source: palm/trunk/DOC/app/chapter_4.1.html @ 5

Last change on this file since 5 was 5, checked in by raasch, 14 years ago

html-documentation added

File size: 182.1 KB
Line 
1<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head>
3
4
5
6
7
8
9
10
11
12
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23  <meta http-equiv="content-type" content="text/html; charset=ISO-8859-1"><title>PALM chapter 4.1</title></head>
24<body>
25
26
27
28
29
30
31
32
33
34
35<h3><a name="chapter4.1"></a>4.1 Initialization parameters</h3>
36
37
38
39
40
41
42
43
44
45
46<br>
47
48
49
50
51
52
53
54
55
56
57<table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2">
58
59
60
61
62
63
64
65
66
67
68  <tbody>
69
70
71
72
73
74
75
76
77
78
79    <tr>
80
81
82
83
84
85
86
87
88
89
90      <td style="vertical-align: top;"><font size="4"><b>Parameter name</b></font></td>
91
92
93
94
95
96
97
98
99
100
101      <td style="vertical-align: top;"><font size="4"><b>Type</b></font></td>
102
103
104
105
106
107
108
109
110
111
112      <td style="vertical-align: top;">
113     
114     
115     
116     
117     
118     
119     
120     
121     
122     
123      <p><b><font size="4">Default</font></b> <br>
124
125
126
127
128
129
130
131
132
133
134      <b><font size="4">value</font></b></p>
135
136
137
138
139
140
141
142
143
144
145      </td>
146
147
148
149
150
151
152
153
154
155
156      <td style="vertical-align: top;"><font size="4"><b>Explanation</b></font></td>
157
158
159
160
161
162
163
164
165
166
167    </tr>
168
169
170
171
172
173
174
175
176
177
178    <tr>
179
180
181
182
183
184
185
186
187
188
189      <td style="vertical-align: top;">
190     
191     
192     
193     
194     
195     
196     
197     
198     
199     
200      <p><a name="adjust_mixing_length"></a><b>adjust_mixing_length</b></p>
201
202
203
204
205
206
207
208
209
210
211      </td>
212
213
214
215
216
217
218
219
220
221
222      <td style="vertical-align: top;">L</td>
223
224
225
226
227
228
229
230
231
232
233      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
234
235
236
237
238
239
240
241
242
243
244      <td style="vertical-align: top;">
245     
246     
247     
248     
249     
250     
251     
252     
253     
254     
255      <p style="font-style: normal;">Near-surface adjustment of the
256mixing length to the Prandtl-layer law.&nbsp; </p>
257
258
259
260
261
262
263
264
265
266
267     
268     
269     
270     
271     
272     
273     
274     
275     
276     
277      <p>Usually the mixing length in LES models l<sub>LES</sub>
278depends (as in PALM) on the grid size and is possibly restricted
279further in case of stable stratification and near the lower wall (see
280parameter <a href="#wall_adjustment">wall_adjustment</a>).
281With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span>
282the Prandtl' mixing length l<sub>PR</sub> = kappa * z/phi is calculated
283and the mixing length actually used in the model is set l = MIN (l<sub>LES</sub>,
284l<sub>PR</sub>). This usually gives a decrease of the mixing length at
285the bottom boundary and considers the fact that eddy sizes
286decrease in the vicinity of the wall.&nbsp; </p>
287
288
289
290
291
292
293
294
295
296
297     
298     
299     
300     
301     
302     
303     
304     
305     
306     
307      <p style="font-style: normal;"><b>Warning:</b> So far, there is
308no good experience with <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> !&nbsp; </p>
309
310
311
312
313
314
315
316
317
318
319     
320     
321     
322     
323     
324     
325     
326     
327     
328     
329      <p>With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> and the Prandtl-layer being
330switched on (see <a href="#prandtl_layer">prandtl_layer</a>) <span style="font-style: italic;">'(u*)** 2+neumann'</span>
331should always be set as the lower boundary condition for the TKE (see <a href="#bc_e_b">bc_e_b</a>),
332otherwise the near-surface value of the TKE is not in agreement with
333the Prandtl-layer law (Prandtl-layer law and Prandtl-Kolmogorov-Ansatz
334should provide the same value for K<sub>m</sub>). A warning is given,
335if this is not the case.</p>
336
337
338
339
340
341
342
343
344
345
346      </td>
347
348
349
350
351
352
353
354
355
356
357    </tr>
358
359
360
361
362
363
364
365
366
367
368    <tr>
369
370
371
372
373
374
375
376
377
378
379      <td style="vertical-align: top;">
380     
381     
382     
383     
384     
385     
386     
387     
388     
389     
390      <p><a name="alpha_surface"></a><b>alpha_surface</b></p>
391
392
393
394
395
396
397
398
399
400
401      </td>
402
403
404
405
406
407
408
409
410
411
412      <td style="vertical-align: top;">R<br>
413
414
415
416
417
418
419
420
421
422
423      </td>
424
425
426
427
428
429
430
431
432
433
434      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
435
436
437
438
439
440
441
442
443
444
445      </td>
446
447
448
449
450
451
452
453
454
455
456      <td style="vertical-align: top;">
457     
458     
459     
460     
461     
462     
463     
464     
465     
466     
467      <p style="font-style: normal;">Inclination of the model domain
468with respect to the horizontal (in degrees).&nbsp; </p>
469
470
471
472
473
474
475
476
477
478
479     
480     
481     
482     
483     
484     
485     
486     
487     
488     
489      <p style="font-style: normal;">By means of <b>alpha_surface</b>
490the model domain can be inclined in x-direction with respect to the
491horizontal. In this way flows over inclined surfaces (e.g. drainage
492flows, gravity flows) can be simulated. In case of <b>alpha_surface </b>/=
493      <span style="font-style: italic;">0</span> the buoyancy term
494appears both in
495the equation of motion of the u-component and of the w-component.<br>
496
497
498
499
500
501
502
503
504
505
506      </p>
507
508
509
510
511
512
513
514
515
516
517     
518     
519     
520     
521     
522     
523     
524     
525     
526     
527      <p style="font-style: normal;">An inclination is only possible in
528case of cyclic horizontal boundary conditions along x AND y (see <a href="#bc_lr">bc_lr</a>
529and <a href="#bc_ns">bc_ns</a>) and <a href="#topography">topography</a> = <span style="font-style: italic;">'flat'</span>. </p>
530
531
532
533
534
535
536
537
538
539
540     
541     
542     
543     
544     
545     
546     
547     
548     
549     
550      <p>Runs with inclined surface still require additional
551user-defined code as well as modifications to the default code. Please
552ask the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/PALM_group.html#0">PALM
553developer&nbsp; group</a>.</p>
554
555
556
557
558
559
560
561
562
563
564      </td>
565
566
567
568
569
570
571
572
573
574
575    </tr>
576
577
578
579
580
581
582
583
584
585
586    <tr>
587
588
589
590
591
592
593
594
595
596
597      <td style="vertical-align: top;">
598     
599     
600     
601     
602     
603     
604     
605     
606     
607     
608      <p><a name="bc_e_b"></a><b>bc_e_b</b></p>
609
610
611
612
613
614
615
616
617
618
619      </td>
620
621
622
623
624
625
626
627
628
629
630      <td style="vertical-align: top;">C * 20</td>
631
632
633
634
635
636
637
638
639
640
641      <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
642
643
644
645
646
647
648
649
650
651
652      <td style="vertical-align: top;">
653     
654     
655     
656     
657     
658     
659     
660     
661     
662     
663      <p style="font-style: normal;">Bottom boundary condition of the
664TKE.&nbsp; </p>
665
666
667
668
669
670
671
672
673
674
675     
676     
677     
678     
679     
680     
681     
682     
683     
684     
685      <p><b>bc_e_b</b> may be set to&nbsp;<span style="font-style: italic;">'neumann'</span> or <span style="font-style: italic;">'(u*) ** 2+neumann'</span>. <b>bc_e_b</b>
686= <span style="font-style: italic;">'neumann'</span> yields to
687e(k=0)=e(k=1) (Neumann boundary condition), where e(k=1) is calculated
688via the prognostic TKE equation. Choice of <span style="font-style: italic;">'(u*)**2+neumann'</span> also yields to
689e(k=0)=e(k=1), but the TKE at the Prandtl-layer top (k=1) is calculated
690diagnostically by e(k=1)=(us/0.1)**2. However, this is only allowed if
691a Prandtl-layer is used (<a href="#prandtl_layer">prandtl_layer</a>).
692If this is not the case, a warning is given and <b>bc_e_b</b> is reset
693to <span style="font-style: italic;">'neumann'</span>.&nbsp; </p>
694
695
696
697
698
699
700
701
702
703
704     
705     
706     
707     
708     
709     
710     
711     
712     
713     
714      <p style="font-style: normal;">At the top boundary a Neumann
715boundary condition is generally used: (e(nz+1) = e(nz)).</p>
716
717
718
719
720
721
722
723
724
725
726      </td>
727
728
729
730
731
732
733
734
735
736
737    </tr>
738
739
740
741
742
743
744
745
746
747
748    <tr>
749
750
751
752
753
754
755
756
757
758
759      <td style="vertical-align: top;">
760     
761     
762     
763     
764     
765     
766     
767     
768     
769     
770      <p><a name="bc_lr"></a><b>bc_lr</b></p>
771
772
773
774
775
776
777
778
779
780
781      </td>
782
783
784
785
786
787
788
789
790
791
792      <td style="vertical-align: top;">C * 20</td>
793
794
795
796
797
798
799
800
801
802
803      <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td>
804
805
806
807
808
809
810
811
812
813
814      <td style="vertical-align: top;">Boundary
815condition along x (for all quantities).<br>
816
817
818
819
820
821
822
823
824
825
826      <br>
827
828
829
830
831
832
833
834
835
836
837By default, a cyclic boundary condition is used along x.<br>
838
839
840
841
842
843
844
845
846
847
848      <br>
849
850
851
852
853
854
855
856
857
858
859      <span style="font-weight: bold;">bc_lr</span> may also be
860assigned the values <span style="font-style: italic;">'dirichlet/neumann'</span>
861(inflow from left, outflow to the right) or <span style="font-style: italic;">'neumann/dirichlet'</span> (inflow from
862right, outflow to the left). This requires the multi-grid method to be
863used for solving the Poisson equation for perturbation pressure (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>)
864and it also requires cyclic boundary conditions along y (see<br>
865
866
867
868
869
870
871
872
873
874
875      <a href="#bc_ns">bc_ns</a>).<br>
876
877
878
879
880
881
882
883
884
885
886      <br>
887
888
889
890
891
892
893
894
895
896
897In case of these non-cyclic lateral boundaries, a Dirichlet condition
898is used at the inflow for all quantities (initial vertical profiles -
899see <a href="#initializing_actions">initializing_actions</a>
900- are fixed during the run) except u, to which a Neumann (zero
901gradient) condition is applied. At the outflow, a Neumann (zero
902gradient) condition is used for all quantities except v, which is set
903to its horizontal average along the outflow (e.g. v(k,:,nx+1) =
904average_along_y( v(k,:,nx)), and except w, which is set to zero
905(Dirichlet condition). These conditions ensure the velocity field to be
906free of divergence at the inflow and at the outflow. For perturbation
907pressure Neumann (zero gradient) conditions are assumed both at the
908inflow and at the outflow.<br>
909
910
911
912
913
914
915
916
917
918
919      <br>
920
921
922
923
924
925
926
927
928
929
930When using non-cyclic lateral boundaries, a filter is applied to the
931velocity field in the vicinity of the outflow in order to suppress any
932reflections of outgoing disturbances (see <a href="#km_damp_max">km_damp_max</a>
933and <a href="#outflow_damping_width">outflow_damping_width</a>).<br>
934
935
936
937
938
939
940
941
942
943
944      <br>
945
946
947
948
949
950
951
952
953
954
955In order to maintain a turbulent state of the flow, it may be
956neccessary to continuously impose perturbations on the horizontal
957velocity field in the vicinity of the inflow throughout the whole run.
958This can be switched on using <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#create_disturbances">create_disturbances</a>.
959The horizontal range to which these perturbations are applied is
960controlled by the parameters <a href="#inflow_disturbance_begin">inflow_disturbance_begin</a>
961and <a href="#inflow_disturbance_end">inflow_disturbance_end</a>.
962The vertical range and the perturbation amplitude are given by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_b</a>,
963      <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_t</a>,
964and <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_amplitude</a>.
