source: palm/trunk/DOC/app/chapter_4.1.html @ 1589

Last change on this file since 1589 was 555, checked in by raasch, 14 years ago

New:
---

Changed:


Documentation for surface_heatflux in case of prandtl_layer = .F. improved.

bugfix for wrong netcdf/3.6.3 module on lcsgi (mbuild, mrun)

Errors:


Bugfix in if statement (disturb_heatflux)

Bugfix: in 2201 statement: closing " was missing (interpret_config)

Bugfix: default setting of nzb_local for flat topography (init_grid)

Bugfix: wrong dimension used for ts_value_l (user_statistics)

disturb_heatflux, init_grid, interpret_config, user_statistics

  • Property svn:keywords set to Id
File size: 234.6 KB
Line 
1<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head>
3
4
5
6
7
8
9
10
11
12
13 
14 
15 
16 
17 
18 
19  <meta http-equiv="content-type" content="text/html; charset=ISO-8859-1"><title>PALM chapter 4.1</title></head><body>
20
21
22
23
24
25
26<h3><a name="chapter4.1"></a>4.1
27Initialization parameters</h3>
28
29
30
31
32
33
34
35<br>
36
37
38
39
40
41
42<table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2">
43
44
45
46
47
48
49 <tbody>
50
51
52
53
54
55
56
57    <tr>
58
59
60
61
62
63
64 <td style="vertical-align: top;"><font size="4"><b>Parameter name</b></font></td>
65
66
67
68
69
70
71
72      <td style="vertical-align: top;"><font size="4"><b>Type</b></font></td>
73
74
75
76
77
78
79
80      <td style="vertical-align: top;"> 
81     
82     
83     
84     
85     
86     
87      <p><b><font size="4">Default</font></b> <br>
88
89
90
91
92
93
94 <b><font size="4">value</font></b></p>
95
96
97
98
99
100
101 </td>
102
103
104
105
106
107
108
109      <td style="vertical-align: top;"><font size="4"><b>Explanation</b></font></td>
110
111
112
113
114
115
116
117    </tr>
118
119
120
121
122
123
124 <tr>
125
126
127
128
129
130
131 <td style="vertical-align: top;">
132     
133     
134     
135     
136     
137     
138      <p><a name="adjust_mixing_length"></a><b>adjust_mixing_length</b></p>
139
140
141
142
143
144
145
146      </td>
147
148
149
150
151
152
153 <td style="vertical-align: top;">L</td>
154
155
156
157
158
159
160
161      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
162
163
164
165
166
167
168 <td style="vertical-align: top;"> 
169     
170     
171     
172     
173     
174     
175      <p style="font-style: normal;">Near-surface adjustment of the
176mixing length to the Prandtl-layer law.&nbsp; </p>
177
178
179
180
181
182
183 
184     
185     
186     
187     
188     
189     
190      <p>Usually
191the mixing length in LES models l<sub>LES</sub>
192depends (as in PALM) on the grid size and is possibly restricted
193further in case of stable stratification and near the lower wall (see
194parameter <a href="#wall_adjustment">wall_adjustment</a>).
195With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span>
196the Prandtl' mixing length l<sub>PR</sub> = kappa * z/phi
197is calculated
198and the mixing length actually used in the model is set l = MIN (l<sub>LES</sub>,
199l<sub>PR</sub>). This usually gives a decrease of the
200mixing length at
201the bottom boundary and considers the fact that eddy sizes
202decrease in the vicinity of the wall.&nbsp; </p>
203
204
205
206
207
208
209 
210     
211     
212     
213     
214     
215     
216      <p style="font-style: normal;"><b>Warning:</b> So
217far, there is
218no good experience with <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> !&nbsp; </p>
219
220
221
222
223
224
225
226     
227     
228     
229     
230     
231     
232      <p>With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> and the
233Prandtl-layer being
234switched on (see <a href="#prandtl_layer">prandtl_layer</a>)
235      <span style="font-style: italic;">'(u*)** 2+neumann'</span>
236should always be set as the lower boundary condition for the TKE (see <a href="#bc_e_b">bc_e_b</a>),
237otherwise the near-surface value of the TKE is not in agreement with
238the Prandtl-layer law (Prandtl-layer law and Prandtl-Kolmogorov-Ansatz
239should provide the same value for K<sub>m</sub>). A warning
240is given,
241if this is not the case.</p>
242
243
244
245
246
247
248 </td>
249
250
251
252
253
254
255 </tr>
256
257
258
259
260
261
262 <tr>
263
264
265
266
267
268
269
270      <td style="vertical-align: top;"> 
271     
272     
273     
274     
275     
276     
277      <p><a name="alpha_surface"></a><b>alpha_surface</b></p>
278
279
280
281
282
283
284
285      </td>
286
287
288
289
290
291
292 <td style="vertical-align: top;">R<br>
293
294
295
296
297
298
299 </td>
300
301
302
303
304
305
306
307      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
308
309
310
311
312
313
314 </td>
315
316
317
318
319
320
321
322      <td style="vertical-align: top;"> 
323     
324     
325     
326     
327     
328     
329      <p style="font-style: normal;">Inclination of the model domain
330with respect to the horizontal (in degrees).&nbsp; </p>
331
332
333
334
335
336
337 
338     
339     
340     
341     
342     
343     
344      <p style="font-style: normal;">By means of <b>alpha_surface</b>
345the model domain can be inclined in x-direction with respect to the
346horizontal. In this way flows over inclined surfaces (e.g. drainage
347flows, gravity flows) can be simulated. In case of <b>alpha_surface
348      </b>/= <span style="font-style: italic;">0</span>
349the buoyancy term
350appears both in
351the equation of motion of the u-component and of the w-component.<br>
352
353
354
355
356
357
358
359      </p>
360
361
362
363
364
365
366 
367     
368     
369     
370     
371     
372     
373      <p style="font-style: normal;">An inclination
374is only possible in
375case of cyclic horizontal boundary conditions along x AND y (see <a href="#bc_lr">bc_lr</a>
376and <a href="#bc_ns">bc_ns</a>) and <a href="#topography">topography</a> = <span style="font-style: italic;">'flat'</span>. </p>
377
378
379
380
381
382
383
384     
385     
386     
387     
388     
389     
390      <p>Runs with inclined surface still require additional
391user-defined code as well as modifications to the default code. Please
392ask the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/PALM_group.html#0">PALM
393developer&nbsp; group</a>.</p>
394
395
396
397
398
399
400 </td>
401
402
403
404
405
406
407 </tr>
408
409
410
411
412
413
414
415    <tr>
416
417
418
419
420
421
422 <td style="vertical-align: top;"> 
423     
424     
425     
426     
427     
428     
429      <p><a name="bc_e_b"></a><b>bc_e_b</b></p>
430
431
432
433
434
435
436 </td>
437
438
439
440
441
442
443
444      <td style="vertical-align: top;">C * 20</td>
445
446
447
448
449
450
451 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
452
453
454
455
456
457
458
459      <td style="vertical-align: top;"> 
460     
461     
462     
463     
464     
465     
466      <p style="font-style: normal;">Bottom boundary condition of the
467TKE.&nbsp; </p>
468
469
470
471
472
473
474 
475     
476     
477     
478     
479     
480     
481      <p><b>bc_e_b</b> may be
482set to&nbsp;<span style="font-style: italic;">'neumann'</span>
483or <span style="font-style: italic;">'(u*) ** 2+neumann'</span>.
484      <b>bc_e_b</b>
485= <span style="font-style: italic;">'neumann'</span>
486yields to
487e(k=0)=e(k=1) (Neumann boundary condition), where e(k=1) is calculated
488via the prognostic TKE equation. Choice of <span style="font-style: italic;">'(u*)**2+neumann'</span>
489also yields to
490e(k=0)=e(k=1), but the TKE at the Prandtl-layer top (k=1) is calculated
491diagnostically by e(k=1)=(us/0.1)**2. However, this is only allowed if
492a Prandtl-layer is used (<a href="#prandtl_layer">prandtl_layer</a>).
493If this is not the case, a warning is given and <b>bc_e_b</b>
494is reset
495to <span style="font-style: italic;">'neumann'</span>.&nbsp;
496      </p>
497
498
499
500
501
502
503 
504     
505     
506     
507     
508     
509     
510      <p style="font-style: normal;">At the top
511boundary a Neumann
512boundary condition is generally used: (e(nz+1) = e(nz)).</p>
513
514
515
516
517
518
519 </td>
520
521
522
523
524
525
526
527    </tr>
528
529
530
531
532
533
534 <tr>
535
536
537
538
539
540
541 <td style="vertical-align: top;">
542     
543     
544     
545     
546     
547     
548      <p><a name="bc_lr"></a><b>bc_lr</b></p>
549
550
551
552
553
554
555
556      </td>
557
558
559
560
561
562
563 <td style="vertical-align: top;">C * 20</td>
564
565
566
567
568
569
570
571      <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td>
572
573
574
575
576
577
578
579      <td style="vertical-align: top;">Boundary
580condition along x (for all quantities).<br>
581
582
583
584
585
586
587 <br>
588
589
590
591
592
593
594
595By default, a cyclic boundary condition is used along x.<br>
596
597
598
599
600
601
602 <br>
603
604
605
606
607
608
609
610      <span style="font-weight: bold;">bc_lr</span> may
611also be
612assigned the values <span style="font-style: italic;">'dirichlet/radiation'</span>
613(inflow from left, outflow to the right) or <span style="font-style: italic;">'radiation/dirichlet'</span>
614(inflow from
615right, outflow to the left). This requires the multi-grid method to be
616used for solving the Poisson equation for perturbation pressure (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>)
617and it also requires cyclic boundary conditions along y (see&nbsp;<a href="#bc_ns">bc_ns</a>).<br>
618
619
620
621
622
623
624 <br>
625
626
627
628
629
630
631
632In case of these non-cyclic lateral boundaries, a Dirichlet condition
633is used at the inflow for all quantities (initial vertical profiles -
634see <a href="#initializing_actions">initializing_actions</a>
635- are fixed during the run) except u, to which a Neumann (zero
636gradient) condition is applied. At the outflow, a radiation condition is used for all velocity components, while a Neumann (zero
637gradient) condition is used for the scalars. For perturbation
638pressure Neumann (zero gradient) conditions are assumed both at the
639inflow and at the outflow.<br>
640
641
642
643
644
645
646 <br>
647
648
649
650
651
652
653
654When using non-cyclic lateral boundaries, a filter is applied to the
655velocity field in the vicinity of the outflow in order to suppress any
656reflections of outgoing disturbances (see <a href="#km_damp_max">km_damp_max</a>
657and <a href="#outflow_damping_width">outflow_damping_width</a>).<br>
658
659
660
661
662
663
664
665      <br>
666
667
668
669
670
671
672
673In order to maintain a turbulent state of the flow, it may be
674neccessary to continuously impose perturbations on the horizontal
675velocity field in the vicinity of the inflow throughout the whole run.
676This can be switched on using <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#create_disturbances">create_disturbances</a>.
677The horizontal range to which these perturbations are applied is
678controlled by the parameters <a href="#inflow_disturbance_begin">inflow_disturbance_begin</a>
679and <a href="#inflow_disturbance_end">inflow_disturbance_end</a>.
680The vertical range and the perturbation amplitude are given by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_b</a>,
681      <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_t</a>,
682and <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_amplitude</a>.
683The time interval at which perturbations are to be imposed is set by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#dt_disturb">dt_disturb</a>.<br>
684
685
686
687
688
689
690
691      <br>
692
693
694
695
696
697
698
699In case of non-cyclic horizontal boundaries <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#call_psolver_at_all_substeps">call_psolver
700at_all_substeps</a> = .T. should be used.<br>
701
702
703
704
705
706
707 <br>
708
709
710
711
712
713
714 <span style="font-weight: bold;">Note:</span><br>
715
716
717
718
719
720
721
722Using non-cyclic lateral boundaries requires very sensitive adjustments
723of the inflow (vertical profiles) and the bottom boundary conditions,
724e.g. a surface heating should not be applied near the inflow boundary
725because this may significantly disturb the inflow. Please check the
726model results very carefully.</td>
727
728
729
730
731
732
733 </tr>
734
735
736
737
738
739
740 <tr>
741
742
743
744
745
746
747 <td style="vertical-align: top;"> 
748     
749     
750     
751     
752     
753     
754      <p><a name="bc_ns"></a><b>bc_ns</b></p>
755
756
757
758
759
760
761
762      </td>
763
764
765
766
767
768
769 <td style="vertical-align: top;">C * 20</td>
770
771
772
773
774
775
776
777      <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td>
778
779
780
781
782
783
784
785      <td style="vertical-align: top;">Boundary
786condition along y (for all quantities).<br>
787
788
789
790
791
792
793 <br>
794
795
796
797
798
799
800
801By default, a cyclic boundary condition is used along y.<br>
802
803
804
805
806
807
808 <br>
809
810
811
812
813
814
815
816      <span style="font-weight: bold;">bc_ns</span> may
817also be
818assigned the values <span style="font-style: italic;">'dirichlet/radiation'</span>
819(inflow from rear ("north"), outflow to the front ("south")) or <span style="font-style: italic;">'radiation/dirichlet'</span>
820(inflow from front ("south"), outflow to the rear ("north")). This
821requires the multi-grid
822method to be used for solving the Poisson equation for perturbation
823pressure (see <a href="chapter_4.2.html#psolver">psolver</a>)
824and it also requires cyclic boundary conditions along x (see<br>
825
826
827
828
829
830
831 <a href="#bc_lr">bc_lr</a>).<br>
832
833
834
835
836
837
838 <br>
839
840
841
842
843
844
845
846In case of these non-cyclic lateral boundaries, a Dirichlet condition
847is used at the inflow for all quantities (initial vertical profiles -
848see <a href="chapter_4.1.html#initializing_actions">initializing_actions</a>
849- are fixed during the run) except u, to which a Neumann (zero
850gradient) condition is applied. At the outflow, a radiation condition is used for all velocity components, while a Neumann (zero
851gradient) condition is used for the scalars. For perturbation
852pressure Neumann (zero gradient) conditions are assumed both at the
853inflow and at the outflow.<br>
854
855
856
857
858
859
860 <br>
861
862
863
864
865
866
867
868For further details regarding non-cyclic lateral boundary conditions
869see <a href="#bc_lr">bc_lr</a>.</td>
870
871
872
873
874
875
876 </tr>
877
878
879
880
881
882
883
884    <tr>
885
886
887
888
889
890
891 <td style="vertical-align: top;"> 
892     
893     
894     
895     
896     
897     
898      <p><a name="bc_p_b"></a><b>bc_p_b</b></p>
899
900
901
902
903
904
905 </td>
906
907
908
909
910
911
912
913      <td style="vertical-align: top;">C * 20</td>
914
915
916
917
918
919
920 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
921
922
923
924
925
926
927
928      <td style="vertical-align: top;"> 
929     
930     
931     
932     
933     
934     
935      <p style="font-style: normal;">Bottom boundary condition of the
936perturbation pressure.&nbsp; </p>
937
938
939
940
941
942
943 
944     
945     
946     
947     
948     
949     
950      <p>Allowed values
951are <span style="font-style: italic;">'dirichlet'</span>,
952      <span style="font-style: italic;">'neumann'</span>
953and <span style="font-style: italic;">'neumann+inhomo'</span>.&nbsp;
954      <span style="font-style: italic;">'dirichlet'</span>
955sets
956p(k=0)=0.0,&nbsp; <span style="font-style: italic;">'neumann'</span>
957sets p(k=0)=p(k=1). <span style="font-style: italic;">'neumann+inhomo'</span>
958corresponds to an extended Neumann boundary condition where heat flux
959or temperature inhomogeneities near the
960surface (pt(k=1))&nbsp; are additionally regarded (see Shen and
961LeClerc
962(1995, Q.J.R. Meteorol. Soc.,
9631209)). This condition is only permitted with the Prandtl-layer
964switched on (<a href="#prandtl_layer">prandtl_layer</a>),
965otherwise the run is terminated.&nbsp; </p>
966
967
968
969
970
971
972 
973     
974     
975     
976     
977     
978     
979      <p>Since
980at the bottom boundary of the model the vertical
981velocity
982disappears (w(k=0) = 0.0), the consistent Neumann condition (<span style="font-style: italic;">'neumann'</span> or <span style="font-style: italic;">'neumann+inhomo'</span>)
983dp/dz = 0 should
984be used, which leaves the vertical component w unchanged when the
985pressure solver is applied. Simultaneous use of the Neumann boundary
986conditions both at the bottom and at the top boundary (<a href="#bc_p_t">bc_p_t</a>)
987usually yields no consistent solution for the perturbation pressure and
988should be avoided.</p>
989
990
991
992
993
994
995 </td>
996
997
998
999
1000
1001
1002 </tr>
1003
1004
1005
1006
1007
1008
1009 <tr>
1010
1011
1012
1013
1014
1015
1016 <td style="vertical-align: top;"> 
1017     
1018     
1019     
1020     
1021     
1022     
1023      <p><a name="bc_p_t"></a><b>bc_p_t</b></p>
1024
1025
1026
1027
1028
1029
1030
1031      </td>
1032
1033
1034
1035
1036
1037
1038 <td style="vertical-align: top;">C * 20</td>
1039
1040
1041
1042
1043
1044
1045
1046      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1047
1048
1049
1050
1051
1052
1053
1054      <td style="vertical-align: top;"> 
1055     
1056     
1057     
1058     
1059     
1060     
1061      <p style="font-style: normal;">Top boundary condition of the
1062perturbation pressure.&nbsp; </p>
1063
1064
1065
1066
1067
1068
1069 
1070     
1071     
1072     
1073     
1074     
1075     
1076      <p style="font-style: normal;">Allowed values are <span style="font-style: italic;">'dirichlet'</span>
1077(p(k=nz+1)= 0.0) or <span style="font-style: italic;">'neumann'</span>
1078(p(k=nz+1)=p(k=nz)).&nbsp; </p>
1079
1080
1081
1082
1083
1084
1085 
1086     
1087     
1088     
1089     
1090     
1091     
1092      <p>Simultaneous use
1093of Neumann boundary conditions both at the
1094top and bottom boundary (<a href="#bc_p_b">bc_p_b</a>)
1095usually yields no consistent solution for the perturbation pressure and
1096should be avoided. Since at the bottom boundary the Neumann
1097condition&nbsp; is a good choice (see <a href="#bc_p_b">bc_p_b</a>),
1098a Dirichlet condition should be set at the top boundary.</p>
1099
1100
1101
1102
1103
1104
1105 </td>
1106
1107
1108
1109
1110
1111
1112
1113    </tr>
1114
1115
1116
1117
1118
1119
1120 <tr>
1121
1122
1123
1124
1125
1126
1127 <td style="vertical-align: top;">
1128     
1129     
1130     
1131     
1132     
1133     
1134      <p><a name="bc_pt_b"></a><b>bc_pt_b</b></p>
1135
1136
1137
1138
1139
1140
1141
1142      </td>
1143
1144
1145
1146
1147
1148
1149 <td style="vertical-align: top;">C*20</td>
1150
1151
1152
1153
1154
1155
1156
1157      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1158
1159
1160
1161
1162
1163
1164
1165      <td style="vertical-align: top;"> 
1166     
1167     
1168     
1169     
1170     
1171     
1172      <p style="font-style: normal;">Bottom boundary condition of the
1173potential temperature.&nbsp; </p>
1174
1175
1176
1177
1178
1179
1180 
1181     
1182     
1183     
1184     
1185     
1186     
1187      <p>Allowed values
1188are <span style="font-style: italic;">'dirichlet'</span>
1189(pt(k=0) = const. = <a href="#pt_surface">pt_surface</a>
1190+ <a href="#pt_surface_initial_change">pt_surface_initial_change</a>;
1191the user may change this value during the run using user-defined code)
1192and <span style="font-style: italic;">'neumann'</span>
1193(pt(k=0)=pt(k=1)).&nbsp; <br>
1194
1195
1196
1197
1198
1199
1200
1201When a constant surface sensible heat flux is used (<a href="#surface_heatflux">surface_heatflux</a>), <b>bc_pt_b</b>
1202= <span style="font-style: italic;">'neumann'</span>
1203must be used, because otherwise the resolved scale may contribute to
1204the surface flux so that a constant value cannot be guaranteed.</p>
1205
1206
1207
1208
1209
1210
1211     
1212     
1213     
1214     
1215     
1216     
1217      <p>In the <a href="chapter_3.8.html">coupled</a> atmosphere executable,&nbsp;<a href="chapter_4.2.html#bc_pt_b">bc_pt_b</a> is internally set and does not need to be prescribed.</p>
1218
1219
1220
1221
1222
1223
1224
1225      </td>
1226
1227
1228
1229
1230
1231
1232 </tr>
1233
1234
1235
1236
1237
1238
1239 <tr>
1240
1241
1242
1243
1244
1245
1246 <td style="vertical-align: top;"> 
1247     
1248     
1249     
1250     
1251     
1252     
1253      <p><a name="pc_pt_t"></a><b>bc_pt_t</b></p>
1254
1255
1256
1257
1258
1259
1260
1261      </td>
1262
1263
1264
1265
1266
1267
1268 <td style="vertical-align: top;">C * 20</td>
1269
1270
1271
1272
1273
1274
1275
1276      <td style="vertical-align: top;"><span style="font-style: italic;">'initial_ gradient'</span></td>
1277
1278
1279
1280
1281
1282
1283
1284      <td style="vertical-align: top;"> 
1285     
1286     
1287     
1288     
1289     
1290     
1291      <p style="font-style: normal;">Top boundary condition of the
1292potential temperature.&nbsp; </p>
1293
1294
1295
1296
1297
1298
1299 
1300     
1301     
1302     
1303     
1304     
1305     
1306      <p>Allowed are the
1307values <span style="font-style: italic;">'dirichlet' </span>(pt(k=nz+1)
1308does not change during the run), <span style="font-style: italic;">'neumann'</span>
1309(pt(k=nz+1)=pt(k=nz)), and <span style="font-style: italic;">'initial_gradient'</span>.
1310With the 'initial_gradient'-condition the value of the temperature
1311gradient at the top is
1312calculated from the initial
1313temperature profile (see <a href="#pt_surface">pt_surface</a>,
1314      <a href="#pt_vertical_gradient">pt_vertical_gradient</a>)
1315by bc_pt_t_val = (pt_init(k=nz+1) -
1316pt_init(k=nz)) / dzu(nz+1).<br>
1317
1318
1319
1320
1321
1322
1323
1324Using this value (assumed constant during the
1325run) the temperature boundary values are calculated as&nbsp; </p>
1326
1327
1328
1329
1330
1331
1332
1333     
1334     
1335     
1336     
1337     
1338     
1339      <ul>
1340
1341
1342
1343
1344
1345
1346 
1347       
1348       
1349       
1350       
1351       
1352       
1353        <p style="font-style: normal;">pt(k=nz+1) =
1354pt(k=nz) +
1355bc_pt_t_val * dzu(nz+1)</p>
1356
1357
1358
1359
1360
1361
1362 
1363     
1364     
1365     
1366     
1367     
1368     
1369      </ul>
1370
1371
1372
1373
1374
1375
1376 
1377     
1378     
1379     
1380     
1381     
1382     
1383      <p style="font-style: normal;">(up to k=nz the prognostic
1384equation for the temperature is solved).<br>
1385
1386
1387
1388
1389
1390
1391
1392When a constant sensible heat flux is used at the top boundary (<a href="chapter_4.1.html#top_heatflux">top_heatflux</a>),
1393      <b>bc_pt_t</b> = <span style="font-style: italic;">'neumann'</span>
1394must be used, because otherwise the resolved scale may contribute to
1395the top flux so that a constant value cannot be guaranteed.</p>
1396
1397
1398
1399
1400
1401
1402 </td>
1403
1404
1405
1406
1407
1408
1409
1410    </tr>
1411
1412
1413
1414
1415
1416
1417 <tr>
1418
1419
1420
1421
1422
1423
1424 <td style="vertical-align: top;">
1425     
1426     
1427     
1428     
1429     
1430     
1431      <p><a name="bc_q_b"></a><b>bc_q_b</b></p>
1432
1433
1434
1435
1436
1437
1438
1439      </td>
1440
1441
1442
1443
1444
1445
1446 <td style="vertical-align: top;">C * 20</td>
1447
1448
1449
1450
1451
1452
1453
1454      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1455
1456
1457
1458
1459
1460
1461
1462      <td style="vertical-align: top;"> 
1463     
1464     
1465     
1466     
1467     
1468     
1469      <p style="font-style: normal;">Bottom boundary condition of the
1470specific humidity / total water content.&nbsp; </p>
1471
1472
1473
1474
1475
1476
1477 
1478     
1479     
1480     
1481     
1482     
1483     
1484      <p>Allowed
1485values are <span style="font-style: italic;">'dirichlet'</span>
1486(q(k=0) = const. = <a href="#q_surface">q_surface</a>
1487+ <a href="#q_surface_initial_change">q_surface_initial_change</a>;
1488the user may change this value during the run using user-defined code)
1489and <span style="font-style: italic;">'neumann'</span>
1490(q(k=0)=q(k=1)).&nbsp; <br>
1491
1492
1493
1494
1495
1496
1497
1498When a constant surface latent heat flux is used (<a href="#surface_waterflux">surface_waterflux</a>), <b>bc_q_b</b>
1499= <span style="font-style: italic;">'neumann'</span>
1500must be used, because otherwise the resolved scale may contribute to
1501the surface flux so that a constant value cannot be guaranteed.</p>
1502
1503
1504
1505
1506
1507
1508
1509      </td>
1510
1511
1512
1513
1514
1515
1516 </tr>
1517
1518
1519
1520
1521
1522
1523 <tr>
1524
1525
1526
1527
1528
1529
1530 <td style="vertical-align: top;"> 
1531     
1532     
1533     
1534     
1535     
1536     
1537      <p><a name="bc_q_t"></a><b>bc_q_t</b></p>
1538
1539
1540
1541
1542
1543
1544
1545      </td>
1546
1547
1548
1549
1550
1551
1552 <td style="vertical-align: top;"><span style="font-style: italic;">C
1553* 20</span></td>
1554
1555
1556
1557
1558
1559
1560 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1561
1562
1563
1564
1565
1566
1567
1568      <td style="vertical-align: top;"> 
1569     
1570     
1571     
1572     
1573     
1574     
1575      <p style="font-style: normal;">Top boundary condition of the
1576specific humidity / total water content.&nbsp; </p>
1577
1578
1579
1580
1581
1582
1583 
1584     
1585     
1586     
1587     
1588     
1589     
1590      <p>Allowed
1591are the values <span style="font-style: italic;">'dirichlet'</span>
1592(q(k=nz) and q(k=nz+1) do
1593not change during the run) and <span style="font-style: italic;">'neumann'</span>.
1594With the Neumann boundary
1595condition the value of the humidity gradient at the top is calculated
1596from the
1597initial humidity profile (see <a href="#q_surface">q_surface</a>,
1598      <a href="#q_vertical_gradient">q_vertical_gradient</a>)
1599by: bc_q_t_val = ( q_init(k=nz) - q_init(k=nz-1)) / dzu(nz).<br>
1600
1601
1602
1603
1604
1605
1606
1607Using this value (assumed constant during the run) the humidity
1608boundary values
1609are calculated as&nbsp; </p>
1610
1611
1612
1613
1614
1615
1616 
1617     
1618     
1619     
1620     
1621     
1622     
1623      <ul>
1624
1625
1626
1627
1628
1629
1630 
1631       
1632       
1633       
1634       
1635       
1636       
1637        <p style="font-style: normal;">q(k=nz+1) =q(k=nz) +
1638bc_q_t_val * dzu(nz+1)</p>
1639
1640
1641
1642
1643
1644
1645 
1646     
1647     
1648     
1649     
1650     
1651     
1652      </ul>
1653
1654
1655
1656
1657
1658
1659 
1660     
1661     
1662     
1663     
1664     
1665     
1666      <p style="font-style: normal;">(up tp k=nz the prognostic
1667equation for q is solved). </p>
1668
1669
1670
1671
1672
1673
1674 </td>
1675
1676
1677
1678
1679
1680
1681 </tr>
1682
1683
1684
1685
1686
1687
1688 <tr>
1689
1690
1691
1692
1693
1694
1695
1696      <td style="vertical-align: top;"> 
1697     
1698     
1699     
1700     
1701     
1702     
1703      <p><a name="bc_s_b"></a><b>bc_s_b</b></p>
1704
1705
1706
1707
1708
1709
1710 </td>
1711
1712
1713
1714
1715
1716
1717
1718      <td style="vertical-align: top;">C * 20</td>
1719
1720
1721
1722
1723
1724
1725 <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1726
1727
1728
1729
1730
1731
1732
1733      <td style="vertical-align: top;"> 
1734     
1735     
1736     
1737     
1738     
1739     
1740      <p style="font-style: normal;">Bottom boundary condition of the
1741scalar concentration.&nbsp; </p>
1742
1743
1744
1745
1746
1747
1748 
1749     
1750     
1751     
1752     
1753     
1754     
1755      <p>Allowed values
1756are <span style="font-style: italic;">'dirichlet'</span>
1757(s(k=0) = const. = <a href="#s_surface">s_surface</a>
1758+ <a href="#s_surface_initial_change">s_surface_initial_change</a>;
1759the user may change this value during the run using user-defined code)
1760and <span style="font-style: italic;">'neumann'</span>
1761(s(k=0) =
1762s(k=1)).&nbsp; <br>
1763
1764
1765
1766
1767
1768
1769
1770When a constant surface concentration flux is used (<a href="#surface_scalarflux">surface_scalarflux</a>), <b>bc_s_b</b>
1771= <span style="font-style: italic;">'neumann'</span>
1772must be used, because otherwise the resolved scale may contribute to
1773the surface flux so that a constant value cannot be guaranteed.</p>
1774
1775
1776
1777
1778
1779
1780
1781      </td>
1782
1783
1784
1785
1786
1787
1788 </tr>
1789
1790
1791
1792
1793
1794
1795 <tr>
1796
1797
1798
1799
1800
1801
1802 <td style="vertical-align: top;"> 
1803     
1804     
1805     
1806     
1807     
1808     
1809      <p><a name="bc_s_t"></a><b>bc_s_t</b></p>
1810
1811
1812
1813
1814
1815
1816
1817      </td>
1818
1819
1820
1821
1822
1823
1824 <td style="vertical-align: top;">C * 20</td>
1825
1826
1827
1828
1829
1830
1831
1832      <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1833
1834
1835
1836
1837
1838
1839
1840      <td style="vertical-align: top;"> 
1841     
1842     
1843     
1844     
1845     
1846     
1847      <p style="font-style: normal;">Top boundary condition of the
1848scalar concentration.&nbsp; </p>
1849
1850
1851
1852
1853
1854
1855 
1856     
1857     
1858     
1859     
1860     
1861     
1862      <p>Allowed are the
1863values <span style="font-style: italic;">'dirichlet'</span>
1864(s(k=nz) and s(k=nz+1) do
1865not change during the run) and <span style="font-style: italic;">'neumann'</span>.
