family: Helvetica,Arial,sans-serif;"> 
5342     
5343     
5344     
5345     
5346      <p lang="en-GB"><font size="3">Upper
5347limit of the vertical range for which random perturbations are to be
5348imposed on the horizontal wind field (</font>in <font size="3">m).&nbsp;
5349      </font> </p>
5350
5351
5352
5353
5354 
5355     
5356     
5357     
5358     
5359      <p><span lang="en-GB">This
5360parameter must hold the condition <b>disturbance_level_t</b>
5361&lt;= zu<i>(</i></span><i><a href="chapter_4.1.html#nz"><span lang="en-GB">nz-2</span></a><span lang="en-GB">)</span></i><span lang="en-GB">.
5362Additionally, </span><a href="#disturbance_level_b"><span lang="en-GB">disturbance_level_b</span></a>
5363      <span lang="en-GB">&lt;=
5364      <b>disturbance_level_t</b>
5365must also hold.</span></p>
5366
5367
5368
5369
5370      <span lang="en-GB">In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>) </span><span lang="en-GB">the default value is <span style="font-weight: bold;">disturbance_level_t</span> = <span style="font-style: italic;">zu(nzt - 3</span>)</span><span lang="en-GB"><span style="font-style: italic;"> </span>(negative)</span><span lang="en-GB">.</span>
5371     
5372     
5373     
5374     
5375      <p><span lang="en-GB">The
5376parameter </span><a href="#create_disturbances"><span lang="en-GB">create_disturbances</span></a><span lang="en-GB">
5377describes how to impose
5378random perturbations to the horizontal velocity field</span><span lang="en-GB">.</span>
5379       </p>
5380
5381
5382
5383
5384 </td>
5385
5386
5387
5388
5389 </tr>
5390
5391
5392
5393
5394 <tr>
5395
5396
5397
5398
5399 <td style="vertical-align: top;"> 
5400     
5401     
5402     
5403     
5404      <p><a name="do2d_at_begin"></a><b>do2d_at_begin</b></p>
5405
5406
5407
5408
5409
5410      </td>
5411
5412
5413
5414
5415 <td style="vertical-align: top;">L<br>
5416
5417
5418
5419
5420 </td>
5421
5422
5423
5424
5425
5426      <td style="vertical-align: top; font-style: italic;">.F.<br>
5427
5428
5429
5430
5431 </td>
5432
5433
5434
5435
5436
5437      <td style="vertical-align: top;"> 
5438     
5439     
5440     
5441     
5442      <p>Output of 2d
5443cross section data at the beginning of a run.&nbsp; </p>
5444
5445
5446
5447
5448 
5449     
5450     
5451     
5452     
5453      <p>The
5454temporal intervals of output times of 2d cross section data (see <a href="chapter_4.2.html#data_output">data_output</a>)
5455are usually determined with parameters <a href="chapter_4.2.html#dt_do2d_xy">dt_do2d_xy</a>, <a href="chapter_4.2.html#dt_do2d_xz">dt_do2d_xz</a>
5456and <a href="chapter_4.2.html#dt_do2d_yz">dt_do2d_yz</a>.
5457By assigning <b>do2d_at_begin</b> = <i>.T.</i>
5458an additional output
5459will be made at the
5460beginning of a run (thus at the time t = 0 or at the respective
5461starting times of restart runs).</p>
5462
5463
5464
5465
5466 </td>
5467
5468
5469
5470
5471 </tr>
5472
5473
5474
5475
5476 <tr>
5477
5478
5479
5480
5481
5482      <td style="vertical-align: top;"> 
5483     
5484     
5485     
5486     
5487      <p><a name="do3d_at_begin"></a><b>do3d_at_begin</b></p>
5488
5489
5490
5491
5492
5493      </td>
5494
5495
5496
5497
5498 <td style="vertical-align: top;">L<br>
5499
5500
5501
5502
5503 </td>
5504
5505
5506
5507
5508
5509      <td style="vertical-align: top; font-style: italic;">.F.<br>
5510
5511
5512
5513
5514 </td>
5515
5516
5517
5518
5519
5520      <td style="vertical-align: top;">Output of 3d volume data
5521at the beginning
5522of a run.<br>
5523
5524
5525
5526
5527      <br>
5528
5529
5530
5531
5532The temporal intervals of output times of
55333d volume data (see <a href="chapter_4.2.html#data_output">data_output</a>)
5534is usually determined with parameter <a href="chapter_4.2.html#dt_do3d">dt_do3d</a>.
5535By assigning <b>do3d_at_begin</b> = <i>.T.</i>
5536an additional output
5537will be made at the
5538beginning of a run (thus at the time t = 0 or at the respective
5539starting times of restart runs).</td>
5540
5541
5542
5543
5544 </tr>
5545
5546
5547
5548
5549 <tr>
5550
5551
5552
5553
5554 <td style="vertical-align: top;"> 
5555     
5556     
5557     
5558     
5559      <p><a name="do3d_compress"></a><b>do3d_compress</b></p>
5560
5561
5562
5563
5564
5565      </td>
5566
5567
5568
5569
5570 <td style="vertical-align: top;">L<br>
5571
5572
5573
5574
5575 </td>
5576
5577
5578
5579
5580
5581      <td style="vertical-align: top; font-style: italic;">.F.<br>
5582
5583
5584
5585
5586 </td>
5587
5588
5589
5590
5591
5592      <td style="vertical-align: top;"> 
5593     
5594     
5595     
5596     
5597      <p>Output of data
5598for 3d plots in compressed form.&nbsp; </p>
5599
5600
5601
5602
5603 
5604     
5605     
5606     
5607     
5608      <p>This
5609parameter only applies for &nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
5610= <span style="font-style: italic;">'avs'</span>.</p>
5611
5612
5613
5614
5615     
5616     
5617     
5618     
5619      <p>Output
5620of 3d volume data may need huge amounts of disc storage
5621(up to several Terabytes ore more). Data compression can serve to
5622reduce this requirement. PALM is able to output 3d data in compressed
5623form using 32-bit integers, if <span style="font-weight: bold;">do3d_compress</span>
5624= <span style="font-style: italic;">.T.</span> is
5625assigned. This
5626yields a loss of accuracy, but the file size is clearly reduced. The
5627parameter <a href="chapter_4.2.html#do3d_comp_prec">do3d_comp_prec</a>
5628can be used to separately define the number of significant digits for
5629each quantity.<br>
5630
5631
5632
5633
5634 </p>
5635
5636
5637
5638
5639 
5640     
5641     
5642     
5643     
5644      <p>So far compressed data
5645output is only possible for Cray-T3E
5646machines. Additional information for
5647handling compressed data is given in <a href="chapter_4.5.6.html">chapter
56484.5.6</a>.</p>
5649
5650
5651
5652
5653 </td>
5654
5655
5656
5657
5658 </tr>
5659
5660
5661
5662
5663 <tr>
5664
5665
5666
5667
5668 <td style="vertical-align: top;"> 
5669     
5670     
5671     
5672     
5673      <p><a name="do3d_comp_prec"></a><b>do3d_comp_prec</b></p>
5674
5675
5676
5677
5678
5679      </td>
5680
5681
5682
5683
5684 <td style="vertical-align: top;">C *
56857&nbsp; <br>
5686
5687
5688
5689
5690
5691&nbsp; (100)</td>
5692
5693
5694
5695
5696 <td style="vertical-align: top; font-style: italic;">see
5697right<br>
5698
5699
5700
5701
5702 </td>
5703
5704
5705
5706
5707 <td style="vertical-align: top;">
5708     
5709     
5710     
5711     
5712      <p>Significant digits in case of compressed data
5713output.&nbsp; </p>
5714
5715
5716
5717
5718 
5719     
5720     
5721     
5722     
5723      <p>This parameter only applies for
5724&nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
5725= <span style="font-style: italic;">'avs'</span>.</p>
5726
5727
5728
5729
5730     
5731     
5732     
5733     
5734      <p>In
5735case that data compression is used for output of 3d data
5736(see <a href="chapter_4.2.html#do3d_compress">do3d_compress</a>),
5737this parameter determines the number of significant digits
5738which are to be output.<br>
5739
5740
5741
5742
5743 </p>
5744
5745
5746
5747
5748 
5749     
5750     
5751     
5752     
5753      <p>Fewer digits
5754clearly reduce the amount
5755of data. Assignments have to be given separately for each individual
5756quantity via a character string of the form <span style="font-style: italic;">'&lt;quantity
5757name&gt;&lt;number of
5758significant digits&gt;'</span>, e.g. <span style="font-style: italic;">'pt2'</span>.
5759Only those quantities listed in <a href="chapter_4.2.html#data_output">data_output</a>
5760are admitted. Up to 9 significant digits are allowed (but large values
5761are not very reasonable
5762because they do not effect a significant compression).<br>
5763
5764
5765
5766
5767 </p>
5768
5769
5770
5771
5772
5773     
5774     
5775     
5776     
5777      <p>The default assignment is <span style="font-weight: bold;">do3d_comp_prec</span>
5778= <span style="font-style: italic;">'u2'</span>, <span style="font-style: italic;">'v2'</span>, <span style="font-style: italic;">'w2'</span>, <span style="font-style: italic;">'p5'</span>, <span style="font-style: italic;">'pt2'</span>.</p>
5779
5780
5781
5782
5783 </td>
5784
5785
5786
5787
5788
5789    </tr>
5790
5791
5792
5793
5794 <tr>
5795
5796
5797
5798
5799 <td style="vertical-align: top;"> 
5800     
5801     
5802     
5803     
5804      <p><a name="dt_laufparameter"></a><b>dt</b></p>
5805
5806
5807
5808
5809
5810      </td>
5811
5812
5813
5814
5815 <td style="vertical-align: top;">R</td>
5816
5817
5818
5819
5820
5821      <td style="vertical-align: top;"><i>variable</i></td>
5822
5823
5824
5825
5826
5827      <td style="vertical-align: top;"> 
5828     
5829     
5830      <font style="font-family: Helvetica,Arial,sans-serif;" face="Thorndale, serif"><font size="3">Time
5831step to be used by the 3d-model (</font></font><span style="font-family: Helvetica,Arial,sans-serif;">in </span><font style="font-family: Helvetica,Arial,sans-serif;" face="Thorndale, serif"><font size="3">s).&nbsp;
5832      </font></font> 
5833
5834
5835 
5836     
5837     
5838     
5839     
5840      <p style="font-family: Helvetica,Arial,sans-serif;"><span lang="en-GB">This parameter</span>
5841      <span lang="en-GB">is
5842described in
5843detail with the initialization parameters (see</span><span lang="en-GB"> </span><a href="chapter_4.1.html#dt"><span lang="en-GB">dt</span></a><span lang="en-GB">).
5844Additionally, it may be
5845used as a run parameter and then applies to all restart runs (until it
5846is changed again). A switch from a constant time step to a variable
5847time step can be achieved with <b>dt</b> = <i>-1.0</i>.</span></p>
5848
5849      <font face="Thorndale, serif">
5850      </font> 
5851
5852
5853 </td>
5854
5855
5856
5857
5858 </tr>
5859
5860
5861
5862
5863 <tr>
5864
5865
5866
5867
5868 <td style="vertical-align: top;"><a name="dt_averaging_input"></a><span style="font-weight: bold;">dt_averaging_input</span><br>
5869
5870
5871
5872
5873
5874      </td>
5875
5876
5877
5878
5879 <td style="vertical-align: top;">R<br>
5880
5881
5882
5883
5884 </td>
5885
5886
5887
5888
5889
5890      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
5891
5892
5893
5894
5895 </td>
5896
5897
5898
5899
5900
5901      <td style="vertical-align: top;">Temporal interval
5902of&nbsp;data which are subject to temporal averaging (in s).<br>
5903
5904
5905
5906
5907      <br>
5908
5909
5910
5911
5912By
5913default, data from each timestep within the interval defined by <a href="chapter_4.2.html#averaging_interval">averaging_interval</a>
5914are used for calculating the temporal average. By choosing <span style="font-weight: bold;">dt_averaging_input</span>
5915&gt; <span lang="en-GB"><font face="Thorndale, serif"> </font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"><font face="Thorndale, serif">dt</font></span></a><font face="Thorndale, serif"><span lang="en-GB"></span></font><span lang="en-GB"></span><span style="font-style: italic;"></span>,
5916the number of time levels entering the average can be minimized. This
5917reduces the CPU-time of a run but may worsen the quality of the
5918average's statistics.<br>
5919
5920
5921
5922
5923      <br style="font-family: Helvetica,Arial,sans-serif;">
5924
5925
5926
5927
5928      <font style="font-family: Helvetica,Arial,sans-serif;" face="Thorndale, serif"><span lang="en-GB">With
5929variable time step (see <span style="font-weight: bold;">dt</span>),
5930the number of time levels entering the average can vary from one
5931averaging interval to the next (for a more detailed explanation see </span></font><font style="font-family: Helvetica,Arial,sans-serif;"><a href="#averaging_interval"><span lang="en-GB">averaging_interval</span></a>)</font><font style="font-family: Helvetica,Arial,sans-serif;" face="Thorndale, serif"><span lang="en-GB">. It
5932is approximately given by the quotient of <span style="font-weight: bold;">averaging_interval</span> /
5933MAX(<span style="font-weight: bold;"> dt_averaging_input</span>,
5934      <span style="font-weight: bold;">dt</span>) (which
5935gives a more or less exact value if a fixed timestep is used and if
5936this is an integral divisor of <span style="font-weight: bold;">dt_averaging_input</span>).</span></font><span style="font-family: Helvetica,Arial,sans-serif;">&nbsp;
5937      </span><br style="font-family: Helvetica,Arial,sans-serif;">
5938
5939
5940
5941
5942      <br>
5943
5944
5945
5946
5947      <span style="font-weight: bold;">Example:</span><br>
5948
5949
5950
5951
5952With
5953an averaging interval of 100.0 s and <span style="font-weight: bold;">dt_averaging_input</span> =
5954      <span style="font-style: italic;">10.0</span>,
5955the time levels entering the average have a (minimum) distance of 10.0
5956s (their distance may of course be larger if the current timestep is
5957larger than 10.0 s), so the average is calculated from the data of
5958(maximum) 10 time levels.<br>
5959
5960
5961
5962
5963      <br>
5964
5965
5966
5967
5968      <font face="Thorndale, serif"><span lang="en-GB">It
5969is allowed
5970to change <b>dt_averaging_input</b> during a job chain. If
5971the last averaging
5972interval of the run previous to the change could not be completed (i.e.