965The time interval at which perturbations are to be imposed is set by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#dt_disturb">dt_disturb</a>.<br>
966
967
968
969
970
971
972
973
974
975
976      <br>
977
978
979
980
981
982
983
984
985
986
987In case of non-cyclic horizontal boundaries <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#call_psolver_at_all_substeps">call_psolver
988at_all_substeps</a> = .T. should be used.<br>
989
990
991
992
993
994
995
996
997
998
999      <br>
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010      <span style="font-weight: bold;">Note:</span><br>
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021Using non-cyclic lateral boundaries requires very sensitive adjustments
1022of the inflow (vertical profiles) and the bottom boundary conditions,
1023e.g. a surface heating should not be applied near the inflow boundary
1024because this may significantly disturb the inflow. Please check the
1025model results very carefully.</td>
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036    </tr>
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047    <tr>
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058      <td style="vertical-align: top;">
1059     
1060     
1061     
1062     
1063     
1064     
1065     
1066     
1067     
1068     
1069      <p><a name="bc_ns"></a><b>bc_ns</b></p>
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080      </td>
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091      <td style="vertical-align: top;">C * 20</td>
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102      <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td>
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113      <td style="vertical-align: top;">Boundary
1114condition along y (for all quantities).<br>
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125      <br>
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136By default, a cyclic boundary condition is used along y.<br>
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147      <br>
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158      <span style="font-weight: bold;">bc_ns</span> may also be
1159assigned the values <span style="font-style: italic;">'dirichlet/neumann'</span>
1160(inflow from rear ("north"), outflow to the front ("south")) or <span style="font-style: italic;">'neumann/dirichlet'</span>
1161(inflow from front ("south"), outflow to the rear ("north")). This
1162requires the multi-grid
1163method to be used for solving the Poisson equation for perturbation
1164pressure (see <a href="chapter_4.2.html#psolver">psolver</a>)
1165and it also requires cyclic boundary conditions along x (see<br>
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176      <a href="#bc_lr">bc_lr</a>).<br>
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187      <br>
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198In case of these non-cyclic lateral boundaries, a Dirichlet condition
1199is used at the inflow for all quantities (initial vertical profiles -
1200see <a href="#initializing_actions">initializing_actions</a>
1201- are fixed during the run) except v, to which a Neumann (zero
1202gradient) condition is applied. At the outflow, a Neumann (zero
1203gradient) condition is used for all quantities except u, which is set
1204to its horizontal average along the outflow (e.g. u(k,ny+1,:) =
1205average_along_x( u(k,ny,:)), and except w, which is set to zero
1206(Dirichlet condition). These conditions ensure the velocity field to be
1207free of divergence at the inflow and at the outflow. For perturbation
1208pressure Neumann (zero gradient) conditions are assumed both at the
1209inflow and at the outflow.<br>
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220      <br>
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231For further details regarding non-cyclic lateral boundary conditions
1232see <a href="#bc_lr">bc_lr</a>.</td>
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243    </tr>
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254    <tr>
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265      <td style="vertical-align: top;">
1266     
1267     
1268     
1269     
1270     
1271     
1272     
1273     
1274     
1275     
1276      <p><a name="bc_p_b"></a><b>bc_p_b</b></p>
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287      </td>
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298      <td style="vertical-align: top;">C * 20</td>
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309      <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320      <td style="vertical-align: top;">
1321     
1322     
1323     
1324     
1325     
1326     
1327     
1328     
1329     
1330     
1331      <p style="font-style: normal;">Bottom boundary condition of the
1332perturbation pressure.&nbsp; </p>
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343     
1344     
1345     
1346     
1347     
1348     
1349     
1350     
1351     
1352     
1353      <p>Allowed values are <span style="font-style: italic;">'dirichlet'</span>,
1354      <span style="font-style: italic;">'neumann'</span> and <span style="font-style: italic;">'neumann+inhomo'</span>.&nbsp; <span style="font-style: italic;">'dirichlet'</span> sets
1355p(k=0)=0.0,&nbsp; <span style="font-style: italic;">'neumann'</span>
1356sets p(k=0)=p(k=1). <span style="font-style: italic;">'neumann+inhomo'</span>
1357corresponds to an extended Neumann boundary condition where heat flux
1358or temperature inhomogeneities near the
1359surface (pt(k=1))&nbsp; are additionally regarded (see Shen and LeClerc
1360(1995, Q.J.R. Meteorol. Soc.,
13611209)). This condition is only permitted with the Prandtl-layer
1362switched on (<a href="#prandtl_layer">prandtl_layer</a>),
1363otherwise the run is terminated.&nbsp; </p>
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374     
1375     
1376     
1377     
1378     
1379     
1380     
1381     
1382     
1383     
1384      <p>Since at the bottom boundary of the model the vertical
1385velocity
1386disappears (w(k=0) = 0.0), the consistent Neumann condition (<span style="font-style: italic;">'neumann'</span> or <span style="font-style: italic;">'neumann+inhomo'</span>) dp/dz = 0 should
1387be used, which leaves the vertical component w unchanged when the
1388pressure solver is applied. Simultaneous use of the Neumann boundary
1389conditions both at the bottom and at the top boundary (<a href="#bc_p_t">bc_p_t</a>)
1390usually yields no consistent solution for the perturbation pressure and
1391should be avoided.</p>
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402      </td>
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413    </tr>
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424    <tr>
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435      <td style="vertical-align: top;">
1436     
1437     
1438     
1439     
1440     
1441     
1442     
1443     
1444     
1445     
1446      <p><a name="bc_p_t"></a><b>bc_p_t</b></p>
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457      </td>
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468      <td style="vertical-align: top;">C * 20</td>
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490      <td style="vertical-align: top;">
1491     
1492     
1493     
1494     
1495     
1496     
1497     
1498     
1499     
1500     
1501      <p style="font-style: normal;">Top boundary condition of the
1502perturbation pressure.&nbsp; </p>
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513     
1514     
1515     
1516     
1517     
1518     
1519     
1520     
1521     
1522     
1523      <p style="font-style: normal;">Allowed values are <span style="font-style: italic;">'dirichlet'</span> (p(k=nz+1)= 0.0) or <span style="font-style: italic;">'neumann'</span>
1524(p(k=nz+1)=p(k=nz)).&nbsp; </p>
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535     
1536     
1537     
1538     
1539     
1540     
1541     
1542     
1543     
1544     
1545      <p>Simultaneous use of Neumann boundary conditions both at the
1546top and bottom boundary (<a href="#bc_p_b">bc_p_b</a>)
1547usually yields no consistent solution for the perturbation pressure and
1548should be avoided. Since at the bottom boundary the Neumann
1549condition&nbsp; is a good choice (see <a href="#bc_p_b">bc_p_b</a>),
1550a Dirichlet condition should be set at the top boundary.</p>
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561      </td>
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572    </tr>
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583    <tr>
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594      <td style="vertical-align: top;">
1595     
1596     
1597     
1598     
1599     
1600     
1601     
1602     
1603     
1604     
1605      <p><a name="bc_pt_b"></a><b>bc_pt_b</b></p>
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616      </td>
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627      <td style="vertical-align: top;">C*20</td>
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649      <td style="vertical-align: top;">
1650     
1651     
1652     
1653     
1654     
1655     
1656     
1657     
1658     
1659     
1660      <p style="font-style: normal;">Bottom boundary condition of the
1661potential temperature.&nbsp; </p>
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672     
1673     
1674     
1675     
1676     
1677     
1678     
1679     
1680     
1681     
1682      <p>Allowed values are <span style="font-style: italic;">'dirichlet'</span>
1683(pt(k=0) = const. = <a href="#pt_surface">pt_surface</a>
1684+ <a href="#pt_surface_initial_change">pt_surface_initial_change</a>;
1685the user may change this value during the run using user-defined code)
1686and <span style="font-style: italic;">'neumann'</span>
1687(pt(k=0)=pt(k=1)).&nbsp; <br>
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698When a constant surface sensible heat flux is used (<a href="#surface_heatflux">surface_heatflux</a>), <b>bc_pt_b</b> = <span style="font-style: italic;">'neumann'</span>
1699must be used, because otherwise the resolved scale may contribute to
1700the surface flux so that a constant value cannot be guaranteed.</p>
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711      </td>
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722    </tr>
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733    <tr>
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744      <td style="vertical-align: top;">
1745     
1746     
1747     
1748     
1749     
1750     
1751     
1752     
1753     
1754     
1755      <p><a name="pc_pt_t"></a><b>bc_pt_t</b></p>
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766      </td>
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777      <td style="vertical-align: top;">C * 20</td>
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788      <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799      <td style="vertical-align: top;">
1800     
1801     
1802     
1803     
1804     
1805     
1806     
1807     
1808     
1809     
1810      <p style="font-style: normal;">Top boundary condition of the
1811potential temperature.&nbsp; </p>
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822     
1823     
1824     
1825     
1826     
1827     
1828     
1829     
1830     
1831     
1832      <p>Allowed are the values <span style="font-style: italic;">'dirichlet'
1833      </span>(pt(k=nz) and pt(k=nz+1)
1834do not change during the run) and <span style="font-style: italic;">'neumann'</span>.
1835With the Neumann boundary
1836condition the value of the temperature gradient at the top is
1837calculated from the initial
1838temperature profile (see <a href="#pt_surface">pt_surface</a>, <a href="#pt_vertical_gradient">pt_vertical_gradient</a>)
1839by bc_pt_t_val = (pt_init(k=nz) -
1840pt_init(k=nz-1)) / dzu(nz).<br>
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851Using this value (assumed constant during the
1852run) the temperature boundary values are calculated as&nbsp; </p>
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863     
1864     
1865     
1866     
1867     
1868     
1869     
1870     
1871     
1872     
1873      <ul>
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884       
1885       
1886       
1887       
1888       
1889       
1890       
1891       
1892       
1893       
1894        <p style="font-style: normal;">pt(k=nz) = pt(k=nz-1) +
1895bc_pt_t_val * dzu(nz)</p>
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906     
1907     
1908     
1909     
1910     
1911     
1912     
1913     
1914     
1915     
1916      </ul>
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927     
1928     
1929     
1930     
1931     
1932     
1933     
1934     
1935     
1936     
1937      <p style="font-style: normal;">and&nbsp; </p>
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948     
1949     
1950     
1951     
1952     
1953     
1954     
1955     
1956     
1957     
1958      <ul>
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969       
1970       
1971       
1972       
1973       
1974       
1975       
1976       
1977       
1978       
1979        <p style="font-style: normal;">pt(k=nz+1) = pt(k=nz) +
1980bc_pt_t_val * dzu(nz+1)</p>
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991     
1992     
1993     
1994     
1995     
1996     
1997     
1998     
1999     
2000     
2001      </ul>
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012     
2013     
2014     
2015     
2016     
2017     
2018     
2019     
2020     
2021     
2022      <p style="font-style: normal;">(up to k=nz-1 the prognostic
2023equation for the temperature is solved).</p>
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034      </td>
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045    </tr>
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056    <tr>
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067      <td style="vertical-align: top;">
2068     
2069     
2070     
2071     
2072     
2073     
2074     
2075     
2076     
2077     
2078      <p><a name="bc_q_b"></a><b>bc_q_b</b></p>
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089      </td>
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100      <td style="vertical-align: top;">C * 20</td>
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122      <td style="vertical-align: top;">
2123     
2124     
2125     
2126     
2127     
2128     
2129     
2130     
2131     
2132     
2133      <p style="font-style: normal;">Bottom boundary condition of the
2134specific humidity / total water content.&nbsp; </p>
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145     
2146     
2147     
2148     
2149     
2150     
2151     
2152     
2153     
2154     
2155      <p>Allowed values are <span style="font-style: italic;">'dirichlet'</span>
2156(q(k=0) = const. = <a href="#q_surface">q_surface</a>
2157+ <a href="#q_surface_initial_change">q_surface_initial_change</a>;
2158the user may change this value during the run using user-defined code)
2159and <span style="font-style: italic;">'neumann'</span>
2160(q(k=0)=q(k=1)).&nbsp; <br>
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171When a constant surface latent heat flux is used (<a href="#surface_waterflux">surface_waterflux</a>), <b>bc_q_b</b> = <span style="font-style: italic;">'neumann'</span>
2172must be used, because otherwise the resolved scale may contribute to
2173the surface flux so that a constant value cannot be guaranteed.</p>
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184      </td>
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195    </tr>
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206    <tr>
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217      <td style="vertical-align: top;">
2218     
2219     
2220     
2221     
2222     
2223     
2224     
2225     
2226     
2227     
2228      <p><a name="bc_q_t"></a><b>bc_q_t</b></p>
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239      </td>
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250      <td style="vertical-align: top;"><span style="font-style: italic;">C
2251* 20</span></td>
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262      <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273      <td style="vertical-align: top;">
2274     
2275     
2276     
2277     
2278     
2279     
2280     
2281     
2282     
2283     
2284      <p style="font-style: normal;">Top boundary condition of the
2285specific humidity / total water content.&nbsp; </p>
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296     
2297     
2298     
2299     
2300     
2301     
2302     
2303     
2304     
2305     
2306      <p>Allowed are the values <span style="font-style: italic;">'dirichlet'</span>
2307(q(k=nz) and q(k=nz+1) do
2308not change during the run) and <span style="font-style: italic;">'neumann'</span>.
2309With the Neumann boundary
2310condition the value of the humidity gradient at the top is calculated
2311from the
2312initial humidity profile (see <a href="#q_surface">q_surface</a>, <a href="#q_vertical_gradient">q_vertical_gradient</a>)
2313by: bc_q_t_val = ( q_init(k=nz) - q_init(k=nz-1)) / dzu(nz).<br>
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324Using this value (assumed constant during the run) the humidity
2325boundary values
2326are calculated as&nbsp; </p>
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337     
2338     
2339     
2340     
2341     
2342     
2343     
2344     
2345     
2346     
2347      <ul>
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358       
2359       
2360       
2361       
2362       
2363       
2364       
2365       
2366       
2367       
2368        <p style="font-style: normal;">q(k=nz) = q(k=nz-1) +
2369bc_q_t_val * dzu(nz)</p>
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380     
2381     
2382     
2383     
2384     
2385     
2386     
2387     
2388     
2389     
2390      </ul>
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401     
2402     
2403     
2404     
2405     
2406     
2407     
2408     
2409     
2410     
2411      <p style="font-style: normal;">and&nbsp; </p>
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422     
2423     
2424     
2425     
2426     
2427     
2428     
2429     
2430     
2431     
2432      <ul>
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443       
2444       
2445       
2446       
2447       
2448       
2449       
2450       
2451       
2452       
2453        <p style="font-style: normal;">q(k=nz+1) =q(k=nz) +
2454bc_q_t_val * dzu(nz+1)</p>
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465     
2466     
2467     
2468     
2469     
2470     
2471     
2472     
2473     
2474     
2475      </ul>
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486     
2487     
2488     
2489     
2490     
2491     
2492     
2493     
2494     
2495     
2496      <p style="font-style: normal;">(up tp k=nz-1 the prognostic
2497equation for q is solved). </p>
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508      </td>
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519    </tr>
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530    <tr>
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541      <td style="vertical-align: top;">
2542     
2543     
2544     
2545     
2546     
2547     
2548     
2549     
2550     
2551     
2552      <p><a name="bc_s_b"></a><b>bc_s_b</b></p>
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563      </td>
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574      <td style="vertical-align: top;">C * 20</td>
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596      <td style="vertical-align: top;">
2597     
2598     
2599     
2600     
2601     
2602     
2603     
2604     
2605     
2606     
2607      <p style="font-style: normal;">Bottom boundary condition of the
2608scalar concentration.&nbsp; </p>
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619     
2620     
2621     
2622     
2623     
2624     
2625     
2626     
2627     
2628     
2629      <p>Allowed values are <span style="font-style: italic;">'dirichlet'</span>
2630(s(k=0) = const. = <a href="#s_surface">s_surface</a>
2631+ <a href="#s_surface_initial_change">s_surface_initial_change</a>;
2632the user may change this value during the run using user-defined code)
2633and <span style="font-style: italic;">'neumann'</span> (s(k=0) =
2634s(k=1)).&nbsp; <br>
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645When a constant surface concentration flux is used (<a href="#surface_scalarflux">surface_scalarflux</a>), <b>bc_s_b</b> = <span style="font-style: italic;">'neumann'</span>
2646must be used, because otherwise the resolved scale may contribute to
2647the surface flux so that a constant value cannot be guaranteed.</p>
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658      </td>
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669    </tr>
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680    <tr>
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691      <td style="vertical-align: top;">
2692     
2693     
2694     
2695     
2696     
2697     
2698     
2699     
2700     
2701     
2702      <p><a name="bc_s_t"></a><b>bc_s_t</b></p>
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713      </td>
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724      <td style="vertical-align: top;">C * 20</td>
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735      <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746      <td style="vertical-align: top;">
2747     
2748     
2749     
2750     
2751     
2752     
2753     
2754     
2755     
2756     
2757      <p style="font-style: normal;">Top boundary condition of the
2758scalar concentration.&nbsp; </p>
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769     
2770     
2771     
2772     
2773     
2774     
2775     
2776     
2777     
2778     
2779      <p>Allowed are the values <span style="font-style: italic;">'dirichlet'</span>
2780(s(k=nz) and s(k=nz+1) do
2781not change during the run) and <span style="font-style: italic;">'neumann'</span>.