1866With the Neumann boundary
1867condition the value of the scalar concentration gradient at the top is
1868calculated
1869from the initial scalar concentration profile (see <a href="#s_surface">s_surface</a>, <a href="#s_vertical_gradient">s_vertical_gradient</a>)
1870by: bc_s_t_val = (s_init(k=nz) - s_init(k=nz-1)) / dzu(nz).<br>
1871
1872
1873
1874
1875
1876
1877
1878Using this value (assumed constant during the run) the concentration
1879boundary values
1880are calculated as </p>
1881
1882
1883
1884
1885
1886
1887 
1888     
1889     
1890     
1891     
1892     
1893     
1894      <ul>
1895
1896
1897
1898
1899
1900
1901 
1902       
1903       
1904       
1905       
1906       
1907       
1908        <p style="font-style: normal;">s(k=nz+1) = s(k=nz) +
1909bc_s_t_val * dzu(nz+1)</p>
1910
1911
1912
1913
1914
1915
1916 
1917     
1918     
1919     
1920     
1921     
1922     
1923      </ul>
1924
1925
1926
1927
1928
1929
1930 
1931     
1932     
1933     
1934     
1935     
1936     
1937      <p style="font-style: normal;">(up to k=nz the prognostic
1938equation for the scalar concentration is
1939solved).</p>
1940
1941
1942
1943
1944
1945
1946 </td>
1947
1948
1949
1950
1951
1952
1953 </tr>
1954
1955
1956
1957
1958
1959
1960 <tr>
1961
1962
1963
1964
1965
1966
1967      <td style="vertical-align: top;"><a name="bc_sa_t"></a><span style="font-weight: bold;">bc_sa_t</span></td>
1968
1969
1970
1971
1972
1973
1974      <td style="vertical-align: top;">C * 20</td>
1975
1976
1977
1978
1979
1980
1981      <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1982
1983
1984
1985
1986
1987
1988      <td style="vertical-align: top;">
1989     
1990     
1991     
1992     
1993     
1994     
1995      <p style="font-style: normal;">Top boundary condition of the salinity.&nbsp; </p>
1996
1997
1998
1999
2000
2001
2002 
2003     
2004     
2005     
2006     
2007     
2008     
2009      <p>This parameter only comes into effect for ocean runs (see parameter <a href="#ocean">ocean</a>).</p>
2010
2011
2012
2013
2014
2015
2016     
2017     
2018     
2019     
2020     
2021     
2022      <p style="font-style: normal;">Allowed are the
2023values <span style="font-style: italic;">'dirichlet' </span>(sa(k=nz+1)
2024does not change during the run) and <span style="font-style: italic;">'neumann'</span>
2025(sa(k=nz+1)=sa(k=nz))<span style="font-style: italic;"></span>.&nbsp;<br>
2026
2027
2028
2029
2030
2031
2032      <br>
2033
2034
2035
2036
2037
2038
2039
2040When a constant salinity flux is used at the top boundary (<a href="chapter_4.1.html#top_salinityflux">top_salinityflux</a>),
2041      <b>bc_sa_t</b> = <span style="font-style: italic;">'neumann'</span>
2042must be used, because otherwise the resolved scale may contribute to
2043the top flux so that a constant value cannot be guaranteed.</p>
2044
2045
2046
2047
2048
2049
2050      </td>
2051
2052
2053
2054
2055
2056
2057    </tr>
2058
2059
2060
2061
2062
2063
2064    <tr>
2065
2066
2067
2068
2069
2070
2071 <td style="vertical-align: top;"> 
2072     
2073     
2074     
2075     
2076     
2077     
2078      <p><a name="bc_uv_b"></a><b>bc_uv_b</b></p>
2079
2080
2081
2082
2083
2084
2085
2086      </td>
2087
2088
2089
2090
2091
2092
2093 <td style="vertical-align: top;">C * 20</td>
2094
2095
2096
2097
2098
2099
2100
2101      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
2102
2103
2104
2105
2106
2107
2108
2109      <td style="vertical-align: top;"> 
2110     
2111     
2112     
2113     
2114     
2115     
2116      <p style="font-style: normal;">Bottom boundary condition of the
2117horizontal velocity components u and v.&nbsp; </p>
2118
2119
2120
2121
2122
2123
2124 
2125     
2126     
2127     
2128     
2129     
2130     
2131      <p>Allowed
2132values are <span style="font-style: italic;">'dirichlet' </span>and
2133      <span style="font-style: italic;">'neumann'</span>. <b>bc_uv_b</b>
2134= <span style="font-style: italic;">'dirichlet'</span>
2135yields the
2136no-slip condition with u=v=0 at the bottom. Due to the staggered grid
2137u(k=0) and v(k=0) are located at z = - 0,5 * <a href="#dz">dz</a>
2138(below the bottom), while u(k=1) and v(k=1) are located at z = +0,5 *
2139dz. u=v=0 at the bottom is guaranteed using mirror boundary
2140condition:&nbsp; </p>
2141
2142
2143
2144
2145
2146
2147 
2148     
2149     
2150     
2151     
2152     
2153     
2154      <ul>
2155
2156
2157
2158
2159
2160
2161 
2162       
2163       
2164       
2165       
2166       
2167       
2168        <p style="font-style: normal;">u(k=0) = - u(k=1) and v(k=0) = -
2169v(k=1)</p>
2170
2171
2172
2173
2174
2175
2176 
2177     
2178     
2179     
2180     
2181     
2182     
2183      </ul>
2184
2185
2186
2187
2188
2189
2190 
2191     
2192     
2193     
2194     
2195     
2196     
2197      <p style="font-style: normal;">The
2198Neumann boundary condition
2199yields the free-slip condition with u(k=0) = u(k=1) and v(k=0) =
2200v(k=1).
2201With Prandtl - layer switched on (see <a href="#prandtl_layer">prandtl_layer</a>), the free-slip condition is not
2202allowed (otherwise the run will be terminated)<font color="#000000">.</font></p>
2203
2204
2205
2206
2207
2208
2209
2210      </td>
2211
2212
2213
2214
2215
2216
2217 </tr>
2218
2219
2220
2221
2222
2223
2224 <tr>
2225
2226
2227
2228
2229
2230
2231 <td style="vertical-align: top;"> 
2232     
2233     
2234     
2235     
2236     
2237     
2238      <p><a name="bc_uv_t"></a><b>bc_uv_t</b></p>
2239
2240
2241
2242
2243
2244
2245
2246      </td>
2247
2248
2249
2250
2251
2252
2253 <td style="vertical-align: top;">C * 20</td>
2254
2255
2256
2257
2258
2259
2260
2261      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
2262
2263
2264
2265
2266
2267
2268
2269      <td style="vertical-align: top;"> 
2270     
2271     
2272     
2273     
2274     
2275     
2276      <p style="font-style: normal;">Top boundary condition of the
2277horizontal velocity components u and v.&nbsp; </p>
2278
2279
2280
2281
2282
2283
2284 
2285     
2286     
2287     
2288     
2289     
2290     
2291      <p>Allowed
2292values are <span style="font-style: italic;">'dirichlet'</span>, <span style="font-style: italic;">'dirichlet_0'</span>
2293and <span style="font-style: italic;">'neumann'</span>.
2294The
2295Dirichlet condition yields u(k=nz+1) = ug(nz+1) and v(k=nz+1) =
2296vg(nz+1),
2297Neumann condition yields the free-slip condition with u(k=nz+1) =
2298u(k=nz) and v(k=nz+1) = v(k=nz) (up to k=nz the prognostic equations
2299for the velocities are solved). The special condition&nbsp;<span style="font-style: italic;">'dirichlet_0'</span> can be used for channel flow, it yields the no-slip condition u(k=nz+1) = ug(nz+1) = 0 and v(k=nz+1) =
2300vg(nz+1) = 0.</p>
2301
2302
2303
2304
2305
2306
2307     
2308     
2309     
2310     
2311     
2312     
2313      <p>In the <a href="chapter_3.8.html">coupled</a> ocean executable, <a href="chapter_4.2.html#bc_uv_t">bc_uv_t</a>&nbsp;is internally set ('neumann') and does not need to be prescribed.</p>
2314
2315
2316
2317
2318
2319
2320 </td>
2321
2322
2323
2324
2325
2326
2327 </tr>
2328
2329
2330
2331
2332
2333
2334 <tr>
2335
2336
2337
2338
2339
2340
2341      <td style="vertical-align: top;"><a name="bottom_salinityflux"></a><span style="font-weight: bold;">bottom_salinityflux</span></td>
2342
2343
2344
2345
2346
2347
2348      <td style="vertical-align: top;">R</td>
2349
2350
2351
2352
2353
2354
2355      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
2356
2357
2358
2359
2360
2361
2362      <td style="vertical-align: top;">
2363     
2364     
2365     
2366     
2367     
2368     
2369      <p>Kinematic salinity flux near the surface (in psu m/s).&nbsp;</p>
2370
2371
2372
2373
2374
2375
2376This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).
2377     
2378     
2379     
2380     
2381     
2382     
2383      <p>The
2384respective salinity flux value is used
2385as bottom (horizontally homogeneous) boundary condition for the salinity equation. This additionally requires that a Neumann
2386condition must be used for the salinity, which is currently the only available condition.<br>
2387
2388
2389
2390
2391
2392
2393 </p>
2394
2395
2396
2397
2398
2399
2400 </td>
2401
2402
2403
2404
2405
2406
2407    </tr>
2408
2409
2410
2411
2412
2413
2414    <tr>
2415
2416
2417
2418
2419
2420
2421
2422      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_height"></a>building_height</span></td>
2423
2424
2425
2426
2427
2428
2429
2430      <td style="vertical-align: top;">R</td>
2431
2432
2433
2434
2435
2436
2437 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2438
2439
2440
2441
2442
2443
2444 <td>Height
2445of a single building in m.<br>
2446
2447
2448
2449
2450
2451
2452 <br>
2453
2454
2455
2456
2457
2458
2459 <span style="font-weight: bold;">building_height</span> must
2460be less than the height of the model domain. This parameter requires
2461the use of&nbsp;<a href="#topography">topography</a>
2462= <span style="font-style: italic;">'single_building'</span>.</td>
2463
2464
2465
2466
2467
2468
2469
2470    </tr>
2471
2472
2473
2474
2475
2476
2477 <tr>
2478
2479
2480
2481
2482
2483
2484 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_x"></a>building_length_x</span></td>
2485
2486
2487
2488
2489
2490
2491
2492      <td style="vertical-align: top;">R</td>
2493
2494
2495
2496
2497
2498
2499 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2500
2501
2502
2503
2504
2505
2506 <td><span style="font-style: italic;"></span>Width of a single
2507building in m.<br>
2508
2509
2510
2511
2512
2513
2514 <br>
2515
2516
2517
2518
2519
2520
2521
2522Currently, <span style="font-weight: bold;">building_length_x</span>
2523must be at least <span style="font-style: italic;">3
2524*&nbsp;</span><a style="font-style: italic;" href="#dx">dx</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="#nx">nx</a><span style="font-style: italic;"> - 1 ) </span><span style="font-style: italic;"> * <a href="#dx">dx</a>
2525      </span><span style="font-style: italic;">- <a href="#building_wall_left">building_wall_left</a></span>.
2526This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2527= <span style="font-style: italic;">'single_building'</span>.</td>
2528
2529
2530
2531
2532
2533
2534
2535    </tr>
2536
2537
2538
2539
2540
2541
2542 <tr>
2543
2544
2545
2546
2547
2548
2549 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_y"></a>building_length_y</span></td>
2550
2551
2552
2553
2554
2555
2556
2557      <td style="vertical-align: top;">R</td>
2558
2559
2560
2561
2562
2563
2564 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2565
2566
2567
2568
2569
2570
2571 <td>Depth
2572of a single building in m.<br>
2573
2574
2575
2576
2577
2578
2579 <br>
2580
2581
2582
2583
2584
2585
2586
2587Currently, <span style="font-weight: bold;">building_length_y</span>
2588must be at least <span style="font-style: italic;">3
2589*&nbsp;</span><a style="font-style: italic;" href="#dy">dy</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="#ny">ny</a><span style="font-style: italic;"> - 1 )&nbsp;</span><span style="font-style: italic;"> * <a href="#dy">dy</a></span><span style="font-style: italic;"> - <a href="#building_wall_south">building_wall_south</a></span>. This parameter requires
2590the use of&nbsp;<a href="#topography">topography</a>
2591= <span style="font-style: italic;">'single_building'</span>.</td>
2592
2593
2594
2595
2596
2597
2598
2599    </tr>
2600
2601
2602
2603
2604
2605
2606 <tr>
2607
2608
2609
2610
2611
2612
2613 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_left"></a>building_wall_left</span></td>
2614
2615
2616
2617
2618
2619
2620
2621      <td style="vertical-align: top;">R</td>
2622
2623
2624
2625
2626
2627
2628 <td style="vertical-align: top;"><span style="font-style: italic;">building centered in x-direction</span></td>
2629
2630
2631
2632
2633
2634
2635
2636      <td>x-coordinate of the left building wall (distance between the
2637left building wall and the left border of the model domain) in m.<br>
2638
2639
2640
2641
2642
2643
2644
2645      <br>
2646
2647
2648
2649
2650
2651
2652
2653Currently, <span style="font-weight: bold;">building_wall_left</span>
2654must be at least <span style="font-style: italic;">1
2655*&nbsp;</span><a style="font-style: italic;" href="#dx">dx</a> and less than <span style="font-style: italic;">( <a href="#nx">nx</a>&nbsp;
2656- 1 ) * <a href="#dx">dx</a> -&nbsp; <a href="#building_length_x">building_length_x</a></span>.
2657This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2658= <span style="font-style: italic;">'single_building'</span>.<br>
2659
2660
2661
2662
2663
2664
2665
2666      <br>
2667
2668
2669
2670
2671
2672
2673
2674The default value&nbsp;<span style="font-weight: bold;">building_wall_left</span>
2675= <span style="font-style: italic;">( ( <a href="#nx">nx</a>&nbsp;+
26761 ) * <a href="#dx">dx</a> -&nbsp; <a href="#building_length_x">building_length_x</a> ) / 2</span>
2677centers the building in x-direction.&nbsp;<font color="#000000">Due to the staggered grid the building will be displaced by -0.5 <a href="chapter_4.1.html#dx">dx</a> in x-direction and -0.5 <a href="chapter_4.1.html#dy">dy</a> in y-direction.</font> </td>
2678
2679
2680
2681
2682
2683
2684 </tr>
2685
2686
2687
2688
2689
2690
2691 <tr>
2692
2693
2694
2695
2696
2697
2698
2699      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_south"></a>building_wall_south</span></td>
2700
2701
2702
2703
2704
2705
2706
2707      <td style="vertical-align: top;">R</td>
2708
2709
2710
2711
2712
2713
2714 <td style="vertical-align: top;"><span style="font-style: italic;"></span><span style="font-style: italic;">building centered in y-direction</span></td>
2715
2716
2717
2718
2719
2720
2721
2722      <td>y-coordinate of the South building wall (distance between the
2723South building wall and the South border of the model domain) in m.<br>
2724
2725
2726
2727
2728
2729
2730
2731      <br>
2732
2733
2734
2735
2736
2737
2738
2739Currently, <span style="font-weight: bold;">building_wall_south</span>
2740must be at least <span style="font-style: italic;">1
2741*&nbsp;</span><a style="font-style: italic;" href="#dy">dy</a> and less than <span style="font-style: italic;">( <a href="#ny">ny</a>&nbsp;
2742- 1 ) * <a href="#dy">dy</a> -&nbsp; <a href="#building_length_y">building_length_y</a></span>.
2743This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2744= <span style="font-style: italic;">'single_building'</span>.<br>
2745
2746
2747
2748
2749
2750
2751
2752      <br>
2753
2754
2755
2756
2757
2758
2759
2760The default value&nbsp;<span style="font-weight: bold;">building_wall_south</span>
2761= <span style="font-style: italic;">( ( <a href="#ny">ny</a>&nbsp;+
27621 ) * <a href="#dy">dy</a> -&nbsp; <a href="#building_length_y">building_length_y</a> ) / 2</span>
2763centers the building in y-direction.&nbsp;<font color="#000000">Due to the staggered grid the building will be displaced by -0.5 <a href="chapter_4.1.html#dx">dx</a> in x-direction and -0.5 <a href="chapter_4.1.html#dy">dy</a> in y-direction.</font> </td>
2764
2765
2766
2767
2768
2769
2770 </tr>
2771
2772
2773
2774
2775
2776
2777 <tr>
2778
2779      <td style="vertical-align: top;"><a name="canopy_mode"></a><span style="font-weight: bold;">canopy_mode</span></td>
2780
2781      <td style="vertical-align: top;">C * 20</td>
2782
2783      <td style="vertical-align: top;"><span style="font-style: italic;">'block'</span></td>
2784
2785      <td style="vertical-align: top;">Canopy mode.<br>
2786
2787      <br>
2788
2789      <font color="#000000">
2790Besides using the default value, that will create a horizontally
2791homogeneous plant canopy that extends over the total horizontal
2792extension of the model domain, the user may add code to the user
2793interface subroutine <a href="chapter_3.5.1.html#user_init_plant_canopy">user_init_plant_canopy</a>
2794to allow further canopy&nbsp;modes. <br>
2795
2796      <br>
2797
2798The setting of <a href="#canopy_mode">canopy_mode</a> becomes only active, if&nbsp;<a href="#plant_canopy">plant_canopy</a> has been set <span style="font-style: italic;">.T.</span> and a non-zero <a href="#drag_coefficient">drag_coefficient</a> has been defined.</font></td>
2799
2800    </tr>
2801
2802    <tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_height"></a>canyon_height</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;">50.0</td><td>Street canyon height
2803in m.<br>
2804
2805
2806
2807
2808
2809
2810 <br>
2811
2812
2813
2814
2815
2816
2817 <span style="font-weight: bold;">canyon_height</span> must
2818be less than the height of the model domain. This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2819= <span style="font-style: italic;">'single_street_canyon'</span>.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_width_x"></a>canyon_width_x</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;">9999999.9</td><td>Street canyon width in x-direction in m.<br>
2820
2821
2822
2823
2824
2825
2826 <br>
2827
2828
2829
2830
2831
2832
2833
2834Currently, <span style="font-weight: bold;">canyon_width_x</span>
2835must be at least <span style="font-style: italic;">3
2836*&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#dx">dx</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#nx">nx</a><span style="font-style: italic;"> - 1 ) </span><span style="font-style: italic;"> * <a href="chapter_4.1.html#dx">dx</a>
2837      </span><span style="font-style: italic;">- <a href="chapter_4.1.html#canyon_wall_left">canyon_wall_left</a></span>.
2838This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2839= <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span><span style="font-style: italic;">'</span>. A non-default value implies a canyon orientation in y-direction.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_width_y"></a>canyon_width_y</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;">9999999.9</td><td>Street canyon width in y-direction in m.<br>
2840
2841
2842
2843
2844
2845
2846 <br>
2847
2848
2849
2850
2851
2852
2853
2854Currently, <span style="font-weight: bold;">canyon_width_y</span>
2855must be at least <span style="font-style: italic;">3
2856*&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#dy">dy</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#ny">ny</a><span style="font-style: italic;"> - 1 )&nbsp;</span><span style="font-style: italic;"> * <a href="chapter_4.1.html#dy">dy</a></span><span style="font-style: italic;"> - <a href="chapter_4.1.html#canyon_wall_south">canyon_wall_south</a></span>. This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2857= <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span>.&nbsp;A non-default value implies a canyon orientation in x-direction.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_wall_left"></a>canyon_wall_left</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;"><span style="font-style: italic;">canyon centered in x-direction</span></td><td>x-coordinate of the left canyon wall (distance between the
2858left canyon wall and the left border of the model domain) in m.<br>
2859
2860
2861
2862
2863
2864
2865
2866      <br>
2867
2868
2869
2870
2871
2872
2873
2874Currently, <span style="font-weight: bold;">canyon_wall_left</span>
2875must be at least <span style="font-style: italic;">1
2876*&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#dx">dx</a> and less than <span style="font-style: italic;">( <a href="chapter_4.1.html#nx">nx</a>&nbsp;
2877- 1 ) * <a href="chapter_4.1.html#dx">dx</a> -&nbsp; <a href="chapter_4.1.html#canyon_width_x">canyon_width_x</a></span>.
2878This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2879= <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span><span style="font-style: italic;">'</span>.<br>
2880
2881
2882
2883
2884
2885
2886
2887      <br>
2888
2889
2890
2891
2892
2893
2894
2895The default value <span style="font-weight: bold;">canyon_wall_left</span>
2896= <span style="font-style: italic;">( ( <a href="chapter_4.1.html#nx">nx</a>&nbsp;+
28971 ) * <a href="chapter_4.1.html#dx">dx</a> -&nbsp; <a href="chapter_4.1.html#canyon_width_x">canyon_width_x</a> ) / 2</span>
2898centers the canyon in x-direction.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_wall_south"></a>canyon_wall_south</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;"><span style="font-style: italic;">canyon centered in y-direction</span></td><td>y-coordinate of the South canyon wall (distance between the
2899South canyon wall and the South border of the model domain) in m.<br>
2900
2901
2902
2903
2904
2905
2906
2907      <br>
2908
2909
2910
2911
2912
2913
2914
2915Currently, <span style="font-weight: bold;">canyon_wall_south</span>
2916must be at least <span style="font-style: italic;">1
2917*&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#dy">dy</a> and less than <span style="font-style: italic;">( <a href="chapter_4.1.html#ny">ny</a>&nbsp;
2918- 1 ) * <a href="chapter_4.1.html#dy">dy</a> -&nbsp; <a href="chapter_4.1.html#canyon_width_y">canyon_width_y</a></span>.
2919This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2920= <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span><span style="font-style: italic;">'</span>.<br>
2921
2922
2923
2924
2925
2926
2927
2928      <br>
2929
2930
2931
2932
2933
2934
2935
2936The default value <span style="font-weight: bold;">canyon_wall_south</span>
2937= <span style="font-style: italic;">( ( <a href="chapter_4.1.html#ny">ny</a>&nbsp;+
29381 ) * <a href="chapter_4.1.html#dy">dy</a> -&nbsp;&nbsp;</span><a href="chapter_4.1.html#building_length_y"><span style="font-style: italic;"></span></a><a style="font-style: italic;" href="chapter_4.1.html#canyon_width_y">canyon_wid</a><span style="font-style: italic;"><a style="font-style: italic;" href="chapter_4.1.html#canyon_width_y">th_y</a> ) / 2</span>
2939centers the canyon in y-direction.</td></tr><tr>
2940
2941
2942
2943
2944
2945
2946
2947      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="cloud_droplets"></a>cloud_droplets</span><br>
2948
2949
2950
2951
2952
2953
2954
2955      </td>
2956
2957
2958
2959
2960
2961
2962 <td style="vertical-align: top;">L<br>
2963
2964
2965
2966
2967
2968
2969 </td>
2970
2971
2972
2973
2974
2975
2976
2977      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span><br>
2978
2979
2980
2981
2982
2983
2984 </td>
2985
2986
2987
2988
2989
2990
2991
2992      <td style="vertical-align: top;">Parameter to switch on
2993usage of cloud droplets.<br>
2994
2995
2996
2997
2998
2999
3000 <br>
3001
3002
3003
3004
3005
3006
3007
3008      <span style="font-weight: bold;"></span><span style="font-family: monospace;"></span>
3009
3010
3011
3012
3013Cloud droplets require to use&nbsp;particles (i.e. the NAMELIST group <span style="font-family: Courier New,Courier,monospace;">particles_par</span> has to be included in the parameter file<span style="font-family: monospace;"></span>). Then each particle is a representative for a certain number of droplets. The droplet
3014features (number of droplets, initial radius, etc.) can be steered with
3015the&nbsp; respective particle parameters (see e.g. <a href="#chapter_4.2.html#radius">radius</a>).
3016The real number of initial droplets in a grid cell is equal to the
3017initial number of droplets (defined by the particle source parameters <span lang="en-GB"><font face="Thorndale, serif"> </font></span><a href="chapter_4.2.html#pst"><span lang="en-GB"><font face="Thorndale, serif">pst</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psl"><span lang="en-GB"><font face="Thorndale, serif">psl</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psr"><span lang="en-GB"><font face="Thorndale, serif">psr</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pss"><span lang="en-GB"><font face="Thorndale, serif">pss</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psn"><span lang="en-GB"><font face="Thorndale, serif">psn</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psb"><span lang="en-GB"><font face="Thorndale, serif">psb</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdx"><span lang="en-GB"><font face="Thorndale, serif">pdx</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdy"><span lang="en-GB"><font face="Thorndale, serif">pdy</font></span></a>
3018      <span lang="en-GB"><font face="Thorndale, serif">and
3019      </font></span><a href="chapter_4.2.html#pdz"><span lang="en-GB"><font face="Thorndale, serif">pdz</font></span></a><span lang="en-GB"></span><span lang="en-GB"></span>)
3020times the <a href="#initial_weighting_factor">initial_weighting_factor</a>.<br>
3021
3022
3023
3024
3025
3026
3027
3028      <br>
3029
3030
3031
3032
3033
3034
3035
3036In case of using cloud droplets, the default condensation scheme in
3037PALM cannot be used, i.e. <a href="#cloud_physics">cloud_physics</a>
3038must be set <span style="font-style: italic;">.F.</span>.<br>
3039
3040
3041
3042
3043
3044
3045
3046      </td>
3047
3048
3049
3050
3051
3052
3053 </tr>
3054
3055
3056
3057
3058
3059
3060 <tr>
3061
3062
3063
3064
3065
3066
3067 <td style="vertical-align: top;"> 
3068     
3069     
3070     
3071     
3072     
3073     
3074      <p><a name="cloud_physics"></a><b>cloud_physics</b></p>
3075
3076
3077
3078
3079
3080
3081
3082      </td>
3083
3084
3085
3086
3087
3088
3089 <td style="vertical-align: top;">L<br>
3090
3091
3092
3093
3094
3095
3096 </td>
3097
3098
3099
3100
3101
3102
3103
3104      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
3105
3106
3107
3108
3109
3110
3111 <td style="vertical-align: top;"> 
3112     
3113     
3114     
3115     
3116     
3117     
3118      <p>Parameter to switch
3119on the condensation scheme.&nbsp; </p>
3120
3121
3122
3123
3124
3125
3126
3127For <b>cloud_physics =</b> <span style="font-style: italic;">.TRUE.</span>, equations
3128for the
3129liquid water&nbsp;
3130content and the liquid water potential temperature are solved instead
3131of those for specific humidity and potential temperature. Note
3132that a grid volume is assumed to be either completely saturated or
3133completely
3134unsaturated (0%-or-100%-scheme). A simple precipitation scheme can
3135additionally be switched on with parameter <a href="#precipitation">precipitation</a>.
3136Also cloud-top cooling by longwave radiation can be utilized (see <a href="#radiation">radiation</a>)<br>
3137
3138
3139
3140
3141
3142
3143 <b><br>
3144
3145
3146
3147
3148
3149
3150
3151cloud_physics =</b> <span style="font-style: italic;">.TRUE.
3152      </span>requires&nbsp;<a href="#humidity">humidity</a>
3153=<span style="font-style: italic;"> .TRUE.</span> .<br>
3154
3155
3156
3157
3158
3159
3160
3161Detailed information about the condensation scheme is given in the
3162description of the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM-1/Dokumentationen/Cloud_physics/wolken.pdf">cloud
3163physics module</a> (pdf-file, only in German).<br>
3164
3165
3166
3167
3168
3169
3170 <br>
3171
3172
3173
3174
3175
3176
3177
3178This condensation scheme is not allowed if cloud droplets are simulated
3179explicitly (see <a href="#cloud_droplets">cloud_droplets</a>).<br>
3180
3181
3182
3183
3184
3185
3186
3187      </td>
3188
3189
3190
3191
3192
3193
3194 </tr>
3195
3196
3197
3198
3199
3200
3201 <tr>
3202
3203
3204
3205
3206
3207
3208 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="conserve_volume_flow"></a>conserve_volume_flow</span></td>
3209
3210
3211
3212
3213
3214
3215
3216      <td style="vertical-align: top;">L</td>
3217
3218
3219
3220
3221
3222
3223 <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
3224
3225
3226
3227
3228
3229
3230 <td>Conservation
3231of volume flow in x- and y-direction.<br>
3232
3233
3234
3235
3236
3237
3238 <br>
3239
3240
3241
3242
3243
3244
3245 <span style="font-weight: bold;">conserve_volume_flow</span>
3246= <span style="font-style: italic;">.T.</span>
3247guarantees that the volume flow through the xz- and yz-cross-sections of
3248the total model domain remains constant throughout the run depending on the chosen <a href="#conserve_volume_flow_mode">conserve_volume_flow_mode</a>.<br><br>Note that&nbsp;<span style="font-weight: bold;">conserve_volume_flow</span>
3249= <span style="font-style: italic;">.T.</span> requires <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.F.</span> .<br>
3250
3251
3252
3253
3254
3255
3256
3257      </td>
3258
3259
3260
3261
3262
3263
3264 </tr>
3265
3266
3267
3268
3269
3270
3271 <tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="conserve_volume_flow_mode"></a>conserve_volume_flow_mode</span></td><td style="vertical-align: top;">C * 16</td><td style="vertical-align: top;"><span style="font-style: italic;">'default'</span></td><td>Modus of volume flow conservation.<br><br>The following values are allowed:<br><p style="font-style: normal;"><span style="font-style: italic;">'default'</span>
3272      </p>
3273
3274
3275
3276
3277
3278
3279 
3280     
3281     
3282     
3283     
3284     
3285     
3286      <ul><p>Per default, PALM uses&nbsp;<span style="font-style: italic;">'initial_profiles'</span> for cyclic lateral boundary conditions (<a href="#bc_lr">bc_lr</a> = <span style="font-style: italic;">'cyclic'</span> and <a href="#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>) and&nbsp;<span style="font-style: italic;">'inflow_profile'</span> for non-cyclic lateral boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> /= <span style="font-style: italic;">'cyclic'</span> or <a href="chapter_4.1.html#bc_ns">bc_ns</a> /= <span style="font-style: italic;">'cyclic'</span>).</p></ul>
3287
3288
3289
3290
3291
3292
3293 
3294     
3295     
3296     
3297     
3298     
3299     
3300      <p style="font-style: italic;">'initial_profiles' </p>
3301
3302
3303
3304
3305
3306
3307
3308     
3309     
3310     
3311     
3312     
3313     
3314      <ul><p>The
3315target volume flow&nbsp;is calculated at t=0 from the initial profiles
3316of u and v.&nbsp;This setting is only allowed for&nbsp;cyclic lateral
3317boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> = <span style="font-style: italic;">'cyclic'</span> and <a href="chapter_4.1.html#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>).</p></ul>
3318
3319
3320
3321
3322
3323
3324 
3325     
3326     
3327     
3328     
3329     
3330     
3331      <p style="font-style: normal;"><span style="font-style: italic;">'inflow_profile'</span>
3332      </p>
3333
3334
3335
3336
3337
3338
3339 
3340     
3341     
3342     
3343     
3344     
3345     
3346      <ul><p>The
3347target volume flow&nbsp;is&nbsp;calculated at every timestep from the
3348inflow profile of&nbsp;u or v, respectively. This setting&nbsp;is only
3349allowed for&nbsp;non-cyclic lateral boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> /= <span style="font-style: italic;">'cyclic'</span> or <a href="chapter_4.1.html#bc_ns">bc_ns</a> /= <span style="font-style: italic;">'cyclic'</span>).</p></ul>
3350
3351
3352
3353
3354
3355
3356 
3357     
3358     
3359     
3360     
3361     
3362     
3363      <p style="font-style: italic;">'bulk_velocity' </p>
3364
3365
3366
3367
3368
3369
3370
3371     
3372     
3373     
3374     
3375     
3376     
3377      <ul><p>The target volume flow is calculated from a predefined bulk velocity (see <a href="#u_bulk">u_bulk</a> and <a href="#v_bulk">v_bulk</a>). This setting is only allowed for&nbsp;cyclic lateral boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> = <span style="font-style: italic;">'cyclic'</span> and <a href="chapter_4.1.html#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>).</p></ul>
3378
3379
3380
3381
3382
3383
3384 
3385     
3386     
3387     
3388     
3389     
3390     
3391      <span style="font-style: italic;"></span>Note that&nbsp;<span style="font-weight: bold;">conserve_volume_flow_mode</span>
3392only comes into effect if <a href="#conserve_volume_flow">conserve_volume_flow</a> = <span style="font-style: italic;">.T. .</span> </td></tr>
3393
3394    <tr>
3395      <td style="vertical-align: top;"><a name="coupling_start_time"></a><span style="font-weight: bold;">coupling_start_time</span></td>
3396
3397      <td style="vertical-align: top;">R</td>
3398
3399      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
3400
3401      <td style="vertical-align: top;">Simulation time of precursor run.