5973has to be finished in the current run), the individual profiles and/or
5974spectra entering the averaging are not uniformly distributed over the
5975averaging interval.<br>
5976
5977
5978
5979
5980      <br>
5981
5982
5983
5984
5985      </span></font>Parameter&nbsp;<a href="#dt_averaging_input_pr">dt_averaging_input_pr</a>&nbsp;can
5986be used to define&nbsp;a different temporal interval&nbsp;for
5987vertical profile data and spectra.<br>
5988
5989
5990
5991
5992 </td>
5993
5994
5995
5996
5997 </tr>
5998
5999
6000
6001
6002
6003    <tr>
6004
6005
6006
6007
6008 <td style="vertical-align: top;"> 
6009     
6010     
6011     
6012     
6013      <p><a name="dt_averaging_input_pr"></a><b>dt_averaging_input_pr</b></p>
6014
6015
6016
6017
6018
6019      </td>
6020
6021
6022
6023
6024 <td style="vertical-align: top;">R</td>
6025
6026
6027
6028
6029
6030      <td style="vertical-align: top;"><span style="font-style: italic;">value of <a href="#dt_averaging_input">dt_<br>
6031
6032
6033
6034
6035averaging_<br>
6036
6037
6038
6039
6040input</a></span></td>
6041
6042
6043
6044
6045
6046      <td style="vertical-align: top;"> 
6047     
6048     
6049     
6050     
6051      <p lang="en-GB">Temporal
6052interval of&nbsp;data which are subject to temporal averaging of <font face="Thorndale, serif"><font size="3">vertical
6053profiles and/or spectra&nbsp;(</font></font>in <font face="Thorndale, serif"><font size="3">s).&nbsp;
6054      </font></font> </p>
6055
6056
6057
6058
6059 
6060     
6061     
6062     
6063     
6064      <p>By default, data from
6065each timestep within the interval defined by<font face="Thorndale, serif"><span lang="en-GB"> </span></font><a href="#averaging_interval_pr"><span lang="en-GB"><font face="Thorndale, serif">averaging_interval_pr</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><span lang="en-GB"><font face="Thorndale, serif">and </font></span><a href="#averaging_interval_sp"><span lang="en-GB"><font face="Thorndale, serif">averaging_interval_sp</font></span></a><span lang="en-GB"><font face="Thorndale, serif"> </font></span>are
6066used for calculating the temporal average.&nbsp;By choosing <span style="font-weight: bold;">dt_averaging_input_pr</span>
6067&gt; <span lang="en-GB"><font face="Thorndale, serif"> </font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"><font face="Thorndale, serif">dt</font></span></a><font face="Thorndale, serif"><span lang="en-GB"></span></font><span lang="en-GB"></span><span style="font-style: italic;"></span>,
6068the number of time levels entering the average can be minimized. This
6069reduces the CPU-time of a run but may worsen the quality of the
6070average's statistics. <span lang="en-GB"><font face="Thorndale, serif"><span style="font-weight: bold;"></span><span style="font-weight: bold;"></span></font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"></span></a><font face="Thorndale, serif"><span lang="en-GB"></span></font><span lang="en-GB"></span><br>
6071
6072
6073
6074
6075 </p>
6076
6077
6078
6079
6080     
6081     
6082     
6083     
6084      <p>For
6085more explanations see parameter <a href="#dt_averaging_input">dt_averaging_input</a>.<a href="chapter_4.1.html#dt"><span lang="en-GB"></span></a><font face="Thorndale, serif"><span lang="en-GB"></span></font></p>
6086
6087
6088
6089
6090      </td>
6091
6092
6093
6094
6095
6096    </tr>
6097
6098
6099
6100
6101 <tr>
6102
6103
6104
6105
6106      <td style="vertical-align: top;"><a name="dt_coupling"></a><span style="font-weight: bold;">dt_coupling</span></td>
6107
6108
6109
6110
6111      <td style="vertical-align: top;">R</td>
6112
6113
6114
6115
6116      <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td>
6117
6118
6119
6120
6121      <td style="vertical-align: top;">Temporal interval for the data exchange in case of <a href="chapter_3.8.html">runs with coupled models</a> (e.g. atmosphere - ocean) (in s).<br>
6122
6123
6124
6125
6126      <br>
6127
6128
6129
6130
6131This parameter has an effect only in case of a run with coupled models. It is available starting from version 3.3a. <br>
6132
6133
6134
6135
6136      <br>
6137
6138
6139
6140
6141This parameter specifies the temporal interval at which data are
6142exchanged at the interface between coupled models (currently: interface
6143between atmosphere and ocean). If this parameter is not explicitly
6144specified in the parameter files for both coupled models, or if there
6145is an inconsistency between its values for both coupled models,
6146the&nbsp;execution will terminate and an informative error message will
6147be given.&nbsp;In order to ensure synchronous coupling throughout the simulation, <span style="font-weight: bold;">dt_coupling</span> should be chosen larger than
6148      <a href="#dt_max">dt_max</a>.</td>
6149
6150
6151
6152
6153    </tr>
6154
6155
6156
6157
6158    <tr>
6159
6160
6161
6162
6163 <td style="vertical-align: top;"><a name="dt_data_output"></a><span style="font-weight: bold;">dt_data_output</span><br>
6164
6165
6166
6167
6168
6169      </td>
6170
6171
6172
6173
6174 <td style="vertical-align: top;">R<br>
6175
6176
6177
6178
6179 </td>
6180
6181
6182
6183
6184
6185      <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span><br>
6186
6187
6188
6189
6190
6191      </td>
6192
6193
6194
6195
6196 <td style="vertical-align: top;">
6197     
6198     
6199     
6200     
6201      <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal interval</font>
6202at which&nbsp;data (3d volume data (instantaneous or time
6203averaged),
6204cross sections (instantaneous or time averaged), vertical profiles,
6205spectra) shall be output (</font>in <font face="Thorndale">s).&nbsp;</font></p>
6206
6207
6208
6209
6210
6211      <span lang="en-GB"><font face="Thorndale">If
6212data output&nbsp;is switched on (see </font></span><a href="chapter_4.2.html#data_output"><span lang="en-GB"><font face="Thorndale">data_output</font></span></a><span lang="en-GB"><font face="Thorndale">, <a href="#data_output_pr">data_output_pr</a>, <a href="#data_output_sp">data_output_sp</a>, and </font></span><a href="chapter_4.2.html#section_xy"><span lang="en-GB"><font face="Thorndale">section_xy</font></span></a><span lang="en-GB"><font face="Thorndale">), this
6213parameter can be used to
6214assign the temporal interval at which these data shall be
6215output. </font></span><span lang="en-GB"><font face="Thorndale">Output can be skipped at the beginning of a
6216simulation using parameter <a href="#skip_time_data_output">skip_time_data_output</a>,
6217which has zero value by default. </font></span><span lang="en-GB"><font face="Thorndale">Reference
6218time is the beginning of the simulation, i.e. output
6219takes place at times t = <b>skip_time_data_output +
6220dt_data_output</b>, <span style="font-weight: bold;">skip_time_data_output</span>
6221+ 2*<b>dt_data_output</b>, <span style="font-weight: bold;">skip_time_data_output</span>
6222+ 3*<b>dt_data_output</b>,
6223etc. Since output is only done at the discrete time levels given by
6224the&nbsp;timestep used, the actual output times can slightly
6225deviate
6226from these theoretical values</font></span><a href="chapter_4.2.html#dt_dopr_zeitpunkte"><span lang="en-GB"></span></a><span lang="en-GB"><font face="Thorndale">.<br>
6227
6228
6229
6230
6231      <br>
6232
6233
6234
6235
6236Individual temporal
6237intervals for the different output quantities can be assigned using
6238parameters <a href="#dt_do3d">dt_do3d</a>, <a href="#dt_do2d_xy">dt_do2d_xy</a>, <a href="dt_do2d_xz">dt_do2d_xz</a>, <a href="#dt_do2d_yz">dt_do2d_yz</a>, <a href="#dt_dopr">dt_dopr</a>, <a href="#dt_dosp">dt_dosp</a>,
6239and <a href="#dt_data_output_av">dt_data_output_av</a>.</font></span>
6240      </td>
6241
6242
6243
6244
6245 </tr>
6246
6247
6248
6249
6250 <tr>
6251
6252
6253
6254
6255 <td style="vertical-align: top;"><a name="dt_data_output_av"></a><span style="font-weight: bold;">dt_data_output_av</span><br>
6256
6257
6258
6259
6260
6261      </td>
6262
6263
6264
6265
6266 <td style="vertical-align: top;">R<br>
6267
6268
6269
6270
6271 </td>
6272
6273
6274
6275
6276
6277      <td style="vertical-align: top;"><i>value of
6278&nbsp;<a href="chapter_4.2.html#dt_data_output">dt_data_<br>
6279
6280
6281
6282
6283output</a></i>
6284      </td>
6285
6286
6287
6288
6289 <td style="vertical-align: top;">
6290     
6291     
6292     
6293     
6294      <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal interval</font>
6295at which time averaged 3d volume data and/or 2d cross section data
6296shall be output (</font>in <font face="Thorndale">s).&nbsp;</font></p>
6297
6298
6299
6300
6301      <span lang="en-GB"><font face="Thorndale">If data
6302output of time averaged 2d and 3d data is switched on (see </font></span><a href="chapter_4.2.html#data_output"><span lang="en-GB"><font face="Thorndale">data_output</font></span></a>&nbsp;<span lang="en-GB"><font face="Thorndale">and </font></span><a href="chapter_4.2.html#section_xy"><span lang="en-GB"><font face="Thorndale">section_xy</font></span></a><span lang="en-GB"><font face="Thorndale">), this
6303parameter can be used to
6304assign the temporal interval at which they shall be
6305output. </font></span><span lang="en-GB"><font face="Thorndale">Output can be skipped at the beginning of a
6306simulation using parameter <a href="#skip_time_data_output_av">skip_time_data_output_av</a>,
6307which has zero value by default. </font></span><span lang="en-GB"><font face="Thorndale">Reference
6308time is the beginning of the simulation, i.e. output
6309takes place at times t = <b>skip_time_data_output_av +
6310dt_data_output_av</b>, <span style="font-weight: bold;">skip_time_data_output_av</span>
6311+ 2*<b>dt_data_output_av</b>, <span style="font-weight: bold;">skip_time_data_output_av</span>
6312+ 3*<b>dt_data_output_av</b>,
6313etc. Since output is only done at the discrete time levels given by
6314the&nbsp;timestep used, the actual output times can slightly
6315deviate from
6316these theoretical values</font></span><a href="chapter_4.2.html#dt_dopr_zeitpunkte"><span lang="en-GB"></span></a><span lang="en-GB"><font face="Thorndale">.<br>
6317
6318
6319
6320
6321      <br>
6322
6323
6324
6325
6326      </font></span>The
6327length of the averaging interval is controlled via parameter <a href="chapter_4.2.html#averaging_interval">averaging_interval</a>.</td>
6328
6329
6330
6331
6332
6333    </tr>
6334
6335
6336
6337
6338    <tr>
6339
6340
6341
6342
6343 <td style="vertical-align: top;"> 
6344     
6345     
6346     
6347     
6348      <p><a name="dt_disturb"></a><b>dt_disturb</b></p>
6349
6350
6351
6352
6353
6354      </td>
6355
6356
6357
6358
6359 <td style="vertical-align: top;">R</td>
6360
6361
6362
6363
6364
6365      <td style="vertical-align: top;"><i>9999999.9</i></td>
6366
6367
6368
6369
6370
6371      <td style="vertical-align: top;"> 
6372     
6373     
6374     
6375     
6376      <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
6377interval</font> at which random
6378perturbations are to be imposed on the horizontal velocity field
6379(</font>in <font face="Thorndale">s).&nbsp; </font>
6380      </p>
6381
6382
6383
6384
6385 
6386     
6387     
6388     
6389     
6390      <p><span lang="en-GB"><font face="Thorndale, serif">The parameter </font></span><a href="#create_disturbances"><span lang="en-GB"><font face="Thorndale, serif">create_disturbances</font></span></a><font face="Thorndale, serif"><span lang="en-GB">
6391describes how to impose
6392random perturbations to the horizontal velocity field</span></font><font face="Thorndale, serif"><span lang="en-GB">.</span>
6393      </font> </p>
6394
6395
6396
6397
6398 </td>
6399
6400
6401
6402
6403 </tr>
6404
6405
6406
6407
6408 <tr>
6409
6410
6411
6412
6413 <td style="vertical-align: top;"> 
6414     
6415     
6416     
6417     
6418      <p><a name="dt_dopr"></a><b>dt_dopr</b></p>
6419
6420
6421
6422
6423
6424      </td>
6425
6426
6427
6428
6429 <td style="vertical-align: top;">R</td>
6430
6431
6432
6433
6434
6435      <td style="vertical-align: top;"><i>value of
6436&nbsp;<a href="#dt_data_output">dt_data_<br>
6437
6438
6439
6440
6441output</a></i></td>
6442
6443
6444
6445
6446
6447      <td style="vertical-align: top;"> 
6448     
6449     
6450     
6451     
6452      <p><span lang="en-GB"><font face="Thorndale">Temporal
6453interval at
6454which data&nbsp;of vertical profiles shall be output (to local
6455file <a href="chapter_3.4.html#DATA_1D_PR_NETCDF">DATA_1D_PR_NETCDF</a>
6456or/and </font></span><a href="chapter_3.4.html#PLOT1D_DATA"><span lang="en-GB"><font face="Thorndale">PLOT1D_DATA</font></span></a><span lang="en-GB"><font face="Thorndale">) (</font></span>in
6457      <span lang="en-GB"><font face="Thorndale">s).&nbsp;
6458      </font></span> </p>
6459
6460
6461
6462
6463 
6464     
6465     
6466     
6467     
6468      <p><span lang="en-GB"><font face="Thorndale">If output of
6469horizontally averaged vertical profiles is switched on (see </font></span><a href="chapter_4.2.html#data_output_pr"><span lang="en-GB"><font face="Thorndale">data_output_pr</font></span></a><span lang="en-GB"><font face="Thorndale">), </font></span><span lang="en-GB"><font face="Thorndale">this
6470parameter can be used to
6471assign the temporal interval at which profile data shall be output.</font></span><span lang="en-GB"><font face="Thorndale"> </font></span><span lang="en-GB"><font face="Thorndale">Output can
6472be skipped at the beginning of a simulation using parameter <a href="#skip_time_dopr">skip_time_dopr</a>, which has
6473zero value by default. </font></span><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale">Reference
6474time is the beginning
6475of the simulation, thus t = 0,&nbsp;</font></span><span lang="en-GB"><font face="Thorndale">i.e. output
6476takes place at times t = <b>skip_time_dopr + dt_dopr</b>, <span style="font-weight: bold;">skip_time_dopr</span> + 2*<b>dt_dopr</b>,
6477      <span style="font-weight: bold;">skip_time_dopr</span>
6478+ 3*<b>dt_dopr</b>,
6479etc.</font></span><span lang="en-GB"><font face="Thorndale"> Since
6480profiles can not be calculated for times lying within a time step
6481interval, the output times can deviate from these theoretical values.