2782With the Neumann boundary
2783condition the value of the scalar concentration gradient at the top is
2784calculated
2785from the initial scalar concentration profile (see <a href="#s_surface">s_surface</a>,
2786      <a href="#s_vertical_gradient">s_vertical_gradient</a>)
2787by: bc_s_t_val = (s_init(k=nz) - s_init(k=nz-1)) / dzu(nz).<br>
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798Using this value (assumed constant during the run) the concentration
2799boundary values
2800are calculated as </p>
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811     
2812     
2813     
2814     
2815     
2816     
2817     
2818     
2819     
2820     
2821      <ul>
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832       
2833       
2834       
2835       
2836       
2837       
2838       
2839       
2840       
2841       
2842        <p style="font-style: normal;">s(k=nz) = s(k=nz-1) +
2843bc_s_t_val * dzu(nz)</p>
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854     
2855     
2856     
2857     
2858     
2859     
2860     
2861     
2862     
2863     
2864      </ul>
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875     
2876     
2877     
2878     
2879     
2880     
2881     
2882     
2883     
2884     
2885      <p style="font-style: normal;">and&nbsp; </p>
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896     
2897     
2898     
2899     
2900     
2901     
2902     
2903     
2904     
2905     
2906      <ul>
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917       
2918       
2919       
2920       
2921       
2922       
2923       
2924       
2925       
2926       
2927        <p style="font-style: normal;">s(k=nz+1) = s(k=nz) +
2928bc_s_t_val * dzu(nz+1)</p>
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939     
2940     
2941     
2942     
2943     
2944     
2945     
2946     
2947     
2948     
2949      </ul>
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960     
2961     
2962     
2963     
2964     
2965     
2966     
2967     
2968     
2969     
2970      <p style="font-style: normal;">(up to k=nz-1 the prognostic
2971equation for the scalar concentration is
2972solved).</p>
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983      </td>
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994    </tr>
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005    <tr>
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016      <td style="vertical-align: top;">
3017     
3018     
3019     
3020     
3021     
3022     
3023     
3024     
3025     
3026     
3027      <p><a name="bc_uv_b"></a><b>bc_uv_b</b></p>
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038      </td>
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049      <td style="vertical-align: top;">C * 20</td>
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071      <td style="vertical-align: top;">
3072     
3073     
3074     
3075     
3076     
3077     
3078     
3079     
3080     
3081     
3082      <p style="font-style: normal;">Bottom boundary condition of the
3083horizontal velocity components u and v.&nbsp; </p>
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094     
3095     
3096     
3097     
3098     
3099     
3100     
3101     
3102     
3103     
3104      <p>Allowed values are <span style="font-style: italic;">'dirichlet'
3105      </span>and <span style="font-style: italic;">'neumann'</span>. <b>bc_uv_b</b>
3106= <span style="font-style: italic;">'dirichlet'</span> yields the
3107no-slip condition with u=v=0 at the bottom. Due to the staggered grid
3108u(k=0) and v(k=0) are located at z = - 0,5 * <a href="#dz">dz</a>
3109(below the bottom), while u(k=1) and v(k=1) are located at z = +0,5 *
3110dz. u=v=0 at the bottom is guaranteed using mirror boundary
3111condition:&nbsp; </p>
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122     
3123     
3124     
3125     
3126     
3127     
3128     
3129     
3130     
3131     
3132      <ul>
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143       
3144       
3145       
3146       
3147       
3148       
3149       
3150       
3151       
3152       
3153        <p style="font-style: normal;">u(k=0) = - u(k=1) and v(k=0) = -
3154v(k=1)</p>
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165     
3166     
3167     
3168     
3169     
3170     
3171     
3172     
3173     
3174     
3175      </ul>
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186     
3187     
3188     
3189     
3190     
3191     
3192     
3193     
3194     
3195     
3196      <p style="font-style: normal;">The Neumann boundary condition
3197yields the free-slip condition with u(k=0) = u(k=1) and v(k=0) =
3198v(k=1).
3199With Prandtl - layer switched on, the free-slip condition is not
3200allowed (otherwise the run will be terminated)<font color="#000000">.</font></p>
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211      </td>
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222    </tr>
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233    <tr>
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244      <td style="vertical-align: top;">
3245     
3246     
3247     
3248     
3249     
3250     
3251     
3252     
3253     
3254     
3255      <p><a name="bc_uv_t"></a><b>bc_uv_t</b></p>
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266      </td>
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277      <td style="vertical-align: top;">C * 20</td>
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299      <td style="vertical-align: top;">
3300     
3301     
3302     
3303     
3304     
3305     
3306     
3307     
3308     
3309     
3310      <p style="font-style: normal;">Top boundary condition of the
3311horizontal velocity components u and v.&nbsp; </p>
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322     
3323     
3324     
3325     
3326     
3327     
3328     
3329     
3330     
3331     
3332      <p>Allowed values are <span style="font-style: italic;">'dirichlet'</span>
3333and <span style="font-style: italic;">'neumann'</span>. The
3334Dirichlet condition yields u(k=nz+1) = ug(nz+1) and v(k=nz+1) =
3335vg(nz+1),
3336Neumann condition yields the free-slip condition with u(k=nz+1) =
3337u(k=nz) and v(k=nz+1) = v(k=nz) (up to k=nz the prognostic equations
3338for the velocities are solved).</p>
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349      </td>
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360    </tr>
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371    <tr>
3372
3373
3374
3375
3376
3377
3378      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_height"></a>building_height</span></td>
3379
3380
3381
3382
3383
3384
3385      <td style="vertical-align: top;">R</td>
3386
3387
3388
3389
3390
3391
3392      <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
3393
3394
3395
3396
3397
3398
3399      <td>Height of a single building in m.<br>
3400
3401
3402
3403
3404
3405
3406      <br>
3407
3408
3409
3410
3411
3412
3413      <span style="font-weight: bold;">building_height</span> must be less than the height of the model domain. This parameter requires the use of&nbsp;<a href="#topography">topography</a> = <span style="font-style: italic;">'single_building'</span>.</td>
3414
3415
3416
3417
3418
3419
3420    </tr>
3421
3422
3423
3424
3425
3426
3427    <tr>
3428
3429
3430
3431
3432
3433
3434      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_x"></a>building_length_x</span></td>
3435
3436
3437
3438
3439
3440
3441      <td style="vertical-align: top;">R</td>
3442
3443
3444
3445
3446
3447
3448      <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
3449
3450
3451
3452
3453
3454
3455      <td><span style="font-style: italic;"></span>Width of a single building in m.<br>
3456
3457
3458
3459
3460
3461
3462      <br>
3463
3464
3465
3466
3467
3468
3469Currently, <span style="font-weight: bold;">building_length_x</span> must be at least <span style="font-style: italic;">3 *&nbsp;</span><a style="font-style: italic;" href="#dx">dx</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="#nx">nx</a><span style="font-style: italic;"> - 1 ) </span><span style="font-style: italic;"> * <a href="#dx">dx</a> </span><span style="font-style: italic;">- <a href="#building_wall_left">building_wall_left</a><a href="#dx"></a><a href="#dx"></a></span>. This parameter requires the use of&nbsp;<a href="#topography">topography</a> = <span style="font-style: italic;">'single_building'</span>.</td>
3470
3471
3472
3473
3474
3475
3476    </tr>
3477
3478
3479
3480
3481
3482
3483    <tr>
3484
3485
3486
3487
3488
3489
3490      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_y"></a>building_length_y</span></td>
3491
3492
3493
3494
3495
3496
3497      <td style="vertical-align: top;">R</td>
3498
3499
3500
3501
3502
3503
3504      <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
3505
3506
3507
3508
3509
3510
3511      <td>Depth of a single building in m.<br>
3512
3513
3514
3515
3516
3517
3518      <br>
3519
3520
3521
3522
3523
3524
3525Currently, <span style="font-weight: bold;">building_length_y</span> must be at least <span style="font-style: italic;">3 *&nbsp;</span><a style="font-style: italic;" href="#dy">dy</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="#ny">ny</a><span style="font-style: italic;"> - 1 )&nbsp;</span><span style="font-style: italic;"> * <a href="#dy">dy</a></span><span style="font-style: italic;"> - <a href="#building_wall_south">building_wall_south</a><a href="#dy"></a></span>. This parameter requires the use of&nbsp;<a href="#topography">topography</a> = <span style="font-style: italic;">'single_building'</span>.</td>
3526
3527
3528
3529
3530
3531
3532    </tr>
3533
3534
3535
3536
3537
3538
3539    <tr>
3540
3541
3542
3543
3544
3545
3546      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_left"></a>building_wall_left</span></td>
3547
3548
3549
3550
3551
3552
3553      <td style="vertical-align: top;">R</td>
3554
3555
3556
3557
3558
3559
3560      <td style="vertical-align: top;"><span style="font-style: italic;">building centered in x-direction</span></td>
3561
3562
3563
3564
3565
3566
3567      <td>x-coordinate of the left building wall (distance between the left building wall and the left border of the model domain) in m.<br>
3568
3569
3570
3571
3572
3573
3574      <br>
3575
3576
3577
3578
3579
3580
3581Currently, <span style="font-weight: bold;">building_wall_left</span> must be at least <span style="font-style: italic;">1 *&nbsp;</span><a style="font-style: italic;" href="#dx">dx</a> and less than <span style="font-style: italic;">( <a href="#nx">nx</a>&nbsp; - 1 ) * <a href="#dx">dx</a> -&nbsp; <a href="#building_length_x">building_length_x</a></span>. This parameter requires the use of&nbsp;<a href="#topography">topography</a> = <span style="font-style: italic;">'single_building'</span>.<br>
3582
3583
3584
3585
3586
3587
3588      <br>
3589
3590
3591
3592
3593
3594
3595The default value&nbsp;<span style="font-weight: bold;">building_wall_left</span> = <span style="font-style: italic;">( ( <a href="#nx">nx</a>&nbsp;+ 1 ) * <a href="#dx">dx</a> -&nbsp; <a href="#building_length_x">building_length_x</a> ) / 2</span> centers the building in x-direction. </td>
3596
3597
3598
3599
3600
3601
3602    </tr>
3603
3604
3605
3606
3607
3608
3609    <tr>
3610
3611
3612
3613
3614
3615
3616      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_south"></a>building_wall_south</span></td>
3617
3618
3619
3620
3621
3622
3623      <td style="vertical-align: top;">R</td>
3624
3625
3626
3627
3628
3629
3630      <td style="vertical-align: top;"><span style="font-style: italic;"></span><span style="font-style: italic;">building centered in y-direction</span></td>
3631
3632
3633
3634
3635
3636
3637      <td>y-coordinate of the South building wall (distance between the
3638South building wall and the South border of the model domain) in m.<br>
3639
3640
3641
3642
3643
3644
3645      <br>
3646
3647
3648
3649
3650
3651
3652Currently, <span style="font-weight: bold;">building_wall_south</span> must be at least <span style="font-style: italic;">1 *&nbsp;</span><a style="font-style: italic;" href="#dy">dy</a> and less than <span style="font-style: italic;">( <a href="#ny">ny</a>&nbsp; - 1 ) * <a href="#dy">dy</a> -&nbsp; <a href="#building_length_y">building_length_y</a></span>. This parameter requires the use of&nbsp;<a href="#topography">topography</a> = <span style="font-style: italic;">'single_building'</span>.<br>
3653
3654
3655
3656
3657
3658
3659      <br>
3660
3661
3662
3663
3664
3665
3666The default value&nbsp;<span style="font-weight: bold;">building_wall_south</span> = <span style="font-style: italic;">( ( <a href="#ny">ny</a>&nbsp;+ 1 ) * <a href="#dy">dy</a> -&nbsp; <a href="#building_length_y">building_length_y</a> ) / 2</span> centers the building in y-direction. </td>
3667
3668
3669
3670
3671
3672
3673    </tr>
3674
3675
3676
3677
3678
3679
3680    <tr>
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="cloud_droplets"></a>cloud_droplets</span><br>
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702      </td>
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713      <td style="vertical-align: top;">L<br>
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724      </td>
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span><br>
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746      </td>
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757      <td style="vertical-align: top;">Parameter to switch on usage of cloud droplets.<br>
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768      <br>
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779Cloud droplets require to use the particle package (<span style="font-weight: bold;">mrun</span>-option <span style="font-family: monospace;">-p particles</span>),
3780so in this case a particle corresponds to a droplet. The droplet
3781features (number of droplets, initial radius, etc.) can be steered with
3782the&nbsp; respective particle parameters (see e.g. <a href="#chapter_4.2.html#radius">radius</a>).