3402      <br>
3403      <br>
3404Sets the time period a precursor run shall run uncoupled. This
3405parameter is used to set up the precursor run control for
3406atmosphere-ocean-coupled runs. It has to be set individually to the
3407atmospheric / oceanic precursor run. The time in the data output will
3408show negative values during the precursor run. See documentation for
3409further information. </td>
3410
3411    </tr>
3412
3413      <tr><td style="vertical-align: top;"><a name="cthf"></a><span style="font-weight: bold;">cthf</span></td>
3414
3415      <td style="vertical-align: top;">R</td>
3416
3417      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
3418
3419      <td style="vertical-align: top;">Average heat flux that is prescribed at the top of the plant canopy.<br>
3420
3421
3422      <br>
3423
3424
3425If <a href="#plant_canopy">plant_canopy</a> is set <span style="font-style: italic;">.T.</span>, the user can prescribe a heat flux at the top of the plant canopy.<br>
3426
3427
3428It is assumed that solar radiation penetrates the canopy and warms the
3429foliage which, in turn, warms the air in contact with it. <br>
3430
3431
3432Note: Instead of using the value prescribed by <a href="#surface_heatflux">surface_heatflux</a>,
3433the near surface heat flux is determined from an exponential function
3434that is dependent on the cumulative leaf_area_index (Shaw and Schumann
3435(1992, Boundary Layer Meteorol., 61, 47-64)).</td>
3436
3437    </tr>
3438
3439    <tr>
3440
3441
3442
3443
3444
3445
3446 <td style="vertical-align: top;"> 
3447     
3448     
3449     
3450     
3451     
3452     
3453      <p><a name="cut_spline_overshoot"></a><b>cut_spline_overshoot</b></p>
3454
3455
3456
3457
3458
3459
3460
3461      </td>
3462
3463
3464
3465
3466
3467
3468 <td style="vertical-align: top;">L</td>
3469
3470
3471
3472
3473
3474
3475
3476      <td style="vertical-align: top;"><span style="font-style: italic;">.T.</span></td>
3477
3478
3479
3480
3481
3482
3483 <td style="vertical-align: top;"> 
3484     
3485     
3486     
3487     
3488     
3489     
3490      <p>Cuts off of
3491so-called overshoots, which can occur with the
3492upstream-spline scheme.&nbsp; </p>
3493
3494
3495
3496
3497
3498
3499 
3500     
3501     
3502     
3503     
3504     
3505     
3506      <p><font color="#000000">The cubic splines tend to overshoot in
3507case of discontinuous changes of variables between neighbouring grid
3508points.</font><font color="#ff0000"> </font><font color="#000000">This
3509may lead to errors in calculating the advection tendency.</font>
3510Choice
3511of <b>cut_spline_overshoot</b> = <i>.TRUE.</i>
3512(switched on by
3513default)
3514allows variable values not to exceed an interval defined by the
3515respective adjacent grid points. This interval can be adjusted
3516seperately for every prognostic variable (see initialization parameters
3517      <a href="#overshoot_limit_e">overshoot_limit_e</a>, <a href="#overshoot_limit_pt">overshoot_limit_pt</a>, <a href="#overshoot_limit_u">overshoot_limit_u</a>,
3518etc.). This might be necessary in case that the
3519default interval has a non-tolerable effect on the model
3520results.&nbsp; </p>
3521
3522
3523
3524
3525
3526
3527 
3528     
3529     
3530     
3531     
3532     
3533     
3534      <p>Overshoots may also be removed
3535using the parameters <a href="#ups_limit_e">ups_limit_e</a>,
3536      <a href="#ups_limit_pt">ups_limit_pt</a>,
3537etc. as well as by applying a long-filter (see <a href="#long_filter_factor">long_filter_factor</a>).</p>
3538
3539
3540
3541
3542
3543
3544
3545      </td>
3546
3547
3548
3549
3550
3551
3552 </tr>
3553
3554
3555
3556
3557
3558
3559 <tr>
3560
3561
3562
3563
3564
3565
3566 <td style="vertical-align: top;"> 
3567     
3568     
3569     
3570     
3571     
3572     
3573      <p><a name="damp_level_1d"></a><b>damp_level_1d</b></p>
3574
3575
3576
3577
3578
3579
3580
3581      </td>
3582
3583
3584
3585
3586
3587
3588 <td style="vertical-align: top;">R</td>
3589
3590
3591
3592
3593
3594
3595
3596      <td style="vertical-align: top;"><span style="font-style: italic;">zu(nz+1)</span></td>
3597
3598
3599
3600
3601
3602
3603
3604      <td style="vertical-align: top;"> 
3605     
3606     
3607     
3608     
3609     
3610     
3611      <p>Height where
3612the damping layer begins in the 1d-model
3613(in m).&nbsp; </p>
3614
3615
3616
3617
3618
3619
3620 
3621     
3622     
3623     
3624     
3625     
3626     
3627      <p>This parameter is used to
3628switch on a damping layer for the
36291d-model, which is generally needed for the damping of inertia
3630oscillations. Damping is done by gradually increasing the value
3631of the eddy diffusivities about 10% per vertical grid level
3632(starting with the value at the height given by <b>damp_level_1d</b>,
3633or possibly from the next grid pint above), i.e. K<sub>m</sub>(k+1)
3634=
36351.1 * K<sub>m</sub>(k).
3636The values of K<sub>m</sub> are limited to 10 m**2/s at
3637maximum.&nbsp; <br>
3638
3639
3640
3641
3642
3643
3644
3645This parameter only comes into effect if the 1d-model is switched on
3646for
3647the initialization of the 3d-model using <a href="#initializing_actions">initializing_actions</a>
3648= <span style="font-style: italic;">'set_1d-model_profiles'</span>.
3649      <br>
3650
3651
3652
3653
3654
3655
3656 </p>
3657
3658
3659
3660
3661
3662
3663 </td>
3664
3665
3666
3667
3668
3669
3670 </tr>
3671
3672
3673
3674
3675
3676
3677 <tr>
3678
3679
3680
3681
3682
3683
3684 <td style="vertical-align: top;"><a name="dissipation_1d"></a><span style="font-weight: bold;">dissipation_1d</span><br>
3685
3686
3687
3688
3689
3690
3691
3692      </td>
3693
3694
3695
3696
3697
3698
3699 <td style="vertical-align: top;">C*20<br>
3700
3701
3702
3703
3704
3705
3706
3707      </td>
3708
3709
3710
3711
3712
3713
3714 <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;">
3715
3716
3717
3718
3719
3720
3721 <span style="font-style: italic;">model'</span><br>
3722
3723
3724
3725
3726
3727
3728 </td>
3729
3730
3731
3732
3733
3734
3735
3736      <td style="vertical-align: top;">Calculation method for
3737the energy dissipation term in the TKE equation of the 1d-model.<br>
3738
3739
3740
3741
3742
3743
3744
3745      <br>
3746
3747
3748
3749
3750
3751
3752
3753By default the dissipation is calculated as in the 3d-model using diss
3754= (0.19 + 0.74 * l / l_grid) * e**1.5 / l.<br>
3755
3756
3757
3758
3759
3760
3761 <br>
3762
3763
3764
3765
3766
3767
3768
3769Setting <span style="font-weight: bold;">dissipation_1d</span>
3770= <span style="font-style: italic;">'detering'</span>
3771forces the dissipation to be calculated as diss = 0.064 * e**1.5 / l.<br>
3772
3773
3774
3775
3776
3777
3778
3779      </td>
3780
3781
3782
3783
3784
3785
3786 </tr>
3787    <tr><td style="vertical-align: top;"><p><a name="dp_external"></a><b>dp_external</b></p></td><td style="vertical-align: top;">L</td><td style="vertical-align: top; font-style: italic;">.F.</td><td>External pressure gradient switch.<br><br>This
3788parameter is used to switch on/off an external pressure gradient as
3789driving force. The external pressure gradient is controlled by the
3790parameters <a href="#dp_smooth">dp_smooth</a>, <a href="#dp_level_b">dp_level_b</a> and <a href="#dpdxy">dpdxy</a>.<br><br>Note that&nbsp;<span style="font-weight: bold;">dp_external</span> = <span style="font-style: italic;">.T.</span> requires <a href="#conserve_volume_flow">conserve_volume_flow</a> =<span style="font-style: italic;"> .F. </span>It is normally recommended to disable the Coriolis force by setting <a href="#omega">omega</a> = 0.0.</td></tr><tr><td style="vertical-align: top;"><p><a name="dp_smooth"></a><b>dp_smooth</b></p></td><td style="vertical-align: top;">L</td><td style="vertical-align: top; font-style: italic;">.F.</td><td>Vertically smooth the external pressure gradient using a sinusoidal smoothing function.<br><br>This parameter only applies if <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.T. </span>. It is useful in combination with&nbsp;<a href="#dp_level_b">dp_level_b</a> &gt;&gt; 0 to generate a non-accelerated boundary layer well below&nbsp;<a href="#dp_level_b">dp_level_b</a>.</td></tr><tr><td style="vertical-align: top;"><p><a name="dp_level_b"></a><b>dp_level_b</b></p></td><td style="vertical-align: top;">R</td><td style="vertical-align: top; font-style: italic;">0.0</td><td><font size="3">Lower
3791limit of the vertical range for which the external pressure gradient is applied (</font>in <font size="3">m).</font><br><br>This parameter only applies if <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.T. </span><span lang="en-GB">It
3792must hold the condition zu(0) &lt;= <b>dp_level_b</b>
3793&lt;= zu(</span><a href="#nz"><span lang="en-GB">nz</span></a><span lang="en-GB">)</span><span lang="en-GB">.&nbsp;</span>It can be used in combination with&nbsp;<a href="#dp_smooth">dp_smooth</a> = <span style="font-style: italic;">.T.</span> to generate a non-accelerated boundary layer well below&nbsp;<span style="font-weight: bold;">dp_level_b</span> if&nbsp;<span style="font-weight: bold;">dp_level_b</span> &gt;&gt; 0.<br><br>Note
3794that there is no upper limit of the vertical range because the external
3795pressure gradient is always applied up to the top of the model domain.</td></tr><tr><td style="vertical-align: top;"><p><a name="dpdxy"></a><b>dpdxy</b></p></td><td style="vertical-align: top;">R(2)</td><td style="font-style: italic; vertical-align: top;">2 * 0.0</td><td>Values of the external pressure gradient applied in x- and y-direction, respectively (in Pa/m).<br><br>This parameter only applies if <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.T. </span>It sets the pressure gradient values. Negative values mean an acceleration, positive values mean deceleration. For example, <span style="font-weight: bold;">dpdxy</span> = -0.0002, 0.0, drives the flow in positive x-direction, <span lang="en-GB"></span></td></tr>
3796
3797
3798
3799
3800
3801
3802    <tr>
3803
3804      <td style="vertical-align: top;"><a name="drag_coefficient"></a><span style="font-weight: bold;">drag_coefficient</span></td>
3805
3806      <td style="vertical-align: top;">R</td>
3807
3808      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
3809
3810      <td style="vertical-align: top;">Drag coefficient used in the plant canopy model.<br>
3811
3812      <br>
3813
3814This parameter has to be non-zero, if the parameter <a href="#plant_canopy">plant_canopy</a> is set <span style="font-style: italic;">.T.</span>.</td>
3815
3816    </tr>
3817
3818    <tr>
3819
3820
3821
3822
3823
3824
3825 <td style="vertical-align: top;"> 
3826     
3827     
3828     
3829     
3830     
3831     
3832      <p><a name="dt"></a><b>dt</b></p>
3833
3834
3835
3836
3837
3838
3839 </td>
3840
3841
3842
3843
3844
3845
3846
3847      <td style="vertical-align: top;">R</td>
3848
3849
3850
3851
3852
3853
3854 <td style="vertical-align: top;"><span style="font-style: italic;">variable</span></td>
3855
3856
3857
3858
3859
3860
3861
3862      <td style="vertical-align: top;"> 
3863     
3864     
3865     
3866     
3867     
3868     
3869      <p>Time step for
3870the 3d-model (in s).&nbsp; </p>
3871
3872
3873
3874
3875
3876
3877 
3878     
3879     
3880     
3881     
3882     
3883     
3884      <p>By default, (i.e.
3885if a Runge-Kutta scheme is used, see <a href="#timestep_scheme">timestep_scheme</a>)
3886the value of the time step is calculating after each time step
3887(following the time step criteria) and
3888used for the next step.</p>
3889
3890
3891
3892
3893
3894
3895 
3896     
3897     
3898     
3899     
3900     
3901     
3902      <p>If the user assigns <b>dt</b>
3903a value, then the time step is
3904fixed to this value throughout the whole run (whether it fulfills the
3905time step
3906criteria or not). However, changes are allowed for restart runs,
3907because <b>dt</b> can also be used as a <a href="chapter_4.2.html#dt_laufparameter">run
3908parameter</a>.&nbsp; </p>
3909
3910
3911
3912
3913
3914
3915 
3916     
3917     
3918     
3919     
3920     
3921     
3922      <p>In case that the
3923calculated time step meets the condition<br>
3924
3925
3926
3927
3928
3929
3930 </p>
3931
3932
3933
3934
3935
3936
3937 
3938     
3939     
3940     
3941     
3942     
3943     
3944      <ul>
3945
3946
3947
3948
3949
3950
3951
3952       
3953       
3954       
3955       
3956       
3957       
3958        <p><b>dt</b> &lt; 0.00001 * <a href="chapter_4.2.html#dt_max">dt_max</a> (with dt_max
3959= 20.0)</p>
3960
3961
3962
3963
3964
3965
3966 
3967     
3968     
3969     
3970     
3971     
3972     
3973      </ul>
3974
3975
3976
3977
3978
3979
3980 
3981     
3982     
3983     
3984     
3985     
3986     
3987      <p>the simulation will be
3988aborted. Such situations usually arise
3989in case of any numerical problem / instability which causes a
3990non-realistic increase of the wind speed.&nbsp; </p>
3991
3992
3993
3994
3995
3996
3997 
3998     
3999     
4000     
4001     
4002     
4003     
4004      <p>A
4005small time step due to a large mean horizontal windspeed
4006speed may be enlarged by using a coordinate transformation (see <a href="#galilei_transformation">galilei_transformation</a>),
4007in order to spare CPU time.<br>
4008
4009
4010
4011
4012
4013
4014 </p>
4015
4016
4017
4018
4019
4020
4021 
4022     
4023     
4024     
4025     
4026     
4027     
4028      <p>If the
4029leapfrog timestep scheme is used (see <a href="#timestep_scheme">timestep_scheme</a>)
4030a temporary time step value dt_new is calculated first, with dt_new = <a href="chapter_4.2.html#fcl_factor">cfl_factor</a>
4031* dt_crit where dt_crit is the maximum timestep allowed by the CFL and
4032diffusion condition. Next it is examined whether dt_new exceeds or
4033falls below the
4034value of the previous timestep by at
4035least +5 % / -2%. If it is smaller, <span style="font-weight: bold;">dt</span>
4036= dt_new is immediately used for the next timestep. If it is larger,
4037then <span style="font-weight: bold;">dt </span>=
40381.02 * dt_prev
4039(previous timestep) is used as the new timestep, however the time
4040step is only increased if the last change of the time step is dated
4041back at
4042least 30 iterations. If dt_new is located in the interval mentioned
4043above, then dt
4044does not change at all. By doing so, permanent time step changes as
4045well as large
4046sudden changes (increases) in the time step are avoided.</p>
4047
4048
4049
4050
4051
4052
4053 </td>
4054
4055
4056
4057
4058
4059
4060
4061    </tr>
4062
4063
4064
4065
4066
4067
4068 <tr>
4069
4070
4071
4072
4073
4074
4075 <td style="vertical-align: top;">
4076     
4077     
4078     
4079     
4080     
4081     
4082      <p><a name="dt_pr_1d"></a><b>dt_pr_1d</b></p>
4083
4084
4085
4086
4087
4088
4089
4090      </td>
4091
4092
4093
4094
4095
4096
4097 <td style="vertical-align: top;">R</td>
4098
4099
4100
4101
4102
4103
4104
4105      <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td>
4106
4107
4108
4109
4110
4111
4112
4113      <td style="vertical-align: top;"> 
4114     
4115     
4116     
4117     
4118     
4119     
4120      <p>Temporal
4121interval of vertical profile output of the 1D-model
4122(in s).&nbsp; </p>
4123
4124
4125
4126
4127
4128
4129 
4130     
4131     
4132     
4133     
4134     
4135     
4136      <p>Data are written in ASCII
4137format to file <a href="chapter_3.4.html#LIST_PROFIL_1D">LIST_PROFIL_1D</a>.
4138This parameter is only in effect if the 1d-model has been switched on
4139for the
4140initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
4141= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
4142
4143
4144
4145
4146
4147
4148
4149      </td>
4150
4151
4152
4153
4154
4155
4156 </tr>
4157
4158
4159
4160
4161
4162
4163 <tr>
4164
4165
4166
4167
4168
4169
4170 <td style="vertical-align: top;"> 
4171     
4172     
4173     
4174     
4175     
4176     
4177      <p><a name="dt_run_control_1d"></a><b>dt_run_control_1d</b></p>
4178
4179
4180
4181
4182
4183
4184
4185      </td>
4186
4187
4188
4189
4190
4191
4192 <td style="vertical-align: top;">R</td>
4193
4194
4195
4196
4197
4198
4199
4200      <td style="vertical-align: top;"><span style="font-style: italic;">60.0</span></td>
4201
4202
4203
4204
4205
4206
4207 <td style="vertical-align: top;"> 
4208     
4209     
4210     
4211     
4212     
4213     
4214      <p>Temporal interval of
4215runtime control output of the 1d-model
4216(in s).&nbsp; </p>
4217
4218
4219
4220
4221
4222
4223 
4224     
4225     
4226     
4227     
4228     
4229     
4230      <p>Data are written in ASCII
4231format to file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.
4232This parameter is only in effect if the 1d-model is switched on for the
4233initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
4234= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
4235
4236
4237
4238
4239
4240
4241
4242      </td>
4243
4244
4245
4246
4247
4248
4249 </tr>
4250
4251
4252
4253
4254
4255
4256 <tr>
4257
4258
4259
4260
4261
4262
4263 <td style="vertical-align: top;"> 
4264     
4265     
4266     
4267     
4268     
4269     
4270      <p><a name="dx"></a><b>dx</b></p>
4271
4272
4273
4274
4275
4276
4277
4278      </td>
4279
4280
4281
4282
4283
4284
4285 <td style="vertical-align: top;">R</td>
4286
4287
4288
4289
4290
4291
4292
4293      <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td>
4294
4295
4296
4297
4298
4299
4300 <td style="vertical-align: top;"> 
4301     
4302     
4303     
4304     
4305     
4306     
4307      <p>Horizontal grid
4308spacing along the x-direction (in m).&nbsp; </p>
4309
4310
4311
4312
4313
4314
4315 
4316     
4317     
4318     
4319     
4320     
4321     
4322      <p>Along
4323x-direction only a constant grid spacing is allowed.</p>
4324
4325
4326
4327
4328
4329
4330     
4331     
4332     
4333     
4334     
4335     
4336      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
4337and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
4338
4339
4340
4341
4342
4343
4344 </td>
4345
4346
4347
4348
4349
4350
4351
4352    </tr>
4353
4354
4355
4356
4357
4358
4359 <tr>
4360
4361
4362
4363
4364
4365
4366 <td style="vertical-align: top;">
4367     
4368     
4369     
4370     
4371     
4372     
4373      <p><a name="dy"></a><b>dy</b></p>
4374
4375
4376
4377
4378
4379
4380
4381      </td>
4382
4383
4384
4385
4386
4387
4388 <td style="vertical-align: top;">R</td>
4389
4390
4391
4392
4393
4394
4395
4396      <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td>
4397
4398
4399
4400
4401
4402
4403 <td style="vertical-align: top;"> 
4404     
4405     
4406     
4407     
4408     
4409     
4410      <p>Horizontal grid
4411spacing along the y-direction (in m).&nbsp; </p>
4412
4413
4414
4415
4416
4417
4418 
4419     
4420     
4421     
4422     
4423     
4424     
4425      <p>Along y-direction only a constant grid spacing is allowed.</p>
4426
4427
4428
4429
4430
4431
4432     
4433     
4434     
4435     
4436     
4437     
4438      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
4439and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
4440
4441
4442
4443
4444
4445
4446 </td>
4447
4448
4449
4450
4451
4452
4453
4454    </tr>
4455
4456
4457
4458
4459
4460
4461 <tr>
4462
4463
4464
4465
4466
4467
4468 <td style="vertical-align: top;">
4469     
4470     
4471     
4472     
4473     
4474     
4475      <p><a name="dz"></a><b>dz</b></p>
4476
4477
4478
4479
4480
4481
4482
4483      </td>
4484
4485
4486
4487
4488
4489
4490 <td style="vertical-align: top;">R</td>
4491
4492
4493
4494
4495
4496
4497
4498      <td style="vertical-align: top;"><br>
4499
4500
4501
4502
4503
4504
4505 </td>
4506
4507
4508
4509
4510
4511
4512 <td style="vertical-align: top;"> 
4513     
4514     
4515     
4516     
4517     
4518     
4519      <p>Vertical grid
4520spacing (in m).&nbsp; </p>
4521
4522
4523
4524
4525
4526
4527 
4528     
4529     
4530     
4531     
4532     
4533     
4534      <p>This parameter must be
4535assigned by the user, because no
4536default value is given.<br>
4537
4538
4539
4540
4541
4542
4543 </p>
4544
4545
4546
4547
4548
4549
4550 
4551     
4552     
4553     
4554     
4555     
4556     
4557      <p>By default, the
4558model uses constant grid spacing along z-direction, but it can be
4559stretched using the parameters <a href="#dz_stretch_level">dz_stretch_level</a>
4560and <a href="#dz_stretch_factor">dz_stretch_factor</a>.
4561In case of stretching, a maximum allowed grid spacing can be given by <a href="#dz_max">dz_max</a>.<br>
4562
4563
4564
4565
4566
4567
4568 </p>
4569
4570
4571
4572
4573
4574
4575 
4576     
4577     
4578     
4579     
4580     
4581     
4582      <p>Assuming
4583a constant <span style="font-weight: bold;">dz</span>,
4584the scalar levels (zu) are calculated directly by:&nbsp; </p>
4585
4586
4587
4588
4589
4590
4591
4592     
4593     
4594     
4595     
4596     
4597     
4598      <ul>
4599
4600
4601
4602
4603
4604
4605 
4606       
4607       
4608       
4609       
4610       
4611       
4612        <p>zu(0) = - dz * 0.5&nbsp; <br>
4613
4614
4615
4616
4617
4618
4619
4620zu(1) = dz * 0.5</p>
4621
4622
4623
4624
4625
4626
4627 
4628     
4629     
4630     
4631     
4632     
4633     
4634      </ul>
4635
4636
4637
4638
4639
4640
4641 
4642     
4643     
4644     
4645     
4646     
4647     
4648      <p>The w-levels lie
4649half between them:&nbsp; </p>
4650
4651
4652
4653
4654
4655
4656 
4657     
4658     
4659     
4660     
4661     
4662     
4663      <ul>
4664
4665
4666
4667
4668
4669
4670 
4671       
4672       
4673       
4674       
4675       
4676       
4677        <p>zw(k) =
4678( zu(k) + zu(k+1) ) * 0.5</p>
4679
4680
4681
4682
4683
4684
4685 
4686     
4687     
4688     
4689     
4690     
4691     
4692      </ul>
4693
4694
4695
4696
4697
4698
4699 </td>
4700
4701
4702
4703
4704
4705
4706 </tr>
4707
4708
4709
4710
4711
4712
4713
4714    <tr>
4715
4716
4717
4718
4719
4720
4721      <td style="vertical-align: top;"><a name="dz_max"></a><span style="font-weight: bold;">dz_max</span></td>
4722
4723
4724
4725
4726
4727
4728      <td style="vertical-align: top;">R</td>
4729
4730
4731
4732
4733
4734
4735      <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td>
4736
4737
4738
4739
4740
4741
4742      <td style="vertical-align: top;">Allowed maximum vertical grid
4743spacing (in m).<br>
4744
4745
4746
4747
4748
4749
4750      <br>
4751
4752
4753
4754
4755
4756
4757If the vertical grid is stretched
4758(see <a href="#dz_stretch_factor">dz_stretch_factor</a>
4759and <a href="#dz_stretch_level">dz_stretch_level</a>),
4760      <span style="font-weight: bold;">dz_max</span> can
4761be used to limit the vertical grid spacing.</td>
4762
4763
4764
4765
4766
4767
4768    </tr>
4769
4770
4771
4772
4773
4774
4775    <tr>
4776
4777
4778
4779
4780
4781
4782
4783      <td style="vertical-align: top;"> 
4784     
4785     
4786     
4787     
4788     
4789     
4790      <p><a name="dz_stretch_factor"></a><b>dz_stretch_factor</b></p>
4791
4792
4793
4794
4795
4796
4797
4798      </td>
4799
4800
4801
4802
4803
4804
4805 <td style="vertical-align: top;">R</td>
4806
4807
4808
4809
4810
4811
4812
4813      <td style="vertical-align: top;"><span style="font-style: italic;">1.08</span></td>
4814
4815
4816
4817
4818
4819
4820 <td style="vertical-align: top;"> 
4821     
4822     
4823     
4824     
4825     
4826     
4827      <p>Stretch factor for a
4828vertically stretched grid (see <a href="#dz_stretch_level">dz_stretch_level</a>).&nbsp;
4829      </p>
4830
4831
4832
4833
4834
4835
4836 
4837     
4838     
4839     
4840     
4841     
4842     
4843      <p>The stretch factor should not exceed a value of
4844approx. 1.10 -
48451.12, otherwise the discretization errors due to the stretched grid not
4846negligible any more. (refer Kalnay de Rivas)</p>
4847
4848
4849
4850
4851
4852
4853 </td>
4854
4855
4856
4857
4858
4859
4860 </tr>
4861
4862
4863
4864
4865
4866
4867
4868    <tr>
4869
4870
4871
4872
4873
4874
4875 <td style="vertical-align: top;"> 
4876     
4877     
4878     
4879     
4880     
4881     
4882      <p><a name="dz_stretch_level"></a><b>dz_stretch_level</b></p>
4883
4884
4885
4886
4887
4888
4889
4890      </td>
4891
4892
4893
4894
4895
4896
4897 <td style="vertical-align: top;">R</td>
4898
4899
4900
4901
4902
4903
4904
4905      <td style="vertical-align: top;"><span style="font-style: italic;">100000.0</span><br>
4906
4907
4908
4909
4910
4911
4912 </td>
4913
4914
4915
4916
4917
4918
4919
4920      <td style="vertical-align: top;"> 
4921     
4922     
4923     
4924     
4925     
4926     
4927      <p>Height level
4928above/below which the grid is to be stretched
4929vertically (in m).&nbsp; </p>
4930
4931
4932
4933
4934
4935
4936 
4937     
4938     
4939     
4940     
4941     
4942     
4943      <p>For <a href="chapter_4.1.html#ocean">ocean</a> = .F., <b>dz_stretch_level </b>is the height level (in m)&nbsp;<span style="font-weight: bold;">above </span>which the grid is to be stretched
4944vertically. The vertical grid
4945spacings <a href="#dz">dz</a>
4946above this level are calculated as&nbsp; </p>
4947
4948
4949
4950
4951
4952
4953 
4954     
4955     
4956     
4957     
4958     
4959     
4960      <ul>
4961
4962
4963
4964
4965
4966
4967 
4968       
4969       
4970       
4971       
4972       
4973       
4974        <p><b>dz</b>(k+1)
4975= <b>dz</b>(k) * <a href="#dz_stretch_factor">dz_stretch_factor</a></p>
4976
4977
4978
4979
4980
4981
4982
4983     
4984     
4985     
4986     
4987     
4988     
4989      </ul>
4990
4991
4992
4993
4994
4995
4996 
4997     
4998     
4999     
5000     
5001     
5002     
5003      <p>and used as spacings for the scalar levels (zu).
5004The
5005w-levels are then defined as:&nbsp; </p>
5006
5007
5008
5009
5010
5011
5012 
5013     
5014     
5015     
5016     
5017     
5018     
5019      <ul>
5020
5021
5022
5023
5024
5025
5026 
5027       
5028       
5029       
5030       
5031       
5032       
5033        <p>zw(k)
5034= ( zu(k) + zu(k+1) ) * 0.5.