6482If a time step ranges from t = 1799.8 to t = 1800.2, then in the
6483example above the output would take place at t = 1800.2. In general,
6484the output always lie between t = 1800.0 and t = 1800.0 + </font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"><font face="Thorndale">dt</font></span></a><span lang="en-GB"><font face="Thorndale">. If the
6485model uses a variable time step, these
6486deviations from the theoretical output times will of course be
6487different for each output time.<br>
6488
6489
6490
6491
6492 </font></span></p>
6493
6494
6495
6496
6497
6498     
6499     
6500     
6501     
6502      <p><span lang="en-GB"><font face="Thorndale">In
6503order to
6504guarantee an output of profile data at the end of a simulation (see </font></span><font><a href="chapter_4.1.html#end_time"><span lang="en-GB"><font face="Thorndale">end_time</font></span></a></font><span lang="en-GB"><font face="Thorndale">) in any way</font></span><span lang="en-GB"><font face="Thorndale">,&nbsp;
6505      <span style="font-weight: bold;">end_time</span>
6506should be equal or a little bit
6507larger than the respective theoretical output time. For example, if <b>dt_dopr</b>
6508= <i>900.0</i><span style="font-style: italic;">
6509      </span>and 3600.0
6510seconds are to be simulated, then <b>end_time</b>
6511&gt;= 3600.0 should be chosen.</font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"></span></a><span lang="en-GB"><font face="Thorndale"><span style="font-weight: bold;"></span>&nbsp; </font></span>
6512      </p>
6513
6514
6515
6516
6517 
6518     
6519     
6520     
6521     
6522      <p><span lang="en-GB"><font face="Thorndale">A selection of
6523profiles to be output can be done via parameter </font></span><a href="chapter_4.2.html#data_output_pr"><span lang="en-GB"><font face="Thorndale">data_output_pr</font></span></a><span lang="en-GB"><font face="Thorndale">.&nbsp;</font></span>
6524      </p>
6525
6526
6527
6528
6529 </td>
6530
6531
6532
6533
6534 </tr>
6535
6536
6537
6538
6539 <tr>
6540
6541
6542
6543
6544 <td style="vertical-align: top;"><a name="dt_dopr_listing"></a><span style="font-weight: bold;">dt_dopr_listing</span><br>
6545
6546
6547
6548
6549
6550      </td>
6551
6552
6553
6554
6555 <td style="vertical-align: top;">R<br>
6556
6557
6558
6559
6560 </td>
6561
6562
6563
6564
6565
6566      <td style="vertical-align: top;"><i>9999999.9</i></td>
6567
6568
6569
6570
6571
6572      <td style="vertical-align: top;"> 
6573     
6574     
6575     
6576     
6577      <p><span lang="en-GB"><font face="Thorndale, serif">Temporal
6578interval</font> at which data <font face="Thorndale">of
6579vertical
6580profiles shall be output (output for printouts, local file </font></span><a href="chapter_3.4.html#LIST_PROFIL"><span lang="en-GB"><font face="Thorndale">LIST_PROFIL</font></span></a><span lang="en-GB"><font face="Thorndale">) (</font></span>in
6581      <span lang="en-GB"><font face="Thorndale">s).&nbsp;</font></span>
6582      </p>
6583
6584
6585
6586
6587 
6588     
6589     
6590     
6591     
6592      <p>T<span lang="en-GB"></span><a href="chapter_4.2.html#pr1d"><span lang="en-GB"></span></a><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale">his
6593parameter can be used to
6594assign the temporal interval at which profile data shall be output.</font></span><span lang="en-GB"><font face="Thorndale"> Reference
6595time is the beginning
6596of the simulation, thus t = 0. For example if <b>dt_dopr_listing</b>
6597= 1800.0,
6598then output takes place at t = 1800.0, 3600.0, 5400.0, etc. Since
6599profiles can not be calculated for times lying within a time step
6600interval, the output times can deviate from these theoretical values.
6601If a time step ranges from t = 1799.8 to t = 1800.2, then in the
6602example above the output would take place at t = 1800.2. In general,
6603the output always lie between t = 1800.0 and t = 1800.0 + </font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"><font face="Thorndale">dt</font></span></a> <span lang="en-GB"><font face="Thorndale">(numbers
6604are related to
6605the
6606example above). If the model uses a variable time step, these
6607deviations from the theoretical output times will of course be
6608different for each output time.<br>
6609
6610
6611
6612
6613 </font></span></p>
6614
6615
6616
6617
6618
6619     
6620     
6621     
6622     
6623      <p><span lang="en-GB"><font face="Thorndale">In
6624order to
6625guarantee an output of profile data at the end of a simulation (see </font></span><font><a href="chapter_4.1.html#end_time"><span lang="en-GB"><font face="Thorndale">end_time</font></span></a></font><span lang="en-GB"><font face="Thorndale">) in any way</font></span><span lang="en-GB"><font face="Thorndale">,&nbsp;
6626      <span style="font-weight: bold;">end_time</span>
6627should be a little bit
6628larger than the respective theoretical output time. For example, if <b>dt_dopr_listing</b>
6629= <i>900.0</i><span style="font-style: italic;">
6630      </span>and 3600.0
6631seconds are to be simulated, then it should be at least&nbsp; <b>end_time</b>
6632&gt; 3600.0 + </font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"><font face="Thorndale">dt</font></span></a><span lang="en-GB"><font face="Thorndale">. If
6633variable time steps are used
6634(which is the default), <span style="font-weight: bold;">dt</span>
6635should be properly estimated.&nbsp; </font></span> </p>
6636
6637
6638
6639
6640
6641     
6642     
6643     
6644     
6645      <p><span lang="en-GB"><font face="Thorndale">Data
6646and output
6647format of the file </font></span><a href="chapter_3.4.html#LIST_PROFIL"><span lang="en-GB"><font face="Thorndale">LIST_PROFIL</font></span></a>
6648      <span lang="en-GB"><font face="Thorndale">is
6649internally fixed. In this file
6650the profiles of the most important model variables are arranged in
6651adjacent columns.</font></span> </p>
6652
6653
6654
6655
6656 </td>
6657
6658
6659
6660
6661 </tr>
6662
6663
6664
6665
6666
6667    <tr>
6668
6669
6670
6671
6672 <td style="vertical-align: top;"> 
6673     
6674     
6675     
6676     
6677      <p><a name="dt_dots"></a><b>dt_dots</b></p>
6678
6679
6680
6681
6682
6683      </td>
6684
6685
6686
6687
6688 <td style="vertical-align: top;">R</td>
6689
6690
6691
6692
6693
6694      <td style="vertical-align: top;"><span style="font-style: italic;">see right</span></td>
6695
6696
6697
6698
6699
6700      <td style="vertical-align: top;"> 
6701     
6702     
6703     
6704     
6705      <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
6706interval</font> at which&nbsp;time series data shall be
6707output (</font>in <font face="Thorndale">s).&nbsp;</font>
6708      </p>
6709
6710
6711
6712
6713 
6714     
6715     
6716     
6717     
6718      <p>The default interval for the output of timeseries
6719is calculated as shown below (this tries to minimize the number of
6720calls of <span style="font-family: Courier New,Courier,monospace;">flow_statistics</span>)</p>
6721
6722
6723
6724
6725     
6726     
6727     
6728     
6729      <p style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
6730IF ( <a href="#averaging_interval_pr">averaging_interval_pr</a>
6731== 0.0 )&nbsp; THEN<br>
6732
6733
6734
6735
6736&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
6737      <span style="font-weight: bold;">dt_dots</span> =
6738MIN( <a href="#dt_run_control">dt_run_control</a>, <a href="#dt_dopr">dt_dopr</a> )<br>
6739
6740
6741
6742
6743&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
6744ELSE<br>
6745
6746
6747
6748
6749&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
6750      <span style="font-weight: bold;">dt_dots</span> =
6751MIN( dt_run_control, <a href="#dt_averaging_input_pr">dt_averaging_input_pr</a>
6752)<br>
6753
6754
6755
6756
6757&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
6758ENDIF</p>
6759
6760
6761
6762
6763     
6764     
6765     
6766     
6767      <p>This parameter can be used to
6768assign the temporal interval at which data points shall be output. <span lang="en-GB"><font face="Thorndale">Reference
6769time is the beginning of
6770&nbsp;the simulation, i.e. output takes place at times t = <b>dt_dots</b>,
67712*<b>dt_dots</b>, 3*<b>dt_dots</b>, etc. The
6772actual output times can
6773deviate from these theoretical values (see </font></span><a href="#dt_dopr_zeitpunkte"><span lang="en-GB"><font face="Thorndale">dt_dopr</font></span></a><span lang="en-GB"><font face="Thorndale">).&nbsp;
6774Is <b>dt_dots</b> &lt; </font></span><a href="chapter_4.1.html#dt"><span lang="en-GB"><font face="Thorndale">dt</font></span></a><span lang="en-GB"><font face="Thorndale">, then data
6775of the time series are
6776written after each time step (if this is requested it should be <b>dt_dots</b>
6777= <i>0</i>).</font></span></p>
6778
6779
6780
6781
6782     
6783     
6784     
6785     
6786      <p><span lang="en-GB"><font face="Thorndale">The default
6787value of <span style="font-weight: bold;">dt_dots</span>
6788is calculated as follows:</font></span></p>
6789
6790
6791
6792
6793&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
6794IF ( <a href="#averaging_interval_pr">averaging_interval_pr</a>
6795== 0.0 )&nbsp; THEN<br>
6796
6797
6798
6799
6800&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
6801      <span style="font-weight: bold;">dt_dots</span> =
6802MIN( <a href="#dt_run_control">dt_run_control</a>, <a href="#dt_dopr">dt_dopr</a> )<br>
6803
6804
6805
6806
6807&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
6808ELSE<br>
6809
6810
6811
6812
6813&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
6814      <span style="font-weight: bold;">dt_dots</span> =
6815MIN( <span style="font-weight: bold;">dt_run_control</span>,
6816      <a href="#dt_averaging_input_pr">dt_averaging_input_pr</a>
6817)<br>
6818
6819
6820
6821
6822&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
6823ENDIF<br>
6824
6825
6826
6827
6828      <br>
6829
6830
6831
6832
6833(which minimizes the number of calls of
6834routine flow_statistics).<br>
6835
6836
6837
6838
6839     
6840     
6841     
6842     
6843      <p>By default time series data
6844is output to the local file <a href="chapter_3.4.html#DATA_1D_TS_NETCDF">DATA_1D_TS_NETCDF</a>.