3783The real number of initial droplets in a grid cell is equal to the
3784initial number of droplets (defined by the particle source parameters <span lang="en-GB"><font face="Thorndale, serif"> </font></span><a href="chapter_4.2.html#pst"><span lang="en-GB"><font face="Thorndale, serif">pst</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psl"><span lang="en-GB"><font face="Thorndale, serif">psl</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psr"><span lang="en-GB"><font face="Thorndale, serif">psr</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pss"><span lang="en-GB"><font face="Thorndale, serif">pss</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psn"><span lang="en-GB"><font face="Thorndale, serif">psn</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psb"><span lang="en-GB"><font face="Thorndale, serif">psb</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdx"><span lang="en-GB"><font face="Thorndale, serif">pdx</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdy"><span lang="en-GB"><font face="Thorndale, serif">pdy</font></span></a>
3785      <span lang="en-GB"><font face="Thorndale, serif">and </font></span><a href="chapter_4.2.html#pdz"><span lang="en-GB"><font face="Thorndale, serif">pdz</font></span></a><span lang="en-GB"></span><span lang="en-GB"></span>) times the <a href="#initial_weighting_factor">initial_weighting_factor</a>.<br>
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796      <br>
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807In case of using cloud droplets, the default condensation scheme in PALM cannot be used, i.e. <a href="#cloud_physics">cloud_physics</a> must be set <span style="font-style: italic;">.F.</span>.<br>
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818      </td>
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829    </tr>
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840    <tr>
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851      <td style="vertical-align: top;">
3852     
3853     
3854     
3855     
3856     
3857     
3858     
3859     
3860     
3861     
3862      <p><a name="cloud_physics"></a><b>cloud_physics</b></p>
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873      </td>
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884      <td style="vertical-align: top;">L<br>
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895      </td>
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917      <td style="vertical-align: top;">
3918     
3919     
3920     
3921     
3922     
3923     
3924     
3925     
3926     
3927     
3928      <p>Parameter to switch on the condensation scheme.&nbsp; </p>
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939For <b>cloud_physics =</b> <span style="font-style: italic;">.TRUE.</span>, equations for the
3940liquid water&nbsp;
3941content and the liquid water potential temperature are solved instead
3942of those for specific humidity and potential temperature. Note
3943that a grid volume is assumed to be either completely saturated or
3944completely
3945unsaturated (0%-or-100%-scheme). A simple precipitation scheme can
3946additionally be switched on with parameter <a href="#precipitation">precipitation</a>.
3947Also cloud-top cooling by longwave radiation can be utilized (see <a href="#radiation">radiation</a>)<br>
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958      <b><br>
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969cloud_physics =</b> <span style="font-style: italic;">.TRUE. </span>requires <a href="#moisture">moisture</a> =<span style="font-style: italic;"> .TRUE.</span> .<br>
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980Detailed information about the condensation scheme is given in the
3981description of the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM-1/Dokumentationen/Cloud_physics/wolken.pdf">cloud
3982physics module</a> (pdf-file, only in German).<br>
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993      <br>
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004This condensation scheme is not allowed if cloud droplets are simulated explicitly (see <a href="#cloud_droplets">cloud_droplets</a>).<br>
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015      </td>
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026    </tr>
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037    <tr>
4038
4039
4040
4041
4042
4043
4044
4045      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="conserve_volume_flow"></a>conserve_volume_flow</span></td>
4046
4047
4048
4049
4050
4051
4052
4053      <td style="vertical-align: top;">L</td>
4054
4055
4056
4057
4058
4059
4060
4061      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
4062
4063
4064
4065
4066
4067
4068
4069      <td>Conservation of volume flow in x- and y-direction.<br>
4070      <br>
4071      <span style="font-weight: bold;">conserve_volume_flow</span> = <span style="font-style: italic;">.TRUE.</span>
4072guarantees that the volume flow through the xz- or yz-cross-section of
4073the total model domain remains constant (equal to the initial value at
4074t=0) throughout the run.<br>
4075</td>
4076
4077
4078
4079
4080
4081
4082
4083    </tr>
4084
4085
4086
4087
4088
4089
4090
4091    <tr>
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102      <td style="vertical-align: top;">
4103     
4104     
4105     
4106     
4107     
4108     
4109     
4110     
4111     
4112     
4113      <p><a name="cut_spline_overshoot"></a><b>cut_spline_overshoot</b></p>
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124      </td>
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135      <td style="vertical-align: top;">L</td>
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146      <td style="vertical-align: top;"><span style="font-style: italic;">.T.</span></td>
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157      <td style="vertical-align: top;">
4158     
4159     
4160     
4161     
4162     
4163     
4164     
4165     
4166     
4167     
4168      <p>Cuts off of so-called overshoots, which can occur with the
4169upstream-spline scheme.&nbsp; </p>
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180     
4181     
4182     
4183     
4184     
4185     
4186     
4187     
4188     
4189     
4190      <p><font color="#000000">The cubic splines tend to overshoot in
4191case of discontinuous changes of variables between neighbouring grid
4192points.</font><font color="#ff0000"> </font><font color="#000000">This
4193may lead to errors in calculating the advection tendency.</font> Choice
4194of <b>cut_spline_overshoot</b> = <i>.TRUE.</i> (switched on by
4195default)
4196allows variable values not to exceed an interval defined by the
4197respective adjacent grid points. This interval can be adjusted
4198seperately for every prognostic variable (see initialization parameters
4199      <a href="#overshoot_limit_e">overshoot_limit_e</a>, <a href="#overshoot_limit_pt">overshoot_limit_pt</a>, <a href="#overshoot_limit_u">overshoot_limit_u</a>,
4200etc.). This might be necessary in case that the
4201default interval has a non-tolerable effect on the model
4202results.&nbsp; </p>
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213     
4214     
4215     
4216     
4217     
4218     
4219     
4220     
4221     
4222     
4223      <p>Overshoots may also be removed using the parameters <a href="#ups_limit_e">ups_limit_e</a>, <a href="#ups_limit_pt">ups_limit_pt</a>,
4224etc. as well as by applying a long-filter (see <a href="#long_filter_factor">long_filter_factor</a>).</p>
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235      </td>
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246    </tr>
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257    <tr>
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268      <td style="vertical-align: top;">
4269     
4270     
4271     
4272     
4273     
4274     
4275     
4276     
4277     
4278     
4279      <p><a name="damp_level_1d"></a><b>damp_level_1d</b></p>
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290      </td>
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301      <td style="vertical-align: top;">R</td>
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312      <td style="vertical-align: top;"><span style="font-style: italic;">zu(nz+1)</span></td>
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323      <td style="vertical-align: top;">
4324     
4325     
4326     
4327     
4328     
4329     
4330     
4331     
4332     
4333     
4334      <p>Height where the damping layer begins in the 1d-model
4335(in m).&nbsp; </p>
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346     
4347     
4348     
4349     
4350     
4351     
4352     
4353     
4354     
4355     
4356      <p>This parameter is used to switch on a damping layer for the
43571d-model, which is generally needed for the damping of inertia
4358oscillations. Damping is done by gradually increasing the value
4359of the eddy diffusivities about 10% per vertical grid level
4360(starting with the value at the height given by <b>damp_level_1d</b>,
4361or possibly from the next grid pint above), i.e. K<sub>m</sub>(k+1) =
43621.1 * K<sub>m</sub>(k).
4363The values of K<sub>m</sub> are limited to 10 m**2/s at maximum.&nbsp; <br>
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374This parameter only comes into effect if the 1d-model is switched on
4375for
4376the initialization of the 3d-model using <a href="#initializing_actions">initializing_actions</a>
4377= <span style="font-style: italic;">'set_1d-model_profiles'</span>. <br>
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388      </p>
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399      </td>
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410    </tr>
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421    <tr>
4422      <td style="vertical-align: top;"><a name="dissipation_1d"></a><span style="font-weight: bold;">dissipation_1d</span><br>
4423      </td>
4424      <td style="vertical-align: top;">C*20<br>
4425      </td>
4426      <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;">
4427      <span style="font-style: italic;">model'</span><br>
4428      </td>
4429      <td style="vertical-align: top;">Calculation method for the energy dissipation term in the TKE equation of the 1d-model.<br>
4430      <br>
4431By default the dissipation is calculated as in the 3d-model using diss = (0.19 + 0.74 * l / l_grid) * e**1.5 / l.<br>
4432      <br>
4433Setting <span style="font-weight: bold;">dissipation_1d</span> = <span style="font-style: italic;">'detering'</span> forces the dissipation to be calculated as diss = 0.064 * e**1.5 / l.<br>
4434      </td>
4435    </tr>
4436<tr>
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447      <td style="vertical-align: top;">
4448     
4449     
4450     
4451     
4452     
4453     
4454     
4455     
4456     
4457     
4458      <p><a name="dt"></a><b>dt</b></p>
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469      </td>
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480      <td style="vertical-align: top;">R</td>
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491      <td style="vertical-align: top;"><span style="font-style: italic;">variable</span></td>
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502      <td style="vertical-align: top;">
4503     
4504     
4505     
4506     
4507     
4508     
4509     
4510     
4511     
4512     
4513      <p>Time step for the 3d-model (in s).&nbsp; </p>
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524     
4525     
4526     
4527     
4528     
4529     
4530     
4531     
4532     
4533     
4534      <p>By default, (i.e. if a Runge-Kutta scheme is used, see <a href="#timestep_scheme">timestep_scheme</a>)
4535the value of the time step is calculating after each time step
4536(following the time step criteria) and
4537used for the next step.</p>
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548     
4549     
4550     
4551     
4552     
4553     
4554     
4555     
4556     
4557     
4558      <p>If the user assigns <b>dt</b> a value, then the time step is
4559fixed to this value throughout the whole run (whether it fulfills the
4560time step
4561criteria or not). However, changes are allowed for restart runs,
4562because <b>dt</b> can also be used as a <a href="chapter_4.2.html#dt_laufparameter">run
4563parameter</a>.&nbsp; </p>
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574     
4575     
4576     
4577     
4578     
4579     
4580     
4581     
4582     
4583     
4584      <p>In case that the calculated time step meets the condition<br>
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595      </p>
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606     
4607     
4608     
4609     
4610     
4611     
4612     
4613     
4614     
4615     
4616      <ul>
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627       
4628       
4629       
4630       
4631       
4632       
4633       
4634       
4635       
4636       
4637        <p><b>dt</b> &lt; 0.00001 * dt_max (with dt_max = 20.0)</p>
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648     
4649     
4650     
4651     
4652     
4653     
4654     
4655     
4656     
4657     
4658      </ul>
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669     
4670     
4671     
4672     
4673     
4674     
4675     
4676     
4677     
4678     
4679      <p>the simulation will be aborted. Such situations usually arise
4680in case of any numerical problem / instability which causes a
4681non-realistic increase of the wind speed.&nbsp; </p>
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692     
4693     
4694     
4695     
4696     
4697     
4698     
4699     
4700     
4701     
4702      <p>A small time step due to a large mean horizontal windspeed
4703speed may be enlarged by using a coordinate transformation (see <a href="#galilei_transformation">galilei_transformation</a>),
4704in order to spare CPU time.<br>
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715      </p>
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726     
4727     
4728     
4729     
4730     
4731     
4732     
4733     
4734     
4735     
4736      <p>If the leapfrog timestep scheme is used (see <a href="#timestep_scheme">timestep_scheme</a>)
4737a temporary time step value dt_new is calculated first, with dt_new = <a href="chapter_4.2.html#fcl_factor">cfl_factor</a>
4738* dt_crit where dt_crit is the maximum timestep allowed by the CFL and
4739diffusion condition. Next it is examined whether dt_new exceeds or
4740falls below the
4741value of the previous timestep by at
4742least +5 % / -2%. If it is smaller, <span style="font-weight: bold;">dt</span>
4743= dt_new is immediately used for the next timestep. If it is larger,
4744then <span style="font-weight: bold;">dt </span>= 1.02 * dt_prev
4745(previous timestep) is used as the new timestep, however the time
4746step is only increased if the last change of the time step is dated
4747back at
4748least 30 iterations. If dt_new is located in the interval mentioned
4749above, then dt
4750does not change at all. By doing so, permanent time step changes as
4751well as large
4752sudden changes (increases) in the time step are avoided.</p>
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763      </td>
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774    </tr>
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785    <tr>
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796      <td style="vertical-align: top;">
4797     
4798     
4799     
4800     
4801     
4802     
4803     
4804     
4805     
4806     
4807      <p><a name="dt_pr_1d"></a><b>dt_pr_1d</b></p>
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818      </td>
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829      <td style="vertical-align: top;">R</td>
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840      <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td>
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851      <td style="vertical-align: top;">
4852     
4853     
4854     
4855     
4856     
4857     
4858     
4859     
4860     
4861     
4862      <p>Temporal interval of vertical profile output of the 1D-model
4863(in s).&nbsp; </p>
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874     
4875     
4876     
4877     
4878     
4879     
4880     
4881     
4882     
4883     
4884      <p>Data are written in ASCII format to file <a href="chapter_3.4.html#LIST_PROFIL_1D">LIST_PROFIL_1D</a>.
4885This parameter is only in effect if the 1d-model has been switched on
4886for the
4887initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
4888= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899      </td>
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910    </tr>
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921    <tr>
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932      <td style="vertical-align: top;">
4933     
4934     
4935     
4936     
4937     
4938     
4939     
4940     
4941     
4942     
4943      <p><a name="dt_run_control_1d"></a><b>dt_run_control_1d</b></p>
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954      </td>
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965      <td style="vertical-align: top;">R</td>
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976      <td style="vertical-align: top;"><span style="font-style: italic;">60.0</span></td>
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987      <td style="vertical-align: top;">
4988     
4989     
4990     
4991     
4992     
4993     
4994     
4995     
4996     
4997     
4998      <p>Temporal interval of runtime control output of the 1d-model
4999(in s).&nbsp; </p>
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010     
5011     
5012     
5013     
5014     
5015     
5016     
5017     
5018     
5019     
5020      <p>Data are written in ASCII format to file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.