5035
5036 
5037     
5038      </p>
5039
5040
5041
5042
5043     
5044     
5045     
5046     
5047      </ul>
5048
5049
5050
5051
5052     
5053     
5054     
5055     
5056      <p>For <a href="#ocean">ocean</a> = .T., <b>dz_stretch_level </b>is the height level (in m, negative) <span style="font-weight: bold;">below</span> which the grid is to be stretched
5057vertically. The vertical grid
5058spacings <a href="chapter_4.1.html#dz">dz</a> below this level are calculated correspondingly as
5059
5060 
5061     
5062      </p>
5063
5064
5065
5066
5067     
5068     
5069     
5070     
5071      <ul>
5072
5073
5074
5075
5076       
5077       
5078       
5079       
5080        <p><b>dz</b>(k-1)
5081= <b>dz</b>(k) * <a href="chapter_4.1.html#dz_stretch_factor">dz_stretch_factor</a>.</p>
5082
5083
5084
5085
5086     
5087     
5088     
5089     
5090      </ul>
5091
5092
5093
5094
5095
5096
5097 </td>
5098
5099
5100
5101
5102
5103
5104 </tr>
5105
5106
5107
5108
5109
5110
5111
5112    <tr>
5113
5114
5115
5116
5117
5118      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_init"></a>e_init</span></td>
5119
5120
5121
5122
5123
5124      <td style="vertical-align: top;">R</td>
5125
5126
5127
5128
5129
5130      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
5131
5132
5133
5134
5135
5136      <td>Initial subgrid-scale TKE in m<sup>2</sup>s<sup>-2</sup>.<br>
5137
5138
5139
5140
5141
5142
5143
5144      <br>
5145
5146
5147
5148
5149
5150
5151This
5152option prescribes an initial&nbsp;subgrid-scale TKE from which the initial diffusion coefficients K<sub>m</sub> and K<sub>h</sub> will be calculated if <span style="font-weight: bold;">e_init</span> is positive. This option only has an effect if&nbsp;<a href="#km_constant">km_constant</a> is not set.</td>
5153
5154
5155
5156
5157
5158    </tr>
5159
5160
5161
5162
5163
5164    <tr>
5165
5166
5167
5168
5169
5170
5171 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_min"></a>e_min</span></td>
5172
5173
5174
5175
5176
5177
5178
5179      <td style="vertical-align: top;">R</td>
5180
5181
5182
5183
5184
5185
5186 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
5187
5188
5189
5190
5191
5192
5193 <td>Minimum
5194subgrid-scale TKE in m<sup>2</sup>s<sup>-2</sup>.<br>
5195
5196
5197
5198
5199
5200
5201
5202      <br>
5203
5204
5205
5206
5207
5208
5209This
5210option&nbsp;adds artificial viscosity to the flow by ensuring that
5211the
5212subgrid-scale TKE does not fall below the minimum threshold <span style="font-weight: bold;">e_min</span>.</td>
5213
5214
5215
5216
5217
5218
5219 </tr>
5220
5221
5222
5223
5224
5225
5226
5227    <tr>
5228
5229
5230
5231
5232
5233
5234 <td style="vertical-align: top;"> 
5235     
5236     
5237     
5238     
5239     
5240     
5241      <p><a name="end_time_1d"></a><b>end_time_1d</b></p>
5242
5243
5244
5245
5246
5247
5248
5249      </td>
5250
5251
5252
5253
5254
5255
5256 <td style="vertical-align: top;">R</td>
5257
5258
5259
5260
5261
5262
5263
5264      <td style="vertical-align: top;"><span style="font-style: italic;">864000.0</span><br>
5265
5266
5267
5268
5269
5270
5271 </td>
5272
5273
5274
5275
5276
5277
5278
5279      <td style="vertical-align: top;"> 
5280     
5281     
5282     
5283     
5284     
5285     
5286      <p>Time to be
5287simulated for the 1d-model (in s).&nbsp; </p>
5288
5289
5290
5291
5292
5293
5294 
5295     
5296     
5297     
5298     
5299     
5300     
5301      <p>The
5302default value corresponds to a simulated time of 10 days.
5303Usually, after such a period the inertia oscillations have completely
5304decayed and the solution of the 1d-model can be regarded as stationary
5305(see <a href="#damp_level_1d">damp_level_1d</a>).
5306This parameter is only in effect if the 1d-model is switched on for the
5307initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
5308= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
5309
5310
5311
5312
5313
5314
5315
5316      </td>
5317
5318
5319
5320
5321
5322
5323 </tr>
5324
5325
5326
5327
5328
5329
5330 <tr>
5331
5332
5333
5334
5335
5336
5337 <td style="vertical-align: top;"> 
5338     
5339     
5340     
5341     
5342     
5343     
5344      <p><a name="fft_method"></a><b>fft_method</b></p>
5345
5346
5347
5348
5349
5350
5351
5352      </td>
5353
5354
5355
5356
5357
5358
5359 <td style="vertical-align: top;">C * 20</td>
5360
5361
5362
5363
5364
5365
5366
5367      <td style="vertical-align: top;"><span style="font-style: italic;">'system-</span><br style="font-style: italic;">
5368
5369
5370
5371
5372
5373
5374 <span style="font-style: italic;">specific'</span></td>
5375
5376
5377
5378
5379
5380
5381
5382      <td style="vertical-align: top;"> 
5383     
5384     
5385     
5386     
5387     
5388     
5389      <p>FFT-method to
5390be used.<br>
5391
5392
5393
5394
5395
5396
5397 </p>
5398
5399
5400
5401
5402
5403
5404 
5405     
5406     
5407     
5408     
5409     
5410     
5411      <p><br>
5412
5413
5414
5415
5416
5417
5418
5419The fast fourier transformation (FFT) is used for solving the
5420perturbation pressure equation with a direct method (see <a href="chapter_4.2.html#psolver">psolver</a>)
5421and for calculating power spectra (see optional software packages,
5422section <a href="chapter_4.2.html#spectra_package">4.2</a>).</p>
5423
5424
5425
5426
5427
5428
5429
5430     
5431     
5432     
5433     
5434     
5435     
5436      <p><br>
5437
5438
5439
5440
5441
5442
5443
5444By default, system-specific, optimized routines from external
5445vendor libraries are used. However, these are available only on certain
5446computers and there are more or less severe restrictions concerning the
5447number of gridpoints to be used with them.<br>
5448
5449
5450
5451
5452
5453
5454 </p>
5455
5456
5457
5458
5459
5460
5461 
5462     
5463     
5464     
5465     
5466     
5467     
5468      <p>There
5469are two other PALM internal methods available on every
5470machine (their respective source code is part of the PALM source code):</p>
5471
5472
5473
5474
5475
5476
5477
5478     
5479     
5480     
5481     
5482     
5483     
5484      <p>1.: The <span style="font-weight: bold;">Temperton</span>-method
5485from Clive Temperton (ECWMF) which is computationally very fast and
5486switched on with <b>fft_method</b> = <span style="font-style: italic;">'temperton-algorithm'</span>.
5487The number of horizontal gridpoints (nx+1, ny+1) to be used with this
5488method must be composed of prime factors 2, 3 and 5.<br>
5489
5490
5491
5492
5493
5494
5495 </p>
5496
5497
5498
5499
5500
5501
5502
55032.: The <span style="font-weight: bold;">Singleton</span>-method
5504which is very slow but has no restrictions concerning the number of
5505gridpoints to be used with, switched on with <b>fft_method</b>
5506= <span style="font-style: italic;">'singleton-algorithm'</span>.
5507      </td>
5508
5509
5510
5511
5512
5513
5514 </tr>
5515
5516
5517
5518
5519
5520
5521 <tr>
5522
5523
5524
5525
5526
5527
5528 <td style="vertical-align: top;"> 
5529     
5530     
5531     
5532     
5533     
5534     
5535      <p><a name="galilei_transformation"></a><b>galilei_transformation</b></p>
5536
5537
5538
5539
5540
5541
5542
5543      </td>
5544
5545
5546
5547
5548
5549
5550 <td style="vertical-align: top;">L</td>
5551
5552
5553
5554
5555
5556
5557
5558      <td style="vertical-align: top;"><i>.F.</i></td>
5559
5560
5561
5562
5563
5564
5565
5566      <td style="vertical-align: top;">Application of a
5567Galilei-transformation to the
5568coordinate
5569system of the model.<br>
5570
5571
5572
5573
5574
5575
5576     
5577     
5578     
5579     
5580     
5581     
5582      <p>With <b>galilei_transformation</b>
5583= <i>.T.,</i> a so-called
5584Galilei-transformation is switched on which ensures that the coordinate
5585system of the model is moved along with the geostrophical wind.
5586Alternatively, the model domain can be moved along with the averaged
5587horizontal wind (see <a href="#use_ug_for_galilei_tr">use_ug_for_galilei_tr</a>,
5588this can and will naturally change in time). With this method,
5589numerical inaccuracies of the Piascek - Williams - scheme (concerns in
5590particular the momentum advection) are minimized. Beyond that, in the
5591majority of cases the lower relative velocities in the moved system
5592permit a larger time step (<a href="#dt">dt</a>).
5593Switching the transformation on is only worthwhile if the geostrophical
5594wind (ug, vg)
5595and the averaged horizontal wind clearly deviate from the value 0. In
5596each case, the distance the coordinate system has been moved is written
5597to the file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.&nbsp;
5598      </p>
5599
5600
5601
5602
5603
5604
5605 
5606     
5607     
5608     
5609     
5610     
5611     
5612      <p>Non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
5613and <a href="#bc_ns">bc_ns</a>), the specification
5614of a gestrophic
5615wind that is not constant with height
5616as well as e.g. stationary inhomogeneities at the bottom boundary do
5617not allow the use of this transformation.</p>
5618
5619
5620
5621
5622
5623
5624 </td>
5625
5626
5627
5628
5629
5630
5631 </tr>
5632
5633
5634
5635
5636
5637
5638
5639    <tr>
5640
5641
5642
5643
5644
5645
5646 <td style="vertical-align: top;"> 
5647     
5648     
5649     
5650     
5651     
5652     
5653      <p><a name="grid_matching"></a><b>grid_matching</b></p>
5654
5655
5656
5657
5658
5659
5660
5661      </td>
5662
5663
5664
5665
5666
5667
5668 <td style="vertical-align: top;">C * 6</td>
5669
5670
5671
5672
5673
5674
5675
5676      <td style="vertical-align: top;"><span style="font-style: italic;">'strict'</span></td>
5677
5678
5679
5680
5681
5682
5683 <td style="vertical-align: top;">Variable to adjust the
5684subdomain
5685sizes in parallel runs.<br>
5686
5687
5688
5689
5690
5691
5692 <br>
5693
5694
5695
5696
5697
5698
5699
5700For <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span>,
5701the subdomains are forced to have an identical
5702size on all processors. In this case the processor numbers in the
5703respective directions of the virtual processor net must fulfill certain
5704divisor conditions concerning the grid point numbers in the three
5705directions (see <a href="#nx">nx</a>, <a href="#ny">ny</a>
5706and <a href="#nz">nz</a>).
5707Advantage of this method is that all PEs bear the same computational
5708load.<br>
5709
5710
5711
5712
5713
5714
5715 <br>
5716
5717
5718
5719
5720
5721
5722
5723There is no such restriction by default, because then smaller
5724subdomains are allowed on those processors which
5725form the right and/or north boundary of the virtual processor grid. On
5726all other processors the subdomains are of same size. Whether smaller
5727subdomains are actually used, depends on the number of processors and
5728the grid point numbers used. Information about the respective settings
5729are given in file <a href="file:///home/raasch/public_html/PALM_group/home/raasch/public_html/PALM_group/doc/app/chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.<br>
5730
5731
5732
5733
5734
5735
5736
5737      <br>
5738
5739
5740
5741
5742
5743
5744
5745When using a multi-grid method for solving the Poisson equation (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>)
5746only <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span>
5747is allowed.<br>
5748
5749
5750
5751
5752
5753
5754 <br>
5755
5756
5757
5758
5759
5760
5761 <b>Note:</b><br>
5762
5763
5764
5765
5766
5767
5768
5769In some cases for small processor numbers there may be a very bad load
5770balancing among the
5771processors which may reduce the performance of the code.</td>
5772
5773
5774
5775
5776
5777
5778 </tr>
5779
5780
5781
5782
5783
5784
5785
5786    <tr><td style="vertical-align: top;"><p><a name="humidity"></a><b>humidity</b></p></td><td style="vertical-align: top;">L</td><td style="vertical-align: top;"><i>.F.</i></td><td style="vertical-align: top;"><p>Parameter to
5787switch on the prognostic equation for specific
5788humidity q.<br>
5789
5790
5791
5792
5793
5794
5795 </p>
5796
5797
5798
5799
5800
5801
5802 
5803     
5804     
5805     
5806     
5807     
5808     
5809      <p>The initial vertical
5810profile of q can be set via parameters <a href="chapter_4.1.html#q_surface">q_surface</a>, <a href="chapter_4.1.html#q_vertical_gradient">q_vertical_gradient</a>
5811and <a href="chapter_4.1.html#q_vertical_gradient_level">q_vertical_gradient_level</a>.&nbsp;
5812Boundary conditions can be set via <a href="chapter_4.1.html#q_surface_initial_change">q_surface_initial_change</a>
5813and <a href="chapter_4.1.html#surface_waterflux">surface_waterflux</a>.<br>
5814
5815
5816
5817
5818
5819
5820
5821      </p>
5822
5823
5824
5825
5826
5827
5828
5829If the condensation scheme is switched on (<a href="chapter_4.1.html#cloud_physics">cloud_physics</a>
5830= .TRUE.), q becomes the total liquid water content (sum of specific
5831humidity and liquid water content).</td></tr><tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="inflow_damping_height"></a>inflow_damping_height</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">from precursor run</span></td><td style="vertical-align: top;">Height below which the turbulence signal is used for turbulence recycling (in m).<br><br>In case of a turbulent inflow (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>),
5832this parameter defines the vertical thickness of the turbulent layer up
5833to which the turbulence extracted at the recycling plane (see <a href="chapter_4.1.html#recycling_width">recycling_width</a>)
5834shall be imposed to the inflow. Above this level the turbulence signal
5835is linearly damped to zero. The transition range within which the
5836signal falls to zero is given by the parameter <a href="chapter_4.1.html#inflow_damping_width">inflow_damping_width</a>.<br><br>By default, this height is set as the height of the convective boundary layer as calculated from a precursor run. See <a href="chapter_3.9.html">chapter 3.9</a> about proper settings for getting this CBL height from a precursor run. </td></tr><tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="inflow_damping_width"></a>inflow_damping_width</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.1 * <a href="chapter_4.1.html#inflow_damping_height">inflow_damping</a></span><a href="chapter_4.1.html#inflow_damping_height"><br style="font-style: italic;"><span style="font-style: italic;">_height</span></a></td><td style="vertical-align: top;">Transition range within which the turbulance signal is damped to zero (in m).<br><br>See <a href="chapter_4.1.html#inflow_damping_height">inflow_damping_height</a> for explanation.</td></tr><tr>
5837
5838
5839
5840
5841
5842
5843 <td style="vertical-align: top;"><a name="inflow_disturbance_begin"></a><b>inflow_disturbance_<br>
5844
5845
5846
5847
5848
5849
5850
5851begin</b></td>
5852
5853
5854
5855
5856
5857
5858 <td style="vertical-align: top;">I</td>
5859
5860
5861
5862
5863
5864
5865
5866      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(10,</span><br style="font-style: italic;">
5867
5868
5869
5870
5871
5872
5873 <span style="font-style: italic;">nx/2 or ny/2)</span></td>
5874
5875
5876
5877
5878
5879
5880
5881      <td style="vertical-align: top;">Lower
5882limit of the horizontal range for which random perturbations are to be
5883imposed on the horizontal velocity field (gridpoints).<br>
5884
5885
5886
5887
5888
5889
5890 <br>
5891
5892
5893
5894
5895
5896
5897
5898If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a>
5899or <a href="#bc_ns">bc_ns</a>),
5900this parameter gives the gridpoint number (counted horizontally from
5901the inflow)&nbsp; from which on perturbations are imposed on the
5902horizontal velocity field. Perturbations must be switched on with
5903parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td>
5904
5905
5906
5907
5908
5909
5910
5911    </tr>
5912
5913
5914
5915
5916
5917
5918 <tr>
5919
5920
5921
5922
5923
5924
5925 <td style="vertical-align: top;"><a name="inflow_disturbance_end"></a><b>inflow_disturbance_<br>
5926
5927
5928
5929
5930
5931
5932
5933end</b></td>
5934
5935
5936
5937
5938
5939
5940 <td style="vertical-align: top;">I</td>
5941
5942
5943
5944
5945
5946
5947
5948      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(100,</span><br style="font-style: italic;">
5949
5950
5951
5952
5953
5954
5955 <span style="font-style: italic;">3/4*nx or</span><br style="font-style: italic;">
5956
5957
5958
5959
5960
5961
5962 <span style="font-style: italic;">3/4*ny)</span></td>
5963
5964
5965
5966
5967
5968
5969 <td style="vertical-align: top;">Upper
5970limit of the horizontal range for which random perturbations are
5971to be imposed on the horizontal velocity field (gridpoints).<br>
5972
5973
5974
5975
5976
5977
5978 <br>
5979
5980
5981
5982
5983
5984
5985
5986If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a>
5987or <a href="#bc_ns">bc_ns</a>),
5988this parameter gives the gridpoint number (counted horizontally from
5989the inflow)&nbsp; unto which perturbations are imposed on the
5990horizontal
5991velocity field. Perturbations must be switched on with parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td>
5992
5993
5994
5995
5996
5997
5998
5999    </tr>
6000
6001
6002
6003
6004
6005
6006 <tr>
6007
6008
6009
6010
6011
6012
6013 <td style="vertical-align: top;">
6014     
6015     
6016     
6017     
6018     
6019     
6020      <p><a name="initializing_actions"></a><b>initializing_actions</b></p>
6021
6022
6023
6024
6025
6026
6027
6028      </td>
6029
6030
6031
6032
6033
6034
6035 <td style="vertical-align: top;">C * 100</td>
6036
6037
6038
6039
6040
6041
6042
6043      <td style="vertical-align: top;"><br>
6044
6045
6046
6047
6048
6049
6050 </td>
6051
6052
6053
6054
6055
6056
6057 <td style="vertical-align: top;"> 
6058     
6059     
6060     
6061     
6062     
6063     
6064      <p style="font-style: normal;">Initialization actions
6065to be carried out.&nbsp; </p>
6066
6067
6068
6069
6070
6071
6072 
6073     
6074     
6075     
6076     
6077     
6078     
6079      <p style="font-style: normal;">This parameter does not have a
6080default value and therefore must be assigned with each model run. For
6081restart runs <b>initializing_actions</b> = <span style="font-style: italic;">'read_restart_data'</span>
6082must be set. For the initial run of a job chain the following values
6083are allowed:&nbsp; </p>
6084
6085
6086
6087
6088
6089
6090 
6091     
6092     
6093     
6094     
6095     
6096     
6097      <p style="font-style: normal;"><span style="font-style: italic;">'set_constant_profiles'</span>
6098      </p>
6099
6100
6101
6102
6103
6104
6105 
6106     
6107     
6108     
6109     
6110     
6111     
6112      <ul>
6113
6114
6115
6116
6117
6118
6119 
6120       
6121       
6122       
6123       
6124       
6125       
6126        <p>A horizontal wind profile consisting
6127of linear sections (see <a href="#ug_surface">ug_surface</a>,
6128        <a href="#ug_vertical_gradient">ug_vertical_gradient</a>,
6129        <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>
6130and <a href="#vg_surface">vg_surface</a>, <a href="#vg_vertical_gradient">vg_vertical_gradient</a>,
6131        <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>,
6132respectively) as well as a vertical temperature (humidity) profile
6133consisting of
6134linear sections (see <a href="#pt_surface">pt_surface</a>,
6135        <a href="#pt_vertical_gradient">pt_vertical_gradient</a>,
6136        <a href="#q_surface">q_surface</a>
6137and <a href="#q_vertical_gradient">q_vertical_gradient</a>)
6138are assumed as initial profiles. The subgrid-scale TKE is set to 0 but K<sub>m</sub>
6139and K<sub>h</sub> are set to very small values because
6140otherwise no TKE
6141would be generated.</p>
6142
6143
6144
6145
6146
6147
6148 
6149     
6150     
6151     
6152     
6153     
6154     
6155      </ul>
6156
6157
6158
6159
6160
6161
6162 
6163     
6164     
6165     
6166     
6167     
6168     
6169      <p style="font-style: italic;">'set_1d-model_profiles' </p>
6170
6171
6172
6173
6174
6175
6176
6177     
6178     
6179     
6180     
6181     
6182     
6183      <ul>
6184
6185
6186
6187
6188
6189
6190 
6191       
6192       
6193       
6194       
6195       
6196       
6197        <p>The arrays of the 3d-model are initialized with
6198the
6199(stationary) solution of the 1d-model. These are the variables e, kh,
6200km, u, v and with Prandtl layer switched on rif, us, usws, vsws. The
6201temperature (humidity) profile consisting of linear sections is set as
6202for 'set_constant_profiles' and assumed as constant in time within the
62031d-model. For steering of the 1d-model a set of parameters with suffix
6204"_1d" (e.g. <a href="#end_time_1d">end_time_1d</a>,
6205        <a href="#damp_level_1d">damp_level_1d</a>)
6206is available.</p>
6207
6208
6209
6210
6211
6212
6213 
6214     
6215     
6216     
6217     
6218     
6219     
6220      </ul>
6221
6222
6223
6224
6225
6226
6227 
6228     
6229     
6230     
6231     
6232     
6233     
6234      <p><span style="font-style: italic;">'by_user'</span></p>
6235
6236
6237
6238
6239
6240
6241     
6242     
6243     
6244     
6245     
6246     
6247      <p style="margin-left: 40px;">The initialization of the arrays
6248of the 3d-model is under complete control of the user and has to be
6249done in routine <a href="chapter_3.5.1.html#user_init_3d_model">user_init_3d_model</a>
6250of the user-interface.<span style="font-style: italic;"></span></p>
6251
6252
6253
6254
6255
6256
6257     
6258     
6259     
6260     
6261     
6262     
6263      <p><span style="font-style: italic;">'initialize_vortex'</span>
6264      </p>
6265
6266
6267
6268
6269
6270
6271 
6272     
6273     
6274     
6275     
6276     
6277     
6278      <div style="margin-left: 40px;">The initial
6279velocity field of the
62803d-model corresponds to a
6281Rankine-vortex with vertical axis. This setting may be used to test
6282advection schemes. Free-slip boundary conditions for u and v (see <a href="#bc_uv_b">bc_uv_b</a>, <a href="#bc_uv_t">bc_uv_t</a>)
6283are necessary. In order not to distort the vortex, an initial
6284horizontal wind profile constant
6285with height is necessary (to be set by <b>initializing_actions</b>
6286= <span style="font-style: italic;">'set_constant_profiles'</span>)
6287and some other conditions have to be met (neutral stratification,
6288diffusion must be
6289switched off, see <a href="#km_constant">km_constant</a>).
6290The center of the vortex is located at jc = (nx+1)/2. It
6291extends from k = 0 to k = nz+1. Its radius is 8 * <a href="#dx">dx</a>
6292and the exponentially decaying part ranges to 32 * <a href="#dx">dx</a>
6293(see init_rankine.f90). </div>
6294
6295
6296
6297
6298
6299
6300 
6301     
6302     
6303     
6304     
6305     
6306     
6307      <p><span style="font-style: italic;">'initialize_ptanom'</span>
6308      </p>
6309
6310
6311
6312
6313
6314
6315 
6316     
6317     
6318     
6319     
6320     
6321     
6322      <ul>
6323
6324
6325
6326
6327
6328
6329 
6330       
6331       
6332       
6333       
6334       
6335       
6336        <p>A 2d-Gauss-like shape disturbance
6337(x,y) is added to the
6338initial temperature field with radius 10.0 * <a href="#dx">dx</a>
6339and center at jc = (nx+1)/2. This may be used for tests of scalar
6340advection schemes
6341(see <a href="#scalar_advec">scalar_advec</a>).
6342Such tests require a horizontal wind profile constant with hight and
6343diffusion
6344switched off (see <span style="font-style: italic;">'initialize_vortex'</span>).
6345Additionally, the buoyancy term
6346must be switched of in the equation of motion&nbsp; for w (this
6347requires the user to comment out the call of <span style="font-family: monospace;">buoyancy</span> in the
6348source code of <span style="font-family: monospace;">prognostic_equations.f90</span>).</p></ul>
6349
6350
6351
6352
6353
6354
6355 
6356     
6357     
6358     
6359     
6360     
6361     
6362      <p style="font-style: italic;">'cyclic_fill'</p><p style="font-style: normal; margin-left: 40px;">Here,
63633d-data from a precursor run are read by the initial (main) run. The
6364precursor run is allowed to have a smaller domain along x and y
6365compared with the main run. Also, different numbers of processors can
6366be used for these two runs. Limitations are that the precursor run must
6367use cyclic horizontal boundary conditions and that the number of vertical grid points, <a href="#nz">nz</a>, must be same for the precursor run and the main run. If the total domain of the main run is larger than that of the precursor
6368run, the domain is filled by cyclic repetition&nbsp;of the (cyclic)
6369precursor data. This initialization method is recommended if a
6370turbulent inflow is used (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>). 3d-data must be made available to the run by activating an appropriate file connection statement for local file BININ. See <a href="chapter_3.9.html">chapter 3.9</a> for more details, where usage of a turbulent inflow is explained. </p><p style="font-style: normal;">Values may be
6371combined, e.g. <b>initializing_actions</b> = <span style="font-style: italic;">'set_constant_profiles
6372initialize_vortex'</span>, but the values of <span style="font-style: italic;">'set_constant_profiles'</span>,
6373      <span style="font-style: italic;">'set_1d-model_profiles'</span>
6374, and <span style="font-style: italic;">'by_user'</span>
6375must not be given at the same time.</p>
6376
6377
6378
6379
6380
6381
6382 
6383     
6384     
6385     
6386     
6387     
6388     
6389     
6390
6391
6392
6393
6394
6395
6396 </td>
6397
6398
6399
6400
6401
6402
6403 </tr>
6404
6405
6406
6407
6408
6409
6410
6411    <tr>
6412
6413
6414
6415
6416
6417
6418 <td style="vertical-align: top;"> 
6419     
6420     
6421     
6422     
6423     
6424     
6425      <p><a name="km_constant"></a><b>km_constant</b></p>
6426
6427
6428
6429
6430
6431
6432
6433      </td>
6434
6435
6436
6437
6438
6439
6440 <td style="vertical-align: top;">R</td>
6441
6442
6443
6444
6445
6446
6447
6448      <td style="vertical-align: top;"><i>variable<br>
6449
6450
6451
6452
6453
6454
6455
6456(computed from TKE)</i></td>
6457
6458
6459
6460
6461
6462
6463 <td style="vertical-align: top;"> 
6464     
6465     
6466     
6467     
6468     
6469     
6470      <p>Constant eddy
6471diffusivities are used (laminar
6472simulations).&nbsp; </p>
6473
6474
6475
6476
6477
6478
6479 
6480     
6481     
6482     
6483     
6484     
6485     
6486      <p>If this parameter is
6487specified, both in the 1d and in the
64883d-model constant values for the eddy diffusivities are used in
6489space and time with K<sub>m</sub> = <b>km_constant</b>
6490and K<sub>h</sub> = K<sub>m</sub> / <a href="chapter_4.2.html#prandtl_number">prandtl_number</a>.
6491The prognostic equation for the subgrid-scale TKE is switched off.
6492Constant eddy diffusivities are only allowed with the Prandtl layer (<a href="#prandtl_layer">prandtl_layer</a>)
6493switched off.</p>
6494
6495
6496
6497
6498
6499
6500 </td>
6501
6502
6503
6504
6505
6506
6507 </tr>
6508
6509
6510
6511
6512
6513
6514 <tr>
6515
6516
6517
6518
6519
6520
6521 <td style="vertical-align: top;"> 
6522     
6523     
6524     
6525     
6526     
6527     
6528      <p><a name="km_damp_max"></a><b>km_damp_max</b></p>
6529
6530
6531
6532
6533
6534
6535
6536      </td>
6537
6538
6539
6540
6541
6542
6543 <td style="vertical-align: top;">R</td>
6544
6545
6546
6547
6548
6549
6550
6551      <td style="vertical-align: top;"><span style="font-style: italic;">0.5*(dx
6552or dy)</span></td>
6553
6554
6555
6556
6557
6558
6559 <td style="vertical-align: top;">Maximum
6560diffusivity used for filtering the velocity field in the vicinity of
6561the outflow (in m<sup>2</sup>/s).<br>
6562
6563
6564
6565
6566
6567
6568 <br>
6569
6570
6571
6572
6573
6574
6575
6576When using non-cyclic lateral boundaries (see <a href="#bc_lr">bc_lr</a>
6577or <a href="#bc_ns">bc_ns</a>),
6578a smoothing has to be applied to the
6579velocity field in the vicinity of the outflow in order to suppress any
6580reflections of outgoing disturbances. Smoothing is done by increasing
6581the eddy diffusivity along the horizontal direction which is
6582perpendicular to the outflow boundary. Only velocity components
6583parallel to the outflow boundary are filtered (e.g. v and w, if the
6584outflow is along x). Damping is applied from the bottom to the top of
6585the domain.<br>
6586
6587
6588
6589
6590
6591
6592 <br>
6593
6594
6595
6596
6597
6598
6599
6600The horizontal range of the smoothing is controlled by <a href="#outflow_damping_width">outflow_damping_width</a>
6601which defines the number of gridpoints (counted from the outflow
6602boundary) from where on the smoothing is applied. Starting from that
6603point, the eddy diffusivity is linearly increased (from zero to its
6604maximum value given by <span style="font-weight: bold;">km_damp_max</span>)
6605until half of the damping range width, from where it remains constant
6606up to the outflow boundary. If at a certain grid point the eddy
6607diffusivity calculated from the flow field is larger than as described
6608above, it is used instead.<br>
6609
6610
6611
6612
6613
6614
6615 <br>
6616
6617
6618
6619
6620
6621
6622
6623The default value of <span style="font-weight: bold;">km_damp_max</span>
6624has been empirically proven to be sufficient.</td>
6625
6626
6627
6628
6629
6630
6631 </tr>
6632
6633
6634
6635
6636
6637
6638 <tr>
6639
6640      <td style="vertical-align: top;"><a name="lad_surface"></a><span style="font-weight: bold;">lad_surface</span></td>
6641
6642      <td style="vertical-align: top;">R</td>
6643
6644      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
6645
6646      <td style="vertical-align: top;">Surface value of the leaf area density (in m<sup>2</sup>/m<sup>3</sup>).<br>
6647
6648      <br>
6649
6650This
6651parameter assigns the value of the leaf area density <span style="font-weight: bold;">lad</span> at the surface (k=0)<b>.</b> Starting from this value,
6652the leaf area density profile is constructed with <a href="#lad_vertical_gradient">lad_vertical_gradient</a>
6653and <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level
6654      </a>.</td>
6655
6656    </tr>
6657
6658    <tr>
6659
6660      <td style="vertical-align: top;"><a name="lad_vertical_gradient"></a><span style="font-weight: bold;">lad_vertical_gradient</span></td>
6661
6662      <td style="vertical-align: top;">R (10)</td>
6663
6664      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
6665
6666      <td style="vertical-align: top;">Gradient(s) of the leaf area density (in&nbsp;m<sup>2</sup>/m<sup>4</sup>).<br>
6667
6668      <br>
6669
6670     
6671      <p>This leaf area density gradient
6672holds starting from the height&nbsp;
6673level defined by <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>
6674(precisely: for all uv levels k where zu(k) &gt; lad_vertical_gradient_level, lad(k) is set: lad(k) = lad(k-1) + dzu(k) * <b>lad_vertical_gradient</b>)
6675up to the level defined by <a href="#pch_index">pch_index</a>. Above that level lad(k) will automatically set to 0.0. A total of 10 different gradients for 11 height intervals (10 intervals
6676if <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>(1)
6677= <i>0.0</i>) can be assigned. The leaf area density at the surface is
6678assigned via <a href="#lad_surface">lad_surface</a>.&nbsp;
6679      </p>
6680
6681      </td>
6682
6683    </tr>
6684
6685    <tr>
6686
6687      <td style="vertical-align: top;"><a name="lad_vertical_gradient_level"></a><span style="font-weight: bold;">lad_vertical_gradient_level</span></td>
6688
6689      <td style="vertical-align: top;">R (10)</td>
6690
6691      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
6692
6693      <td style="vertical-align: top;">Height level from which on the&nbsp;gradient
6694of the leaf area density defined by <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>
6695is effective (in m).<br>
6696
6697      <br>
6698
6699The height levels have to be assigned in ascending order. The
6700default values result in a leaf area density that is constant with height uup to the top of the plant canopy layer defined by <a href="#pch_index">pch_index</a>. For the piecewise construction of temperature profiles see <a href="#lad_vertical_gradient">lad_vertical_gradient</a>.</td>
6701
6702    </tr>
6703
6704    <tr>
6705
6706      <td style="vertical-align: top;"><a name="leaf_surface_concentration"></a><b>leaf_surface_concentration</b></td>
6707
6708      <td style="vertical-align: top;">R</td>
6709
6710      <td style="vertical-align: top;"><i>0.0</i></td>
6711
6712      <td style="vertical-align: top;">Concentration of a passive scalar at the surface of a leaf (in K m/s).<br>
6713
6714
6715      <br>
6716
6717
6718This parameter is only of importance in cases in that both, <a href="#plant_canopy">plant_canopy</a> and <a href="#passive_scalar">passive_scalar</a>, are set <span style="font-style: italic;">.T.</span>.