6845Because of the default settings of <span style="font-weight: bold;">dt_dots</span>,
6846it will&nbsp;generally be created for each model run. The file's
6847format is NetCDF.&nbsp; Further details about processing NetCDF
6848data are given in chapter <a href="chapter_4.5.1.html">4.5.1</a>.</p>
6849
6850
6851
6852
6853The
6854file contains the following timeseries quantities (the first column
6855gives the name of the quantities as used in the NetCDF file):<br>
6856
6857
6858
6859
6860     
6861     
6862     
6863     
6864      <table style="text-align: left; width: 100%;" cellpadding="2" cellspacing="2">
6865
6866
6867
6868
6869 <tbody>
6870
6871
6872
6873
6874 <tr>
6875
6876
6877
6878
6879 <td style="font-style: italic; vertical-align: middle;">E<br>
6880
6881
6882
6883
6884
6885            </td>
6886
6887
6888
6889
6890 <td style="vertical-align: top;">Total
6891kinetic energy of
6892the flow (in m<sup>2</sup>/s<sup>2</sup>)
6893(normalized with respect to the total number of grid points).</td>
6894
6895
6896
6897
6898
6899          </tr>
6900
6901
6902
6903
6904 <tr>
6905
6906
6907
6908
6909 <td style="font-style: italic; vertical-align: middle;">E*<br>
6910
6911
6912
6913
6914
6915            </td>
6916
6917
6918
6919
6920 <td style="vertical-align: top;">Perturbation
6921kinetic
6922energy of the flow (in m<sup>2</sup>/s<sup>2</sup>)<sup>
6923            </sup>(normalized
6924with respect to the total number of grid
6925points)</td>
6926
6927
6928
6929
6930 </tr>
6931
6932
6933
6934
6935 <tr>
6936
6937
6938
6939
6940 <td style="vertical-align: top; font-style: italic;">dt<br>
6941
6942
6943
6944
6945
6946            </td>
6947
6948
6949
6950
6951 <td style="vertical-align: top;">Time step
6952size (in s).</td>
6953
6954
6955
6956
6957 </tr>
6958
6959
6960
6961
6962 <tr>
6963
6964
6965
6966
6967 <td style="vertical-align: top; font-style: italic;">u<sub>*</sub></td>
6968
6969
6970
6971
6972
6973            <td style="vertical-align: top;">Friction velocity (in
6974m/s)
6975(horizontal average).</td>
6976
6977
6978
6979
6980 </tr>
6981
6982
6983
6984
6985 <tr>
6986
6987
6988
6989
6990 <td style="vertical-align: top; font-style: italic;">w<sub>*</sub></td>
6991
6992
6993
6994
6995
6996            <td style="vertical-align: top;">Vertical velocity scale
6997of
6998the CBL (in m/s) (horizontal average)</td>
6999
7000
7001
7002
7003 </tr>
7004
7005
7006
7007
7008 <tr>
7009
7010
7011
7012
7013
7014            <td style="vertical-align: top; font-style: italic;">th<sub>*</sub></td>
7015
7016
7017
7018
7019
7020            <td style="vertical-align: top;">Temperature
7021scale (Prandtl layer), defined as <i>w"pt"0
7022/&nbsp;</i><i>u<sub>*</sub></i>
7023(horizontal
7024average) (in K).</td>
7025
7026
7027
7028
7029 </tr>
7030
7031
7032
7033
7034 <tr>
7035
7036
7037
7038
7039 <td style="vertical-align: top; font-style: italic;">umax<br>
7040
7041
7042
7043
7044
7045            </td>
7046
7047
7048
7049
7050 <td style="vertical-align: top;">Maximum
7051u-component of the
7052velocity (in m/s).</td>
7053
7054
7055
7056
7057 </tr>
7058
7059
7060
7061
7062 <tr>
7063
7064
7065
7066
7067 <td style="vertical-align: top; font-style: italic;">vmax<br>
7068
7069
7070
7071
7072
7073            </td>
7074
7075
7076
7077
7078 <td style="vertical-align: top;">Maximum
7079v-component of the
7080velocity (in m/s).</td>
7081
7082
7083
7084
7085 </tr>
7086
7087
7088
7089
7090 <tr>
7091
7092
7093
7094
7095 <td style="vertical-align: top; font-style: italic;">wmax<br>
7096
7097
7098
7099
7100
7101            </td>
7102
7103
7104
7105
7106 <td style="vertical-align: top;">Maximum
7107w-component of the
7108velocity (in m/s).</td>
7109
7110
7111
7112
7113 </tr>
7114
7115
7116
7117
7118 <tr>
7119
7120
7121
7122
7123 <td style="vertical-align: top; font-style: italic;">div_old<br>
7124
7125
7126
7127
7128
7129            </td>
7130
7131
7132
7133
7134 <td style="vertical-align: top;">Divergence
7135of the velocity
7136field before the pressure
7137solver has been called (normalized with respect to the total number of
7138grid points) (in 1/s).</td>
7139
7140
7141
7142
7143 </tr>
7144
7145
7146
7147
7148 <tr>
7149
7150
7151
7152
7153 <td style="vertical-align: top; font-style: italic;">div_new</td>
7154
7155
7156
7157
7158
7159            <td style="vertical-align: top;">Divergence of the
7160velocity
7161field after the pressure
7162solver has been called (normalized with respect to the total number of
7163grid points) (in 1/s).</td>
7164
7165
7166
7167
7168 </tr>
7169
7170
7171
7172
7173 <tr>
7174
7175
7176
7177
7178 <td style="vertical-align: top; font-style: italic;">z_i_wpt</td>
7179
7180
7181
7182
7183
7184            <td style="vertical-align: top;">Height of the convective
7185boundary layer (horizontal average)
7186determined by the height of the minimum sensible heat flux (in m).</td>
7187
7188
7189
7190
7191
7192          </tr>
7193
7194
7195
7196
7197 <tr>
7198
7199
7200
7201
7202 <td style="vertical-align: top; font-style: italic;">z_i_pt</td>
7203
7204
7205
7206
7207
7208            <td style="vertical-align: top;">Height of the convective
7209boundary layer (horizontal average)
7210determined by the temperature profile, following the criterion of Sullivan et al. (1998) (in m).</td>
7211
7212
7213
7214
7215 </tr>
7216
7217
7218
7219
7220 <tr>
7221
7222
7223
7224
7225
7226            <td style="vertical-align: top; font-style: italic;">w"pt"0</td>
7227
7228
7229
7230
7231
7232            <td style="vertical-align: top;">Subgrid-scale sensible
7233heat flux at k=0 (horizontal
7234average), constant within Prandtl-layer (in K m/s).</td>
7235
7236
7237
7238
7239 </tr>
7240
7241
7242
7243
7244 <tr>
7245
7246
7247
7248
7249 <td style="vertical-align: top; font-style: italic;">w"pt"</td>
7250
7251
7252
7253
7254
7255            <td style="vertical-align: top;">Subgrid-scale heat flux
7256(horizontal average) for z = zw(1) (in K
7257m/s).</td>
7258
7259
7260
7261
7262 </tr>
7263
7264
7265
7266
7267 <tr>
7268
7269
7270
7271
7272 <td style="vertical-align: top; font-style: italic;">wpt</td>
7273
7274
7275
7276
7277
7278            <td style="vertical-align: top;">Total heat flux
7279(horizontal average) for z = zw(1) (in K m/s).</td>
7280
7281
7282
7283
7284 </tr>
7285
7286
7287
7288
7289 <tr>
7290
7291            <td align="undefined" valign="undefined"><span style="font-style: italic;">w"u"0</span></td>
7292
7293            <td align="undefined" valign="undefined">Subgrid-scale momentum flux (u-component) at k=0 (horizontal average), constant within Prandtl-layer (in m<sup>2</sup>/s<sup>2</sup>).</td>
7294
7295          </tr>
7296
7297          <tr>
7298
7299            <td align="undefined" valign="undefined"><span style="font-style: italic;">w"v"0</span></td>
7300
7301            <td align="undefined" valign="undefined">Subgrid-scale momentum flux (v-component) at k=0 (horizontal average), constant within Prandtl-layer (in m<sup>2</sup>/s<sup>2</sup>).</td>
7302
7303          </tr>
7304
7305          <tr>
7306
7307            <td align="undefined" valign="undefined"><span style="font-style: italic;">w"q"0</span></td>
7308
7309            <td align="undefined" valign="undefined">Subgrid-scale
7310humidity flux at k=0 (horizontal average), constant within
7311Prandtl-layer (in kg/kg m/s). Zero values are output if humidity is not
7312used.</td>
7313
7314          </tr>
7315
7316          <tr>
7317
7318
7319
7320
7321
7322            <td style="vertical-align: top; font-style: italic;">pt(0)</td>
7323
7324
7325
7326
7327
7328            <td style="vertical-align: top;">Potential temperature at
7329the surface (horizontal average) (in K).</td>
7330
7331
7332
7333
7334 </tr>
7335
7336
7337
7338
7339 <tr>
7340
7341
7342
7343
7344
7345            <td style="vertical-align: top; font-style: italic;">pt(zp)</td>
7346
7347
7348
7349
7350
7351            <td style="vertical-align: top;">Potential temperature for
7352z = zu(1) (horizontal average) (in K).</td>
7353
7354
7355
7356
7357 </tr>
7358
7359
7360
7361
7362 
7363
7364
7365 
7366
7367
7368 
7369
7370
7371 <tr>
7372
7373
7374
7375
7376 <td style="vertical-align: top; font-style: italic;">L</td>
7377
7378
7379
7380
7381
7382            <td style="vertical-align: top;">Monin-Obukhov length.</td>
7383
7384
7385
7386
7387
7388          </tr>
7389
7390
7391
7392
7393 
7394       
7395       
7396       
7397       
7398        </tbody> 
7399     
7400     
7401     
7402     
7403      </table>
7404
7405
7406
7407
7408      <br>
7409
7410
7411
7412
7413Additionally, the
7414user can add his own timeseries quantities to the file, by using the
7415user-interface subroutines<span style="font-family: Courier New,Courier,monospace;"> <a href="chapter_3.5.1.html#user_init">user_init</a> </span>and<span style="font-family: Courier New,Courier,monospace;"> <a href="chapter_3.5.1.html#user_statistics">user_statistics</a></span>.
7416These routines contain (as comment lines) a simple example how to do
7417this.<br>
7418
7419
7420
7421
7422      <br>
7423
7424
7425
7426
7427Time series data refers to the total
7428domain, but time series for subdomains can also be output (see <a href="chapter_4.1.html#statistic_regions">statistic_regions</a>).