5021This parameter is only in effect if the 1d-model is switched on for the
5022initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
5023= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034      </td>
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045    </tr>
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056    <tr>
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067      <td style="vertical-align: top;">
5068     
5069     
5070     
5071     
5072     
5073     
5074     
5075     
5076     
5077     
5078      <p><a name="dx"></a><b>dx</b></p>
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089      </td>
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100      <td style="vertical-align: top;">R</td>
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111      <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td>
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122      <td style="vertical-align: top;">
5123     
5124     
5125     
5126     
5127     
5128     
5129     
5130     
5131     
5132     
5133      <p>Horizontal grid spacing along the x-direction (in m).&nbsp; </p>
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144     
5145     
5146     
5147     
5148     
5149     
5150     
5151     
5152     
5153     
5154      <p>Along x-direction only a constant grid spacing is allowed.</p>
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165      </td>
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176    </tr>
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187    <tr>
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198      <td style="vertical-align: top;">
5199     
5200     
5201     
5202     
5203     
5204     
5205     
5206     
5207     
5208     
5209      <p><a name="dy"></a><b>dy</b></p>
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220      </td>
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231      <td style="vertical-align: top;">R</td>
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242      <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td>
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253      <td style="vertical-align: top;">
5254     
5255     
5256     
5257     
5258     
5259     
5260     
5261     
5262     
5263     
5264      <p>Horizontal grid spacing along the x-direction (in m).&nbsp; </p>
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275     
5276     
5277     
5278     
5279     
5280     
5281     
5282     
5283     
5284     
5285      <p>Along x-direction only a constant grid spacing is allowed.</p>
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296      </td>
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307    </tr>
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318    <tr>
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329      <td style="vertical-align: top;">
5330     
5331     
5332     
5333     
5334     
5335     
5336     
5337     
5338     
5339     
5340      <p><a name="dz"></a><b>dz</b></p>
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351      </td>
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362      <td style="vertical-align: top;">R</td>
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373      <td style="vertical-align: top;"><br>
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384      </td>
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395      <td style="vertical-align: top;">
5396     
5397     
5398     
5399     
5400     
5401     
5402     
5403     
5404     
5405     
5406      <p>Vertical grid spacing (in m).&nbsp; </p>
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417     
5418     
5419     
5420     
5421     
5422     
5423     
5424     
5425     
5426     
5427      <p>This parameter must be assigned by the user, because no
5428default value is given.<br>
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439      </p>
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450     
5451     
5452     
5453     
5454     
5455     
5456     
5457     
5458     
5459     
5460      <p>By default, the
5461model uses constant grid spacing along z-direction, but it can be
5462stretched using the parameters <a href="#dz_stretch_level">dz_stretch_level</a>
5463and <a href="#dz_stretch_factor">dz_stretch_factor</a>. In case of stretching, a maximum allowed grid spacing can be given by <a href="#dz_max">dz_max</a>.<br>
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474      </p>
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485     
5486     
5487     
5488     
5489     
5490     
5491     
5492     
5493     
5494     
5495      <p>Assuming a constant <span style="font-weight: bold;">dz</span>,
5496the scalar levels (zu) are calculated directly by:&nbsp; </p>
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507     
5508     
5509     
5510     
5511     
5512     
5513     
5514     
5515     
5516     
5517      <ul>
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528       
5529       
5530       
5531       
5532       
5533       
5534       
5535       
5536       
5537       
5538        <p>zu(0) = - dz * 0.5&nbsp; <br>
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549zu(1) = dz * 0.5</p>
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560     
5561     
5562     
5563     
5564     
5565     
5566     
5567     
5568     
5569     
5570      </ul>
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581     
5582     
5583     
5584     
5585     
5586     
5587     
5588     
5589     
5590     
5591      <p>The w-levels lie
5592half between them:&nbsp; </p>
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603     
5604     
5605     
5606     
5607     
5608     
5609     
5610     
5611     
5612     
5613      <ul>
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624       
5625       
5626       
5627       
5628       
5629       
5630       
5631       
5632       
5633       
5634        <p>zw(k) = ( zu(k) + zu(k+1) ) * 0.5</p>
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645     
5646     
5647     
5648     
5649     
5650     
5651     
5652     
5653     
5654     
5655      </ul>
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666      </td>
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677    </tr>
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688    <tr><td style="vertical-align: top;"><a name="dz_max"></a><span style="font-weight: bold;">dz_max</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td><td style="vertical-align: top;">Allowed maximum vertical grid spacing (in m).<br><br>If the vertical grid is stretched (see <a href="#dz_stretch_factor">dz_stretch_factor</a> and <a href="#dz_stretch_level">dz_stretch_level</a>), <span style="font-weight: bold;">dz_max</span> can be used to limit the vertical grid spacing.</td></tr><tr>
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699      <td style="vertical-align: top;">
5700     
5701     
5702     
5703     
5704     
5705     
5706     
5707     
5708     
5709     
5710      <p><a name="dz_stretch_factor"></a><b>dz_stretch_factor</b></p>
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721      </td>
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732      <td style="vertical-align: top;">R</td>
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743      <td style="vertical-align: top;"><span style="font-style: italic;">1.08</span></td>
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754      <td style="vertical-align: top;">
5755     
5756     
5757     
5758     
5759     
5760     
5761     
5762     
5763     
5764     
5765      <p>Stretch factor for a vertically stretched grid (see <a href="#dz_stretch_level">dz_stretch_level</a>).&nbsp; </p>
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776     
5777     
5778     
5779     
5780     
5781     
5782     
5783     
5784     
5785     
5786      <p>The stretch factor should not exceed a value of approx. 1.10 -
57871.12, otherwise the discretization errors due to the stretched grid not
5788negligible any more. (refer Kalnay de Rivas)</p>
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799      </td>
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810    </tr>
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821    <tr>
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832      <td style="vertical-align: top;">
5833     
5834     
5835     
5836     
5837     
5838     
5839     
5840     
5841     
5842     
5843      <p><a name="dz_stretch_level"></a><b>dz_stretch_level</b></p>
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854      </td>
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865      <td style="vertical-align: top;">R</td>
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876      <td style="vertical-align: top;"><span style="font-style: italic;">100000.0</span><br>
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887      </td>
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898      <td style="vertical-align: top;">
5899     
5900     
5901     
5902     
5903     
5904     
5905     
5906     
5907     
5908     
5909      <p>Height level above which the grid is to be stretched
5910vertically (in m).&nbsp; </p>
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921     
5922     
5923     
5924     
5925     
5926     
5927     
5928     
5929     
5930     
5931      <p>The vertical grid spacings <a href="#dz">dz</a>
5932above this level are calculated as&nbsp; </p>
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943     
5944     
5945     
5946     
5947     
5948     
5949     
5950     
5951     
5952     
5953      <ul>
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964       
5965       
5966       
5967       
5968       
5969       
5970       
5971       
5972       
5973       
5974        <p><b>dz</b>(k+1) = <b>dz</b>(k) * <a href="#dz_stretch_factor">dz_stretch_factor</a></p>
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985     
5986     
5987     
5988     
5989     
5990     
5991     
5992     
5993     
5994     
5995      </ul>
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006     
6007     
6008     
6009     
6010     
6011     
6012     
6013     
6014     
6015     
6016      <p>and used as spacings for the scalar levels (zu). The
6017w-levels are then defined as:&nbsp; </p>
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028     
6029     
6030     
6031     
6032     
6033     
6034     
6035     
6036     
6037     
6038      <ul>
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049       
6050       
6051       
6052       
6053       
6054       
6055       
6056       
6057       
6058       
6059        <p>zw(k) = ( zu(k) + zu(k+1) ) * 0.5</p>
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070     
6071     
6072     
6073     
6074     
6075     
6076     
6077     
6078     
6079     
6080      </ul>
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091      </td>
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102    </tr>
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113    <tr>
6114
6115
6116
6117
6118
6119
6120
6121      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_min"></a>e_min</span></td>
6122
6123
6124
6125
6126
6127
6128
6129      <td style="vertical-align: top;">R</td>
6130
6131
6132
6133
6134
6135
6136
6137      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
6138
6139
6140
6141
6142
6143
6144
6145      <td>Minimum subgrid-scale TKE in m<sup>2</sup>s<sup>-2</sup>.<br>
6146
6147
6148
6149
6150
6151
6152
6153      <br>This
6154option&nbsp;adds artificial viscosity to the flow by ensuring that the
6155subgrid-scale TKE does not fall below the minimum threshold <span style="font-weight: bold;">e_min</span>.</td>
6156
6157
6158
6159
6160
6161
6162
6163    </tr>
6164
6165
6166
6167
6168
6169
6170
6171    <tr>
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182      <td style="vertical-align: top;">
6183     
6184     
6185     
6186     
6187     
6188     
6189     
6190     
6191     
6192     
6193      <p><a name="end_time_1d"></a><b>end_time_1d</b></p>
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204      </td>
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215      <td style="vertical-align: top;">R</td>
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226      <td style="vertical-align: top;"><span style="font-style: italic;">864000.0</span><br>
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237      </td>
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248      <td style="vertical-align: top;">
6249     
6250     
6251     
6252     
6253     
6254     
6255     
6256     
6257     
6258     
6259      <p>Time to be simulated for the 1d-model (in s).&nbsp; </p>
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270     
6271     
6272     
6273     
6274     
6275     
6276     
6277     
6278     
6279     
6280      <p>The default value corresponds to a simulated time of 10 days.
6281Usually, after such a period the inertia oscillations have completely
6282decayed and the solution of the 1d-model can be regarded as stationary
6283(see <a href="#damp_level_1d">damp_level_1d</a>).
6284This parameter is only in effect if the 1d-model is switched on for the
6285initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
6286= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297      </td>
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308    </tr>
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319    <tr>
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330      <td style="vertical-align: top;">
6331     
6332     
6333     
6334     
6335     
6336     
6337     
6338     
6339     
6340     
6341      <p><a name="fft_method"></a><b>fft_method</b></p>
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352      </td>
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363      <td style="vertical-align: top;">C * 20</td>
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374      <td style="vertical-align: top;"><span style="font-style: italic;">'system-</span><br style="font-style: italic;">
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385      <span style="font-style: italic;">specific'</span></td>
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396      <td style="vertical-align: top;">
6397     
6398     
6399     
6400     
6401     
6402     
6403     
6404     
6405     
6406     
6407      <p>FFT-method to be used.<br>
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418      </p>
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429     
6430     
6431     
6432     
6433     
6434     
6435     
6436     
6437     
6438     
6439      <p><br>
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450The fast fourier transformation (FFT) is used for solving the
6451perturbation pressure equation with a direct method (see <a href="chapter_4.2.html#psolver">psolver</a>)
6452and for calculating power spectra (see optional software packages,
6453section <a href="chapter_4.2.html#spectra_package">4.2</a>).</p>
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464     
6465     
6466     
6467     
6468     
6469     
6470     
6471     
6472     
6473     
6474      <p><br>
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485By default, system-specific, optimized routines from external
6486vendor libraries are used. However, these are available only on certain
6487computers and there are more or less severe restrictions concerning the
6488number of gridpoints to be used with them.<br>
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499      </p>
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510     
6511     
6512     
6513     
6514     
6515     
6516     
6517     
6518     
6519     
6520      <p>There are two other PALM internal methods available on every
6521machine (their respective source code is part of the PALM source code):</p>
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532     
6533     
6534     
6535     
6536     
6537     
6538     
6539     
6540     
6541     
6542      <p>1.: The <span style="font-weight: bold;">Temperton</span>-method
6543from Clive Temperton (ECWMF) which is computationally very fast and
6544switched on with <b>fft_method</b> = <span style="font-style: italic;">'temperton-algorithm'</span>.
6545The number of horizontal gridpoints (nx+1, ny+1) to be used with this
6546method must be composed of prime factors 2, 3 and 5.<br>
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557      </p>
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
65682.: The <span style="font-weight: bold;">Singleton</span>-method
6569which is very slow but has no restrictions concerning the number of
6570gridpoints to be used with, switched on with <b>fft_method</b> = <span style="font-style: italic;">'singleton-algorithm'</span>. </td>
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581    </tr>
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592    <tr>
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603      <td style="vertical-align: top;">
6604     
6605     
6606     
6607     
6608     
6609     
6610     
6611     
6612     
6613     
6614      <p><a name="galilei_transformation"></a><b>galilei_transformation</b></p>
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625      </td>
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636      <td style="vertical-align: top;">L</td>
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647      <td style="vertical-align: top;"><i>.F.</i></td>
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658      <td style="vertical-align: top;">Application of a Galilei-transformation to the
6659coordinate
6660system of the model.<br><p>With <b>galilei_transformation</b> = <i>.T.,</i> a so-called
6661Galilei-transformation is switched on which ensures that the coordinate
6662system of the model is moved along with the geostrophical wind.
6663Alternatively, the model domain can be moved along with the averaged
6664horizontal wind (see <a href="#use_ug_for_galilei_tr">use_ug_for_galilei_tr</a>,
6665this can and will naturally change in time). With this method,
6666numerical inaccuracies of the Piascek - Williams - scheme (concerns in
6667particular the momentum advection) are minimized. Beyond that, in the
6668majority of cases the lower relative velocities in the moved system
6669permit a larger time step (<a href="#dt">dt</a>).