6719The value of the concentration of a passive scalar at the surface of a
6720leaf is required for the parametrisation of the sources and sinks of
6721scalar concentration due to the canopy.</td>
6722
6723    </tr>
6724
6725    <tr>
6726
6727
6728
6729
6730
6731
6732
6733      <td style="vertical-align: top;"> 
6734     
6735     
6736     
6737     
6738     
6739     
6740      <p><a name="long_filter_factor"></a><b>long_filter_factor</b></p>
6741
6742
6743
6744
6745
6746
6747
6748      </td>
6749
6750
6751
6752
6753
6754
6755 <td style="vertical-align: top;">R</td>
6756
6757
6758
6759
6760
6761
6762
6763      <td style="vertical-align: top;"><i>0.0</i></td>
6764
6765
6766
6767
6768
6769
6770
6771      <td style="vertical-align: top;"> 
6772     
6773     
6774     
6775     
6776     
6777     
6778      <p>Filter factor
6779for the so-called Long-filter.<br>
6780
6781
6782
6783
6784
6785
6786 </p>
6787
6788
6789
6790
6791
6792
6793 
6794     
6795     
6796     
6797     
6798     
6799     
6800      <p><br>
6801
6802
6803
6804
6805
6806
6807
6808This filter very efficiently
6809eliminates 2-delta-waves sometimes cauesed by the upstream-spline
6810scheme (see Mahrer and
6811Pielke, 1978: Mon. Wea. Rev., 106, 818-830). It works in all three
6812directions in space. A value of <b>long_filter_factor</b>
6813= <i>0.01</i>
6814sufficiently removes the small-scale waves without affecting the
6815longer waves.<br>
6816
6817
6818
6819
6820
6821
6822 </p>
6823
6824
6825
6826
6827
6828
6829 
6830     
6831     
6832     
6833     
6834     
6835     
6836      <p>By default, the filter is
6837switched off (= <i>0.0</i>).
6838It is exclusively applied to the tendencies calculated by the
6839upstream-spline scheme (see <a href="#momentum_advec">momentum_advec</a>
6840and <a href="#scalar_advec">scalar_advec</a>),
6841not to the prognostic variables themselves. At the bottom and top
6842boundary of the model domain the filter effect for vertical
68432-delta-waves is reduced. There, the amplitude of these waves is only
6844reduced by approx. 50%, otherwise by nearly 100%.&nbsp; <br>
6845
6846
6847
6848
6849
6850
6851
6852Filter factors with values &gt; <i>0.01</i> also
6853reduce the amplitudes
6854of waves with wavelengths longer than 2-delta (see the paper by Mahrer
6855and
6856Pielke, quoted above). </p>
6857
6858
6859
6860
6861
6862
6863 </td>
6864
6865
6866
6867
6868
6869
6870 </tr>
6871
6872
6873
6874
6875
6876
6877 <tr>
6878
6879
6880
6881
6882
6883
6884      <td style="vertical-align: top;"><a name="loop_optimization"></a><span style="font-weight: bold;">loop_optimization</span></td>
6885
6886
6887
6888
6889
6890
6891      <td style="vertical-align: top;">C*16</td>
6892
6893
6894
6895
6896
6897
6898      <td style="vertical-align: top;"><span style="font-style: italic;">see right</span></td>
6899
6900
6901
6902
6903
6904
6905      <td>Method used to optimize loops for solving the prognostic equations .<br>
6906
6907
6908
6909
6910
6911
6912      <br>
6913
6914
6915
6916
6917
6918
6919By
6920default, the optimization method depends on the host on which PALM is
6921running. On machines with vector-type CPUs, single 3d-loops are used to
6922calculate each tendency term of each prognostic equation, while on all
6923other machines, all prognostic equations are solved within one big loop
6924over the two horizontal indices<span style="font-family: Courier New,Courier,monospace;"> i </span>and<span style="font-family: Courier New,Courier,monospace;"> j </span>(giving a good cache uitilization).<br>
6925
6926
6927
6928
6929
6930
6931      <br>
6932
6933
6934
6935
6936
6937
6938The default behaviour can be changed by setting either <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'vector'</span> or <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'cache'</span>.</td>
6939
6940
6941
6942
6943
6944
6945    </tr>
6946
6947
6948
6949
6950
6951
6952    <tr>
6953
6954
6955
6956
6957
6958
6959
6960      <td style="vertical-align: top;"><a name="mixing_length_1d"></a><span style="font-weight: bold;">mixing_length_1d</span><br>
6961
6962
6963
6964
6965
6966
6967
6968      </td>
6969
6970
6971
6972
6973
6974
6975 <td style="vertical-align: top;">C*20<br>
6976
6977
6978
6979
6980
6981
6982
6983      </td>
6984
6985
6986
6987
6988
6989
6990 <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;">
6991
6992
6993
6994
6995
6996
6997 <span style="font-style: italic;">model'</span><br>
6998
6999
7000
7001
7002
7003
7004 </td>
7005
7006
7007
7008
7009
7010
7011
7012      <td style="vertical-align: top;">Mixing length used in the
70131d-model.<br>
7014
7015
7016
7017
7018
7019
7020 <br>
7021
7022
7023
7024
7025
7026
7027
7028By default the mixing length is calculated as in the 3d-model (i.e. it
7029depends on the grid spacing).<br>
7030
7031
7032
7033
7034
7035
7036 <br>
7037
7038
7039
7040
7041
7042
7043
7044By setting <span style="font-weight: bold;">mixing_length_1d</span>
7045= <span style="font-style: italic;">'blackadar'</span>,
7046the so-called Blackadar mixing length is used (l = kappa * z / ( 1 +
7047kappa * z / lambda ) with the limiting value lambda = 2.7E-4 * u_g / f).<br>
7048
7049
7050
7051
7052
7053
7054
7055      </td>
7056
7057
7058
7059
7060
7061
7062 </tr>
7063
7064
7065
7066
7067
7068
7069 
7070
7071
7072
7073
7074
7075
7076
7077    <tr>
7078
7079
7080
7081
7082
7083
7084 <td style="vertical-align: top;"> 
7085     
7086     
7087     
7088     
7089     
7090     
7091      <p><a name="momentum_advec"></a><b>momentum_advec</b></p>
7092
7093
7094
7095
7096
7097
7098
7099      </td>
7100
7101
7102
7103
7104
7105
7106 <td style="vertical-align: top;">C * 10</td>
7107
7108
7109
7110
7111
7112
7113
7114      <td style="vertical-align: top;"><i>'pw-scheme'</i></td>
7115
7116
7117
7118
7119
7120
7121
7122      <td style="vertical-align: top;"> 
7123     
7124     
7125     
7126     
7127     
7128     
7129      <p>Advection
7130scheme to be used for the momentum equations.<br>
7131
7132
7133
7134
7135
7136
7137 <br>
7138
7139
7140
7141
7142
7143
7144
7145The user can choose between the following schemes:<br>
7146
7147
7148
7149
7150
7151
7152
7153&nbsp;<br>
7154
7155
7156
7157
7158
7159
7160 <br>
7161
7162
7163
7164
7165
7166
7167 <span style="font-style: italic;">'pw-scheme'</span><br>
7168
7169
7170
7171
7172
7173
7174
7175      </p>
7176
7177
7178
7179
7180
7181
7182 
7183     
7184     
7185     
7186     
7187     
7188     
7189      <div style="margin-left: 40px;">The scheme of
7190Piascek and
7191Williams (1970, J. Comp. Phys., 6,
7192392-405) with central differences in the form C3 is used.<br>
7193
7194
7195
7196
7197
7198
7199
7200If intermediate Euler-timesteps are carried out in case of <a href="#timestep_scheme">timestep_scheme</a>
7201= <span style="font-style: italic;">'leapfrog+euler'</span>
7202the
7203advection scheme is - for the Euler-timestep - automatically switched
7204to an upstream-scheme.<br>
7205
7206
7207
7208
7209
7210
7211 </div>
7212
7213
7214
7215
7216
7217
7218 
7219     
7220     
7221     
7222     
7223     
7224     
7225      <p> </p>
7226
7227
7228
7229
7230
7231
7232 
7233     
7234     
7235     
7236     
7237     
7238     
7239      <p><span style="font-style: italic;">'ups-scheme'</span><br>
7240
7241
7242
7243
7244
7245
7246
7247      </p>
7248
7249
7250
7251
7252
7253
7254 
7255     
7256     
7257     
7258     
7259     
7260     
7261      <div style="margin-left: 40px;">The
7262upstream-spline scheme is
7263used
7264(see Mahrer and Pielke,
72651978: Mon. Wea. Rev., 106, 818-830). In opposite to the
7266Piascek-Williams scheme, this is characterized by much better numerical
7267features (less numerical diffusion, better preservation of flow
7268structures, e.g. vortices), but computationally it is much more
7269expensive. In
7270addition, the use of the Euler-timestep scheme is mandatory (<a href="#timestep_scheme">timestep_scheme</a>
7271= <span style="font-style: italic;">'</span><i>euler'</i>),
7272i.e. the
7273timestep accuracy is only of first order.
7274For this reason the advection of scalar variables (see <a href="#scalar_advec">scalar_advec</a>)
7275should then also be carried out with the upstream-spline scheme,
7276because otherwise the scalar variables would
7277be subject to large numerical diffusion due to the upstream
7278scheme.&nbsp; </div>
7279
7280
7281
7282
7283
7284
7285 
7286     
7287     
7288     
7289     
7290     
7291     
7292      <p style="margin-left: 40px;">Since
7293the cubic splines used tend
7294to overshoot under
7295certain circumstances, this effect must be adjusted by suitable
7296filtering and smoothing (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>,
7297      <a href="#long_filter_factor">long_filter_factor</a>,
7298      <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>, <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>).
7299This is always neccessary for runs with stable stratification,
7300even if this stratification appears only in parts of the model domain.<br>
7301
7302
7303
7304
7305
7306
7307
7308      </p>
7309
7310
7311
7312
7313
7314
7315 
7316     
7317     
7318     
7319     
7320     
7321     
7322      <div style="margin-left: 40px;">With stable
7323stratification the
7324upstream-spline scheme also
7325produces gravity waves with large amplitude, which must be
7326suitably damped (see <a href="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</a>).<br>
7327
7328
7329
7330
7331
7332
7333
7334      <br>
7335
7336
7337
7338
7339
7340
7341 <span style="font-weight: bold;">Important: </span>The&nbsp;
7342upstream-spline scheme is not implemented for humidity and passive
7343scalars (see&nbsp;<a href="#humidity">humidity</a>
7344and <a href="#passive_scalar">passive_scalar</a>)
7345and requires the use of a 2d-domain-decomposition. The last conditions
7346severely restricts code optimization on several machines leading to
7347very long execution times! The scheme is also not allowed for
7348non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
7349and <a href="#bc_ns">bc_ns</a>).</div>
7350
7351
7352
7353
7354
7355
7356 </td>
7357
7358
7359
7360
7361
7362
7363
7364    </tr>
7365
7366
7367
7368
7369
7370
7371 <tr>
7372
7373
7374
7375
7376
7377
7378 <td style="vertical-align: top;"><a name="netcdf_precision"></a><span style="font-weight: bold;">netcdf_precision</span><br>
7379
7380
7381
7382
7383
7384
7385
7386      </td>
7387
7388
7389
7390
7391
7392
7393 <td style="vertical-align: top;">C*20<br>
7394
7395
7396
7397
7398
7399
7400
7401(10)<br>
7402
7403
7404
7405
7406
7407
7408 </td>
7409
7410
7411
7412
7413
7414
7415 <td style="vertical-align: top;"><span style="font-style: italic;">single preci-</span><br style="font-style: italic;">
7416
7417
7418
7419
7420
7421
7422 <span style="font-style: italic;">sion for all</span><br style="font-style: italic;">
7423
7424
7425
7426
7427
7428
7429 <span style="font-style: italic;">output quan-</span><br style="font-style: italic;">
7430
7431
7432
7433
7434
7435
7436 <span style="font-style: italic;">tities</span><br>
7437
7438
7439
7440
7441
7442
7443 </td>
7444
7445
7446
7447
7448
7449
7450
7451      <td style="vertical-align: top;">Defines the accuracy of
7452the NetCDF output.<br>
7453
7454
7455
7456
7457
7458
7459 <br>
7460
7461
7462
7463
7464
7465
7466
7467By default, all NetCDF output data (see <a href="chapter_4.2.html#data_output_format">data_output_format</a>)
7468have single precision&nbsp; (4 byte) accuracy. Double precision (8
7469byte) can be choosen alternatively.<br>
7470
7471
7472
7473
7474
7475
7476
7477Accuracy for the different output data (cross sections, 3d-volume data,
7478spectra, etc.) can be set independently.<br>
7479
7480
7481
7482
7483
7484
7485 <span style="font-style: italic;">'&lt;out&gt;_NF90_REAL4'</span>
7486(single precision) or <span style="font-style: italic;">'&lt;out&gt;_NF90_REAL8'</span>
7487(double precision) are the two principally allowed values for <span style="font-weight: bold;">netcdf_precision</span>,
7488where the string <span style="font-style: italic;">'&lt;out&gt;'
7489      </span>can be chosen out of the following list:<br>
7490
7491
7492
7493
7494
7495
7496 <br>
7497
7498
7499
7500
7501
7502
7503
7504     
7505     
7506     
7507     
7508     
7509     
7510      <table style="text-align: left; width: 284px; height: 234px;" border="1" cellpadding="2" cellspacing="2">
7511
7512
7513
7514
7515
7516
7517 <tbody>
7518
7519
7520
7521
7522
7523
7524
7525          <tr>
7526
7527
7528
7529
7530
7531
7532 <td style="vertical-align: top;"><span style="font-style: italic;">'xy'</span><br>
7533
7534
7535
7536
7537
7538
7539 </td>
7540
7541
7542
7543
7544
7545
7546
7547            <td style="vertical-align: top;">horizontal cross section<br>
7548
7549
7550
7551
7552
7553
7554
7555            </td>
7556
7557
7558
7559
7560
7561
7562 </tr>
7563
7564
7565
7566
7567
7568
7569 <tr>
7570
7571
7572
7573
7574
7575
7576 <td style="vertical-align: top;"><span style="font-style: italic;">'xz'</span><br>
7577
7578
7579
7580
7581
7582
7583 </td>
7584
7585
7586
7587
7588
7589
7590
7591            <td style="vertical-align: top;">vertical (xz) cross
7592section<br>
7593
7594
7595
7596
7597
7598
7599 </td>
7600
7601
7602
7603
7604
7605
7606 </tr>
7607
7608
7609
7610
7611
7612
7613 <tr>
7614
7615
7616
7617
7618
7619
7620 <td style="vertical-align: top;"><span style="font-style: italic;">'yz'</span><br>
7621
7622
7623
7624
7625
7626
7627 </td>
7628
7629
7630
7631
7632
7633
7634
7635            <td style="vertical-align: top;">vertical (yz) cross
7636section<br>
7637
7638
7639
7640
7641
7642
7643 </td>
7644
7645
7646
7647
7648
7649
7650 </tr>
7651
7652
7653
7654
7655
7656
7657 <tr>
7658
7659
7660
7661
7662
7663
7664 <td style="vertical-align: top;"><span style="font-style: italic;">'2d'</span><br>
7665
7666
7667
7668
7669
7670
7671 </td>
7672
7673
7674
7675
7676
7677
7678
7679            <td style="vertical-align: top;">all cross sections<br>
7680
7681
7682
7683
7684
7685
7686
7687            </td>
7688
7689
7690
7691
7692
7693
7694 </tr>
7695
7696
7697
7698
7699
7700
7701 <tr>
7702
7703
7704
7705
7706
7707
7708 <td style="vertical-align: top;"><span style="font-style: italic;">'3d'</span><br>
7709
7710
7711
7712
7713
7714
7715 </td>
7716
7717
7718
7719
7720
7721
7722
7723            <td style="vertical-align: top;">volume data<br>
7724
7725
7726
7727
7728
7729
7730 </td>
7731
7732
7733
7734
7735
7736
7737
7738          </tr>
7739
7740
7741
7742
7743
7744
7745 <tr>
7746
7747
7748
7749
7750
7751
7752 <td style="vertical-align: top;"><span style="font-style: italic;">'pr'</span><br>
7753
7754
7755
7756
7757
7758
7759 </td>
7760
7761
7762
7763
7764
7765
7766
7767            <td style="vertical-align: top;">vertical profiles<br>
7768
7769
7770
7771
7772
7773
7774
7775            </td>
7776
7777
7778
7779
7780
7781
7782 </tr>
7783
7784
7785
7786
7787
7788
7789 <tr>
7790
7791
7792
7793
7794
7795
7796 <td style="vertical-align: top;"><span style="font-style: italic;">'ts'</span><br>
7797
7798
7799
7800
7801
7802
7803 </td>
7804
7805
7806
7807
7808
7809
7810
7811            <td style="vertical-align: top;">time series, particle
7812time series<br>
7813
7814
7815
7816
7817
7818
7819 </td>
7820
7821
7822
7823
7824
7825
7826 </tr>
7827
7828
7829
7830
7831
7832
7833 <tr>
7834
7835
7836
7837
7838
7839
7840 <td style="vertical-align: top;"><span style="font-style: italic;">'sp'</span><br>
7841
7842
7843
7844
7845
7846
7847 </td>
7848
7849
7850
7851
7852
7853
7854
7855            <td style="vertical-align: top;">spectra<br>
7856
7857
7858
7859
7860
7861
7862 </td>
7863
7864
7865
7866
7867
7868
7869
7870          </tr>
7871
7872
7873
7874
7875
7876
7877 <tr>
7878
7879
7880
7881
7882
7883
7884 <td style="vertical-align: top;"><span style="font-style: italic;">'prt'</span><br>
7885
7886
7887
7888
7889
7890
7891 </td>
7892
7893
7894
7895
7896
7897
7898
7899            <td style="vertical-align: top;">particles<br>
7900
7901
7902
7903
7904
7905
7906 </td>
7907
7908
7909
7910
7911
7912
7913
7914          </tr>
7915
7916
7917
7918
7919
7920
7921 <tr>
7922
7923
7924
7925
7926
7927
7928 <td style="vertical-align: top;"><span style="font-style: italic;">'all'</span><br>
7929
7930
7931
7932
7933
7934
7935 </td>
7936
7937
7938
7939
7940
7941
7942
7943            <td style="vertical-align: top;">all output quantities<br>
7944
7945
7946
7947
7948
7949
7950
7951            </td>
7952
7953
7954
7955
7956
7957
7958 </tr>
7959
7960
7961
7962
7963
7964
7965 
7966       
7967       
7968       
7969       
7970       
7971       
7972        </tbody> 
7973     
7974     
7975     
7976     
7977     
7978     
7979      </table>
7980
7981
7982
7983
7984
7985
7986 <br>
7987
7988
7989
7990
7991
7992
7993 <span style="font-weight: bold;">Example:</span><br>
7994
7995
7996
7997
7998
7999
8000
8001If all cross section data and the particle data shall be output in
8002double precision and all other quantities in single precision, then <span style="font-weight: bold;">netcdf_precision</span> = <span style="font-style: italic;">'2d_NF90_REAL8'</span>, <span style="font-style: italic;">'prt_NF90_REAL8'</span>
8003has to be assigned.<br>
8004
8005
8006
8007
8008
8009
8010 </td>
8011
8012
8013
8014
8015
8016
8017 </tr>
8018
8019
8020
8021
8022
8023
8024
8025   
8026
8027
8028
8029
8030
8031
8032 
8033
8034
8035
8036
8037
8038
8039
8040    <tr>
8041
8042
8043
8044
8045
8046
8047 <td style="vertical-align: top;"> 
8048     
8049     
8050     
8051     
8052     
8053     
8054      <p><a name="nsor_ini"></a><b>nsor_ini</b></p>
8055
8056
8057
8058
8059
8060
8061
8062      </td>
8063
8064
8065
8066
8067
8068
8069 <td style="vertical-align: top;">I</td>
8070
8071
8072
8073
8074
8075
8076
8077      <td style="vertical-align: top;"><i>100</i></td>
8078
8079
8080
8081
8082
8083
8084
8085      <td style="vertical-align: top;"> 
8086     
8087     
8088     
8089     
8090     
8091     
8092      <p>Initial number
8093of iterations with the SOR algorithm.&nbsp; </p>
8094
8095
8096
8097
8098
8099
8100 
8101     
8102     
8103     
8104     
8105     
8106     
8107      <p>This
8108parameter is only effective if the SOR algorithm was
8109selected as the pressure solver scheme (<a href="chapter_4.2.html#psolver">psolver</a>
8110= <span style="font-style: italic;">'sor'</span>)
8111and specifies the
8112number of initial iterations of the SOR
8113scheme (at t = 0). The number of subsequent iterations at the following
8114timesteps is determined
8115with the parameter <a href="#nsor">nsor</a>.
8116Usually <b>nsor</b> &lt; <b>nsor_ini</b>,
8117since in each case
8118subsequent calls to <a href="chapter_4.2.html#psolver">psolver</a>
8119use the solution of the previous call as initial value. Suitable
8120test runs should determine whether sufficient convergence of the
8121solution is obtained with the default value and if necessary the value
8122of <b>nsor_ini</b> should be changed.</p>
8123
8124
8125
8126
8127
8128
8129 </td>
8130
8131
8132
8133
8134
8135
8136
8137    </tr>
8138
8139
8140
8141
8142
8143
8144 <tr>
8145
8146
8147
8148
8149
8150
8151 <td style="vertical-align: top;">
8152     
8153     
8154     
8155     
8156     
8157     
8158      <p><a name="nx"></a><b>nx</b></p>
8159
8160
8161
8162
8163
8164
8165
8166      </td>
8167
8168
8169
8170
8171
8172
8173 <td style="vertical-align: top;">I</td>
8174
8175
8176
8177
8178
8179
8180
8181      <td style="vertical-align: top;"><br>
8182
8183
8184
8185
8186
8187
8188 </td>
8189
8190
8191
8192
8193
8194
8195 <td style="vertical-align: top;"> 
8196     
8197     
8198     
8199     
8200     
8201     
8202      <p>Number of grid
8203points in x-direction.&nbsp; </p>
8204
8205
8206
8207
8208
8209
8210 
8211     
8212     
8213     
8214     
8215     
8216     
8217      <p>A value for this
8218parameter must be assigned. Since the lower
8219array bound in PALM
8220starts with i = 0, the actual number of grid points is equal to <b>nx+1</b>.
8221In case of cyclic boundary conditions along x, the domain size is (<b>nx+1</b>)*
8222      <a href="#dx">dx</a>.</p>
8223
8224
8225
8226
8227
8228
8229 
8230     
8231     
8232     
8233     
8234     
8235     
8236      <p>For
8237parallel runs, in case of <a href="#grid_matching">grid_matching</a>
8238= <span style="font-style: italic;">'strict'</span>,
8239      <b>nx+1</b> must
8240be an integral multiple
8241of the processor numbers (see <a href="#npex">npex</a>
8242and <a href="#npey">npey</a>)
8243along x- as well as along y-direction (due to data
8244transposition restrictions).</p>
8245
8246
8247
8248
8249
8250
8251     
8252     
8253     
8254     
8255     
8256     
8257      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
8258and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
8259
8260
8261
8262
8263
8264
8265 </td>
8266
8267
8268
8269
8270
8271
8272 </tr>
8273
8274
8275
8276
8277
8278
8279 <tr>
8280
8281
8282
8283
8284
8285
8286
8287      <td style="vertical-align: top;"> 
8288     
8289     
8290     
8291     
8292     
8293     
8294      <p><a name="ny"></a><b>ny</b></p>
8295
8296
8297
8298
8299
8300
8301
8302      </td>
8303
8304
8305
8306
8307
8308
8309 <td style="vertical-align: top;">I</td>
8310
8311
8312
8313
8314
8315
8316
8317      <td style="vertical-align: top;"><br>
8318
8319
8320
8321
8322
8323
8324 </td>
8325
8326
8327
8328
8329
8330
8331 <td style="vertical-align: top;"> 
8332     
8333     
8334     
8335     
8336     
8337     
8338      <p>Number of grid
8339points in y-direction.&nbsp; </p>
8340
8341
8342
8343
8344
8345
8346 
8347     
8348     
8349     
8350     
8351     
8352     
8353      <p>A value for this
8354parameter must be assigned. Since the lower
8355array bound in PALM starts with j = 0, the actual number of grid points
8356is equal to <b>ny+1</b>. In case of cyclic boundary
8357conditions along
8358y, the domain size is (<b>ny+1</b>) * <a href="#dy">dy</a>.</p>
8359
8360
8361
8362
8363
8364
8365
8366     
8367     
8368     
8369     
8370     
8371     
8372      <p>For parallel runs, in case of <a href="#grid_matching">grid_matching</a>
8373= <span style="font-style: italic;">'strict'</span>,
8374      <b>ny+1</b> must
8375be an integral multiple
8376of the processor numbers (see <a href="#npex">npex</a>
8377and <a href="#npey">npey</a>)&nbsp;
8378along y- as well as along x-direction (due to data
8379transposition restrictions).</p>
8380
8381
8382
8383
8384
8385
8386     
8387     
8388     
8389     
8390     
8391     
8392      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
8393and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
8394
8395
8396
8397
8398
8399
8400 </td>
8401
8402
8403
8404
8405
8406
8407 </tr>
8408
8409
8410
8411
8412
8413
8414 <tr>
8415
8416
8417
8418
8419
8420
8421
8422      <td style="vertical-align: top;"> 
8423     
8424     
8425     
8426     
8427     
8428     
8429      <p><a name="nz"></a><b>nz</b></p>
8430
8431
8432
8433
8434
8435
8436
8437      </td>
8438
8439
8440
8441
8442
8443
8444 <td style="vertical-align: top;">I</td>
8445
8446
8447
8448
8449
8450
8451
8452      <td style="vertical-align: top;"><br>
8453
8454
8455
8456
8457
8458
8459 </td>
8460
8461
8462
8463
8464
8465
8466 <td style="vertical-align: top;"> 
8467     
8468     
8469     
8470     
8471     
8472     
8473      <p>Number of grid
8474points in z-direction.&nbsp; </p>
8475
8476
8477
8478
8479
8480
8481 
8482     
8483     
8484     
8485     
8486     
8487     
8488      <p>A value for this
8489parameter must be assigned. Since the lower
8490array bound in PALM
8491starts with k = 0 and since one additional grid point is added at the
8492top boundary (k = <b>nz+1</b>), the actual number of grid
8493points is <b>nz+2</b>.
8494However, the prognostic equations are only solved up to <b>nz</b>
8495(u,
8496v)
8497or up to <b>nz-1</b> (w, scalar quantities). The top
8498boundary for u
8499and v is at k = <b>nz+1</b> (u, v) while at k = <b>nz</b>
8500for all
8501other quantities.&nbsp; </p>
8502
8503
8504
8505
8506
8507
8508 
8509     
8510     
8511     
8512     
8513     
8514     
8515      <p>For parallel
8516runs,&nbsp; in case of <a href="#grid_matching">grid_matching</a>
8517= <span style="font-style: italic;">'strict'</span>,
8518      <b>nz</b> must
8519be an integral multiple of
8520the number of processors in x-direction (due to data transposition
8521restrictions).</p>
8522
8523
8524
8525
8526
8527
8528 </td>
8529
8530
8531
8532
8533
8534
8535 </tr>
8536
8537
8538
8539
8540
8541
8542 <tr>
8543
8544
8545
8546
8547
8548
8549      <td style="vertical-align: top;"><a name="ocean"></a><span style="font-weight: bold;">ocean</span></td>
8550
8551
8552
8553
8554
8555
8556      <td style="vertical-align: top;">L</td>
8557
8558
8559
8560
8561
8562
8563      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
8564
8565
8566
8567
8568
8569
8570      <td style="vertical-align: top;">Parameter to switch on&nbsp;ocean runs.<br>
8571
8572
8573
8574
8575
8576
8577      <br>
8578
8579
8580
8581
8582
8583
8584By default PALM is configured to simulate&nbsp;atmospheric flows. However, starting from version 3.3, <span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> allows&nbsp;simulation of ocean turbulent flows. Setting this switch has several effects:<br>
8585
8586
8587
8588
8589
8590
8591      <br>
8592
8593
8594
8595
8596
8597
8598     
8599     
8600     
8601     
8602     
8603     
8604      <ul>
8605
8606
8607
8608
8609
8610
8611        <li>An additional prognostic equation for salinity is solved.</li>
8612
8613
8614
8615
8616
8617
8618        <li>Potential temperature in buoyancy and stability-related terms is replaced by potential density.</li>
8619
8620
8621
8622
8623
8624
8625        <li>Potential
8626density is calculated from the equation of state for seawater after
8627each timestep, using the algorithm proposed by Jackett et al. (2006, J.