7429However, the following time series always present the values of the
7430total model domain (even with output for subdomains): <i>umax</i>,
7431      <i>vmax</i>, <i>wmax</i>, <i>div_old</i>,
7432      <i>div_new</i>.</td>
7433
7434
7435
7436
7437 </tr>
7438
7439
7440
7441
7442 <tr>
7443
7444
7445
7446
7447 <td style="vertical-align: top;"> 
7448     
7449     
7450     
7451     
7452      <p><a name="dt_do2d_xy"></a><b>dt_do2d_xy</b></p>
7453
7454
7455
7456
7457
7458      </td>
7459
7460
7461
7462
7463 <td style="vertical-align: top;">R</td>
7464
7465
7466
7467
7468
7469      <td style="vertical-align: top;"><i>value of
7470&nbsp;<a href="chapter_4.2.html#dt_data_output">dt_data_<br>
7471
7472
7473
7474
7475output</a></i></td>
7476
7477
7478
7479
7480
7481      <td style="vertical-align: top;"> 
7482     
7483     
7484     
7485     
7486      <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
7487interval</font> at which&nbsp;horizontal cross section data
7488shall be output (</font>in <font face="Thorndale">s).&nbsp;
7489      </font> </p>
7490
7491
7492
7493
7494 
7495     
7496     
7497     
7498     
7499      <p><span lang="en-GB"><font face="Thorndale">If output of
7500horizontal cross sections is switched on (see </font></span><a href="#data_output"><span lang="en-GB"><font face="Thorndale">data_output</font></span></a>
7501      <span lang="en-GB"><font face="Thorndale">and
7502      </font></span><a href="#section_xy"><span lang="en-GB"><font face="Thorndale">section_xy</font></span></a><span lang="en-GB"><font face="Thorndale">), this
7503parameter can be used to
7504assign the temporal interval at which cross section data shall be
7505output. </font></span><span lang="en-GB"><font face="Thorndale">Output can be skipped at the beginning of a
7506simulation using parameter <a href="#skip_time_do2d_xy">skip_time_do2d_xy</a>,
7507which has zero value by default. </font></span><span lang="en-GB"><font face="Thorndale">Reference
7508time is the beginning of the simulation, i.e. output
7509takes place at times t = <b>skip_time_do2d_xy + dt_do2d_xy</b>,
7510      <span style="font-weight: bold;">skip_time_do2d_xy</span>
7511+ 2*<b>dt_do2d_xy</b>, <span style="font-weight: bold;">skip_time_do2d_xy</span>
7512+ 3*<b>dt_do2d_xy</b>,
7513etc. The actual output times can deviate from these theoretical values
7514(see </font></span><a href="#dt_dopr_zeitpunkte"><span lang="en-GB"><font face="Thorndale">dt_dopr</font></span></a><span lang="en-GB"><font face="Thorndale">).<br>
7515
7516
7517
7518
7519
7520      </font></span></p>
7521
7522
7523
7524
7525 
7526     
7527     
7528     
7529     
7530      <p><span lang="en-GB"><font face="Thorndale">Parameter </font></span><a href="#do2d_at_begin"><span lang="en-GB"><font face="Thorndale">do2d_at_begin</font></span></a>
7531has to be used if an additional output is wanted at the start of a run <span lang="en-GB"><font face="Thorndale">(thus at
7532the time t = 0 or at the
7533respective starting times of restart runs).</font></span> </p>
7534
7535
7536
7537
7538
7539      </td>
7540
7541
7542
7543
7544 </tr>
7545
7546
7547
7548
7549 <tr>
7550
7551
7552
7553
7554 <td style="vertical-align: top;"> 
7555     
7556     
7557     
7558     
7559      <p><a name="dt_do2d_xz"></a><b>dt_do2d_xz</b></p>
7560
7561
7562
7563
7564
7565      </td>
7566
7567
7568
7569
7570 <td style="vertical-align: top;">R</td>
7571
7572
7573
7574
7575
7576      <td style="vertical-align: top;"><i>value of
7577&nbsp;<a href="chapter_4.2.html#dt_data_output">dt_data_<br>
7578
7579
7580
7581
7582output</a></i></td>
7583
7584
7585
7586
7587
7588      <td style="vertical-align: top;"> 
7589     
7590     
7591     
7592     
7593      <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
7594interval</font> at which&nbsp;vertical cross sections data
7595(xz) shall be output (</font>in <font face="Thorndale">s).&nbsp;
7596      </font> </p>
7597
7598
7599
7600
7601 
7602     
7603     
7604     
7605     
7606      <p><span lang="en-GB"><font face="Thorndale">If output of
7607horizontal cross sections is switched on (see </font></span><a href="#data_output"><span lang="en-GB"><font face="Thorndale">data_output</font></span></a>
7608      <span lang="en-GB"><font face="Thorndale">and
7609      </font></span><a href="#section_xz"><span lang="en-GB"><font face="Thorndale">section_xz</font></span></a><span lang="en-GB"><font face="Thorndale">),
7610this parameter can be used to assign the temporal interval at which
7611cross section data shall be output. </font></span><span lang="en-GB"><font face="Thorndale">Output can
7612be skipped at the beginning of a simulation using parameter <a href="#skip_time_do2d_xz">skip_time_do2d_xz</a>, which
7613has zero value by default. </font></span><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale">Reference time is the beginning of
7614the simulation, i.e. output takes place at times t = <b>skip_time_do2d_xz
7615+ dt_do2d_xz</b>,
7616      <span style="font-weight: bold;">skip_time_do2d_xz</span>
7617+ 2*<b>dt_do2d_xz</b>, <span style="font-weight: bold;">skip_time_do2d_xz</span>
7618+ 3*<b>dt_do2d_xz</b>, etc. The actual output times
7619can deviate from these theoretical values (see </font></span><a href="#dt_dopr_zeitpunkte"><span lang="en-GB"><font face="Thorndale">dt_dopr</font></span></a><span lang="en-GB"><font face="Thorndale">).<br>
7620
7621
7622
7623
7624
7625      </font></span></p>
7626
7627
7628
7629
7630 
7631     
7632     
7633     
7634     
7635      <p><span lang="en-GB"><font face="Thorndale">Parameter </font></span><a href="#do2d_at_begin"><span lang="en-GB"><font face="Thorndale">do2d_at_begin</font></span></a>
7636has to be used if an additional output is wanted at the start of a run <span lang="en-GB"><font face="Thorndale">(thus at
7637the time t = 0 or at the
7638respective starting times of restart runs).</font></span> </p>
7639
7640
7641
7642
7643
7644      </td>
7645
7646
7647
7648
7649 </tr>
7650
7651
7652
7653
7654 <tr>
7655
7656
7657
7658
7659 <td style="vertical-align: top;"> 
7660     
7661     
7662     
7663     
7664      <p><a name="dt_do2d_yz"></a><b>dt_do2d_yz</b></p>
7665
7666
7667
7668
7669
7670      </td>
7671
7672
7673
7674
7675 <td style="vertical-align: top;">R</td>
7676
7677
7678
7679
7680
7681      <td style="vertical-align: top;"><i>value of
7682&nbsp;<a href="chapter_4.2.html#dt_data_output">dt_data_<br>
7683
7684
7685
7686
7687output</a></i></td>
7688
7689
7690
7691
7692
7693      <td style="vertical-align: top;"> 
7694     
7695     
7696     
7697     
7698      <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
7699interval</font> at which&nbsp;vertical cross section data
7700(yz) shall be output (</font>in s<font face="Thorndale">).&nbsp;
7701      </font> </p>
7702
7703
7704
7705
7706 
7707     
7708     
7709     
7710     
7711      <p><span lang="en-GB"><font face="Thorndale">If output of
7712horizontal cross sections is switched on (see </font></span><a href="#data_output"><span lang="en-GB"><font face="Thorndale">data_output</font></span></a>
7713      <span lang="en-GB"><font face="Thorndale">and
7714      </font></span><a href="#section_yz"><span lang="en-GB"><font face="Thorndale">section_yz</font></span></a><span lang="en-GB"><font face="Thorndale">),
7715this parameter can be used to assign the temporal interval at which
7716cross section data shall be output. </font></span><span lang="en-GB"><font face="Thorndale">Output can
7717be skipped at the beginning of a simulation using parameter <a href="#skip_time_do2d_yz">skip_time_do2d_yz</a>, which
7718has zero value by default. </font></span><span lang="en-GB"></span><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale">Reference
7719time is the beginning of
7720the simulation, i.e. output takes place at times t = <b>skip_time_do2d_yz
7721+ dt_do2d_yz</b>,
7722      <span style="font-weight: bold;">skip_time_do2d_yz</span>
7723+ 2*<b>dt_do2d_yz</b>, <span style="font-weight: bold;">skip_time_do2d_yz
7724      </span>+ 3*<b>dt_do2d_yz</b>, etc. The actual output
7725times
7726can deviate from these theoretical values (see </font></span><a href="#dt_dopr_zeitpunkte"><span lang="en-GB"><font face="Thorndale">dt_dopr</font></span></a><span lang="en-GB"><font face="Thorndale">).<br>
7727
7728
7729
7730
7731
7732      </font></span></p>
7733
7734
7735
7736
7737 
7738     
7739     
7740     
7741     
7742      <p><span lang="en-GB"><font face="Thorndale">Parameter </font></span><a href="#do2d_at_begin"><span lang="en-GB"><font face="Thorndale">do2d_at_begin</font></span></a>
7743has to be used if an additional output is wanted at the start of a run <span lang="en-GB"><font face="Thorndale">(thus at
7744the time t = 0 or at the
7745respective starting times of restart runs).</font></span> </p>
7746
7747
7748
7749
7750
7751      </td>
7752
7753
7754
7755
7756 </tr>
7757
7758
7759
7760
7761 <tr>
7762
7763
7764
7765
7766 <td style="vertical-align: top;"> 
7767     
7768     
7769     
7770     
7771      <p><a name="dt_do3d"></a><b>dt_do3d</b></p>
7772
7773
7774
7775
7776
7777      </td>
7778
7779
7780
7781
7782 <td style="vertical-align: top;">R</td>
7783
7784
7785
7786
7787
7788      <td style="vertical-align: top;"><i>value of
7789&nbsp;<a href="chapter_4.2.html#dt_data_output">dt_data_<br>
7790
7791
7792
7793
7794output</a></i></td>
7795
7796
7797
7798
7799
7800      <td style="vertical-align: top;"> 
7801     
7802     
7803     
7804     
7805      <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
7806interval</font> at which 3d volume data shall be output (</font>in
7807      <font face="Thorndale">s).&nbsp; </font> </p>
7808
7809
7810
7811
7812
7813     
7814     
7815     
7816     
7817      <p><span lang="en-GB"><font face="Thorndale">If
7818output of
78193d-volume data is switched on (see </font></span><font><a href="#data_output"><span lang="en-GB"><font face="Thorndale">data_output</font></span></a>)<span style="font-family: thorndale;">, this parameter can be used
7820to assign
7821th</span></font><span lang="en-GB"><font face="Thorndale">e temporal
7822interval at which 3d-data shall be output. </font></span><span lang="en-GB"><font face="Thorndale">Output can
7823be skipped at the beginning of a simulation using parameter <a href="#skip_time_do3d">skip_time_do3d</a>, which has
7824zero value by default. </font></span><span lang="en-GB"></span><span lang="en-GB"></span><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale">Reference
7825time is the
7826beginning of the simulation, i.e. output takes place at times t = <b>skip_time_do3d
7827+ dt_do3d</b>,
7828      <span style="font-weight: bold;">skip_time_do3d</span>
7829+ 2*<b>dt_do3d</b>, <span style="font-weight: bold;">skip_time_do3d</span>
7830+ 3*<b>dt_do3d</b>, etc. The actual output times can
7831deviate from these theoretical values (see </font></span><a href="#dt_dopr_zeitpunkte"><span lang="en-GB"><font face="Thorndale">dt_dopr</font></span></a><span lang="en-GB"><font face="Thorndale">). <br>
7832
7833
7834
7835
7836
7837      </font></span></p>
7838
7839
7840
7841
7842 
7843     
7844     
7845     
7846     
7847      <p><span lang="en-GB"><font face="Thorndale">Parameter </font></span><a href="#do3d_at_begin"><span lang="en-GB"><font face="Thorndale">do3d_at_begin</font></span></a>
7848has to be used if an additional output is wanted at the start of a run <span lang="en-GB"><font face="Thorndale">(thus at
7849the time t = 0 or at the
7850respective starting times of restart runs).</font></span> </p>
7851
7852
7853
7854
7855
7856      </td>
7857
7858
7859
7860
7861 </tr>
7862
7863
7864
7865
7866 <tr>
7867
7868
7869
7870
7871      <td style="vertical-align: top;"><a name="dt_max"></a><span style="font-weight: bold;">dt_max</span></td>
7872
7873
7874
7875
7876      <td style="vertical-align: top;">R</td>
7877
7878
7879
7880
7881      <td style="vertical-align: top;"><span style="font-style: italic;">20.0</span></td>
7882
7883
7884
7885
7886      <td>Maximum
7887allowed value of the timestep (in s).<br>
7888
7889
7890
7891
7892      <br>
7893
7894
7895
7896
7897By default,
7898the maximum timestep is restricted to be 20 s. This might be o.k. for
7899simulations of any kind of atmospheric turbulence but may have to be
7900changed for other situations.</td>
7901
7902
7903
7904
7905    </tr>
7906
7907
7908
7909
7910    <tr>
7911
7912
7913
7914
7915 <td style="vertical-align: top;"> 
7916     
7917     
7918     
7919     
7920      <p><a name="dt_restart"></a><b>dt_restart</b></p>
7921
7922
7923
7924
7925
7926      </td>
7927
7928
7929
7930
7931 <td style="vertical-align: top;">R</td>
7932
7933
7934
7935
7936
7937      <td style="vertical-align: top;"><i>9999999.9</i></td>
7938
7939
7940
7941
7942
7943      <td style="vertical-align: top;"> 
7944     
7945     
7946     
7947     
7948      <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
7949interval</font> at which a new
7950restart run is to be carried out (</font>in <font face="Thorndale">s). </font> </p>
7951
7952
7953
7954
7955 
7956     
7957     
7958     
7959     