6670Switching the transformation on is only worthwhile if the geostrophical
6671wind (ug, vg)
6672and the averaged horizontal wind clearly deviate from the value 0. In
6673each case, the distance the coordinate system has been moved is written
6674to the file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.&nbsp;
6675      </p>
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686     
6687     
6688     
6689     
6690     
6691     
6692     
6693     
6694     
6695     
6696      <p>Non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
6697and <a href="#bc_ns">bc_ns</a>), the specification of a gestrophic
6698wind that is not constant with height
6699as well as e.g. stationary inhomogeneities at the bottom boundary do
6700not allow the use of this transformation.</p>
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711      </td>
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722    </tr>
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733    <tr>
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744      <td style="vertical-align: top;">
6745     
6746     
6747     
6748     
6749     
6750     
6751     
6752     
6753     
6754     
6755      <p><a name="grid_matching"></a><b>grid_matching</b></p>
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766      </td>
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777      <td style="vertical-align: top;">C * 6</td>
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788      <td style="vertical-align: top;"><span style="font-style: italic;">'match'</span></td>
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799      <td style="vertical-align: top;">Variable to adjust the subdomain
6800sizes in parallel runs.<br>
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811      <br>
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822For <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span>,
6823the subdomains are forced to have an identical
6824size on all processors. In this case the processor numbers in the
6825respective directions of the virtual processor net must fulfill certain
6826divisor conditions concerning the grid point numbers in the three
6827directions (see <a href="#nx">nx</a>,
6828      <a href="#ny">ny</a>
6829and <a href="#nz">nz</a>).
6830Advantage of this method is that all PEs bear the same computational
6831load.<br>
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842      <br>
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853There is no such restriction by default, because then smaller
6854subdomains are allowed on those processors which
6855form the right and/or north boundary of the virtual processor grid. On
6856all other processors the subdomains are of same size. Whether smaller
6857subdomains are actually used, depends on the number of processors and
6858the grid point numbers used. Information about the respective settings
6859are given in file <a href="file:///home/raasch/public_html/PALM_group/home/raasch/public_html/PALM_group/doc/app/chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.<br>
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870      <br>
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881When using a multi-grid method for solving the Poisson equation (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>)
6882only <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span>
6883is allowed.<br>
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894      <br>
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905      <b>Note:</b><br>
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916In some cases for small processor numbers there may be a very bad load
6917balancing among the
6918processors which may reduce the performance of the code.</td>
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929    </tr>
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940    <tr>
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951      <td style="vertical-align: top;"><a name="inflow_disturbance_begin"></a><b>inflow_disturbance_<br>
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962begin</b></td>
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973      <td style="vertical-align: top;">I</td>
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(10,</span><br style="font-style: italic;">
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995      <span style="font-style: italic;">nx/2 or ny/2)</span></td>
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006      <td style="vertical-align: top;">Lower
7007limit of the horizontal range for which random perturbations are to be
7008imposed on the horizontal velocity field (gridpoints).<br>
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019      <br>
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a>
7031or <a href="#bc_ns">bc_ns</a>),
7032this parameter gives the gridpoint number (counted horizontally from
7033the inflow)&nbsp; from which on perturbations are imposed on the
7034horizontal velocity field. Perturbations must be switched on with
7035parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td>
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046    </tr>
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057    <tr>
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068      <td style="vertical-align: top;"><a name="inflow_disturbance_end"></a><b>inflow_disturbance_<br>
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079end</b></td>
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090      <td style="vertical-align: top;">I</td>
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(100,</span><br style="font-style: italic;">
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112      <span style="font-style: italic;">3/4*nx or</span><br style="font-style: italic;">
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123      <span style="font-style: italic;">3/4*ny)</span></td>
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134      <td style="vertical-align: top;">Upper
7135limit of the horizontal range for which random perturbations are
7136to be imposed on the horizontal velocity field (gridpoints).<br>
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147      <br>
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a>
7159or <a href="#bc_ns">bc_ns</a>),
7160this parameter gives the gridpoint number (counted horizontally from
7161the inflow)&nbsp; unto which perturbations are imposed on the
7162horizontal
7163velocity field. Perturbations must be switched on with parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td>
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174    </tr>
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185    <tr>
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196      <td style="vertical-align: top;">
7197     
7198     
7199     
7200     
7201     
7202     
7203     
7204     
7205     
7206     
7207      <p><a name="initializing_actions"></a><b>initializing_actions</b></p>
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218      </td>
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229      <td style="vertical-align: top;">C * 100</td>
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240      <td style="vertical-align: top;"><br>
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251      </td>
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262      <td style="vertical-align: top;">
7263     
7264     
7265     
7266     
7267     
7268     
7269     
7270     
7271     
7272     
7273      <p style="font-style: normal;">Initialization actions
7274to be carried out.&nbsp; </p>
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285     
7286     
7287     
7288     
7289     
7290     
7291     
7292     
7293     
7294     
7295      <p style="font-style: normal;">This parameter does not have a
7296default value and therefore must be assigned with each model run. For
7297restart runs <b>initializing_actions</b> = <span style="font-style: italic;">'read_restart_data'</span>
7298must be set. For the initial run of a job chain the following values
7299are allowed:&nbsp; </p>
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310     
7311     
7312     
7313     
7314     
7315     
7316     
7317     
7318     
7319     
7320      <p style="font-style: normal;"><span style="font-style: italic;">'set_constant_profiles'</span>
7321      </p>
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332     
7333     
7334     
7335     
7336     
7337     
7338     
7339     
7340     
7341     
7342      <ul>
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353       
7354       
7355       
7356       
7357       
7358       
7359       
7360       
7361       
7362       
7363        <p>A horizontal wind profile consisting of linear sections (see
7364        <a href="#ug_surface">ug_surface</a>, <a href="#ug_vertical_gradient">ug_vertical_gradient</a>, <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a> and <a href="#vg_surface">vg_surface</a>, <a href="#vg_vertical_gradient">vg_vertical_gradient</a>,
7365        <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>,
7366respectively) as well as a vertical temperature (humidity) profile
7367consisting of
7368linear sections (see <a href="#pt_surface">pt_surface</a>, <a href="#pt_vertical_gradient">pt_vertical_gradient</a>, <a href="#q_surface">q_surface</a>
7369and <a href="#q_vertical_gradient">q_vertical_gradient</a>)
7370are assumed as initial profiles. The subgrid-scale TKE is set to 0 but K<sub>m</sub>
7371and K<sub>h</sub> are set to very small values because otherwise no TKE
7372would be generated.</p>
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383     
7384     
7385     
7386     
7387     
7388     
7389     
7390     
7391     
7392     
7393      </ul>
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404     
7405     
7406     
7407     
7408     
7409     
7410     
7411     
7412     
7413     
7414      <p style="font-style: italic;">'set_1d-model_profiles' </p>
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425     
7426     
7427     
7428     
7429     
7430     
7431     
7432     
7433     
7434     
7435      <ul>
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446       
7447       
7448       
7449       
7450       
7451       
7452       
7453       
7454       
7455       
7456        <p>The arrays of the 3d-model are initialized with the
7457(stationary) solution of the 1d-model. These are the variables e, kh,
7458km, u, v and with Prandtl layer switched on rif, us, usws, vsws. The
7459temperature (humidity) profile consisting of linear sections is set as
7460for 'set_constant_profiles' and assumed as constant in time within the
74611d-model. For steering of the 1d-model a set of parameters with suffix
7462"_1d" (e.g. <a href="#end_time_1d">end_time_1d</a>, <a href="#damp_level_1d">damp_level_1d</a>)
7463is available.</p>
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474     
7475     
7476     
7477     
7478     
7479     
7480     
7481     
7482     
7483     
7484      </ul>
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495     
7496     
7497     
7498     
7499     
7500     
7501     
7502     
7503     
7504     
7505      <p><span style="font-style: italic;">'initialize_vortex'</span> </p>
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516     
7517     
7518     
7519     
7520     
7521     
7522     
7523     
7524     
7525     
7526      <div style="margin-left: 40px;">The initial velocity field of the
75273d-model corresponds to a
7528Rankine-vortex with vertical axis. This setting may be used to test
7529advection schemes. Free-slip boundary conditions for u and v (see <a href="#bc_uv_b">bc_uv_b</a>, <a href="#bc_uv_t">bc_uv_t</a>)
7530are necessary. In order not to distort the vortex, an initial
7531horizontal wind profile constant
7532with height is necessary (to be set by <b>initializing_actions</b>
7533= <span style="font-style: italic;">'set_constant_profiles'</span>)
7534and some other conditions have to be met (neutral stratification,
7535diffusion must be
7536switched off, see <a href="#km_constant">km_constant</a>).
7537The center of the vortex is located at jc = (nx+1)/2. It
7538extends from k = 0 to k = nz+1. Its radius is 8 * <a href="#dx">dx</a>
7539and the exponentially decaying part ranges to 32 * <a href="#dx">dx</a>
7540(see init_rankine.f90). </div>
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551     
7552     
7553     
7554     
7555     
7556     
7557     
7558     
7559     
7560     
7561      <p><span style="font-style: italic;">'initialize_ptanom'</span> </p>
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572     
7573     
7574     
7575     
7576     
7577     
7578     
7579     
7580     
7581     
7582      <ul>
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593       
7594       
7595       
7596       
7597       
7598       
7599       
7600       
7601       
7602       
7603        <p>A 2d-Gauss-like shape disturbance (x,y) is added to the
7604initial temperature field with radius 10.0 * <a href="#dx">dx</a>
7605and center at jc = (nx+1)/2. This may be used for tests of scalar
7606advection schemes
7607(see <a href="#scalar_advec">scalar_advec</a>).
7608Such tests require a horizontal wind profile constant with hight and
7609diffusion
7610switched off (see <span style="font-style: italic;">'initialize_vortex'</span>).
7611Additionally, the buoyancy term
7612must be switched of in the equation of motion&nbsp; for w (this
7613requires the user to comment out the call of <span style="font-family: monospace;">buoyancy</span> in the source code of <span style="font-family: monospace;">prognostic_equations.f90</span>).</p>
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624     
7625     
7626     
7627     
7628     
7629     
7630     
7631     
7632     
7633     
7634      </ul>
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645     
7646     
7647     
7648     
7649     
7650     
7651     
7652     
7653     
7654     
7655      <p style="font-style: normal;">Values may be
7656combined, e.g. <b>initializing_actions</b> = <span style="font-style: italic;">'set_constant_profiles
7657initialize_vortex'</span>, but the values of <span style="font-style: italic;">'set_constant_profiles'</span>
7658and <span style="font-style: italic;">'set_1d-model_profiles'</span>
7659must not be given at the same time.</p>
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670     
7671     
7672     
7673     
7674     
7675     
7676     
7677     
7678     
7679     
7680      <p style="font-style: italic;"> </p>
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691      </td>
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702    </tr>
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713   
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724    <tr>
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735      <td style="vertical-align: top;">
7736     
7737     
7738     
7739     
7740     
7741     
7742     
7743     
7744     
7745     
7746      <p><a name="km_constant"></a><b>km_constant</b></p>
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757      </td>
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768      <td style="vertical-align: top;">R</td>
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779      <td style="vertical-align: top;"><i>variable<br>
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790(computed from TKE)</i></td>
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801      <td style="vertical-align: top;">
7802     
7803     
7804     
7805     
7806     
7807     
7808     
7809     
7810     
7811     
7812      <p>Constant eddy diffusivities are used (laminar
7813simulations).&nbsp; </p>
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824     
7825     
7826     
7827     
7828     
7829     
7830     
7831     
7832     
7833     
7834      <p>If this parameter is specified, both in the 1d and in the
78353d-model constant values for the eddy diffusivities are used in
7836space and time with K<sub>m</sub> = <b>km_constant</b>
7837and K<sub>h</sub> = K<sub>m</sub> / <a href="chapter_4.2.html#prandtl_number">prandtl_number</a>.
7838The prognostic equation for the subgrid-scale TKE is switched off.
7839Constant eddy diffusivities are only allowed with the Prandtl layer (<a href="#prandtl_layer">prandtl_layer</a>)
7840switched off.</p>
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851      </td>
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862    </tr>
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873    <tr>
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884      <td style="vertical-align: top;">
7885     
7886     
7887     
7888     
7889     
7890     
7891     
7892     
7893     
7894     
7895      <p><a name="km_damp_max"></a><b>km_damp_max</b></p>
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906      </td>
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917      <td style="vertical-align: top;">R</td>
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928      <td style="vertical-align: top;"><span style="font-style: italic;">0.5*(dx
7929or dy)</span></td>
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940      <td style="vertical-align: top;">Maximum
7941diffusivity used for filtering the velocity field in the vicinity of
7942the outflow (in m<sup>2</sup>/s).<br>
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953      <br>
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964When using non-cyclic lateral boundaries (see <a href="#bc_lr">bc_lr</a>
7965or <a href="#bc_ns">bc_ns</a>),
7966a smoothing has to be applied to the
7967velocity field in the vicinity of the outflow in order to suppress any
7968reflections of outgoing disturbances. Smoothing is done by increasing
7969the eddy diffusivity along the horizontal direction which is
7970perpendicular to the outflow boundary. Only velocity components
7971parallel to the outflow boundary are filtered (e.g. v and w, if the
7972outflow is along x). Damping is applied from the bottom to the top of
7973the domain.<br>
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984      <br>
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995The horizontal range of the smoothing is controlled by <a href="#outflow_damping_width">outflow_damping_width</a>
7996which defines the number of gridpoints (counted from the outflow
7997boundary) from where on the smoothing is applied. Starting from that
7998point, the eddy diffusivity is linearly increased (from zero to its
7999maximum value given by <span style="font-weight: bold;">km_damp_max</span>)
8000until half of the damping range width, from where it remains constant
8001up to the outflow boundary. If at a certain grid point the eddy
8002diffusivity calculated from the flow field is larger than as described
8003above, it is used instead.<br>
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014      <br>
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025The default value of <span style="font-weight: bold;">km_damp_max</span>
8026has been empirically proven to be sufficient.</td>
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037    </tr>
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048    <tr>
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059      <td style="vertical-align: top;">
8060     
8061     
8062     
8063     
8064     
8065     
8066     
8067     
8068     
8069     
8070      <p><a name="long_filter_factor"></a><b>long_filter_factor</b></p>
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081      </td>
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092      <td style="vertical-align: top;">R</td>
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103      <td style="vertical-align: top;"><i>0.0</i></td>
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114      <td style="vertical-align: top;">
8115     
8116     
8117     
8118     
8119     
8120     
8121     
8122     
8123     
8124     
8125      <p>Filter factor for the so-called Long-filter.<br>
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136      </p>
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147     
8148     
8149     
8150     
8151     
8152     
8153     
8154     
8155     
8156     
8157      <p><br>
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168This filter very efficiently
8169eliminates 2-delta-waves sometimes cauesed by the upstream-spline
8170scheme (see Mahrer and
8171Pielke, 1978: Mon. Wea. Rev., 106, 818-830). It works in all three
8172directions in space. A value of <b>long_filter_factor</b> = <i>0.01</i>
8173sufficiently removes the small-scale waves without affecting the
8174longer waves.<br>
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185      </p>
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196     
8197     
8198     
8199     
8200     
8201     
8202     
8203     
8204     
8205     
8206      <p>By default, the filter is switched off (= <i>0.0</i>).