8628Atmos. Oceanic Technol., <span style="font-weight: bold;">23</span>, 1709-1728).<br>
8629
8630
8631
8632
8633
8634
8635So far, only the initial hydrostatic pressure is entered into this equation.</li>
8636
8637
8638
8639
8640
8641
8642        <li>z=0 (sea surface) is assumed at the model top (vertical grid index <span style="font-family: Courier New,Courier,monospace;">k=nzt</span> on the w-grid), with negative values of z indicating the depth.</li>
8643
8644
8645
8646
8647
8648
8649        <li>Initial profiles are constructed (e.g. from <a href="#pt_vertical_gradient">pt_vertical_gradient</a> / <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>) starting from the sea surface, using surface values&nbsp;given by <a href="#pt_surface">pt_surface</a>, <a href="#sa_surface">sa_surface</a>, <a href="#ug_surface">ug_surface</a>, and <a href="#vg_surface">vg_surface</a>.</li>
8650
8651
8652
8653
8654
8655
8656        <li>Zero salinity flux is used as default boundary condition at the bottom of the sea.</li>
8657
8658
8659
8660
8661
8662
8663        <li>If switched on, random perturbations are by default imposed to the upper model domain from zu(nzt*2/3) to zu(nzt-3).</li>
8664
8665
8666
8667
8668
8669
8670     
8671     
8672     
8673     
8674     
8675     
8676      </ul>
8677
8678
8679
8680
8681
8682
8683      <br>
8684
8685
8686
8687
8688
8689
8690Relevant parameters to be exclusively used for steering ocean runs are <a href="#bc_sa_t">bc_sa_t</a>, <a href="#bottom_salinityflux">bottom_salinityflux</a>, <a href="#sa_surface">sa_surface</a>, <a href="#sa_vertical_gradient">sa_vertical_gradient</a>, <a href="#sa_vertical_gradient_level">sa_vertical_gradient_level</a>, and <a href="#top_salinityflux">top_salinityflux</a>.<br>
8691
8692
8693
8694
8695
8696
8697      <br>
8698
8699
8700
8701
8702
8703
8704Section <a href="chapter_4.2.2.html">4.4.2</a> gives an example for appropriate settings of these and other parameters neccessary for ocean runs.<br>
8705
8706
8707
8708
8709
8710
8711      <br>
8712
8713
8714
8715
8716
8717
8718      <span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> does not allow settings of <a href="#timestep_scheme">timestep_scheme</a> = <span style="font-style: italic;">'leapfrog'</span> or <span style="font-style: italic;">'leapfrog+euler'</span> as well as <a href="#scalar_advec">scalar_advec</a> = <span style="font-style: italic;">'ups-scheme'</span>.<span style="font-weight: bold;"></span><br>
8719
8720
8721
8722      </td>
8723
8724
8725
8726
8727
8728
8729    </tr>
8730
8731
8732
8733
8734
8735
8736    <tr>
8737
8738
8739
8740
8741
8742
8743 <td style="vertical-align: top;"> 
8744     
8745     
8746     
8747     
8748     
8749     
8750      <p><a name="omega"></a><b>omega</b></p>
8751
8752
8753
8754
8755
8756
8757
8758      </td>
8759
8760
8761
8762
8763
8764
8765 <td style="vertical-align: top;">R</td>
8766
8767
8768
8769
8770
8771
8772
8773      <td style="vertical-align: top;"><i>7.29212E-5</i></td>
8774
8775
8776
8777
8778
8779
8780
8781      <td style="vertical-align: top;"> 
8782     
8783     
8784     
8785     
8786     
8787     
8788      <p>Angular
8789velocity of the rotating system (in rad s<sup>-1</sup>).&nbsp;
8790      </p>
8791
8792
8793
8794
8795
8796
8797 
8798     
8799     
8800     
8801     
8802     
8803     
8804      <p>The angular velocity of the earth is set by
8805default. The
8806values
8807of the Coriolis parameters are calculated as:&nbsp; </p>
8808
8809
8810
8811
8812
8813
8814 
8815     
8816     
8817     
8818     
8819     
8820     
8821      <ul>
8822
8823
8824
8825
8826
8827
8828
8829       
8830       
8831       
8832       
8833       
8834       
8835        <p>f = 2.0 * <b>omega</b> * sin(<a href="#phi">phi</a>)&nbsp;
8836        <br>
8837
8838
8839
8840
8841
8842
8843f* = 2.0 * <b>omega</b> * cos(<a href="#phi">phi</a>)</p>
8844
8845
8846
8847
8848
8849
8850
8851     
8852     
8853     
8854     
8855     
8856     
8857      </ul>
8858
8859
8860
8861
8862
8863
8864 </td>
8865
8866
8867
8868
8869
8870
8871 </tr>
8872
8873
8874
8875
8876
8877
8878 <tr>
8879
8880
8881
8882
8883
8884
8885 <td style="vertical-align: top;"> 
8886     
8887     
8888     
8889     
8890     
8891     
8892      <p><a name="outflow_damping_width"></a><b>outflow_damping_width</b></p>
8893
8894
8895
8896
8897
8898
8899
8900      </td>
8901
8902
8903
8904
8905
8906
8907 <td style="vertical-align: top;">I</td>
8908
8909
8910
8911
8912
8913
8914
8915      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(20,
8916nx/2</span> or <span style="font-style: italic;">ny/2)</span></td>
8917
8918
8919
8920
8921
8922
8923
8924      <td style="vertical-align: top;">Width of
8925the damping range in the vicinity of the outflow (gridpoints).<br>
8926
8927
8928
8929
8930
8931
8932
8933      <br>
8934
8935
8936
8937
8938
8939
8940
8941When using non-cyclic lateral boundaries (see <a href="chapter_4.1.html#bc_lr">bc_lr</a>
8942or <a href="chapter_4.1.html#bc_ns">bc_ns</a>),
8943a smoothing has to be applied to the
8944velocity field in the vicinity of the outflow in order to suppress any
8945reflections of outgoing disturbances. This parameter controlls the
8946horizontal range to which the smoothing is applied. The range is given
8947in gridpoints counted from the respective outflow boundary. For further
8948details about the smoothing see parameter <a href="chapter_4.1.html#km_damp_max">km_damp_max</a>,
8949which defines the magnitude of the damping.</td>
8950
8951
8952
8953
8954
8955
8956 </tr>
8957
8958
8959
8960
8961
8962
8963
8964    <tr>
8965
8966
8967
8968
8969
8970
8971 <td style="vertical-align: top;"> 
8972     
8973     
8974     
8975     
8976     
8977     
8978      <p><a name="overshoot_limit_e"></a><b>overshoot_limit_e</b></p>
8979
8980
8981
8982
8983
8984
8985
8986      </td>
8987
8988
8989
8990
8991
8992
8993 <td style="vertical-align: top;">R</td>
8994
8995
8996
8997
8998
8999
9000
9001      <td style="vertical-align: top;"><i>0.0</i></td>
9002
9003
9004
9005
9006
9007
9008
9009      <td style="vertical-align: top;"> 
9010     
9011     
9012     
9013     
9014     
9015     
9016      <p>Allowed limit
9017for the overshooting of subgrid-scale TKE in
9018case that the upstream-spline scheme is switched on (in m<sup>2</sup>/s<sup>2</sup>).&nbsp;
9019      </p>
9020
9021
9022
9023
9024
9025
9026 
9027     
9028     
9029     
9030     
9031     
9032     
9033      <p>By deafult, if cut-off of overshoots is switched
9034on for the
9035upstream-spline scheme (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>),
9036no overshoots are permitted at all. If <b>overshoot_limit_e</b>
9037is given a non-zero value, overshoots with the respective
9038amplitude (both upward and downward) are allowed.&nbsp; </p>
9039
9040
9041
9042
9043
9044
9045
9046     
9047     
9048     
9049     
9050     
9051     
9052      <p>Only positive values are allowed for <b>overshoot_limit_e</b>.</p>
9053
9054
9055
9056
9057
9058
9059
9060      </td>
9061
9062
9063
9064
9065
9066
9067 </tr>
9068
9069
9070
9071
9072
9073
9074 <tr>
9075
9076
9077
9078
9079
9080
9081 <td style="vertical-align: top;"> 
9082     
9083     
9084     
9085     
9086     
9087     
9088      <p><a name="overshoot_limit_pt"></a><b>overshoot_limit_pt</b></p>
9089
9090
9091
9092
9093
9094
9095
9096      </td>
9097
9098
9099
9100
9101
9102
9103 <td style="vertical-align: top;">R</td>
9104
9105
9106
9107
9108
9109
9110
9111      <td style="vertical-align: top;"><i>0.0</i></td>
9112
9113
9114
9115
9116
9117
9118
9119      <td style="vertical-align: top;"> 
9120     
9121     
9122     
9123     
9124     
9125     
9126      <p>Allowed limit
9127for the overshooting of potential temperature in
9128case that the upstream-spline scheme is switched on (in K).&nbsp; </p>
9129
9130
9131
9132
9133
9134
9135
9136     
9137     
9138     
9139     
9140     
9141     
9142      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9143      </p>
9144
9145
9146
9147
9148
9149
9150 
9151     
9152     
9153     
9154     
9155     
9156     
9157      <p>Only positive values are allowed for <b>overshoot_limit_pt</b>.</p>
9158
9159
9160
9161
9162
9163
9164
9165      </td>
9166
9167
9168
9169
9170
9171
9172 </tr>
9173
9174
9175
9176
9177
9178
9179 <tr>
9180
9181
9182
9183
9184
9185
9186 <td style="vertical-align: top;"> 
9187     
9188     
9189     
9190     
9191     
9192     
9193      <p><a name="overshoot_limit_u"></a><b>overshoot_limit_u</b></p>
9194
9195
9196
9197
9198
9199
9200
9201      </td>
9202
9203
9204
9205
9206
9207
9208 <td style="vertical-align: top;">R</td>
9209
9210
9211
9212
9213
9214
9215
9216      <td style="vertical-align: top;"><i>0.0</i></td>
9217
9218
9219
9220
9221
9222
9223
9224      <td style="vertical-align: top;">Allowed limit for the
9225overshooting of
9226the u-component of velocity in case that the upstream-spline scheme is
9227switched on (in m/s).
9228     
9229     
9230     
9231     
9232     
9233     
9234      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9235      </p>
9236
9237
9238
9239
9240
9241
9242 
9243     
9244     
9245     
9246     
9247     
9248     
9249      <p>Only positive values are allowed for <b>overshoot_limit_u</b>.</p>
9250
9251
9252
9253
9254
9255
9256
9257      </td>
9258
9259
9260
9261
9262
9263
9264 </tr>
9265
9266
9267
9268
9269
9270
9271 <tr>
9272
9273
9274
9275
9276
9277
9278 <td style="vertical-align: top;"> 
9279     
9280     
9281     
9282     
9283     
9284     
9285      <p><a name="overshoot_limit_v"></a><b>overshoot_limit_v</b></p>
9286
9287
9288
9289
9290
9291
9292
9293      </td>
9294
9295
9296
9297
9298
9299
9300 <td style="vertical-align: top;">R</td>
9301
9302
9303
9304
9305
9306
9307
9308      <td style="vertical-align: top;"><i>0.0</i></td>
9309
9310
9311
9312
9313
9314
9315
9316      <td style="vertical-align: top;"> 
9317     
9318     
9319     
9320     
9321     
9322     
9323      <p>Allowed limit
9324for the overshooting of the v-component of
9325velocity in case that the upstream-spline scheme is switched on
9326(in m/s).&nbsp; </p>
9327
9328
9329
9330
9331
9332
9333 
9334     
9335     
9336     
9337     
9338     
9339     
9340      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9341      </p>
9342
9343
9344
9345
9346
9347
9348 
9349     
9350     
9351     
9352     
9353     
9354     
9355      <p>Only positive values are allowed for <b>overshoot_limit_v</b>.</p>
9356
9357
9358
9359
9360
9361
9362
9363      </td>
9364
9365
9366
9367
9368
9369
9370 </tr>
9371
9372
9373
9374
9375
9376
9377 <tr>
9378
9379
9380
9381
9382
9383
9384 <td style="vertical-align: top;"> 
9385     
9386     
9387     
9388     
9389     
9390     
9391      <p><a name="overshoot_limit_w"></a><b>overshoot_limit_w</b></p>
9392
9393
9394
9395
9396
9397
9398
9399      </td>
9400
9401
9402
9403
9404
9405
9406 <td style="vertical-align: top;">R</td>
9407
9408
9409
9410
9411
9412
9413
9414      <td style="vertical-align: top;"><i>0.0</i></td>
9415
9416
9417
9418
9419
9420
9421
9422      <td style="vertical-align: top;"> 
9423     
9424     
9425     
9426     
9427     
9428     
9429      <p>Allowed limit
9430for the overshooting of the w-component of
9431velocity in case that the upstream-spline scheme is switched on
9432(in m/s).&nbsp; </p>
9433
9434
9435
9436
9437
9438
9439 
9440     
9441     
9442     
9443     
9444     
9445     
9446      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9447      </p>
9448
9449
9450
9451
9452
9453
9454 
9455     
9456     
9457     
9458     
9459     
9460     
9461      <p>Only positive values are permitted for <b>overshoot_limit_w</b>.</p>
9462
9463
9464
9465
9466
9467
9468
9469      </td>
9470
9471
9472
9473
9474
9475
9476 </tr>
9477
9478
9479
9480
9481
9482
9483 <tr>
9484
9485
9486
9487
9488
9489
9490 <td style="vertical-align: top;"> 
9491     
9492     
9493     
9494     
9495     
9496     
9497      <p><a name="passive_scalar"></a><b>passive_scalar</b></p>
9498
9499
9500
9501
9502
9503
9504
9505      </td>
9506
9507
9508
9509
9510
9511
9512 <td style="vertical-align: top;">L</td>
9513
9514
9515
9516
9517
9518
9519
9520      <td style="vertical-align: top;"><i>.F.</i></td>
9521
9522
9523
9524
9525
9526
9527
9528      <td style="vertical-align: top;"> 
9529     
9530     
9531     
9532     
9533     
9534     
9535      <p>Parameter to
9536switch on the prognostic equation for a passive
9537scalar. <br>
9538
9539
9540
9541
9542
9543
9544 </p>
9545
9546
9547
9548
9549
9550
9551 
9552     
9553     
9554     
9555     
9556     
9557     
9558      <p>The initial vertical profile
9559of s can be set via parameters <a href="#s_surface">s_surface</a>,
9560      <a href="#s_vertical_gradient">s_vertical_gradient</a>
9561and&nbsp; <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.
9562Boundary conditions can be set via <a href="#s_surface_initial_change">s_surface_initial_change</a>
9563and <a href="#surface_scalarflux">surface_scalarflux</a>.&nbsp;
9564      </p>
9565
9566
9567
9568
9569
9570
9571 
9572     
9573     
9574     
9575     
9576     
9577     
9578      <p><b>Note:</b> <br>
9579
9580
9581
9582
9583
9584
9585
9586With <span style="font-weight: bold;">passive_scalar</span>
9587switched
9588on, the simultaneous use of humidity (see&nbsp;<a href="#humidity">humidity</a>)
9589is impossible.</p>
9590
9591
9592
9593
9594
9595
9596 </td>
9597
9598
9599
9600
9601
9602
9603 </tr>
9604
9605
9606
9607
9608
9609
9610 <tr>
9611
9612      <td style="vertical-align: top;"><a name="pch_index"></a><span style="font-weight: bold;">pch_index</span></td>
9613
9614      <td style="vertical-align: top;">I</td>
9615
9616      <td style="vertical-align: top;"><span style="font-style: italic;">0</span></td>
9617
9618      <td style="vertical-align: top;">Grid point index (scalar) of the upper boundary of the plant canopy layer.<br>
9619
9620      <br>
9621
9622Above <span style="font-weight: bold;">pch_index</span> the arrays of leaf area density and drag_coeffient are automatically set to zero in case of <a href="#plant_canopy">plant_canopy</a> = .T.. Up to <span style="font-weight: bold;">pch_index</span> a leaf area density profile can be prescribed by using the parameters <a href="#lad_surface">lad_surface</a>, <a href="#lad_vertical_gradient">lad_vertical_gradient</a> and <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>.</td>
9623
9624    </tr>
9625
9626    <tr>
9627
9628
9629
9630
9631
9632
9633 <td style="vertical-align: top;"> 
9634     
9635     
9636     
9637     
9638     
9639     
9640      <p><a name="phi"></a><b>phi</b></p>
9641
9642
9643
9644
9645
9646
9647
9648      </td>
9649
9650
9651
9652
9653
9654
9655 <td style="vertical-align: top;">R</td>
9656
9657
9658
9659
9660
9661
9662
9663      <td style="vertical-align: top;"><i>55.0</i></td>
9664
9665
9666
9667
9668
9669
9670
9671      <td style="vertical-align: top;"> 
9672     
9673     
9674     
9675     
9676     
9677     
9678      <p>Geographical
9679latitude (in degrees).&nbsp; </p>
9680
9681
9682
9683
9684
9685
9686 
9687     
9688     
9689     
9690     
9691     
9692     
9693      <p>The value of
9694this parameter determines the value of the
9695Coriolis parameters f and f*, provided that the angular velocity (see <a href="#omega">omega</a>)
9696is non-zero.</p>
9697
9698
9699
9700
9701
9702
9703 </td>
9704
9705
9706
9707
9708
9709
9710 </tr>
9711
9712
9713
9714
9715
9716
9717 <tr>
9718
9719      <td style="vertical-align: top;"><a name="plant_canopy"></a><span style="font-weight: bold;">plant_canopy</span></td>
9720
9721      <td style="vertical-align: top;">L</td>
9722
9723      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
9724
9725      <td style="vertical-align: top;">Switch for the plant_canopy_model.<br>
9726
9727      <br>
9728
9729If <span style="font-weight: bold;">plant_canopy</span> is set <span style="font-style: italic;">.T.</span>, the plant canopy model of Watanabe (2004, BLM 112, 307-341) is used. <br>
9730
9731The
9732impact of a plant canopy on a turbulent flow is considered by an
9733additional drag term in the momentum equations and an additional sink
9734term in the prognostic equation for the subgrid-scale TKE. These
9735additional terms are dependent on the leaf drag coefficient (see <a href="#drag_coefficient">drag_coefficient</a>) and the leaf area density (see <a href="#lad_surface">lad_surface</a>, <a href="#lad_vertical_gradient">lad_vertical_gradient</a>, <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>). The top boundary of the plant canopy is determined by the parameter <a href="#pch_index">pch_index</a>. For all heights equal to or larger than zw(k=<span style="font-weight: bold;">pch_index</span>) the leaf area density is 0 (i.e. there is no canopy at these heights!). <br>
9736
9737By default, a horizontally homogeneous plant canopy is prescribed, if&nbsp; <span style="font-weight: bold;">plant_canopy</span> is set <span style="font-style: italic;">.T.</span>. However, the user can define other types of plant canopies (see <a href="#canopy_mode">canopy_mode</a>).<br><br>If <span style="font-weight: bold;">plant_canopy</span> and&nbsp; <span style="font-weight: bold;">passive_scalar</span><span style="font-style: italic;"> </span>are set <span style="font-style: italic;">.T.</span>,
9738the canopy acts as an additional source or sink, respectively, of
9739scalar concentration. The source/sink strength is dependent on the
9740scalar concentration at the leaf surface, which is generally constant
9741with time in PALM and which can be specified by specifying the
9742parameter <a href="#leaf_surface_concentration">leaf_surface_concentration</a>. <br><br>Additional heating of the air by the plant canopy is taken into account, when the default value of the parameter <a href="#cthf">cthf</a> is altered in the parameter file. In that case the value of <a href="#surface_heatflux">surface_heatflux</a>
9743specified in the parameter file is not used in the model. Instead the
9744near-surface heat flux is derived from an expontial function that is
9745dependent on the cumulative leaf area index. <br> 
9746
9747      <br>
9748
9749      <span style="font-weight: bold;">plant_canopy</span> = <span style="font-style: italic;">.T. </span>is only allowed together with a non-zero <a href="#drag_coefficient">drag_coefficient</a>.</td>
9750
9751    </tr>
9752
9753    <tr>
9754
9755
9756
9757
9758
9759
9760 <td style="vertical-align: top;"> 
9761     
9762     
9763     
9764     
9765     
9766     
9767      <p><a name="prandtl_layer"></a><b>prandtl_layer</b></p>
9768
9769
9770
9771
9772
9773
9774
9775      </td>
9776
9777
9778
9779
9780
9781
9782 <td style="vertical-align: top;">L</td>
9783
9784
9785
9786
9787
9788
9789
9790      <td style="vertical-align: top;"><i>.T.</i></td>
9791
9792
9793
9794
9795
9796
9797
9798      <td style="vertical-align: top;"> 
9799     
9800     
9801     
9802     
9803     
9804     
9805      <p>Parameter to
9806switch on a Prandtl layer.&nbsp; </p>
9807
9808
9809
9810
9811
9812
9813 
9814     
9815     
9816     
9817     
9818     
9819     
9820      <p>By default,
9821a Prandtl layer is switched on at the bottom
9822boundary between z = 0 and z = 0.5 * <a href="#dz">dz</a>
9823(the first computational grid point above ground for u, v and the
9824scalar quantities).
9825In this case, at the bottom boundary, free-slip conditions for u and v
9826(see <a href="#bc_uv_b">bc_uv_b</a>)
9827are not allowed. Likewise, laminar
9828simulations with constant eddy diffusivities (<a href="#km_constant">km_constant</a>)
9829are forbidden.&nbsp; </p>
9830
9831
9832
9833
9834
9835
9836 
9837     
9838     
9839     
9840     
9841     
9842     
9843      <p>With Prandtl-layer
9844switched off, the TKE boundary condition <a href="#bc_e_b">bc_e_b</a>
9845= '<i>(u*)**2+neumann'</i> must not be used and is
9846automatically
9847changed to <i>'neumann'</i> if necessary.&nbsp; Also,
9848the pressure
9849boundary condition <a href="#bc_p_b">bc_p_b</a>
9850= <i>'neumann+inhomo'</i>&nbsp; is not allowed.<br>
9851</p>
9852      <p>If the Prandtl-layer is switched off and fluxes shall be prescribed at the surface (by setting <a href="#surface_heatflux">surface_heatflux</a>), it is required to set the parameter <a href="#use_surface_fluxes">use_surface_fluxes</a> = <span style="font-style: italic;">.T.</span>.<br>
9853 </p>
9854
9855
9856
9857
9858
9859
9860
9861
9862     
9863     
9864     
9865     
9866     
9867     
9868      <p>The roughness length is declared via the parameter <a href="#roughness_length">roughness_length</a>.</p>
9869
9870
9871
9872
9873
9874
9875
9876      </td>
9877
9878
9879
9880
9881
9882
9883 </tr>
9884
9885
9886
9887
9888
9889
9890 <tr>
9891
9892
9893
9894
9895
9896
9897 <td style="vertical-align: top;"> 
9898     
9899     
9900     
9901     
9902     
9903     
9904      <p><a name="precipitation"></a><b>precipitation</b></p>
9905
9906
9907
9908
9909
9910
9911
9912      </td>
9913
9914
9915
9916
9917
9918
9919 <td style="vertical-align: top;">L</td>
9920
9921
9922
9923
9924
9925
9926
9927      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
9928
9929
9930
9931
9932
9933
9934 <td style="vertical-align: top;"> 
9935     
9936     
9937     
9938     
9939     
9940     
9941      <p>Parameter to switch
9942on the precipitation scheme.<br>
9943
9944
9945
9946
9947
9948
9949 </p>
9950
9951
9952
9953
9954
9955
9956 
9957     
9958     
9959     
9960     
9961     
9962     
9963      <p>For
9964precipitation processes PALM uses a simplified Kessler
9965scheme. This scheme only considers the
9966so-called autoconversion, that means the generation of rain water by
9967coagulation of cloud drops among themselves. Precipitation begins and
9968is immediately removed from the flow as soon as the liquid water
9969content exceeds the critical value of 0.5 g/kg.</p>
9970
9971
9972
9973
9974
9975
9976     
9977     
9978     
9979     
9980     
9981     
9982      <p>The precipitation rate and amount can be output by assigning the runtime parameter <a href="chapter_4.2.html#data_output">data_output</a> = <span style="font-style: italic;">'prr*'</span> or <span style="font-style: italic;">'pra*'</span>, respectively. The time interval on which the precipitation amount is defined can be controlled via runtime parameter <a href="chapter_4.2.html#precipitation_amount_interval">precipitation_amount_interval</a>.</p>
9983
9984
9985
9986
9987
9988
9989 </td>
9990
9991
9992
9993
9994
9995
9996 </tr>
9997
9998
9999
10000
10001
10002
10003
10004    <tr>
10005
10006
10007
10008
10009
10010
10011      <td style="vertical-align: top;"><a name="pt_reference"></a><span style="font-weight: bold;">pt_reference</span></td>
10012
10013
10014
10015
10016
10017
10018      <td style="vertical-align: top;">R</td>
10019
10020
10021
10022
10023
10024
10025      <td style="vertical-align: top;"><span style="font-style: italic;">use horizontal average as
10026refrence</span></td>
10027
10028
10029
10030
10031
10032
10033      <td style="vertical-align: top;">Reference
10034temperature to be used in all buoyancy terms (in K).<br>
10035
10036
10037
10038
10039
10040
10041      <br>
10042
10043
10044
10045
10046
10047
10048By
10049default, the instantaneous horizontal average over the total model
10050domain is used.<br>
10051
10052
10053
10054
10055
10056
10057      <br>
10058
10059
10060
10061
10062
10063
10064      <span style="font-weight: bold;">Attention:</span><br>
10065
10066
10067
10068
10069
10070
10071In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), always a reference temperature is used in the buoyancy terms with a default value of <span style="font-weight: bold;">pt_reference</span> = <a href="#pt_surface">pt_surface</a>.</td>
10072
10073
10074
10075
10076
10077
10078    </tr>
10079
10080
10081
10082
10083
10084
10085    <tr>
10086
10087
10088
10089
10090
10091
10092 <td style="vertical-align: top;"> 
10093     
10094     
10095     
10096     
10097     
10098     
10099      <p><a name="pt_surface"></a><b>pt_surface</b></p>
10100
10101
10102
10103
10104
10105
10106
10107      </td>
10108
10109
10110
10111
10112
10113
10114 <td style="vertical-align: top;">R</td>
10115
10116
10117
10118
10119
10120
10121
10122      <td style="vertical-align: top;"><i>300.0</i></td>
10123
10124
10125
10126
10127
10128
10129
10130      <td style="vertical-align: top;"> 
10131     
10132     
10133     
10134     
10135     
10136     
10137      <p>Surface
10138potential temperature (in K).&nbsp; </p>
10139
10140
10141
10142
10143
10144
10145 
10146     
10147     
10148     
10149     
10150     
10151     
10152      <p>This
10153parameter assigns the value of the potential temperature
10154      <span style="font-weight: bold;">pt</span> at the surface (k=0)<b>.</b> Starting from this value,
10155the
10156initial vertical temperature profile is constructed with <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10157and <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level
10158      </a>.
10159This profile is also used for the 1d-model as a stationary profile.</p>
10160
10161
10162
10163
10164
10165
10166     
10167     
10168     
10169     
10170     
10171     
10172      <p><span style="font-weight: bold;">Attention:</span><br>
10173
10174
10175
10176
10177
10178
10179In case of ocean runs (see <a href="#ocean">ocean</a>),
10180this parameter gives the temperature value at the sea surface, which is
10181at k=nzt. The profile is then constructed from the surface down to the
10182bottom of the model.</p>
10183
10184
10185
10186
10187
10188
10189
10190      </td>
10191
10192
10193
10194
10195
10196
10197 </tr>
10198
10199
10200
10201
10202
10203
10204 <tr>
10205
10206
10207
10208
10209
10210
10211 <td style="vertical-align: top;"> 
10212     
10213     
10214     
10215     
10216     
10217     
10218      <p><a name="pt_surface_initial_change"></a><b>pt_surface_initial</b>
10219      <br>
10220
10221
10222
10223
10224
10225
10226 <b>_change</b></p>
10227
10228
10229
10230
10231
10232
10233 </td>
10234
10235
10236
10237
10238
10239
10240 <td style="vertical-align: top;">R</td>
10241
10242
10243
10244
10245
10246
10247 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
10248
10249
10250
10251
10252
10253
10254 </td>
10255
10256
10257
10258
10259
10260
10261
10262      <td style="vertical-align: top;"> 
10263     
10264     
10265     
10266     
10267     
10268     
10269      <p>Change in
10270surface temperature to be made at the beginning of
10271the 3d run
10272(in K).&nbsp; </p>
10273
10274
10275
10276
10277
10278
10279 
10280     
10281     
10282     
10283     
10284     
10285     
10286      <p>If <b>pt_surface_initial_change</b>
10287is set to a non-zero
10288value, the near surface sensible heat flux is not allowed to be given
10289simultaneously (see <a href="#surface_heatflux">surface_heatflux</a>).</p>
10290
10291
10292
10293
10294
10295
10296
10297      </td>
10298
10299
10300
10301
10302
10303
10304 </tr>
10305
10306
10307
10308
10309
10310
10311 <tr>
10312
10313
10314
10315
10316
10317
10318 <td style="vertical-align: top;"> 
10319     
10320     
10321     
10322     
10323     
10324     
10325      <p><a name="pt_vertical_gradient"></a><b>pt_vertical_gradient</b></p>
10326
10327
10328
10329
10330
10331
10332
10333      </td>
10334
10335
10336
10337
10338
10339
10340 <td style="vertical-align: top;">R (10)</td>
10341
10342
10343
10344
10345
10346
10347
10348      <td style="vertical-align: top;"><i>10 * 0.0</i></td>
10349
10350
10351
10352
10353
10354
10355
10356      <td style="vertical-align: top;"> 
10357     
10358     
10359     
10360     
10361     
10362     
10363      <p>Temperature
10364gradient(s) of the initial temperature profile (in
10365K
10366/ 100 m).&nbsp; </p>
10367
10368
10369
10370
10371
10372
10373 
10374     
10375     
10376     
10377     
10378     
10379     
10380      <p>This temperature gradient
10381holds starting from the height&nbsp;
10382level defined by <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>
10383(precisely: for all uv levels k where zu(k) &gt;
10384pt_vertical_gradient_level,
10385pt_init(k) is set: pt_init(k) = pt_init(k-1) + dzu(k) * <b>pt_vertical_gradient</b>)
10386up to the top boundary or up to the next height level defined
10387by <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>.
10388A total of 10 different gradients for 11 height intervals (10 intervals
10389if <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>(1)
10390= <i>0.0</i>) can be assigned. The surface temperature is
10391assigned via <a href="#pt_surface">pt_surface</a>.&nbsp;
10392      </p>
10393
10394
10395
10396
10397
10398
10399 
10400     
10401     
10402     
10403     
10404     
10405     
10406      <p>Example:&nbsp; </p>
10407
10408
10409
10410
10411
10412
10413 
10414     
10415     
10416     
10417     
10418     
10419     
10420      <ul>
10421
10422
10423
10424
10425
10426
10427 
10428       
10429       
10430       
10431       
10432       
10433       
10434        <p><b>pt_vertical_gradient</b>
10435= <i>1.0</i>, <i>0.5</i>,&nbsp; <br>
10436
10437
10438
10439
10440
10441
10442
10443        <b>pt_vertical_gradient_level</b> = <i>500.0</i>,
10444        <i>1000.0</i>,</p>
10445
10446
10447
10448
10449
10450
10451 
10452     
10453     
10454     
10455     
10456     
10457     
10458      </ul>
10459
10460
10461
10462
10463
10464
10465 
10466     
10467     
10468     
10469     
10470     
10471     
10472      <p>That
10473defines the temperature profile to be neutrally
10474stratified
10475up to z = 500.0 m with a temperature given by <a href="#pt_surface">pt_surface</a>.