7960      <p><span lang="en-GB"><font face="Thorndale">For a
7961description
7962how to assign restart times manually see run time parameter </font></span><a href="#restart_time"><span lang="en-GB"><font face="Thorndale">restart_time</font></span></a><span lang="en-GB"><font face="Thorndale">. <span style="font-weight: bold;">dt_restart</span>
7963does not show any effect, if <span style="font-weight: bold;">restart_time</span>
7964has not been set.</font></span></p>
7965
7966
7967
7968     
7969     
7970     
7971      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
7972and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
7973
7974
7975
7976
7977 </td>
7978
7979
7980
7981
7982 </tr>
7983
7984
7985
7986
7987
7988    <tr>
7989
7990
7991
7992
7993 <td style="vertical-align: top;"> 
7994     
7995     
7996     
7997     
7998      <p><a name="dt_run_control"></a><b>dt_run_control</b></p>
7999
8000
8001
8002
8003
8004      </td>
8005
8006
8007
8008
8009 <td style="vertical-align: top;">R</td>
8010
8011
8012
8013
8014
8015      <td style="vertical-align: top;"><i>60.0</i></td>
8016
8017
8018
8019
8020
8021      <td style="vertical-align: top;"> 
8022     
8023     
8024     
8025     
8026      <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
8027interval</font> at which run control
8028output is to be made (</font>in <font face="Thorndale">s).&nbsp;
8029      </font> </p>
8030
8031
8032
8033
8034 
8035     
8036     
8037     
8038     
8039      <p><span lang="en-GB"><font face="Thorndale">Run control
8040information is output to the local ASCII-file </font></span><a href="chapter_3.4.html#RUN_CONTROL"><span lang="en-GB"><font face="Thorndale">RUN_CONTROL</font></span></a><span lang="en-GB"><font face="Thorndale">. At each
8041output time, one line
8042with information about the size of the time step, maximum speeds, total
8043kinetic energy etc. is written to this file. Reference time is the
8044beginning of the simulation, i.e. output takes place at times t = <b>dt_run_control</b>,
80452*<b>dt_run_control</b>, 3*<b>dt_run_control</b>,
8046etc., and always at
8047the beginning of a model run (thus at the time t = 0 or at the
8048respective starting times of restart runs). The actual output times can
8049deviate from these theoretical values (see </font></span><a href="#dt_dopr_zeitpunkte"><span lang="en-GB"><font face="Thorndale">dt_dopr</font></span></a><span lang="en-GB"><font face="Thorndale">).<br>
8050
8051
8052
8053
8054
8055      </font></span></p>
8056
8057
8058
8059
8060 
8061     
8062     
8063     
8064     
8065      <p><span lang="en-GB"><font face="Thorndale">Run control
8066information is output after each time step can be achieved via <b>dt_run_control</b>
8067= <i>0.0</i>.</font></span> </p>
8068
8069
8070
8071
8072 </td>
8073
8074
8075
8076
8077
8078    </tr>
8079
8080
8081
8082
8083 <tr>
8084
8085
8086
8087
8088 <td style="vertical-align: top;">
8089     
8090     
8091     
8092     
8093      <p><a name="end_time"></a><b>end_time</b></p>
8094
8095
8096
8097
8098
8099      </td>
8100
8101
8102
8103
8104 <td style="vertical-align: top;">R</td>
8105
8106
8107
8108
8109
8110      <td style="vertical-align: top;"><i>0.0</i></td>
8111
8112
8113
8114
8115
8116      <td style="vertical-align: top;"> 
8117     
8118     
8119     
8120     
8121      <p lang="en-GB"><font face="Thorndale">Simulation time of the 3D
8122model (</font>in <font face="Thorndale">s).&nbsp;
8123      </font> </p>
8124
8125
8126
8127
8128 
8129     
8130     
8131     
8132     
8133      <p><span lang="en-GB"><font face="Thorndale">The simulation time
8134is starting from the beginning of the initialization run (t = 0), not
8135starting from the beginning of the respective restart run.</font></span></p>
8136
8137
8138
8139     
8140     
8141     
8142      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
8143and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
8144
8145
8146
8147
8148 </td>
8149
8150
8151
8152
8153 </tr>
8154
8155
8156
8157
8158 <tr>
8159
8160
8161
8162
8163 <td style="vertical-align: top;"> 
8164     
8165     
8166     
8167     
8168      <p><a name="force_print_header"></a><b>force_print_header</b></p>
8169
8170
8171
8172
8173
8174      </td>
8175
8176
8177
8178
8179 <td style="vertical-align: top;">L</td>
8180
8181
8182
8183
8184
8185      <td style="vertical-align: top;"><i>.F.</i></td>
8186
8187
8188
8189
8190
8191      <td style="vertical-align: top;"> 
8192     
8193     
8194     
8195     
8196      <p>Steering of
8197header output to the local file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.&nbsp;
8198      </p>
8199
8200
8201
8202
8203 
8204     
8205     
8206     
8207     
8208      <p>By default, informations about the model
8209parameters in use are
8210output to the beginning of file RUN_CONTROL for initial runs only
8211(these informations are identical to that which are output to the local
8212file <a href="chapter_3.4.html#HEADER">HEADER</a>).
8213With <b>force_print_header</b> = <i>.T.</i>,
8214these informations are
8215also output to <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>
8216at restart runs.</p>
8217
8218
8219
8220
8221 </td>
8222
8223
8224
8225
8226 </tr>
8227
8228
8229
8230
8231 <tr>
8232
8233
8234
8235
8236 <td style="vertical-align: top;"> 
8237     
8238     
8239     
8240     
8241      <p><a name="mg_cycles"></a><b>mg_cycles</b></p>
8242
8243
8244
8245
8246
8247      </td>
8248
8249
8250
8251
8252 <td style="vertical-align: top;">I</td>
8253
8254
8255
8256
8257
8258      <td style="vertical-align: top;"><i>-1</i></td>
8259
8260
8261
8262
8263
8264      <td style="vertical-align: top;"> 
8265     
8266     
8267     
8268     
8269      <p>Number of
8270cycles to be used with the multi-grid scheme.<br>
8271
8272
8273
8274
8275 <br>
8276
8277
8278
8279
8280
8281This parameter determines the number of cycles to be carried out in the
8282multi-grid method used for solving the Poisson equation for
8283perturbation pressure (see <a href="#psolver">psolver</a>).
8284The type of the cycles can be set with <a href="#cycle_mg">cycle_mg</a>.<br>
8285
8286
8287
8288
8289
8290      </p>
8291
8292
8293
8294
8295 <br>
8296
8297
8298
8299
8300By default (<b>mg_cyles</b> = <i>-
83011</i>), the
8302number of cycles
8303depends on the requested accuracy of the scheme (see <a href="#residual_limit">residual_limit</a>)
8304and may vary from time step to time step. In this case, the CPU time
8305for a run will be difficult to estimate, since it heavily depends on
8306the total number of the cycles to be carried out.<br>
8307
8308
8309
8310
8311 <br>
8312
8313
8314
8315
8316
8317By assigning <b>mg_cycles</b> a value (&gt;=<span style="font-style: italic;">1</span>), the number of
8318cycles can be
8319fixed so that the CPU time can be clearly estimated. <br>
8320
8321
8322
8323
8324 <br>
8325
8326
8327
8328
8329
8330      <b>Note:</b> When using a fixed number of cycles, the user
8331must
8332examine the local file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>
8333regularly to check whether the divergence of the velocity field is
8334sufficiently reduced by the pressure solver. It should be reduced at
8335least by two orders of magnitude. For cyclic boundary conditions along
8336both horizontal directions (see <a href="chapter_4.1.html#bc_lr">bc_lr</a>
8337and <a href="chapter_4.1.html#bc_ns">bc_ns</a>) <span style="font-weight: bold;">mg_cycles</span> = <span style="font-style: italic;">2</span> is typically a
8338good choice, for
8339non-cyclic lateral boundary conditions <span style="font-weight: bold;">mg_cycles</span>
8340= <span style="font-style: italic;">4</span> may be
8341sufficient.</td>
8342
8343
8344
8345
8346 </tr>
8347
8348
8349
8350
8351 <tr>
8352
8353
8354
8355
8356 <td style="vertical-align: top;"><a name="mg_switch_to_pe0_level"></a><b>mg_switch_to_pe0_<br>
8357
8358
8359
8360
8361
8362level</b></td>
8363
8364
8365
8366
8367 <td style="vertical-align: top;">I</td>
8368
8369
8370
8371
8372
8373      <td style="vertical-align: top;"><br>
8374
8375
8376
8377
8378 </td>
8379
8380
8381
8382
8383 <td style="vertical-align: top;">Grid
8384level at which data shall be gathered on PE0.<br>
8385
8386
8387
8388
8389 <br>
8390
8391
8392
8393
8394
8395In case of a run using several PEs and the multigrid method for solving
8396the Poisson equation for perturbation pressure (see <a href="#psolver">psolver</a>),
8397the value of this parameter defines on which grid level the data are
8398gathered on PE0 in order to allow for a further coarsening of the grid.
8399The finest grid defines the largest grid level. By default, the
8400gathering level is determined automatically and displayed in file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.
8401It is only possible to gather data from a level larger than the one
8402determined automatically. A test run may be neccessary to determine
8403this level.<br>
8404
8405      <br>
8406
8407Setting of <span style="font-weight: bold;">mg_switch_to_pe0_level</span> = <span style="font-style: italic;">-1</span> prevents that data are collected on PE0 at all, i.e. coarsening of grids is limited by the subdomains.</td>
8408
8409
8410
8411
8412 </tr>
8413
8414
8415
8416
8417 <tr>
8418      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="netcdf_data_format"></a>netcdf_data_format</span><br>
8419      </td>
8420      <td style="vertical-align: top;">I<br>
8421      </td>
8422      <td style="vertical-align: top;"><span style="font-style: italic;">2</span><br>
8423      </td>
8424      <td style="vertical-align: top;">Data format for NetCDF files.<br>
8425      <br>
8426This variable defines the format of the NetCDF files. Following values are allowed:<br>
8427      <br>
8428      <table style="text-align: left; width: 100%;" border="0" cellpadding="2" cellspacing="2">
8429        <tbody>
8430          <tr>
8431            <td style="vertical-align: top;"><span style="font-style: italic;">1</span><br>
8432            </td>
8433            <td style="vertical-align: top;">NetCDF classic format (filesize limited to 2GB)<br>
8434            </td>
8435          </tr>
8436          <tr>
8437            <td style="vertical-align: top;"><span style="font-style: italic;">2</span><br>
8438            </td>
8439            <td style="vertical-align: top;">NetCDF 64-bit-offset format (large file support, but single variable still limited to 2GB)<br>
8440            </td>
8441          </tr>
8442          <tr>
8443            <td style="vertical-align: top;"><span style="font-style: italic;">3</span><br>
8444            </td>
8445            <td style="vertical-align: top;">NetCDF-4 (HDF5) format (files can be as large as file system supports; unlimited variable size; allows parallel I/O)<br>
8446            </td>
8447          </tr>
8448          <tr>
8449            <td style="vertical-align: top;"><span style="font-style: italic;">4</span><br>
8450            </td>
8451            <td style="vertical-align: top;">NetCDF-4 format, but with NF90_CLASSIC_MODEL bit set (some new features of NetCDF4 are not available)<br>
8452            </td>
8453          </tr>
8454        </tbody>
8455      </table>
8456      <br>
8457      <span style="font-weight: bold;">Important:</span><br>
8458Setting <span style="font-weight: bold;">netcdf_data_format </span>&gt; <span style="font-style: italic;">2 </span>requires a NetCDF4 library (set <span style="font-family: Courier New,Courier,monospace;">-I</span>, <span style="font-family: Courier New,Courier,monospace;">-L</span>, and<span style="font-family: Courier New,Courier,monospace;"> -l </span>options for compiling and linking appropriately in configuration file). Also, preprocessor switch <span style="font-family: Courier New,Courier,monospace;">__netcdf4 </span>has to be set (see line starting with <span style="font-family: Courier New,Courier,monospace;">%cpp_opts </span>in the configuration file).<br>
8459      <br>
8460Files with NetCDF4 format cannot be read with NetCDF3 libraries.<br>
8461      </td>
8462    </tr>
8463
8464
8465
8466
8467
8468   
8469
8470
8471
8472
8473    <tr>
8474
8475
8476
8477
8478
8479      <td style="vertical-align: top;"> 
8480     
8481     
8482     
8483     
8484      <p><a name="ngsrb"></a><b>ngsrb</b></p>
8485
8486
8487
8488
8489 </td>
8490
8491
8492
8493
8494
8495      <td style="vertical-align: top;">I</td>
8496
8497
8498
8499
8500 <td style="vertical-align: top;"><i>2</i></td>
8501
8502
8503
8504
8505
8506      <td style="vertical-align: top;">Grid
8507level at which data shall be gathered on PE0.<br>
8508
8509
8510
8511
8512 <br>
8513
8514
8515
8516
8517
8518In case of a run using several PEs and the multigrid method for solving
8519the Poisson equation for perturbation pressure (see <a href="#psolver">psolver</a>),
8520the value of this parameter defines on which grid level the data are
8521gathered on PE0 in order to allow for a further coarsening of the grid.
8522The finest grid defines the largest grid level. By default, the
8523gathering level is determined automatically and displayed in file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.