8207It is exclusively applied to the tendencies calculated by the
8208upstream-spline scheme (see <a href="#momentum_advec">momentum_advec</a>
8209and <a href="#scalar_advec">scalar_advec</a>),
8210not to the prognostic variables themselves. At the bottom and top
8211boundary of the model domain the filter effect for vertical
82122-delta-waves is reduced. There, the amplitude of these waves is only
8213reduced by approx. 50%, otherwise by nearly 100%.&nbsp; <br>
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224Filter factors with values &gt; <i>0.01</i> also reduce the amplitudes
8225of waves with wavelengths longer than 2-delta (see the paper by Mahrer
8226and
8227Pielke, quoted above). </p>
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238      </td>
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249    </tr>
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260    <tr>
8261      <td style="vertical-align: top;"><a name="mixing_length_1d"></a><span style="font-weight: bold;">mixing_length_1d</span><br>
8262      </td>
8263      <td style="vertical-align: top;">C*20<br>
8264      </td>
8265      <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;">
8266      <span style="font-style: italic;">model'</span><br>
8267      </td>
8268      <td style="vertical-align: top;">Mixing length used in the 1d-model.<br>
8269      <br>
8270By default the mixing length is calculated as in the 3d-model (i.e. it depends on the grid spacing).<br>
8271      <br>
8272By setting <span style="font-weight: bold;">mixing_length_1d</span> = <span style="font-style: italic;">'blackadar'</span>,
8273the so-called Blackadar mixing length is used (l = kappa * z / ( 1 +
8274kappa * z / lambda ) with the limiting value lambda = 2.7E-4 * u_g / f).<br>
8275      </td>
8276    </tr>
8277    <tr>
8278      <td style="vertical-align: top;">
8279      <p><a name="moisture"></a><b>moisture</b></p>
8280      </td>
8281      <td style="vertical-align: top;">L</td>
8282      <td style="vertical-align: top;"><i>.F.</i></td>
8283      <td style="vertical-align: top;">
8284      <p>Parameter to switch on the prognostic equation for specific
8285humidity q.<br>
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296      </p>
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308     
8309     
8310     
8311     
8312     
8313     
8314     
8315     
8316     
8317     
8318     
8319      <p>The initial vertical profile of q can be set via parameters <a href="chapter_4.1.html#q_surface">q_surface</a>, <a href="chapter_4.1.html#q_vertical_gradient">q_vertical_gradient</a>
8320and <a href="chapter_4.1.html#q_vertical_gradient_level">q_vertical_gradient_level</a>.&nbsp;
8321Boundary conditions can be set via <a href="chapter_4.1.html#q_surface_initial_change">q_surface_initial_change</a>
8322and <a href="chapter_4.1.html#surface_waterflux">surface_waterflux</a>.<br>
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333      </p>
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345If the condensation scheme is switched on (<a href="chapter_4.1.html#cloud_physics">cloud_physics</a>
8346= .TRUE.), q becomes the total liquid water content (sum of specific
8347humidity and liquid water content).</td>
8348    </tr>
8349<tr>
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360      <td style="vertical-align: top;">
8361     
8362     
8363     
8364     
8365     
8366     
8367     
8368     
8369     
8370     
8371      <p><a name="momentum_advec"></a><b>momentum_advec</b></p>
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382      </td>
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393      <td style="vertical-align: top;">C * 10</td>
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404      <td style="vertical-align: top;"><i>'pw-scheme'</i></td>
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415      <td style="vertical-align: top;">
8416     
8417     
8418     
8419     
8420     
8421     
8422     
8423     
8424     
8425     
8426      <p>Advection scheme to be used for the momentum equations.<br>
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437      <br>
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448The user can choose between the following schemes:<br>
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459&nbsp;<br>
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470      <br>
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481      <span style="font-style: italic;">'pw-scheme'</span><br>
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492      </p>
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503     
8504     
8505     
8506     
8507     
8508     
8509     
8510     
8511     
8512     
8513      <div style="margin-left: 40px;">The scheme of Piascek and
8514Williams (1970, J. Comp. Phys., 6,
8515392-405) with central differences in the form C3 is used.<br>
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526If intermediate Euler-timesteps are carried out in case of <a href="#timestep_scheme">timestep_scheme</a>
8527= <span style="font-style: italic;">'leapfrog+euler'</span> the
8528advection scheme is - for the Euler-timestep - automatically switched
8529to an upstream-scheme.<br>
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540      </div>
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551     
8552     
8553     
8554     
8555     
8556     
8557     
8558     
8559     
8560     
8561      <p> </p>
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572     
8573     
8574     
8575     
8576     
8577     
8578     
8579     
8580     
8581     
8582      <p><span style="font-style: italic;">'ups-scheme'</span><br>
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593      </p>
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604     
8605     
8606     
8607     
8608     
8609     
8610     
8611     
8612     
8613     
8614      <div style="margin-left: 40px;">The upstream-spline scheme is
8615used
8616(see Mahrer and Pielke,
86171978: Mon. Wea. Rev., 106, 818-830). In opposite to the
8618Piascek-Williams scheme, this is characterized by much better numerical
8619features (less numerical diffusion, better preservation of flow
8620structures, e.g. vortices), but computationally it is much more
8621expensive. In
8622addition, the use of the Euler-timestep scheme is mandatory (<a href="#timestep_scheme">timestep_scheme</a>
8623= <span style="font-style: italic;">'</span><i>euler'</i>), i.e. the
8624timestep accuracy is only of first order.
8625For this reason the advection of scalar variables (see <a href="#scalar_advec">scalar_advec</a>)
8626should then also be carried out with the upstream-spline scheme,
8627because otherwise the scalar variables would
8628be subject to large numerical diffusion due to the upstream
8629scheme.&nbsp; </div>
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640     
8641     
8642     
8643     
8644     
8645     
8646     
8647     
8648     
8649     
8650      <p style="margin-left: 40px;">Since the cubic splines used tend
8651to overshoot under
8652certain circumstances, this effect must be adjusted by suitable
8653filtering and smoothing (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>,
8654      <a href="#long_filter_factor">long_filter_factor</a>, <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>,
8655      <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>).
8656This is always neccessary for runs with stable stratification,
8657even if this stratification appears only in parts of the model domain.<br>
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668      </p>
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679     
8680     
8681     
8682     
8683     
8684     
8685     
8686     
8687     
8688     
8689      <div style="margin-left: 40px;">With stable stratification the
8690upstream-spline scheme also
8691produces gravity waves with large amplitude, which must be
8692suitably damped (see <a href="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</a>).<br>
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703      <br>
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714      <span style="font-weight: bold;">Important: </span>The&nbsp;
8715upstream-spline scheme is not implemented for humidity and passive
8716scalars (see <a href="#moisture">moisture</a>
8717and <a href="#passive_scalar">passive_scalar</a>)
8718and requires the use of a 2d-domain-decomposition. The last conditions
8719severely restricts code optimization on several machines leading to
8720very long execution times! The scheme is also not allowed for
8721non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
8722and <a href="#bc_ns">bc_ns</a>).</div>
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733      </td>
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744    </tr>
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755   
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766    <tr>
8767      <td style="vertical-align: top;"><a name="netcdf_precision"></a><span style="font-weight: bold;">netcdf_precision</span><br>
8768      </td>
8769      <td style="vertical-align: top;">C*20<br>
8770(10)<br>
8771      </td>
8772      <td style="vertical-align: top;"><span style="font-style: italic;">single preci-</span><br style="font-style: italic;">
8773      <span style="font-style: italic;">sion for all</span><br style="font-style: italic;">
8774      <span style="font-style: italic;">output quan-</span><br style="font-style: italic;">
8775      <span style="font-style: italic;">tities</span><br>
8776      </td>
8777      <td style="vertical-align: top;">Defines the accuracy of the NetCDF output.<br>
8778      <br>
8779By default, all NetCDF output data (see <a href="chapter_4.2.html#data_output_format">data_output_format</a>) have single precision&nbsp; (4 byte) accuracy. Double precision (8 byte) can be choosen alternatively.<br>
8780Accuracy for the different output data (cross sections, 3d-volume data, spectra, etc.) can be set independently.<br>
8781      <span style="font-style: italic;">'&lt;out&gt;_NF90_REAL4'</span> (single precision) or <span style="font-style: italic;">'&lt;out&gt;_NF90_REAL8'</span> (double precision) are the two principally allowed values for <span style="font-weight: bold;">netcdf_precision</span>, where the string <span style="font-style: italic;">'&lt;out&gt;' </span>can be chosen out of the following list:<br>
8782      <br>
8783      <table style="text-align: left; width: 284px; height: 234px;" border="1" cellpadding="2" cellspacing="2">
8784        <tbody>
8785          <tr>
8786            <td style="vertical-align: top;"><span style="font-style: italic;">'xy'</span><br>
8787            </td>
8788            <td style="vertical-align: top;">horizontal cross section<br>
8789            </td>
8790          </tr>
8791          <tr>
8792            <td style="vertical-align: top;"><span style="font-style: italic;">'xz'</span><br>
8793            </td>
8794            <td style="vertical-align: top;">vertical (xz) cross section<br>
8795            </td>
8796          </tr>
8797          <tr>
8798            <td style="vertical-align: top;"><span style="font-style: italic;">'yz'</span><br>
8799            </td>
8800            <td style="vertical-align: top;">vertical (yz) cross section<br>
8801            </td>
8802          </tr>
8803          <tr>
8804            <td style="vertical-align: top;"><span style="font-style: italic;">'2d'</span><br>
8805            </td>
8806            <td style="vertical-align: top;">all cross sections<br>
8807            </td>
8808          </tr>
8809          <tr>
8810            <td style="vertical-align: top;"><span style="font-style: italic;">'3d'</span><br>
8811            </td>
8812            <td style="vertical-align: top;">volume data<br>
8813            </td>
8814          </tr>
8815          <tr>
8816            <td style="vertical-align: top;"><span style="font-style: italic;">'pr'</span><br>
8817            </td>
8818            <td style="vertical-align: top;">vertical profiles<br>
8819            </td>
8820          </tr>
8821          <tr>
8822            <td style="vertical-align: top;"><span style="font-style: italic;">'ts'</span><br>
8823            </td>
8824            <td style="vertical-align: top;">time series, particle time series<br>
8825            </td>
8826          </tr>
8827          <tr>
8828            <td style="vertical-align: top;"><span style="font-style: italic;">'sp'</span><br>
8829            </td>
8830            <td style="vertical-align: top;">spectra<br>
8831            </td>
8832          </tr>
8833          <tr>
8834            <td style="vertical-align: top;"><span style="font-style: italic;">'prt'</span><br>
8835            </td>
8836            <td style="vertical-align: top;">particles<br>
8837            </td>
8838          </tr>
8839          <tr>
8840            <td style="vertical-align: top;"><span style="font-style: italic;">'all'</span><br>
8841            </td>
8842            <td style="vertical-align: top;">all output quantities<br>
8843            </td>
8844          </tr>
8845        </tbody>
8846      </table>
8847      <br>
8848      <span style="font-weight: bold;">Example:</span><br>
8849If all cross section data and the particle data shall be output in
8850double precision and all other quantities in single precision, then <span style="font-weight: bold;">netcdf_precision</span> = <span style="font-style: italic;">'2d_NF90_REAL8'</span>, <span style="font-style: italic;">'prt_NF90_REAL8'</span> has to be assigned.<br>
8851      </td>
8852    </tr>
8853<tr>
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864      <td style="vertical-align: top;">
8865     
8866     
8867     
8868     
8869     
8870     
8871     
8872     
8873     
8874     
8875      <p><a name="npex"></a><b>npex</b></p>
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886      </td>
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897      <td style="vertical-align: top;">I</td>
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908      <td style="vertical-align: top;"><br>
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919      </td>
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930      <td style="vertical-align: top;">
8931     
8932     
8933     
8934     
8935     
8936     
8937     
8938     
8939     
8940     
8941      <p>Number of processors along x-direction of the virtual
8942processor
8943net.&nbsp; </p>
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954     
8955     
8956     
8957     
8958     
8959     
8960     
8961     
8962     
8963     
8964      <p>For parallel runs, the total number of processors to be used
8965is given by
8966the <span style="font-weight: bold;">mrun</span> option <a href="http://www.muk.uni-hannover.de/software/mrun_beschreibung.html#Opt-X">-X</a>.
8967By default, depending on the type of the parallel computer, PALM
8968generates a 1d processor
8969net (domain decomposition along x, <span style="font-weight: bold;">npey</span>
8970= <span style="font-style: italic;">1</span>) or a 2d-net (this is
8971favored on machines with fast communication network). In case of a
89722d-net, it is tried to make it more or less square-shaped. If, for
8973example, 16 processors are assigned (-X 16), a 4 * 4 processor net is
8974generated (<span style="font-weight: bold;">npex</span> = <span style="font-style: italic;">4</span>, <span style="font-weight: bold;">npey</span>
8975= <span style="font-style: italic;">4</span>).
8976This choice is optimal for square total domains (<a href="#nx">nx</a>
8977= <a href="#ny">ny</a>),
8978since then the number of ghost points at the lateral boundarys of
8979the subdomains is minimal. If <span style="font-weight: bold;">nx</span>
8980nd <span style="font-weight: bold;">ny</span> differ extremely, the
8981processor net should be manually adjusted using adequate values for <span style="font-weight: bold;">npex</span> and <span style="font-weight: bold;">npey</span>.&nbsp; </p>
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992     
8993     
8994     
8995     
8996     
8997     
8998     
8999     
9000     
9001     
9002      <p><b>Important:</b> The value of <span style="font-weight: bold;">npex</span> * <span style="font-weight: bold;">npey</span> must exactly correspond to the
9003value assigned by the <span style="font-weight: bold;">mrun</span>-option
9004      <tt>-X</tt>.