10476For 500.0 m &lt; z &lt;= 1000.0 m the temperature gradient is
104771.0 K /
10478100 m and for z &gt; 1000.0 m up to the top boundary it is
104790.5 K / 100 m (it is assumed that the assigned height levels correspond
10480with uv levels).</p>
10481
10482
10483
10484
10485
10486
10487     
10488     
10489     
10490     
10491     
10492     
10493      <p><span style="font-weight: bold;">Attention:</span><br>
10494
10495
10496
10497
10498
10499
10500In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
10501the profile is constructed like described above, but starting from the
10502sea surface (k=nzt) down to the bottom boundary of the model. Height
10503levels have then to be given as negative values, e.g. <span style="font-weight: bold;">pt_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.</p>
10504
10505
10506
10507
10508
10509
10510 </td>
10511
10512
10513
10514
10515
10516
10517 </tr>
10518
10519
10520
10521
10522
10523
10524 <tr>
10525
10526
10527
10528
10529
10530
10531 <td style="vertical-align: top;"> 
10532     
10533     
10534     
10535     
10536     
10537     
10538      <p><a name="pt_vertical_gradient_level"></a><b>pt_vertical_gradient</b>
10539      <br>
10540
10541
10542
10543
10544
10545
10546 <b>_level</b></p>
10547
10548
10549
10550
10551
10552
10553 </td>
10554
10555
10556
10557
10558
10559
10560 <td style="vertical-align: top;">R (10)</td>
10561
10562
10563
10564
10565
10566
10567 <td style="vertical-align: top;"> 
10568     
10569     
10570     
10571     
10572     
10573     
10574      <p><i>10 *</i>&nbsp;
10575      <span style="font-style: italic;">0.0</span><br>
10576
10577
10578
10579
10580
10581
10582
10583      </p>
10584
10585
10586
10587
10588
10589
10590 </td>
10591
10592
10593
10594
10595
10596
10597 <td style="vertical-align: top;">
10598     
10599     
10600     
10601     
10602     
10603     
10604      <p>Height level from which on the temperature gradient defined by
10605      <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10606is effective (in m).&nbsp; </p>
10607
10608
10609
10610
10611
10612
10613 
10614     
10615     
10616     
10617     
10618     
10619     
10620      <p>The height levels have to be assigned in ascending order. The
10621default values result in a neutral stratification regardless of the
10622values of <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10623(unless the top boundary of the model is higher than 100000.0 m).
10624For the piecewise construction of temperature profiles see <a href="#pt_vertical_gradient">pt_vertical_gradient</a>.</p>
10625
10626
10627
10628
10629
10630
10631      <span style="font-weight: bold;">Attention:</span><br>
10632
10633
10634
10635
10636
10637
10638In case of ocean runs&nbsp;(see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.
10639      </td>
10640
10641
10642
10643
10644
10645
10646 </tr>
10647
10648
10649
10650
10651
10652
10653 <tr>
10654
10655
10656
10657
10658
10659
10660 <td style="vertical-align: top;"> 
10661     
10662     
10663     
10664     
10665     
10666     
10667      <p><a name="q_surface"></a><b>q_surface</b></p>
10668
10669
10670
10671
10672
10673
10674
10675      </td>
10676
10677
10678
10679
10680
10681
10682 <td style="vertical-align: top;">R</td>
10683
10684
10685
10686
10687
10688
10689
10690      <td style="vertical-align: top;"><i>0.0</i></td>
10691
10692
10693
10694
10695
10696
10697
10698      <td style="vertical-align: top;"> 
10699     
10700     
10701     
10702     
10703     
10704     
10705      <p>Surface
10706specific humidity / total water content (kg/kg).&nbsp; </p>
10707
10708
10709
10710
10711
10712
10713 
10714     
10715     
10716     
10717     
10718     
10719     
10720      <p>This
10721parameter assigns the value of the specific humidity q at
10722the surface (k=0).&nbsp; Starting from this value, the initial
10723humidity
10724profile is constructed with&nbsp; <a href="#q_vertical_gradient">q_vertical_gradient</a>
10725and <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>.
10726This profile is also used for the 1d-model as a stationary profile.</p>
10727
10728
10729
10730
10731
10732
10733
10734      </td>
10735
10736
10737
10738
10739
10740
10741 </tr>
10742
10743
10744
10745
10746
10747
10748 <tr>
10749
10750
10751
10752
10753
10754
10755 <td style="vertical-align: top;"> 
10756     
10757     
10758     
10759     
10760     
10761     
10762      <p><a name="q_surface_initial_change"></a><b>q_surface_initial</b>
10763      <br>
10764
10765
10766
10767
10768
10769
10770 <b>_change</b></p>
10771
10772
10773
10774
10775
10776
10777 </td>
10778
10779
10780
10781
10782
10783
10784 <td style="vertical-align: top;">R<br>
10785
10786
10787
10788
10789
10790
10791 </td>
10792
10793
10794
10795
10796
10797
10798 <td style="vertical-align: top;"><i>0.0</i></td>
10799
10800
10801
10802
10803
10804
10805
10806      <td style="vertical-align: top;"> 
10807     
10808     
10809     
10810     
10811     
10812     
10813      <p>Change in
10814surface specific humidity / total water content to
10815be made at the beginning
10816of the 3d run (kg/kg).&nbsp; </p>
10817
10818
10819
10820
10821
10822
10823 
10824     
10825     
10826     
10827     
10828     
10829     
10830      <p>If <b>q_surface_initial_change</b><i>
10831      </i>is set to a
10832non-zero value the
10833near surface latent heat flux (water flux) is not allowed to be given
10834simultaneously (see <a href="#surface_waterflux">surface_waterflux</a>).</p>
10835
10836
10837
10838
10839
10840
10841
10842      </td>
10843
10844
10845
10846
10847
10848
10849 </tr>
10850
10851
10852
10853
10854
10855
10856 <tr>
10857
10858
10859
10860
10861
10862
10863 <td style="vertical-align: top;"> 
10864     
10865     
10866     
10867     
10868     
10869     
10870      <p><a name="q_vertical_gradient"></a><b>q_vertical_gradient</b></p>
10871
10872
10873
10874
10875
10876
10877
10878      </td>
10879
10880
10881
10882
10883
10884
10885 <td style="vertical-align: top;">R (10)</td>
10886
10887
10888
10889
10890
10891
10892
10893      <td style="vertical-align: top;"><i>10 * 0.0</i></td>
10894
10895
10896
10897
10898
10899
10900
10901      <td style="vertical-align: top;"> 
10902     
10903     
10904     
10905     
10906     
10907     
10908      <p>Humidity
10909gradient(s) of the initial humidity profile
10910(in 1/100 m).&nbsp; </p>
10911
10912
10913
10914
10915
10916
10917 
10918     
10919     
10920     
10921     
10922     
10923     
10924      <p>This humidity gradient
10925holds starting from the height
10926level&nbsp; defined by <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>
10927(precisely: for all uv levels k, where zu(k) &gt;
10928q_vertical_gradient_level,
10929q_init(k) is set: q_init(k) = q_init(k-1) + dzu(k) * <b>q_vertical_gradient</b>)
10930up to the top boundary or up to the next height level defined
10931by <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>.
10932A total of 10 different gradients for 11 height intervals (10 intervals
10933if <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>(1)
10934= <i>0.0</i>) can be asigned. The surface humidity is
10935assigned
10936via <a href="#q_surface">q_surface</a>. </p>
10937
10938
10939
10940
10941
10942
10943
10944     
10945     
10946     
10947     
10948     
10949     
10950      <p>Example:&nbsp; </p>
10951
10952
10953
10954
10955
10956
10957 
10958     
10959     
10960     
10961     
10962     
10963     
10964      <ul>
10965
10966
10967
10968
10969
10970
10971 
10972       
10973       
10974       
10975       
10976       
10977       
10978        <p><b>q_vertical_gradient</b>
10979= <i>0.001</i>, <i>0.0005</i>,&nbsp; <br>
10980
10981
10982
10983
10984
10985
10986
10987        <b>q_vertical_gradient_level</b> = <i>500.0</i>,
10988        <i>1000.0</i>,</p>
10989
10990
10991
10992
10993
10994
10995 
10996     
10997     
10998     
10999     
11000     
11001     
11002      </ul>
11003
11004
11005
11006
11007
11008
11009
11010That defines the humidity to be constant with height up to z =
11011500.0
11012m with a
11013value given by <a href="#q_surface">q_surface</a>.
11014For 500.0 m &lt; z &lt;= 1000.0 m the humidity gradient is
110150.001 / 100
11016m and for z &gt; 1000.0 m up to the top boundary it is
110170.0005 / 100 m (it is assumed that the assigned height levels
11018correspond with uv
11019levels). </td>
11020
11021
11022
11023
11024
11025
11026 </tr>
11027
11028
11029
11030
11031
11032
11033 <tr>
11034
11035
11036
11037
11038
11039
11040 <td style="vertical-align: top;"> 
11041     
11042     
11043     
11044     
11045     
11046     
11047      <p><a name="q_vertical_gradient_level"></a><b>q_vertical_gradient</b>
11048      <br>
11049
11050
11051
11052
11053
11054
11055 <b>_level</b></p>
11056
11057
11058
11059
11060
11061
11062 </td>
11063
11064
11065
11066
11067
11068
11069 <td style="vertical-align: top;">R (10)</td>
11070
11071
11072
11073
11074
11075
11076 <td style="vertical-align: top;"> 
11077     
11078     
11079     
11080     
11081     
11082     
11083      <p><i>10 *</i>&nbsp;
11084      <i>0.0</i></p>
11085
11086
11087
11088
11089
11090
11091 </td>
11092
11093
11094
11095
11096
11097
11098 <td style="vertical-align: top;"> 
11099     
11100     
11101     
11102     
11103     
11104     
11105      <p>Height level from
11106which on the humidity gradient defined by <a href="#q_vertical_gradient">q_vertical_gradient</a>
11107is effective (in m).&nbsp; </p>
11108
11109
11110
11111
11112
11113
11114 
11115     
11116     
11117     
11118     
11119     
11120     
11121      <p>The height levels
11122are to be assigned in ascending order. The
11123default values result in a humidity constant with height regardless of
11124the values of <a href="#q_vertical_gradient">q_vertical_gradient</a>
11125(unless the top boundary of the model is higher than 100000.0 m). For
11126the piecewise construction of humidity profiles see <a href="#q_vertical_gradient">q_vertical_gradient</a>.</p>
11127
11128
11129
11130
11131
11132
11133
11134      </td>
11135
11136
11137
11138
11139
11140
11141 </tr>
11142
11143
11144
11145
11146
11147
11148 <tr>
11149
11150
11151
11152
11153
11154
11155 <td style="vertical-align: top;"> 
11156     
11157     
11158     
11159     
11160     
11161     
11162      <p><a name="radiation"></a><b>radiation</b></p>
11163
11164
11165
11166
11167
11168
11169
11170      </td>
11171
11172
11173
11174
11175
11176
11177 <td style="vertical-align: top;">L</td>
11178
11179
11180
11181
11182
11183
11184
11185      <td style="vertical-align: top;"><i>.F.</i></td>
11186
11187
11188
11189
11190
11191
11192
11193      <td style="vertical-align: top;"> 
11194     
11195     
11196     
11197     
11198     
11199     
11200      <p>Parameter to
11201switch on longwave radiation cooling at
11202cloud-tops.&nbsp; </p>
11203
11204
11205
11206
11207
11208
11209 
11210     
11211     
11212     
11213     
11214     
11215     
11216      <p>Long-wave radiation
11217processes are parameterized by the
11218effective emissivity, which considers only the absorption and emission
11219of long-wave radiation at cloud droplets. The radiation scheme can be
11220used only with <a href="#cloud_physics">cloud_physics</a>
11221= .TRUE. .</p>
11222
11223
11224
11225
11226
11227
11228 </td>
11229
11230
11231
11232
11233
11234
11235 </tr>
11236
11237
11238
11239
11240
11241
11242 <tr>
11243
11244
11245
11246
11247
11248
11249 <td style="vertical-align: top;"> 
11250     
11251     
11252     
11253     
11254     
11255     
11256      <p><a name="random_generator"></a><b>random_generator</b></p>
11257
11258
11259
11260
11261
11262
11263
11264      </td>
11265
11266
11267
11268
11269
11270
11271 <td style="vertical-align: top;">C * 20</td>
11272
11273
11274
11275
11276
11277
11278
11279      <td style="vertical-align: top;"> 
11280     
11281     
11282     
11283     
11284     
11285     
11286      <p><i>'numerical</i><br>
11287
11288
11289
11290
11291
11292
11293
11294      <i>recipes'</i></p>
11295
11296
11297
11298
11299
11300
11301 </td>
11302
11303
11304
11305
11306
11307
11308 <td style="vertical-align: top;"> 
11309     
11310     
11311     
11312     
11313     
11314     
11315      <p>Random number
11316generator to be used for creating uniformly
11317distributed random numbers. <br>
11318
11319
11320
11321
11322
11323
11324 </p>
11325
11326
11327
11328
11329
11330
11331 
11332     
11333     
11334     
11335     
11336     
11337     
11338      <p>It is
11339used if random perturbations are to be imposed on the
11340velocity field or on the surface heat flux field (see <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>
11341and <a href="chapter_4.2.html#random_heatflux">random_heatflux</a>).
11342By default, the "Numerical Recipes" random number generator is used.
11343This one provides exactly the same order of random numbers on all
11344different machines and should be used in particular for comparison runs.<br>
11345
11346
11347
11348
11349
11350
11351
11352      <br>
11353
11354
11355
11356
11357
11358
11359
11360Besides, a system-specific generator is available ( <b>random_generator</b>
11361= <i>'system-specific')</i> which should particularly be
11362used for runs
11363on vector parallel computers (NEC), because the default generator
11364cannot be vectorized and therefore significantly drops down the code
11365performance on these machines.<br>
11366
11367
11368
11369
11370
11371
11372 </p>
11373
11374
11375
11376
11377
11378
11379 <span style="font-weight: bold;">Note:</span><br>
11380
11381
11382
11383
11384
11385
11386
11387Results from two otherwise identical model runs will not be comparable
11388one-to-one if they used different random number generators.</td>
11389
11390
11391
11392
11393
11394
11395 </tr>
11396
11397
11398
11399
11400
11401
11402
11403    <tr>
11404
11405
11406
11407
11408
11409
11410 <td style="vertical-align: top;"> 
11411     
11412     
11413     
11414     
11415     
11416     
11417      <p><a name="random_heatflux"></a><b>random_heatflux</b></p>
11418
11419
11420
11421
11422
11423
11424
11425      </td>
11426
11427
11428
11429
11430
11431
11432 <td style="vertical-align: top;">L</td>
11433
11434
11435
11436
11437
11438
11439
11440      <td style="vertical-align: top;"><i>.F.</i></td>
11441
11442
11443
11444
11445
11446
11447
11448      <td style="vertical-align: top;"> 
11449     
11450     
11451     
11452     
11453     
11454     
11455      <p>Parameter to
11456impose random perturbations on the internal two-dimensional near
11457surface heat flux field <span style="font-style: italic;">shf</span>.
11458      <br>
11459
11460
11461
11462
11463
11464
11465 </p>
11466
11467
11468
11469
11470
11471
11472If a near surface heat flux is used as bottom
11473boundary
11474condition (see <a href="#surface_heatflux">surface_heatflux</a>),
11475it is by default assumed to be horizontally homogeneous. Random
11476perturbations can be imposed on the internal
11477two-dimensional&nbsp;heat flux field <span style="font-style: italic;">shf</span> by assigning <b>random_heatflux</b>
11478= <i>.T.</i>. The disturbed heat flux field is calculated
11479by
11480multiplying the
11481values at each mesh point with a normally distributed random number
11482with a mean value and standard deviation of 1. This is repeated after
11483every timestep.<br>
11484
11485
11486
11487
11488
11489
11490 <br>
11491
11492
11493
11494
11495
11496
11497
11498In case of a non-flat <a href="#topography">topography</a>,&nbsp;assigning
11499      <b>random_heatflux</b>
11500= <i>.T.</i> imposes random perturbations on the
11501combined&nbsp;heat
11502flux field <span style="font-style: italic;">shf</span>
11503composed of <a href="#surface_heatflux">surface_heatflux</a>
11504at the bottom surface and <a href="#wall_heatflux">wall_heatflux(0)</a>
11505at the topography top face.</td>
11506
11507
11508
11509
11510
11511
11512 </tr>
11513
11514
11515
11516
11517
11518
11519 <tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="recycling_width"></a>recycling_width</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.1 * <a href="chapter_4.1.html#nx">nx</a> * <a href="chapter_4.1.html#dx">dx</a></span></td><td style="vertical-align: top;">Distance of the recycling plane from the inflow boundary (in m).<br><br>This
11520parameter sets the horizontal extension (along the direction of the
11521main flow) of the so-called recycling domain which is used to generate
11522a turbulent inflow (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>). <span style="font-weight: bold;">recycling_width</span> must be larger than the grid spacing (dx) and smaller than the length of the total domain (nx * dx).</td></tr><tr>
11523
11524
11525
11526
11527
11528
11529 <td style="vertical-align: top;"> 
11530     
11531     
11532     
11533     
11534     
11535     
11536      <p><a name="rif_max"></a><b>rif_max</b></p>
11537
11538
11539
11540
11541
11542
11543
11544      </td>
11545
11546
11547
11548
11549
11550
11551 <td style="vertical-align: top;">R</td>
11552
11553
11554
11555
11556
11557
11558
11559      <td style="vertical-align: top;"><i>1.0</i></td>
11560
11561
11562
11563
11564
11565
11566
11567      <td style="vertical-align: top;"> 
11568     
11569     
11570     
11571     
11572     
11573     
11574      <p>Upper limit of
11575the flux-Richardson number.&nbsp; </p>
11576
11577
11578
11579
11580
11581
11582 
11583     
11584     
11585     
11586     
11587     
11588     
11589      <p>With the
11590Prandtl layer switched on (see <a href="#prandtl_layer">prandtl_layer</a>),
11591flux-Richardson numbers (rif) are calculated for z=z<sub>p</sub>
11592(k=1)
11593in the 3d-model (in the 1d model for all heights). Their values in
11594particular determine the
11595values of the friction velocity (1d- and 3d-model) and the values of
11596the eddy diffusivity (1d-model). With small wind velocities at the
11597Prandtl layer top or small vertical wind shears in the 1d-model, rif
11598can take up unrealistic large values. They are limited by an upper (<span style="font-weight: bold;">rif_max</span>) and lower
11599limit (see <a href="#rif_min">rif_min</a>)
11600for the flux-Richardson number. The condition <b>rif_max</b>
11601&gt; <b>rif_min</b>
11602must be met.</p>
11603
11604
11605
11606
11607
11608
11609 </td>
11610
11611
11612
11613
11614
11615
11616 </tr>
11617
11618
11619
11620
11621
11622
11623 <tr>
11624
11625
11626
11627
11628
11629
11630 <td style="vertical-align: top;"> 
11631     
11632     
11633     
11634     
11635     
11636     
11637      <p><a name="rif_min"></a><b>rif_min</b></p>
11638
11639
11640
11641
11642
11643
11644
11645      </td>
11646
11647
11648
11649
11650
11651
11652 <td style="vertical-align: top;">R</td>
11653
11654
11655
11656
11657
11658
11659
11660      <td style="vertical-align: top;"><i>- 5.0</i></td>
11661
11662
11663
11664
11665
11666
11667
11668      <td style="vertical-align: top;"> 
11669     
11670     
11671     
11672     
11673     
11674     
11675      <p>Lower limit of
11676the flux-Richardson number.&nbsp; </p>
11677
11678
11679
11680
11681
11682
11683 
11684     
11685     
11686     
11687     
11688     
11689     
11690      <p>For further
11691explanations see <a href="#rif_max">rif_max</a>.
11692The condition <b>rif_max</b> &gt; <b>rif_min </b>must
11693be met.</p>
11694
11695
11696
11697
11698
11699
11700 </td>
11701
11702
11703
11704
11705
11706
11707 </tr>
11708
11709
11710
11711
11712
11713
11714 <tr>
11715
11716
11717
11718
11719
11720
11721 <td style="vertical-align: top;"> 
11722     
11723     
11724     
11725     
11726     
11727     
11728      <p><a name="roughness_length"></a><b>roughness_length</b></p>
11729
11730
11731
11732
11733
11734
11735
11736      </td>
11737
11738
11739
11740
11741
11742
11743 <td style="vertical-align: top;">R</td>
11744
11745
11746
11747
11748
11749
11750
11751      <td style="vertical-align: top;"><i>0.1</i></td>
11752
11753
11754
11755
11756
11757
11758
11759      <td style="vertical-align: top;"> 
11760     
11761     
11762     
11763     
11764     
11765     
11766      <p>Roughness
11767length (in m).&nbsp; </p>
11768
11769
11770
11771
11772
11773
11774 
11775     
11776     
11777     
11778     
11779     
11780     
11781      <p>This parameter is
11782effective only in case that a Prandtl layer
11783is switched
11784on (see <a href="#prandtl_layer">prandtl_layer</a>).</p>
11785
11786
11787
11788
11789
11790
11791
11792      </td>
11793
11794
11795
11796
11797
11798
11799 </tr>
11800
11801
11802
11803
11804
11805
11806 <tr>
11807
11808
11809
11810
11811
11812
11813      <td style="vertical-align: top;"><a name="sa_surface"></a><span style="font-weight: bold;">sa_surface</span></td>
11814
11815
11816
11817
11818
11819
11820      <td style="vertical-align: top;">R</td>
11821
11822
11823
11824
11825
11826
11827      <td style="vertical-align: top;"><span style="font-style: italic;">35.0</span></td>
11828
11829
11830
11831
11832
11833
11834      <td style="vertical-align: top;"> 
11835     
11836     
11837     
11838     
11839     
11840     
11841      <p>Surface salinity (in psu).&nbsp;</p>
11842
11843
11844
11845
11846
11847
11848This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).
11849     
11850     
11851     
11852     
11853     
11854     
11855      <p>This
11856parameter assigns the value of the salinity <span style="font-weight: bold;">sa</span> at the sea surface (k=nzt)<b>.</b> Starting from this value,
11857the
11858initial vertical salinity profile is constructed from the surface down to the bottom of the model (k=0) by using&nbsp;<a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>
11859and&nbsp;<a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level
11860      </a>.</p>
11861
11862
11863
11864
11865
11866
11867      </td>
11868
11869
11870
11871
11872
11873
11874    </tr>
11875
11876
11877
11878
11879
11880
11881    <tr>
11882
11883
11884
11885
11886
11887
11888      <td style="vertical-align: top;"><a name="sa_vertical_gradient"></a><span style="font-weight: bold;">sa_vertical_gradient</span></td>
11889
11890
11891
11892
11893
11894
11895      <td style="vertical-align: top;">R(10)</td>
11896
11897
11898
11899
11900
11901
11902      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
11903
11904
11905
11906
11907
11908
11909      <td style="vertical-align: top;">
11910     
11911     
11912     
11913     
11914     
11915     
11916      <p>Salinity gradient(s) of the initial salinity profile (in psu
11917/ 100 m).&nbsp; </p>
11918
11919
11920
11921
11922
11923
11924 
11925     
11926     
11927     
11928     
11929     
11930     
11931      <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p>
11932
11933
11934
11935
11936
11937
11938     
11939     
11940     
11941     
11942     
11943     
11944      <p>This salinity gradient
11945holds starting from the height&nbsp;
11946level defined by <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a>
11947(precisely: for all uv levels k where zu(k) &lt;
11948sa_vertical_gradient_level, sa_init(k) is set: sa_init(k) =
11949sa_init(k+1) - dzu(k+1) * <b>sa_vertical_gradient</b>) down to the bottom boundary or down to the next height level defined
11950by <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a>.
11951A total of 10 different gradients for 11 height intervals (10 intervals
11952if <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a>(1)
11953= <i>0.0</i>) can be assigned. The surface salinity at k=nzt is
11954assigned via <a href="chapter_4.1.html#sa_surface">sa_surface</a>.&nbsp;
11955      </p>
11956
11957
11958
11959
11960
11961
11962 
11963     
11964     
11965     
11966     
11967     
11968     
11969      <p>Example:&nbsp; </p>
11970
11971
11972
11973
11974
11975
11976 
11977     
11978     
11979     
11980     
11981     
11982     
11983      <ul>
11984
11985
11986
11987
11988
11989
11990       
11991       
11992       
11993       
11994       
11995       
11996        <p><b>sa_vertical_gradient</b>
11997= <i>1.0</i>, <i>0.5</i>,&nbsp; <br>
11998
11999
12000
12001
12002
12003
12004
12005        <b>sa_vertical_gradient_level</b> = <i>-500.0</i>,
12006-<i>1000.0</i>,</p>
12007
12008
12009
12010
12011
12012
12013     
12014     
12015     
12016     
12017     
12018     
12019      </ul>
12020
12021
12022
12023
12024
12025
12026 
12027     
12028     
12029     
12030     
12031     
12032     
12033      <p>That
12034defines the salinity to be constant down to z = -500.0 m with a salinity given by <a href="chapter_4.1.html#sa_surface">sa_surface</a>.
12035For -500.0 m &lt; z &lt;= -1000.0 m the salinity gradient is
120361.0 psu /
12037100 m and for z &lt; -1000.0 m down to the bottom boundary it is
120380.5 psu / 100 m (it is assumed that the assigned height levels correspond
12039with uv levels).</p>
12040
12041
12042
12043
12044
12045
12046      </td>
12047
12048
12049
12050
12051
12052
12053    </tr>
12054
12055
12056
12057
12058
12059
12060    <tr>
12061
12062
12063
12064
12065
12066
12067      <td style="vertical-align: top;"><a name="sa_vertical_gradient_level"></a><span style="font-weight: bold;">sa_vertical_gradient_level</span></td>
12068
12069
12070
12071
12072
12073
12074      <td style="vertical-align: top;">R(10)</td>
12075
12076
12077
12078
12079
12080
12081      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
12082
12083
12084
12085
12086
12087
12088      <td style="vertical-align: top;">
12089     
12090     
12091     
12092     
12093     
12094     
12095      <p>Height level from which on the salinity gradient defined by <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>
12096is effective (in m).&nbsp; </p>
12097
12098
12099
12100
12101
12102
12103 
12104     
12105     
12106     
12107     
12108     
12109     
12110      <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p>
12111
12112
12113
12114
12115
12116
12117     
12118     
12119     
12120     
12121     
12122     
12123      <p>The height levels have to be assigned in descending order. The
12124default values result in a constant salinity profile regardless of the
12125values of <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>
12126(unless the bottom boundary of the model is lower than -100000.0 m).
12127For the piecewise construction of salinity profiles see <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>.</p>
12128
12129
12130
12131
12132
12133
12134      </td>
12135
12136
12137
12138
12139
12140
12141    </tr>
12142
12143
12144
12145
12146
12147
12148    <tr>
12149
12150
12151
12152
12153
12154
12155 <td style="vertical-align: top;"> 
12156     
12157     
12158     
12159     
12160     
12161     
12162      <p><a name="scalar_advec"></a><b>scalar_advec</b></p>
12163
12164
12165
12166
12167
12168
12169
12170      </td>
12171
12172
12173
12174
12175
12176
12177 <td style="vertical-align: top;">C * 10</td>
12178
12179
12180
12181
12182
12183
12184
12185      <td style="vertical-align: top;"><i>'pw-scheme'</i></td>
12186
12187
12188
12189
12190
12191
12192
12193      <td style="vertical-align: top;"> 
12194     
12195     
12196     
12197     
12198     
12199     
12200      <p>Advection
12201scheme to be used for the scalar quantities.&nbsp; </p>
12202
12203
12204
12205
12206
12207
12208 
12209     
12210     
12211     
12212     
12213     
12214     
12215      <p>The
12216user can choose between the following schemes:<br>
12217
12218
12219
12220
12221
12222
12223 </p>
12224
12225
12226
12227
12228
12229
12230 
12231     
12232     
12233     
12234     
12235     
12236     
12237      <p><span style="font-style: italic;">'pw-scheme'</span><br>
12238
12239
12240
12241
12242
12243
12244
12245      </p>
12246
12247
12248
12249
12250
12251
12252 
12253     
12254     
12255     
12256     
12257     
12258     
12259      <div style="margin-left: 40px;">The scheme of
12260Piascek and
12261Williams (1970, J. Comp. Phys., 6,
12262392-405) with central differences in the form C3 is used.<br>
12263
12264
12265
12266
12267
12268
12269
12270If intermediate Euler-timesteps are carried out in case of <a href="#timestep_scheme">timestep_scheme</a>
12271= <span style="font-style: italic;">'leapfrog+euler'</span>
12272the
12273advection scheme is - for the Euler-timestep - automatically switched
12274to an upstream-scheme. <br>
12275
12276
12277
12278
12279
12280
12281 </div>
12282
12283
12284
12285
12286
12287
12288 <br>
12289
12290
12291
12292
12293
12294
12295 
12296     
12297     
12298     
12299     
12300     
12301     
12302      <p><span style="font-style: italic;">'bc-scheme'</span><br>
12303
12304
12305
12306
12307
12308
12309
12310      </p>
12311
12312
12313
12314
12315
12316
12317 
12318     
12319     
12320     
12321     
12322     
12323     
12324      <div style="margin-left: 40px;">The Bott
12325scheme modified by
12326Chlond (1994, Mon.
12327Wea. Rev., 122, 111-125). This is a conservative monotonous scheme with
12328very small numerical diffusion and therefore very good conservation of
12329scalar flow features. The scheme however, is computationally very
12330expensive both because it is expensive itself and because it does (so
12331far) not allow specific code optimizations (e.g. cache optimization).