8524It is only possible to gather data from a level larger than the one
8525determined automatically. A test run may be neccessary to determine
8526this level.</td>
8527
8528
8529
8530
8531 </tr>
8532
8533
8534
8535
8536 <tr>
8537
8538
8539
8540
8541 <td style="vertical-align: top;"> 
8542     
8543     
8544     
8545     
8546      <p><a name="normalizing_region"></a><b>normalizing_region</b></p>
8547
8548
8549
8550
8551
8552      </td>
8553
8554
8555
8556
8557 <td style="vertical-align: top;">I</td>
8558
8559
8560
8561
8562
8563      <td style="vertical-align: top;"><span style="font-style: italic;">0</span><br>
8564
8565
8566
8567
8568 </td>
8569
8570
8571
8572
8573
8574      <td style="vertical-align: top;"> 
8575     
8576     
8577     
8578     
8579      <p>Determines the
8580subdomain from which the normalization
8581quantities are calculated.&nbsp; </p>
8582
8583
8584
8585
8586 
8587     
8588     
8589     
8590     
8591      <p>If output
8592data of the horizontally averaged vertical profiles
8593(see <a href="#data_output_pr">data_output_pr</a>)
8594is to be normalized (see <a href="#cross_normalized_x">cross_normalized_x</a>,
8595      <a href="#cross_normalized_y">cross_normalized_y</a>),
8596the respective normalization quantities are by default calculated from
8597the averaged data of the total model domain (<b>normalizing_region</b>
8598= <i>0</i>) and are thus representative for the total
8599domain. Instead
8600of that, normalization quantities can also be calculated for a
8601subdomain. The wanted subdomain can be given with the parameter <span style="font-weight: bold;">normalizing_region</span>,
8602where <i>1</i>
8603&lt;= <b>normalizing_region</b> &lt;= <i>9 </i>must
8604hold. These
8605quantities are then used for normalizing of all profiles (even for that
8606of the total domain).</p>
8607
8608
8609
8610
8611 </td>
8612
8613
8614
8615
8616 </tr>
8617
8618
8619
8620
8621 <tr>
8622
8623      <td style="vertical-align: top;"><a href="npex"><span style="font-weight: bold;"></span></a><span style="font-weight: bold;"><a name="npex"></a>npex</span></td>
8624
8625      <td style="vertical-align: top;">I</td>
8626
8627      <td style="vertical-align: top;"><br>
8628</td>
8629
8630      <td style="vertical-align: top;">
8631     
8632      <p>Number of processors
8633along x-direction of the virtual
8634processor
8635net.&nbsp; </p>
8636
8637
8638
8639
8640
8641
8642
8643
8644 
8645     
8646     
8647     
8648     
8649     
8650     
8651     
8652     
8653      <p>For parallel runs, the total
8654number of processors to be used
8655is given by
8656the <span style="font-weight: bold;">mrun</span>
8657option <a href="http://www.muk.uni-hannover.de/software/mrun_beschreibung.html#Opt-X">-X</a>.
8658By default, depending on the type of the parallel computer, PALM
8659generates a 1d processor
8660net (domain decomposition along x, <span style="font-weight: bold;">npey</span>
8661= <span style="font-style: italic;">1</span>) or a
86622d-net (this is
8663favored on machines with fast communication network and/or large number of processors (&gt;256)). In case of a
86642d-net, it is tried to make it more or less square-shaped. If, for
8665example, 16 processors are assigned (-X 16), a 4 * 4 processor net is
8666generated (<span style="font-weight: bold;">npex</span>
8667= <span style="font-style: italic;">4</span>, <span style="font-weight: bold;">npey</span>
8668= <span style="font-style: italic;">4</span>).
8669This choice is optimal for square total domains (<a href="chapter_4.1.html#nx">nx</a>
8670= <a href="chapter_4.1.html#ny">ny</a>),
8671since then the number of ghost points at the lateral boundarys of
8672the subdomains reaches a minimum. If <span style="font-weight: bold;">nx</span>
8673and <span style="font-weight: bold;">ny</span>
8674differ extremely, the
8675processor net should be manually adjusted using adequate values for <span style="font-weight: bold;">npex</span> and <span style="font-weight: bold;">npey</span>.&nbsp; </p>
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685     
8686     
8687     
8688     
8689     
8690     
8691     
8692     
8693      <p><b>Important:</b> The value of <span style="font-weight: bold;">npex</span> * <span style="font-weight: bold;">npey</span> must exactly match the
8694value assigned by the <span style="font-weight: bold;">mrun</span>-option
8695      <tt>-X</tt>.
8696Otherwise the model run will abort with a corresponding error
8697message.&nbsp; <br>
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707Additionally, the specification of <span style="font-weight: bold;">npex</span>
8708and <span style="font-weight: bold;">npey</span>
8709may of course
8710override the default setting for the domain decomposition (1d or 2d)
8711which may have a significant (negative) effect on the code performance.
8712      </p>
8713
8714      </td>
8715
8716    </tr>
8717
8718    <tr>
8719
8720      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="npey"></a>npey</span></td>
8721
8722      <td style="vertical-align: top;">I</td>
8723
8724      <td style="vertical-align: top;"><br>
8725</td>
8726
8727      <td style="vertical-align: top;">
8728     
8729      <p>Number of processors
8730along y-direction of the virtual
8731processor
8732net.&nbsp; </p>
8733
8734
8735
8736
8737
8738
8739
8740
8741 
8742     
8743     
8744     
8745     
8746     
8747     
8748     
8749     
8750      <p>For further information see <a href="chapter_4.2.html#npex">npex</a>.</p>
8751
8752      </td>
8753
8754    </tr>
8755
8756    <tr>
8757
8758
8759
8760
8761 <td style="vertical-align: top;"> 
8762     
8763     
8764     
8765     
8766      <p><a name="nsor"></a><b>nsor</b></p>
8767
8768
8769
8770
8771
8772      </td>
8773
8774
8775
8776
8777 <td style="vertical-align: top;">I</td>
8778
8779
8780
8781
8782
8783      <td style="vertical-align: top;"><i>20</i></td>
8784
8785
8786
8787
8788
8789      <td style="vertical-align: top;"> 
8790     
8791     
8792     
8793     
8794      <p>Number of
8795iterations to be used with the SOR-scheme.&nbsp; </p>
8796
8797
8798
8799
8800 
8801     
8802     
8803     
8804     
8805      <p>This
8806parameter is only effective if the SOR-scheme is selected
8807as pressure solver (<a href="#psolver">psolver</a>
8808= <span style="font-style: italic;">'sor'</span>).
8809The number of
8810iterations necessary for a sufficient convergence of the scheme depends
8811on the grid point numbers and is to be determined by appropriate test
8812runs (the default value will not at all be sufficient for larger grid
8813point numbers). The number of iterations used for the first call of the
8814SOR-scheme (t = 0) is determined via the parameter <a href="chapter_4.1.html#nsor_ini">nsor_ini</a>.</p>
8815
8816
8817
8818
8819
8820      </td>
8821
8822
8823
8824
8825 </tr>
8826
8827
8828
8829
8830 <tr>
8831
8832
8833
8834
8835 <td style="vertical-align: top;"> 
8836     
8837     
8838     
8839     
8840      <p><a name="nz_do3d"></a><b>nz_do3d</b></p>
8841
8842
8843
8844
8845
8846      </td>
8847
8848
8849
8850
8851 <td style="vertical-align: top;">I</td>
8852
8853
8854
8855
8856
8857      <td style="vertical-align: top;"><i>nz+1</i></td>
8858
8859
8860
8861
8862
8863      <td style="vertical-align: top;"> Limits the output of 3d
8864volume data along the vertical direction (grid point index k).<br>
8865
8866
8867
8868
8869      <br>
8870
8871
8872
8873
8874By
8875default, data for all grid points along z are output. The parameter <span style="font-weight: bold;">nz_do3d</span>
8876can be used to limit the output up to a certain vertical grid point
8877(e.g. in order to reduce the amount of output data). It affects all
8878output of volume data ("normal" output to file, see <a href="#data_output">data_output</a>, as well as output
8879for <span style="font-weight: bold;">dvrp</span>-software,
8880see <a href="#mode_dvrp">mode_dvrp</a>).</td>
8881
8882
8883
8884
8885
8886    </tr>
8887
8888
8889
8890
8891 <tr>
8892
8893
8894
8895
8896 <td style="vertical-align: top;">
8897     
8898     
8899     
8900     
8901      <p><a name="omega_sor"></a><b>omega_sor</b></p>
8902
8903
8904
8905
8906
8907      </td>
8908
8909
8910
8911
8912 <td style="vertical-align: top;">R</td>
8913
8914
8915
8916
8917
8918      <td style="vertical-align: top;"><i>1.8</i></td>
8919
8920
8921
8922
8923
8924      <td style="vertical-align: top;"> 
8925     
8926     
8927     
8928     
8929      <p>Convergence
8930factor to be used with the the SOR-scheme.&nbsp; </p>
8931
8932
8933
8934
8935 
8936     
8937     
8938     
8939     
8940      <p>If
8941the SOR-scheme is selected (<a href="#psolver">psolver</a>
8942= <span style="font-style: italic;">'sor'</span>),
8943this parameter
8944determines the value of the convergence factor, where <i>1.0</i>
8945&lt;= <b>omega_sor</b> &lt; <i>2.0 </i>.
8946The optimum value of <b>omega_sor</b>
8947depends on the number of grid points along the different directions in
8948space. For non-equidistant grids it can only be determined by
8949appropriate test runs.</p>
8950
8951
8952
8953
8954 </td>
8955
8956
8957
8958
8959 </tr>
8960
8961
8962
8963
8964 <tr>
8965
8966
8967
8968
8969 <td style="vertical-align: top;"> 
8970     
8971     
8972     
8973     
8974      <p><a name="prandtl_number"></a><b>prandtl_number</b></p>
8975
8976
8977
8978
8979
8980      </td>
8981
8982
8983
8984
8985 <td style="vertical-align: top;">R</td>
8986
8987
8988
8989
8990
8991      <td style="vertical-align: top;"><i>1.0</i></td>
8992
8993
8994
8995
8996
8997      <td style="vertical-align: top;"> 
8998     
8999     
9000     
9001     
9002      <p>Ratio of the
9003eddy diffusivities for momentum and heat (K<sub>m</sub>/K<sub>h</sub>).&nbsp;
9004      </p>
9005
9006
9007
9008
9009 
9010     
9011     
9012     
9013     
9014      <p>For runs with constant eddy diffusivity (see <a href="chapter_4.1.html#km_constant">km_constant</a>),
9015this parameter can be used to assign the Prandtl number (ratio K<sub>m</sub>
9016/ K<sub>h</sub>).</p>
9017
9018
9019
9020
9021 </td>
9022
9023
9024
9025
9026 </tr>
9027
9028
9029
9030
9031 <tr>
9032
9033
9034
9035
9036      <td style="vertical-align: top;"><a name="precipitation_amount_interval"></a><span style="font-weight: bold;">precipitation_amount_</span><br style="font-weight: bold;">
9037
9038
9039
9040
9041      <span style="font-weight: bold;">interval</span></td>
9042
9043
9044
9045
9046      <td style="vertical-align: top;">R</td>
9047
9048
9049
9050
9051      <td style="vertical-align: top;"><i>value of
9052&nbsp;<a href="chapter_4.2.html#dt_do2d_xy">dt_do2d_<br>
9053
9054
9055
9056
9057xy</a></i></td>
9058
9059
9060
9061
9062      <td style="vertical-align: top;">
9063     
9064     
9065     
9066     
9067      <p lang="en-GB"><font face="Thorndale"><font face="Thorndale, serif">Temporal
9068interval</font> for which the precipitation amount (in mm) shall be calculated and output (</font>in <font face="Thorndale">s).&nbsp;
9069      </font> </p>
9070
9071
9072
9073
9074 
9075     
9076     
9077     
9078     
9079      <p><span lang="en-GB"></span><a href="chapter_4.2.html#data_output"><span lang="en-GB"></span></a><span lang="en-GB"></span><a href="chapter_4.2.html#section_xy"><span lang="en-GB"></span></a><span lang="en-GB"><font face="Thorndale">This
9080parameter requires <a href="chapter_4.1.html#precipitation">precipitation</a> = <span style="font-style: italic;">.TRUE.</span>.&nbsp;</font></span><span lang="en-GB"></span><span lang="en-GB"><font face="Thorndale"><span style="font-weight: bold;"></span><span style="font-weight: bold;"></span>The interval must be smaller or equal than the output interval for 2d horizontal cross sections given by </font></span><a href="chapter_4.2.html#dt_do2d_xy"><span lang="en-GB"><font face="Thorndale">dt_do2d_xy</font></span></a><span lang="en-GB"><font face="Thorndale">). The output of the precipitation amount also requires setting of <a href="chapter_4.2.html#data_output">data_output</a> =<span style="font-style: italic;"> 'pra*'</span>.<br>
9081
9082
9083
9084
9085
9086      </font></span></p>
9087
9088
9089
9090
9091 <span lang="en-GB"></span></td>
9092
9093
9094
9095
9096    </tr>
9097
9098
9099
9100
9101    <tr>
9102
9103
9104
9105
9106
9107      <td style="vertical-align: top;"> 
9108     
9109     
9110     
9111     
9112      <p><a name="profile_columns"></a><b>profile_columns</b></p>
9113
9114
9115
9116
9117
9118      </td>
9119
9120
9121
9122
9123 <td style="vertical-align: top;">I</td>
9124
9125
9126
9127
9128
9129      <td style="vertical-align: top;"><i>3</i></td>
9130
9131
9132
9133
9134
9135      <td style="vertical-align: top;"> 
9136     
9137     
9138     
9139     
9140      <p>Number of
9141coordinate systems to be plotted<span style="font-weight: bold;"></span>
9142in one row by <span style="font-weight: bold;">profil</span>.&nbsp;
9143      </p>
9144
9145
9146
9147
9148 
9149     
9150     
9151     
9152     
9153      <p>This parameter only applies for &nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
9154= <span style="font-style: italic;">'profil'</span>.</p>
9155
9156
9157
9158
9159     
9160     
9161     
9162     
9163      <p>It
9164determines the layout of plots of
9165horizontally averaged profiles (<a href="#data_output_pr">data_output_pr</a>)
9166when plotted with the plot software <span style="font-weight: bold;">profil</span>.