9005Otherwise the model run will abort with a corresponding error
9006message.&nbsp; <br>
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017Additionally, the specification of <span style="font-weight: bold;">npex</span>
9018and <span style="font-weight: bold;">npey</span> may of course
9019override the default setting for the domain decomposition (1d or 2d)
9020which may have a significant (negative) effect on the code performance.
9021      </p>
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032      </td>
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043    </tr>
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054    <tr>
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065      <td style="vertical-align: top;">
9066     
9067     
9068     
9069     
9070     
9071     
9072     
9073     
9074     
9075     
9076      <p><a name="npey"></a><b>npey</b></p>
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087      </td>
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098      <td style="vertical-align: top;">I</td>
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109      <td style="vertical-align: top;"><br>
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120      </td>
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131      <td style="vertical-align: top;">
9132     
9133     
9134     
9135     
9136     
9137     
9138     
9139     
9140     
9141     
9142      <p>Number of processors along y-direction of the virtual
9143processor
9144net.&nbsp; </p>
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155     
9156     
9157     
9158     
9159     
9160     
9161     
9162     
9163     
9164     
9165      <p>For further information see <a href="#npex">npex</a>.</p>
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176      </td>
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187    </tr>
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198    <tr>
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209      <td style="vertical-align: top;">
9210     
9211     
9212     
9213     
9214     
9215     
9216     
9217     
9218     
9219     
9220      <p><a name="nsor_ini"></a><b>nsor_ini</b></p>
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231      </td>
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242      <td style="vertical-align: top;">I</td>
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253      <td style="vertical-align: top;"><i>100</i></td>
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264      <td style="vertical-align: top;">
9265     
9266     
9267     
9268     
9269     
9270     
9271     
9272     
9273     
9274     
9275      <p>Initial number of iterations with the SOR algorithm.&nbsp; </p>
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286     
9287     
9288     
9289     
9290     
9291     
9292     
9293     
9294     
9295     
9296      <p>This parameter is only effective if the SOR algorithm was
9297selected as the pressure solver scheme (<a href="chapter_4.2.html#psolver">psolver</a>
9298= <span style="font-style: italic;">'sor'</span>) and specifies the
9299number of initial iterations of the SOR
9300scheme (at t = 0). The number of subsequent iterations at the following
9301timesteps is determined
9302with the parameter <a href="#nsor">nsor</a>.
9303Usually <b>nsor</b> &lt; <b>nsor_ini</b>, since in each case
9304subsequent calls to <a href="chapter_4.2.html#psolver">psolver</a>
9305use the solution of the previous call as initial value. Suitable
9306test runs should determine whether sufficient convergence of the
9307solution is obtained with the default value and if necessary the value
9308of <b>nsor_ini</b> should be changed.</p>
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319      </td>
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330    </tr>
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341    <tr>
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352      <td style="vertical-align: top;">
9353     
9354     
9355     
9356     
9357     
9358     
9359     
9360     
9361     
9362     
9363      <p><a name="nx"></a><b>nx</b></p>
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374      </td>
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385      <td style="vertical-align: top;">I</td>
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396      <td style="vertical-align: top;"><br>
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407      </td>
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418      <td style="vertical-align: top;">
9419     
9420     
9421     
9422     
9423     
9424     
9425     
9426     
9427     
9428     
9429      <p>Number of grid points in x-direction.&nbsp; </p>
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440     
9441     
9442     
9443     
9444     
9445     
9446     
9447     
9448     
9449     
9450      <p>A value for this parameter must be assigned. Since the lower
9451array bound in PALM
9452starts with i = 0, the actual number of grid points is equal to <b>nx+1</b>.
9453In case of cyclic boundary conditions along x, the domain size is (<b>nx+1</b>)*
9454      <a href="#dx">dx</a>.</p>
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465     
9466     
9467     
9468     
9469     
9470     
9471     
9472     
9473     
9474     
9475      <p>For parallel runs, in case of <a href="#grid_matching">grid_matching</a>
9476= <span style="font-style: italic;">'strict'</span>, <b>nx+1</b> must
9477be an integral multiple
9478of the processor numbers (see <a href="#npex">npex</a>
9479and <a href="#npey">npey</a>)
9480along x- as well as along y-direction (due to data
9481transposition restrictions).</p>
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492      </td>
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503    </tr>
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514    <tr>
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525      <td style="vertical-align: top;">
9526     
9527     
9528     
9529     
9530     
9531     
9532     
9533     
9534     
9535     
9536      <p><a name="ny"></a><b>ny</b></p>
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547      </td>
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558      <td style="vertical-align: top;">I</td>
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569      <td style="vertical-align: top;"><br>
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580      </td>
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591      <td style="vertical-align: top;">
9592     
9593     
9594     
9595     
9596     
9597     
9598     
9599     
9600     
9601     
9602      <p>Number of grid points in y-direction.&nbsp; </p>
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613     
9614     
9615     
9616     
9617     
9618     
9619     
9620     
9621     
9622     
9623      <p>A value for this parameter must be assigned. Since the lower
9624array bound in PALM starts with i = 0, the actual number of grid points
9625is equal to <b>ny+1</b>. In case of cyclic boundary conditions along
9626y, the domain size is (<b>ny+1</b>) * <a href="#dy">dy</a>.</p>
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637     
9638     
9639     
9640     
9641     
9642     
9643     
9644     
9645     
9646     
9647      <p>For parallel runs, in case of <a href="#grid_matching">grid_matching</a>
9648= <span style="font-style: italic;">'strict'</span>, <b>ny+1</b> must
9649be an integral multiple
9650of the processor numbers (see <a href="#npex">npex</a>
9651and <a href="#npey">npey</a>)&nbsp;
9652along y- as well as along x-direction (due to data
9653transposition restrictions).</p>
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664      </td>
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675    </tr>
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686    <tr>
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697      <td style="vertical-align: top;">
9698     
9699     
9700     
9701     
9702     
9703     
9704     
9705     
9706     
9707     
9708      <p><a name="nz"></a><b>nz</b></p>
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719      </td>
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730      <td style="vertical-align: top;">I</td>
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741      <td style="vertical-align: top;"><br>
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752      </td>
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763      <td style="vertical-align: top;">
9764     
9765     
9766     
9767     
9768     
9769     
9770     
9771     
9772     
9773     
9774      <p>Number of grid points in z-direction.&nbsp; </p>
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785     
9786     
9787     
9788     
9789     
9790     
9791     
9792     
9793     
9794     
9795      <p>A value for this parameter must be assigned. Since the lower
9796array bound in PALM
9797starts with k = 0 and since one additional grid point is added at the
9798top boundary (k = <b>nz+1</b>), the actual number of grid points is <b>nz+2</b>.
9799However, the prognostic equations are only solved up to <b>nz</b> (u,
9800v)
9801or up to <b>nz-1</b> (w, scalar quantities). The top boundary for u
9802and v is at k = <b>nz+1</b> (u, v) while at k = <b>nz</b> for all
9803other quantities.&nbsp; </p>
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814     
9815     
9816     
9817     
9818     
9819     
9820     
9821     
9822     
9823     
9824      <p>For parallel runs,&nbsp; in case of <a href="#grid_matching">grid_matching</a>
9825= <span style="font-style: italic;">'strict'</span>, <b>nz</b> must
9826be an integral multiple of
9827the number of processors in x-direction (due to data transposition
9828restrictions).</p>
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839      </td>
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850    </tr>
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861    <tr>
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872      <td style="vertical-align: top;">
9873     
9874     
9875     
9876     
9877     
9878     
9879     
9880     
9881     
9882     
9883      <p><a name="omega"></a><b>omega</b></p>
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894      </td>
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905      <td style="vertical-align: top;">R</td>
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916      <td style="vertical-align: top;"><i>7.29212E-5</i></td>
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927      <td style="vertical-align: top;">
9928     
9929     
9930     
9931     
9932     
9933     
9934     
9935     
9936     
9937     
9938      <p>Angular velocity of the rotating system (in rad s<sup>-1</sup>).&nbsp;
9939      </p>
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950     
9951     
9952     
9953     
9954     
9955     
9956     
9957     
9958     
9959     
9960      <p>The angular velocity of the earth is set by default. The
9961values
9962of the Coriolis parameters are calculated as:&nbsp; </p>
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973     
9974     
9975     
9976     
9977     
9978     
9979     
9980     
9981     
9982     
9983      <ul>
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994       
9995       
9996       
9997       
9998       
9999       
10000       
10001       
10002       
10003       
10004        <p>f = 2.0 * <b>omega</b> * sin(<a href="#phi">phi</a>)&nbsp; <br>
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015f* = 2.0 * <b>omega</b> * cos(<a href="#phi">phi</a>)</p>
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026     
10027     
10028     
10029     
10030     
10031     
10032     
10033     
10034     
10035     
10036      </ul>
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047      </td>
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058    </tr>
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069    <tr>
10070      <td style="vertical-align: top;">
10071      <p><a name="outflow_damping_width"></a><b>outflow_damping_width</b></p>
10072      </td>
10073      <td style="vertical-align: top;">I</td>
10074      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(20,
10075nx/2</span> or <span style="font-style: italic;">ny/2)</span></td>
10076      <td style="vertical-align: top;">Width of
10077the damping range in the vicinity of the outflow (gridpoints).<br>
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089      <br>
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101When using non-cyclic lateral boundaries (see <a href="chapter_4.1.html#bc_lr">bc_lr</a>
10102or <a href="chapter_4.1.html#bc_ns">bc_ns</a>),
10103a smoothing has to be applied to the
10104velocity field in the vicinity of the outflow in order to suppress any
10105reflections of outgoing disturbances. This parameter controlls the
10106horizontal range to which the smoothing is applied. The range is given
10107in gridpoints counted from the respective outflow boundary. For further
10108details about the smoothing see parameter <a href="chapter_4.1.html#km_damp_max">km_damp_max</a>,
10109which defines the magnitude of the damping.</td>
10110    </tr>
10111<tr>
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122      <td style="vertical-align: top;">
10123     
10124     
10125     
10126     
10127     
10128     
10129     
10130     
10131     
10132     
10133      <p><a name="overshoot_limit_e"></a><b>overshoot_limit_e</b></p>
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144      </td>
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155      <td style="vertical-align: top;">R</td>
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166      <td style="vertical-align: top;"><i>0.0</i></td>
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177      <td style="vertical-align: top;">
10178     
10179     
10180     
10181     
10182     
10183     
10184     
10185     
10186     
10187     
10188      <p>Allowed limit for the overshooting of subgrid-scale TKE in
10189case that the upstream-spline scheme is switched on (in m<sup>2</sup>/s<sup>2</sup>).&nbsp;
10190      </p>
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201     
10202     
10203     
10204     
10205     
10206     
10207     
10208     
10209     
10210     
10211      <p>By deafult, if cut-off of overshoots is switched on for the
10212upstream-spline scheme (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>),
10213no overshoots are permitted at all. If <b>overshoot_limit_e</b>
10214is given a non-zero value, overshoots with the respective
10215amplitude (both upward and downward) are allowed.&nbsp; </p>
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226     
10227     
10228     
10229     
10230     
10231     
10232     
10233     
10234     
10235     
10236      <p>Only positive values are allowed for <b>overshoot_limit_e</b>.</p>
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247      </td>
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258    </tr>
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269   
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280    <tr>
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291      <td style="vertical-align: top;">
10292     
10293     
10294     
10295     
10296     
10297     
10298     
10299     
10300     
10301     
10302      <p><a name="overshoot_limit_pt"></a><b>overshoot_limit_pt</b></p>
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313      </td>
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324      <td style="vertical-align: top;">R</td>
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335      <td style="vertical-align: top;"><i>0.0</i></td>
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346      <td style="vertical-align: top;">
10347     
10348     
10349     
10350     
10351     
10352     
10353     
10354     
10355     
10356     
10357      <p>Allowed limit for the overshooting of potential temperature in
10358case that the upstream-spline scheme is switched on (in K).&nbsp; </p>
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369     
10370     
10371     
10372     
10373     
10374     
10375     
10376     
10377     
10378     
10379      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
10380      </p>
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391     
10392     
10393     
10394     
10395     
10396     
10397     
10398     
10399     
10400     
10401      <p>Only positive values are allowed for <b>overshoot_limit_pt</b>.</p>
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412      </td>
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423    </tr>
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434    <tr>
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445      <td style="vertical-align: top;">
10446     
10447     
10448     
10449     
10450     
10451     
10452     
10453     
10454     
10455     
10456      <p><a name="overshoot_limit_u"></a><b>overshoot_limit_u</b></p>
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467      </td>
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478      <td style="vertical-align: top;">R</td>
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489      <td style="vertical-align: top;"><i>0.0</i></td>
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500      <td style="vertical-align: top;">Allowed limit for the
10501overshooting of
10502the u-component of velocity in case that the upstream-spline scheme is
10503switched on (in m/s).
10504     
10505     
10506     
10507     
10508     
10509     
10510     
10511     
10512     
10513     
10514      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
10515      </p>
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526     
10527     
10528     
10529     
10530     
10531     
10532     
10533     
10534     
10535     
10536      <p>Only positive values are allowed for <b>overshoot_limit_u</b>.</p>
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547      </td>
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558    </tr>
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569    <tr>
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580      <td style="vertical-align: top;">
10581     
10582     
10583     
10584     
10585     
10586     
10587     
10588     
10589     
10590     
10591      <p><a name="overshoot_limit_v"></a><b>overshoot_limit_v</b></p>
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602      </td>
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613      <td style="vertical-align: top;">R</td>
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624      <td style="vertical-align: top;"><i>0.0</i></td>
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635      <td style="vertical-align: top;">
10636     
10637     
10638     
10639     
10640     
10641     
10642     
10643     
10644     
10645     
10646      <p>Allowed limit for the overshooting of the v-component of
10647velocity in case that the upstream-spline scheme is switched on