9167Generally, the number and sequence of coordinate systems (panels) to be
9168plotted on one page are
9169determined by <a href="#cross_profiles">cross_profiles</a>.
9170      <b>profile_columns</b>
9171determines how many panels are to be
9172arranged next to each other in one row (number of columns). The
9173respective number of rows on a page is assigned by <a href="#profile_rows">profile_rows</a>.
9174According to their order given by <a href="#data_output_pr">data_output_pr</a>,
9175the panels are arranged beginning in the top row from left to right and
9176then continued in the following row. If the number of panels cranz
9177&gt; <b>profile_columns</b> * <b>profile_rows</b>,
9178the remaining
9179panels are drawn on an additional page. If cranz &lt; <b>profile_columns</b>,
9180then <b>profile_columns</b> = cranz is automatically set.
9181If
9182row&nbsp; contains any panel, then the value of <b>profile_rows</b>
9183is reduced automatically.</p>
9184
9185
9186
9187
9188 </td>
9189
9190
9191
9192
9193 </tr>
9194
9195
9196
9197
9198 <tr>
9199
9200
9201
9202
9203
9204      <td style="vertical-align: top;"> 
9205     
9206     
9207     
9208     
9209      <p><a name="profile_rows"></a><b>profile_rows</b></p>
9210
9211
9212
9213
9214
9215      </td>
9216
9217
9218
9219
9220 <td style="vertical-align: top;">I</td>
9221
9222
9223
9224
9225
9226      <td style="vertical-align: top;"><i>2</i></td>
9227
9228
9229
9230
9231
9232      <td style="vertical-align: top;"> 
9233     
9234     
9235     
9236     
9237      <p>Number of rows
9238of coordinate systems to be plotted on one page
9239by <span style="font-weight: bold;">profil</span>.&nbsp;
9240      </p>
9241
9242
9243
9244
9245 
9246     
9247     
9248     
9249     
9250      <p>This parameter only applies for &nbsp;<a href="chapter_4.2.html#data_output_format">data_output_format</a>
9251= <span style="font-style: italic;">'profil'</span>.</p>
9252
9253
9254
9255
9256     
9257     
9258     
9259     
9260      <p>It
9261determines the layout of plots of horizontally averaged
9262profiles. See <a href="#profile_columns">profile_columns</a>.</p>
9263
9264
9265
9266
9267
9268      </td>
9269
9270
9271
9272
9273 </tr>
9274
9275
9276
9277
9278 <tr>
9279
9280
9281
9282
9283 <td style="vertical-align: top;"> 
9284     
9285     
9286     
9287     
9288      <p><a name="psolver"></a><b>psolver</b></p>
9289
9290
9291
9292
9293
9294      </td>
9295
9296
9297
9298
9299 <td style="vertical-align: top;">C * 10</td>
9300
9301
9302
9303
9304
9305      <td style="vertical-align: top;"><i>'poisfft'</i></td>
9306
9307
9308
9309
9310
9311      <td style="vertical-align: top;"> 
9312     
9313     
9314     
9315     
9316      <p>Scheme to be
9317used to solve the Poisson equation for the
9318perturbation pressure.&nbsp; </p>
9319
9320
9321
9322
9323 <br>
9324
9325
9326
9327
9328
9329The user can choose between the following schemes:<br>
9330
9331
9332
9333
9334 
9335     
9336     
9337     
9338     
9339      <table style="text-align: left; width: 100%;" cellpadding="2" cellspacing="2">
9340
9341
9342
9343
9344 <tbody>
9345
9346
9347
9348
9349 <tr>
9350
9351
9352
9353
9354 <td style="vertical-align: top;"><i>poisfft</i></td>
9355
9356
9357
9358
9359
9360            <td style="vertical-align: top;">Direct method using FFT
9361along x and y, solution of a
9362tridiagonal matrix along z, and backward
9363FFT (see Siano, institute reports, volume 54). The FFT routines to be
9364used can be determined via the initialization parameter <a href="chapter_4.1.html#fft_method">fft_method</a>.<br>
9365
9366
9367
9368
9369
9370This solver is specially optimized for 1d domain decompositions.
9371Vectorization is optimized for domain decompositions along x only.</td>
9372
9373
9374
9375
9376
9377          </tr>
9378
9379
9380
9381
9382 <tr>
9383
9384
9385
9386
9387 <td style="vertical-align: top;">
9388           
9389           
9390           
9391           
9392            <p><i>poisfft_</i>
9393            <br>
9394
9395
9396
9397
9398 <i>hybrid</i></p>
9399
9400
9401
9402
9403
9404            </td>
9405
9406
9407
9408
9409 <td style="vertical-align: top;">Direct
9410method using FFT
9411along x and y, solution of a
9412tridiagonal matrix along z, and backward
9413FFT (see Siano, institute reports, volume 54). The FFT routines to be
9414used can be determined via the initialization parameter <a href="chapter_4.1.html#fft_method">fft_method</a>.<br>
9415
9416
9417
9418
9419
9420This solver is specially optimized for 1d domain decompositions.
9421Vectorization is optimized for domain decompositions along x only.</td>
9422
9423
9424
9425
9426
9427          </tr>
9428
9429
9430
9431
9432 <tr>
9433
9434
9435
9436
9437 <td style="vertical-align: top;"><i>multigrid</i></td>
9438
9439
9440
9441
9442
9443            <td style="vertical-align: top;"> 
9444           
9445           
9446           
9447           
9448            <p>Multi-grid
9449scheme (see Uhlenbrock, diploma thesis). v-
9450and
9451w-cycles (see <a href="#cycle_mg">cycle_mg</a>)
9452are implemented. The convergence of the iterative scheme can be
9453steered by the number of v-/w-cycles to be carried out for each call of
9454the scheme (<a href="#mg_cycles">mg_cycles</a>)
9455and by the number of Gauss-Seidel iterations (see <a href="#ngsrb">ngsrb</a>)
9456to be carried out on each grid level. Instead the requested accuracy
9457can be given via <a href="#residual_limit">residual_limit</a>.
9458            <span style="font-weight: bold;">This is the default!</span>
9459The
9460smaller this limit is, the more cycles have to be carried out in this
9461case and the number of cycles may vary from timestep to timestep.</p>
9462
9463
9464
9465
9466
9467            <br>
9468
9469
9470
9471
9472If <a href="#mg_cycles">mg_cycles</a>
9473is set to its optimal value, the computing time of the
9474multi-grid scheme amounts approximately to that of the direct solver <span style="font-style: italic;">poisfft</span>, as long as
9475the number of
9476grid points in the three directions
9477of space corresponds to a power-of-two (2<sup>n</sup>)
9478where <i>n</i> &gt;= 5 must hold. With large <i>n,
9479            </i>the
9480multi-grid scheme can even be faster than the direct solver (although
9481its accuracy is several orders of magnitude worse, but this does not
9482affect the accuracy of the simulation). Nevertheless, the user should
9483always carry out some test runs in order to find out the optimum value
9484for <a href="#mg_cycles">mg_cycles</a>,
9485because the CPU time of a run very critically depends on this
9486parameter.
9487           
9488           
9489           
9490           
9491            <p>This scheme requires that the number of grid
9492points of
9493the
9494subdomains (or of the total domain, if only one PE is uesd) along each
9495of the directions can at least be devided once by 2 without rest.</p>
9496
9497
9498
9499
9500
9501With parallel runs, starting from a certain grid level the
9502data of the subdomains are possibly gathered on PE0 in order to allow
9503for a further coarsening of the grid. The grid level for gathering can
9504be manually set by <a href="#mg_switch_to_pe0_level">mg_switch_to_pe0_level</a>.<br>
9505
9506
9507
9508
9509
9510           
9511           
9512           
9513           
9514            <p>Using this procedure requires the subdomains to be of
9515identical size (see <a href="chapter_4.1.html#grid_matching">grid_matching</a>).</p>
9516
9517
9518
9519
9520
9521            </td>
9522
9523
9524
9525
9526 </tr>
9527
9528
9529
9530
9531 <tr>
9532
9533
9534
9535
9536 <td style="vertical-align: top;"><i>sor</i></td>
9537
9538
9539
9540
9541
9542            <td style="vertical-align: top;">Successive over
9543relaxation
9544method (SOR). The convergence of
9545this
9546iterative scheme is steered with the parameters <a href="#omega_sor">omega_sor</a>,
9547            <a href="chapter_4.1.html#nsor_ini">nsor_ini</a>
9548and <a href="chapter_4.1.html#nsor">nsor</a>.&nbsp;
9549            <br>
9550
9551
9552
9553
9554Compared to the direct method and the multi-grid method, this
9555scheme
9556needs substantially
9557more computing time. It should only be used for test runs, e.g. if
9558errors in the other pressure solver methods are assumed.</td>
9559
9560
9561
9562
9563 </tr>
9564
9565
9566
9567
9568
9569       
9570       
9571       
9572       
9573        </tbody> 
9574     
9575     
9576     
9577     
9578      </table>
9579
9580
9581
9582
9583 <br>
9584
9585
9586
9587
9588In order to speed-up
9589performance, the Poisson equation is by default
9590only solved at the last substep of a multistep Runge-Kutta scheme (see <a href="#call_psolver_at_all_substeps">call_psolver
9591at_all_substeps</a> and <a href="chapter_4.1.html#timestep_scheme">timestep_scheme</a>).&nbsp;
9592      </td>
9593
9594
9595
9596
9597 </tr>
9598
9599
9600
9601
9602 <tr>
9603
9604
9605
9606
9607 <td style="vertical-align: top;"> 
9608     
9609     
9610     
9611     
9612      <p><a name="rayleigh_damping_factor"></a><b>rayleigh_damping</b>
9613      <br>
9614
9615
9616
9617
9618 <b>_factor</b></p>
9619
9620
9621
9622
9623 </td>
9624
9625
9626
9627
9628 <td style="vertical-align: top;">R</td>
9629
9630
9631
9632
9633 <td style="vertical-align: top;"><i>0.0 or</i><br>
9634
9635
9636
9637
9638
9639      <i>0.01</i></td>
9640
9641
9642
9643
9644 <td style="vertical-align: top;">
9645     
9646     
9647     
9648     
9649      <p>Factor for Rayleigh damping.&nbsp; </p>
9650
9651
9652
9653
9654 
9655     
9656     
9657     
9658     
9659      <p>A
9660so-called Rayleigh damping is applied to all prognostic
9661variables if a non-zero value is assigned to <b>rayleigh_damping_factor</b>.&nbsp;
9662If switched on, variables are forced towards the value of their
9663respective basic states (e.g. the geostrophic wind). The intensity of
9664damping is controlled by the value the <b>rayleigh_damping_factor</b>
9665is assigned to.
9666The damping starts weakly at a height defined by <a href="#rayleigh_damping_height">rayleigh_damping_height</a>
9667and rises according to a sin<sup>2</sup>-function to its
9668maximum value
9669at
9670the top (ocean: bottom) boundary. </p>
9671
9672
9673
9674
9675 
9676     
9677     
9678     
9679     
9680      <p>This method
9681effectively damps gravity waves, caused by boundary layer convection,
9682which may spread out vertically in the inversion layer and which are
9683reflected&nbsp;at the top (ocean: bottom)
9684boundary. This particularly happens with the upstream-spline scheme
9685switched on (see <a href="chapter_4.1.html#momentum_advec">momentum_advec</a>
9686or <a href="chapter_4.1.html#scalar_advec">scalar_advec</a>).
9687Therefore, with this scheme the Rayleigh damping is switched on (<b>rayleigh_damping_factor</b>
9688= <i>0.01</i>) by default. Otherwise it remains switched
9689off.&nbsp; </p>
9690
9691
9692
9693
9694 
9695     
9696     
9697     
9698     
9699      <p>The Rayleigh damping factor must
9700hold the condition <i>0.0</i>
9701&lt;= <b>rayleigh_damping_factor</b>
9702&lt;= <i>1.0</i>. Large values (close to <span style="font-style: italic;">1.0</span>) can cause
9703numerical instabilities.</p>
9704
9705
9706
9707
9708 </td>
9709
9710
9711
9712
9713 </tr>
9714
9715
9716
9717
9718 <tr>
9719
9720
9721
9722
9723
9724      <td style="vertical-align: top;"> 
9725     
9726     
9727     
9728     
9729      <p><a name="rayleigh_damping_height"></a><b>rayleigh_damping</b>
9730      <br>
9731
9732
9733
9734
9735 <b>_height</b></p>
9736
9737
9738
9739
9740 </td>
9741
9742
9743
9744
9745 <td style="vertical-align: top;">R</td>
9746
9747
9748
9749
9750 <td style="vertical-align: top;"> 
9751     
9752     
9753     
9754     
9755      <p><i>2/3 *</i>
975