12332Choice of this
12333scheme forces the Euler timestep scheme to be used for the scalar
12334quantities. For output of horizontally averaged
12335profiles of the resolved / total heat flux, <a href="chapter_4.2.html#data_output_pr">data_output_pr</a>
12336= <i>'w*pt*BC'</i> / <i>'wptBC' </i>should
12337be used, instead of the
12338standard profiles (<span style="font-style: italic;">'w*pt*'</span>
12339and <span style="font-style: italic;">'wpt'</span>)
12340because these are
12341too inaccurate with this scheme. However, for subdomain analysis (see <a href="#statistic_regions">statistic_regions</a>)
12342exactly the reverse holds: here <i>'w*pt*BC'</i> and <i>'wptBC'</i>
12343show very large errors and should not be used.<br>
12344
12345
12346
12347
12348
12349
12350 <br>
12351
12352
12353
12354
12355
12356
12357
12358This scheme is not allowed for non-cyclic lateral boundary conditions
12359(see <a href="#bc_lr">bc_lr</a>
12360and <a href="#bc_ns">bc_ns</a>).<br>
12361
12362
12363
12364
12365
12366
12367 <br>
12368
12369
12370
12371
12372
12373
12374
12375      </div>
12376
12377
12378
12379
12380
12381
12382 <span style="font-style: italic;">'ups-scheme'</span><br>
12383
12384
12385
12386
12387
12388
12389
12390     
12391     
12392     
12393     
12394     
12395     
12396      <p style="margin-left: 40px;">The upstream-spline-scheme
12397is used
12398(see Mahrer and Pielke,
123991978: Mon. Wea. Rev., 106, 818-830). In opposite to the Piascek
12400Williams scheme, this is characterized by much better numerical
12401features (less numerical diffusion, better preservation of flux
12402structures, e.g. vortices), but computationally it is much more
12403expensive. In
12404addition, the use of the Euler-timestep scheme is mandatory (<a href="#timestep_scheme">timestep_scheme</a>
12405= <span style="font-style: italic;">'</span><i>euler'</i>),
12406i.e. the
12407timestep accuracy is only first order. For this reason the advection of
12408momentum (see <a href="#momentum_advec">momentum_advec</a>)
12409should then also be carried out with the upstream-spline scheme,
12410because otherwise the momentum would
12411be subject to large numerical diffusion due to the upstream
12412scheme.&nbsp; </p>
12413
12414
12415
12416
12417
12418
12419 
12420     
12421     
12422     
12423     
12424     
12425     
12426      <p style="margin-left: 40px;">Since
12427the cubic splines used tend
12428to overshoot under
12429certain circumstances, this effect must be adjusted by suitable
12430filtering and smoothing (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>,
12431      <a href="#long_filter_factor">long_filter_factor</a>,
12432      <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>, <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>).
12433This is always neccesssary for runs with stable stratification,
12434even if this stratification appears only in parts of the model
12435domain.&nbsp; </p>
12436
12437
12438
12439
12440
12441
12442 
12443     
12444     
12445     
12446     
12447     
12448     
12449      <p style="margin-left: 40px;">With
12450stable stratification the
12451upstream-upline scheme also produces gravity waves with large
12452amplitude, which must be
12453suitably damped (see <a href="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</a>).<br>
12454
12455
12456
12457
12458
12459
12460
12461      </p>
12462
12463
12464
12465
12466
12467
12468 
12469     
12470     
12471     
12472     
12473     
12474     
12475      <p style="margin-left: 40px;"><span style="font-weight: bold;">Important: </span>The&nbsp;
12476upstream-spline scheme is not implemented for humidity and passive
12477scalars (see&nbsp;<a href="#humidity">humidity</a>
12478and <a href="#passive_scalar">passive_scalar</a>)
12479and requires the use of a 2d-domain-decomposition. The last conditions
12480severely restricts code optimization on several machines leading to
12481very long execution times! This scheme is also not allowed for
12482non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
12483and <a href="#bc_ns">bc_ns</a>).</p>
12484
12485
12486
12487
12488
12489
12490      <br>
12491
12492
12493
12494
12495
12496
12497A
12498differing advection scheme can be choosed for the subgrid-scale TKE
12499using parameter <a href="chapter_4.1.html#use_upstream_for_tke">use_upstream_for_tke</a>.</td>
12500
12501
12502
12503
12504
12505
12506
12507    </tr>
12508
12509
12510
12511
12512
12513
12514 <tr>
12515
12516      <td style="vertical-align: top;"><a name="scalar_exchange_coefficient"></a><b>scalar_exchange_coefficient</b></td>
12517
12518      <td style="vertical-align: top;">R</td>
12519
12520      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
12521
12522      <td style="vertical-align: top;">Scalar exchange coefficient for a leaf (dimensionless).<br>
12523
12524
12525      <br>
12526
12527
12528This parameter is only of importance in cases in that both, <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#plant_canopy">plant_canopy</a> and <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#passive_scalar">passive_scalar</a>, are set <span style="font-style: italic;">.T.</span>.
12529The value of the scalar exchange coefficient is required for the parametrisation of the sources and sinks of
12530scalar concentration due to the canopy.</td>
12531
12532    </tr>
12533
12534    <tr>
12535
12536
12537
12538
12539
12540
12541 <td style="vertical-align: top;">
12542     
12543     
12544     
12545     
12546     
12547     
12548      <p><a name="statistic_regions"></a><b>statistic_regions</b></p>
12549
12550
12551
12552
12553
12554
12555
12556      </td>
12557
12558
12559
12560
12561
12562
12563 <td style="vertical-align: top;">I</td>
12564
12565
12566
12567
12568
12569
12570
12571      <td style="vertical-align: top;"><i>0</i></td>
12572
12573
12574
12575
12576
12577
12578
12579      <td style="vertical-align: top;"> 
12580     
12581     
12582     
12583     
12584     
12585     
12586      <p>Number of
12587additional user-defined subdomains for which
12588statistical analysis
12589and corresponding output (profiles, time series) shall be
12590made.&nbsp; </p>
12591
12592
12593
12594
12595
12596
12597 
12598     
12599     
12600     
12601     
12602     
12603     
12604      <p>By default, vertical profiles and
12605other statistical quantities
12606are calculated as horizontal and/or volume average of the total model
12607domain. Beyond that, these calculations can also be carried out for
12608subdomains which can be defined using the field <a href="chapter_3.5.3.html">rmask </a>within the
12609user-defined software
12610(see <a href="chapter_3.5.3.html">chapter
126113.5.3</a>). The number of these subdomains is determined with the
12612parameter <b>statistic_regions</b>. Maximum 9 additional
12613subdomains
12614are allowed. The parameter <a href="chapter_4.3.html#region">region</a>
12615can be used to assigned names (identifier) to these subdomains which
12616are then used in the headers
12617of the output files and plots.</p>
12618
12619
12620
12621
12622
12623
12624     
12625     
12626     
12627     
12628     
12629     
12630      <p>If the default NetCDF
12631output format is selected (see parameter <a href="chapter_4.2.html#data_output_format">data_output_format</a>),
12632data for the total domain and all defined subdomains are output to the
12633same file(s) (<a href="chapter_3.4.html#DATA_1D_PR_NETCDF">DATA_1D_PR_NETCDF</a>,
12634      <a href="chapter_3.4.html#DATA_1D_TS_NETCDF">DATA_1D_TS_NETCDF</a>).
12635In case of <span style="font-weight: bold;">statistic_regions</span>
12636&gt; <span style="font-style: italic;">0</span>,
12637data on the file for the different domains can be distinguished by a
12638suffix which is appended to the quantity names. Suffix 0 means data for
12639the total domain, suffix 1 means data for subdomain 1, etc.</p>
12640
12641
12642
12643
12644
12645
12646     
12647     
12648     
12649     
12650     
12651     
12652      <p>In
12653case of <span style="font-weight: bold;">data_output_format</span>
12654= <span style="font-style: italic;">'profil'</span>,
12655individual local files for profiles (<a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>)&nbsp;are
12656created for each subdomain. The individual subdomain files differ by
12657their name (the
12658number of the respective subdomain is attached, e.g.
12659PLOT1D_DATA_1). In this case the name of the file with the data of
12660the total domain is PLOT1D_DATA_0. If no subdomains
12661are declared (<b>statistic_regions</b> = <i>0</i>),
12662the name
12663PLOT1D_DATA is used (this must be considered in the
12664respective file connection statements of the <span style="font-weight: bold;">mrun</span> configuration
12665file).</p>
12666
12667
12668
12669
12670
12671
12672 </td>
12673
12674
12675
12676
12677
12678
12679 </tr>
12680
12681
12682
12683
12684
12685
12686 <tr>
12687
12688
12689
12690
12691
12692
12693 <td style="vertical-align: top;"> 
12694     
12695     
12696     
12697     
12698     
12699     
12700      <p><a name="surface_heatflux"></a><b>surface_heatflux</b></p>
12701
12702
12703
12704
12705
12706
12707
12708      </td>
12709
12710
12711
12712
12713
12714
12715 <td style="vertical-align: top;">R</td>
12716
12717
12718
12719
12720
12721
12722
12723      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br>
12724
12725
12726
12727
12728
12729
12730
12731heatflux<br>
12732
12733
12734
12735
12736
12737
12738 </span></td>
12739
12740
12741
12742
12743
12744
12745 <td style="vertical-align: top;"> 
12746     
12747     
12748     
12749     
12750     
12751     
12752      <p>Kinematic sensible
12753heat flux at the bottom surface (in K m/s).&nbsp; </p>
12754
12755
12756
12757
12758
12759
12760 
12761     
12762     
12763     
12764     
12765     
12766     
12767      <p>If
12768a value is assigned to this parameter, the internal two-dimensional
12769surface heat flux field <span style="font-style: italic;">shf</span>
12770is initialized with the value of <span style="font-weight: bold;">surface_heatflux</span>&nbsp;as
12771bottom (horizontally homogeneous) boundary condition for the
12772temperature equation. This additionally requires that a Neumann
12773condition must be used for the potential temperature (see <a href="#bc_pt_b">bc_pt_b</a>),
12774because otherwise the resolved scale may contribute to
12775the surface flux so that a constant value cannot be guaranteed. Also,
12776changes of the
12777surface temperature (see <a href="#pt_surface_initial_change">pt_surface_initial_change</a>)
12778are not allowed. The parameter <a href="#random_heatflux">random_heatflux</a>
12779can be used to impose random perturbations on the (homogeneous) surface
12780heat
12781flux field <span style="font-style: italic;">shf</span>.<br>
12782</p>
12783      <p><span style="font-weight: bold;">Attention:</span><br>
12784Setting of <span style="font-weight: bold;">surface_heatflux</span> requires setting of <a href="#use_surface_fluxes">use_surface_fluxes</a>=<span style="font-style: italic;">.T.</span>, if the Prandtl-layer is switched off (<a href="#prandtl_layer">prandtl_layer</a>=<span style="font-style: italic;">.F.</span>).&nbsp;</p>
12785
12786
12787
12788
12789
12790
12791
12792
12793     
12794     
12795     
12796     
12797     
12798     
12799      <p>
12800In case of a non-flat <a href="#topography">topography</a>,&nbsp;the
12801internal two-dimensional&nbsp;surface heat
12802flux field <span style="font-style: italic;">shf</span>
12803is initialized with the value of <span style="font-weight: bold;">surface_heatflux</span>
12804at the bottom surface and <a href="#wall_heatflux">wall_heatflux(0)</a>
12805at the topography top face.&nbsp;The parameter<a href="#random_heatflux"> random_heatflux</a>
12806can be used to impose random perturbations on this combined surface
12807heat
12808flux field <span style="font-style: italic;">shf</span>.&nbsp;
12809      </p>
12810
12811
12812
12813
12814
12815
12816 
12817     
12818     
12819     
12820     
12821     
12822     
12823      <p>If no surface heat flux is assigned, <span style="font-style: italic;">shf</span> is calculated
12824at each timestep by u<sub>*</sub> * theta<sub>*</sub>
12825(of course only with <a href="#prandtl_layer">prandtl_layer</a>
12826switched on). Here, u<sub>*</sub>
12827and theta<sub>*</sub> are calculated from the Prandtl law
12828assuming
12829logarithmic wind and temperature
12830profiles between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_pt_b">bc_pt_b</a>)
12831must be used as bottom boundary condition for the potential temperature.</p>
12832
12833
12834
12835
12836
12837
12838     
12839     
12840     
12841     
12842     
12843     
12844      <p>See
12845also <a href="#top_heatflux">top_heatflux</a>.</p>
12846
12847
12848
12849
12850
12851
12852
12853      </td>
12854
12855
12856
12857
12858
12859
12860 </tr>
12861
12862
12863
12864
12865
12866
12867 <tr>
12868
12869
12870
12871
12872
12873
12874 <td style="vertical-align: top;"> 
12875     
12876     
12877     
12878     
12879     
12880     
12881      <p><a name="surface_pressure"></a><b>surface_pressure</b></p>
12882
12883
12884
12885
12886
12887
12888
12889      </td>
12890
12891
12892
12893
12894
12895
12896 <td style="vertical-align: top;">R</td>
12897
12898
12899
12900
12901
12902
12903
12904      <td style="vertical-align: top;"><i>1013.25</i></td>
12905
12906
12907
12908
12909
12910
12911
12912      <td style="vertical-align: top;"> 
12913     
12914     
12915     
12916     
12917     
12918     
12919      <p>Atmospheric
12920pressure at the surface (in hPa).&nbsp; </p>
12921
12922
12923
12924
12925
12926
12927
12928Starting from this surface value, the vertical pressure
12929profile is calculated once at the beginning of the run assuming a
12930neutrally stratified
12931atmosphere. This is needed for
12932converting between the liquid water potential temperature and the
12933potential temperature (see <a href="#cloud_physics">cloud_physics</a><span style="text-decoration: underline;"></span>).</td>
12934
12935
12936
12937
12938
12939
12940
12941    </tr>
12942
12943
12944
12945
12946
12947
12948 <tr>
12949
12950
12951
12952
12953
12954
12955 <td style="vertical-align: top;">
12956     
12957     
12958     
12959     
12960     
12961     
12962      <p><a name="surface_scalarflux"></a><b>surface_scalarflux</b></p>
12963
12964
12965
12966
12967
12968
12969
12970      </td>
12971
12972
12973
12974
12975
12976
12977 <td style="vertical-align: top;">R</td>
12978
12979
12980
12981
12982
12983
12984
12985      <td style="vertical-align: top;"><i>0.0</i></td>
12986
12987
12988
12989
12990
12991
12992
12993      <td style="vertical-align: top;"> 
12994     
12995     
12996     
12997     
12998     
12999     
13000      <p>Scalar flux at
13001the surface (in kg/(m<sup>2</sup> s)).&nbsp; </p>
13002
13003
13004
13005
13006
13007
13008
13009     
13010     
13011     
13012     
13013     
13014     
13015      <p>If a non-zero value is assigned to this parameter, the
13016respective scalar flux value is used
13017as bottom (horizontally homogeneous) boundary condition for the scalar
13018concentration equation.&nbsp;This additionally requires that a
13019Neumann
13020condition must be used for the scalar concentration&nbsp;(see <a href="#bc_s_b">bc_s_b</a>),
13021because otherwise the resolved scale may contribute to
13022the surface flux so that a constant value cannot be guaranteed. Also,
13023changes of the
13024surface scalar concentration (see <a href="#s_surface_initial_change">s_surface_initial_change</a>)
13025are not allowed. <br>
13026
13027
13028
13029
13030
13031
13032 </p>
13033
13034
13035
13036
13037
13038
13039 
13040     
13041     
13042     
13043     
13044     
13045     
13046      <p>If no surface scalar
13047flux is assigned (<b>surface_scalarflux</b>
13048= <i>0.0</i>),
13049it is calculated at each timestep by u<sub>*</sub> * s<sub>*</sub>
13050(of course only with Prandtl layer switched on). Here, s<sub>*</sub>
13051is calculated from the Prandtl law assuming a logarithmic scalar
13052concentration
13053profile between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_s_b">bc_s_b</a>)
13054must be used as bottom boundary condition for the scalar concentration.</p>
13055
13056
13057
13058
13059
13060
13061
13062      </td>
13063
13064
13065
13066
13067
13068
13069 </tr>
13070
13071
13072
13073
13074
13075
13076 <tr>
13077
13078
13079
13080
13081
13082
13083 <td style="vertical-align: top;"> 
13084     
13085     
13086     
13087     
13088     
13089     
13090      <p><a name="surface_waterflux"></a><b>surface_waterflux</b></p>
13091
13092
13093
13094
13095
13096
13097
13098      </td>
13099
13100
13101
13102
13103
13104
13105 <td style="vertical-align: top;">R</td>
13106
13107
13108
13109
13110
13111
13112
13113      <td style="vertical-align: top;"><i>0.0</i></td>
13114
13115
13116
13117
13118
13119
13120
13121      <td style="vertical-align: top;"> 
13122     
13123     
13124     
13125     
13126     
13127     
13128      <p>Kinematic
13129water flux near the surface (in m/s).&nbsp; </p>
13130
13131
13132
13133
13134
13135
13136 
13137     
13138     
13139     
13140     
13141     
13142     
13143      <p>If
13144a non-zero value is assigned to this parameter, the
13145respective water flux value is used
13146as bottom (horizontally homogeneous) boundary condition for the
13147humidity equation. This additionally requires that a Neumann
13148condition must be used for the specific humidity / total water content
13149(see <a href="#bc_q_b">bc_q_b</a>),
13150because otherwise the resolved scale may contribute to
13151the surface flux so that a constant value cannot be guaranteed. Also,
13152changes of the
13153surface humidity (see <a href="#q_surface_initial_change">q_surface_initial_change</a>)
13154are not allowed.<br>
13155
13156
13157
13158
13159
13160
13161 </p>
13162
13163
13164
13165
13166
13167
13168 
13169     
13170     
13171     
13172     
13173     
13174     
13175      <p>If no surface water
13176flux is assigned (<b>surface_waterflux</b>
13177= <i>0.0</i>),
13178it is calculated at each timestep by u<sub>*</sub> * q<sub>*</sub>
13179(of course only with Prandtl layer switched on). Here, q<sub>*</sub>
13180is calculated from the Prandtl law assuming a logarithmic temperature
13181profile between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_q_b">bc_q_b</a>)
13182must be used as the bottom boundary condition for the humidity.</p>
13183
13184
13185
13186
13187
13188
13189
13190      </td>
13191
13192
13193
13194
13195
13196
13197 </tr>
13198
13199
13200
13201
13202
13203
13204 <tr>
13205
13206
13207
13208
13209
13210
13211 <td style="vertical-align: top;"> 
13212     
13213     
13214     
13215     
13216     
13217     
13218      <p><a name="s_surface"></a><b>s_surface</b></p>
13219
13220
13221
13222
13223
13224
13225
13226      </td>
13227
13228
13229
13230
13231
13232
13233 <td style="vertical-align: top;">R</td>
13234
13235
13236
13237
13238
13239
13240
13241      <td style="vertical-align: top;"><i>0.0</i></td>
13242
13243
13244
13245
13246
13247
13248
13249      <td style="vertical-align: top;"> 
13250     
13251     
13252     
13253     
13254     
13255     
13256      <p>Surface value
13257of the passive scalar (in kg/m<sup>3</sup>).&nbsp;<br>
13258
13259
13260
13261
13262
13263
13264
13265      </p>
13266
13267
13268
13269
13270
13271
13272
13273This parameter assigns the value of the passive scalar s at
13274the surface (k=0)<b>.</b> Starting from this value, the
13275initial vertical scalar concentration profile is constructed with<a href="#s_vertical_gradient">
13276s_vertical_gradient</a> and <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.</td>
13277
13278
13279
13280
13281
13282
13283
13284    </tr>
13285
13286
13287
13288
13289
13290
13291 <tr>
13292
13293
13294
13295
13296
13297
13298 <td style="vertical-align: top;">
13299     
13300     
13301     
13302     
13303     
13304     
13305      <p><a name="s_surface_initial_change"></a><b>s_surface_initial</b>
13306      <br>
13307
13308
13309
13310
13311
13312
13313 <b>_change</b></p>
13314
13315
13316
13317
13318
13319
13320 </td>
13321
13322
13323
13324
13325
13326
13327 <td style="vertical-align: top;">R</td>
13328
13329
13330
13331
13332
13333
13334 <td style="vertical-align: top;"><i>0.0</i></td>
13335
13336
13337
13338
13339
13340
13341
13342      <td style="vertical-align: top;"> 
13343     
13344     
13345     
13346     
13347     
13348     
13349      <p>Change in
13350surface scalar concentration to be made at the
13351beginning of the 3d run (in kg/m<sup>3</sup>).&nbsp; </p>
13352
13353
13354
13355
13356
13357
13358
13359     
13360     
13361     
13362     
13363     
13364     
13365      <p>If <b>s_surface_initial_change</b><i>&nbsp;</i>is
13366set to a
13367non-zero
13368value, the near surface scalar flux is not allowed to be given
13369simultaneously (see <a href="#surface_scalarflux">surface_scalarflux</a>).</p>
13370
13371
13372
13373
13374
13375
13376
13377      </td>
13378
13379
13380
13381
13382
13383
13384 </tr>
13385
13386
13387
13388
13389
13390
13391 <tr>
13392
13393
13394
13395
13396
13397
13398 <td style="vertical-align: top;"> 
13399     
13400     
13401     
13402     
13403     
13404     
13405      <p><a name="s_vertical_gradient"></a><b>s_vertical_gradient</b></p>
13406
13407
13408
13409
13410
13411
13412
13413      </td>
13414
13415
13416
13417
13418
13419
13420 <td style="vertical-align: top;">R (10)</td>
13421
13422
13423
13424
13425
13426
13427
13428      <td style="vertical-align: top;"><i>10 * 0</i><i>.0</i></td>
13429
13430
13431
13432
13433
13434
13435
13436      <td style="vertical-align: top;"> 
13437     
13438     
13439     
13440     
13441     
13442     
13443      <p>Scalar
13444concentration gradient(s) of the initial scalar
13445concentration profile (in kg/m<sup>3 </sup>/
13446100 m).&nbsp; </p>
13447
13448
13449
13450
13451
13452
13453 
13454     
13455     
13456     
13457     
13458     
13459     
13460      <p>The scalar gradient holds
13461starting from the height level
13462defined by <a href="#s_vertical_gradient_level">s_vertical_gradient_level
13463      </a>(precisely: for all uv levels k, where zu(k) &gt;
13464s_vertical_gradient_level, s_init(k) is set: s_init(k) = s_init(k-1) +
13465dzu(k) * <b>s_vertical_gradient</b>) up to the top
13466boundary or up to
13467the next height level defined by <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.
13468A total of 10 different gradients for 11 height intervals (10 intervals
13469if <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>(1)
13470= <i>0.0</i>) can be assigned. The surface scalar value is
13471assigned
13472via <a href="#s_surface">s_surface</a>.<br>
13473
13474
13475
13476
13477
13478
13479 </p>
13480
13481
13482
13483
13484
13485
13486
13487     
13488     
13489     
13490     
13491     
13492     
13493      <p>Example:&nbsp; </p>
13494
13495
13496
13497
13498
13499
13500 
13501     
13502     
13503     
13504     
13505     
13506     
13507      <ul>
13508
13509
13510
13511
13512
13513
13514 
13515       
13516       
13517       
13518       
13519       
13520       
13521        <p><b>s_vertical_gradient</b>
13522= <i>0.1</i>, <i>0.05</i>,&nbsp; <br>
13523
13524
13525
13526
13527
13528
13529
13530        <b>s_vertical_gradient_level</b> = <i>500.0</i>,
13531        <i>1000.0</i>,</p>
13532
13533
13534
13535
13536
13537
13538 
13539     
13540     
13541     
13542     
13543     
13544     
13545      </ul>
13546
13547
13548
13549
13550
13551
13552 
13553     
13554     
13555     
13556     
13557     
13558     
13559      <p>That
13560defines the scalar concentration to be constant with
13561height up to z = 500.0 m with a value given by <a href="#s_surface">s_surface</a>.
13562For 500.0 m &lt; z &lt;= 1000.0 m the scalar gradient is 0.1
13563kg/m<sup>3 </sup>/ 100 m and for z &gt; 1000.0 m up to
13564the top
13565boundary it is 0.05 kg/m<sup>3 </sup>/ 100 m (it is
13566assumed that the
13567assigned height levels
13568correspond with uv
13569levels).</p>
13570
13571
13572
13573
13574
13575
13576 </td>
13577
13578
13579
13580
13581
13582
13583 </tr>
13584
13585
13586
13587
13588
13589
13590 <tr>
13591
13592
13593
13594
13595
13596
13597 <td style="vertical-align: top;"> 
13598     
13599     
13600     
13601     
13602     
13603     
13604      <p><a name="s_vertical_gradient_level"></a><b>s_vertical_gradient_</b>
13605      <br>
13606
13607
13608
13609
13610
13611
13612 <b>level</b></p>
13613
13614
13615
13616
13617
13618
13619 </td>
13620
13621
13622
13623
13624
13625
13626 <td style="vertical-align: top;">R (10)</td>
13627
13628
13629
13630
13631
13632
13633 <td style="vertical-align: top;"> 
13634     
13635     
13636     
13637     
13638     
13639     
13640      <p><i>10 *</i>
13641      <i>0.0</i></p>
13642
13643
13644
13645
13646
13647
13648 </td>
13649
13650
13651
13652
13653
13654
13655 <td style="vertical-align: top;"> 
13656     
13657     
13658     
13659     
13660     
13661     
13662      <p>Height level from
13663which on the scalar gradient defined by <a href="#s_vertical_gradient">s_vertical_gradient</a>
13664is effective (in m).&nbsp; </p>
13665
13666
13667
13668
13669
13670
13671 
13672     
13673     
13674     
13675     
13676     
13677     
13678      <p>The height levels
13679are to be assigned in ascending order. The
13680default values result in a scalar concentration constant with height
13681regardless of the values of <a href="#s_vertical_gradient">s_vertical_gradient</a>
13682(unless the top boundary of the model is higher than 100000.0 m). For
13683the
13684piecewise construction of scalar concentration profiles see <a href="#s_vertical_gradient">s_vertical_gradient</a>.</p>
13685
13686
13687
13688
13689
13690
13691
13692      </td>
13693
13694
13695
13696
13697
13698
13699 </tr>
13700
13701
13702
13703
13704
13705
13706 <tr>
13707
13708
13709
13710
13711
13712
13713 <td style="vertical-align: top;"> 
13714     
13715     
13716     
13717     
13718     
13719     
13720      <p><a name="timestep_scheme"></a><b>timestep_scheme</b></p>
13721
13722
13723
13724
13725
13726
13727
13728      </td>
13729
13730
13731
13732
13733
13734
13735 <td style="vertical-align: top;">C * 20</td>
13736
13737
13738
13739
13740
13741
13742
13743      <td style="vertical-align: top;"> 
13744     
13745     
13746     
13747     
13748     
13749     
13750      <p><i>'runge</i><br>
13751
13752
13753
13754
13755
13756
13757
13758      <i>kutta-3'</i></p>
13759
13760
13761
13762
13763
13764
13765 </td>
13766
13767
13768
13769
13770
13771
13772 <td style="vertical-align: top;"> 
13773     
13774     
13775     
13776     
13777     
13778     
13779      <p>Time step scheme to
13780be used for the integration of the prognostic
13781variables.&nbsp; </p>
13782
13783
13784
13785
13786
13787
13788 
13789     
13790     
13791     
13792     
13793     
13794     
13795      <p>The user can choose between
13796the following schemes:<br>
13797
13798
13799
13800
13801
13802
13803 </p>
13804
13805
13806
13807
13808
13809
13810 
13811     
13812     
13813     
13814     
13815     
13816     
13817      <p><span style="font-style: italic;">'runge-kutta-3'</span><br>
13818
13819
13820
13821
13822
13823
13824
13825      </p>
13826
13827
13828
13829
13830
13831
13832 
13833     
13834     
13835     
13836     
13837     
13838     
13839      <div style="margin-left: 40px;">Third order
13840Runge-Kutta scheme.<br>
13841
13842
13843
13844
13845
13846
13847
13848This scheme requires the use of <a href="#momentum_advec">momentum_advec</a>
13849= <a href="#scalar_advec">scalar_advec</a>
13850= '<i>pw-scheme'</i>. Please refer to the&nbsp;<a href="../tec/numerik.heiko/zeitschrittverfahren.pdf">documentation
13851on PALM's time integration schemes&nbsp;(28p., in German)</a>
13852fur further details.<br>
13853
13854
13855
13856
13857
13858
13859 </div>
13860
13861
13862
13863
13864
13865
13866 
13867     
13868     
13869     
13870     
13871     
13872     
13873      <p><span style="font-style: italic;">'runge-kutta-2'</span><br>
13874
13875
13876
13877
13878
13879
13880
13881      </p>
13882
13883
13884
13885
13886
13887
13888 
13889     
13890     
13891     
13892     
13893     
13894     
13895      <div style="margin-left: 40px;">Second order
13896Runge-Kutta scheme.<br>
13897
13898
13899
13900
13901
13902
13903
13904For special features see <b>timestep_scheme</b> = '<i>runge-kutta-3'</i>.<br>
13905
13906
13907
13908
13909
13910
13911
13912      </div>
13913
13914
13915
13916
13917
13918
13919 <br>
13920
13921
13922
13923
13924
13925
13926 <span style="font-style: italic;"><span style="font-style: italic;">'leapfrog'</span><br>
13927
13928
13929
13930
13931
13932
13933
13934      <br>
13935
13936
13937
13938
13939
13940
13941 </span> 
13942     
13943     
13944     
13945     
13946     
13947     
13948      <div style="margin-left: 40px;">Second
13949order leapfrog scheme.<br>
13950
13951
13952
13953
13954
13955
13956
13957Although this scheme requires a constant timestep (because it is
13958centered in time),&nbsp; is even applied in case of changes in
13959timestep. Therefore, only small
13960changes of the timestep are allowed (see <a href="#dt">dt</a>).
13961However, an Euler timestep is always used as the first timestep of an
13962initiali run. When using the Bott-Chlond scheme for scalar advection
13963(see <a href="#scalar_advec">scalar_advec</a>),
13964the prognostic equation for potential temperature will be calculated
13965with the Euler scheme, although the leapfrog scheme is switched
13966on.&nbsp; <br>
13967
13968
13969
13970
13971
13972
13973
13974The leapfrog scheme must not be used together with the upstream-spline
13975scheme for calculating the advection (see <a href="#scalar_advec">scalar_advec</a>
13976= '<i>ups-scheme'</i> and <a href="#momentum_advec">momentum_advec</a>
13977= '<i>ups-scheme'</i>).<br>
13978
13979
13980
13981
13982
13983
13984 </div>
13985
13986
13987
13988
13989
13990
13991 <br>
13992
13993
13994
13995
13996
13997
13998
13999      <span style="font-style: italic;">'</span><span style="font-style: italic;"><span style="font-style: italic;">leapfrog+euler'</span><br>
14000
14001
14002
14003
14004
14005
14006
14007      <br>
14008
14009
14010
14011
14012
14013
14014 </span> 
14015     
14016     
14017     
14018     
14019     
14020     
14021      <div style="margin-left: 40px;">The
14022leapfrog scheme is used, but
14023after each change of a timestep an Euler timestep is carried out.
14024Although this method is theoretically correct (because the pure
14025leapfrog method does not allow timestep changes), the divergence of the
14026velocity field (after applying the pressure solver) may be
14027significantly larger than with <span style="font-style: italic;">'leapfrog'</span>.<br>
14028
14029
14030
14031
14032
14033
14034
14035      </div>
14036
14037
14038
14039
14040
14041
14042 <br>
14043
14044
14045
14046
14047
14048
14049 <span style="font-style: italic;">'euler'</span><br>
14050
14051
14052
14053
14054
14055
14056
14057      <br>
14058
14059
14060
14061
14062
14063
14064 
14065     
14066     
14067     
14068     
14069     
14070     
14071      <div style="margin-left: 40px;">First order
14072Euler scheme.&nbsp; <br>
14073
14074
14075
14076
14077
14078
14079
14080The Euler scheme must be used when treating the advection terms with
14081the upstream-spline scheme (see <a href="#scalar_advec">scalar_advec</a>
14082= <span style="font-style: italic;">'ups-scheme'</span>
14083and <a href="#momentum_advec">momentum_advec</a>
14084= <span style="font-style: italic;">'ups-scheme'</span>).</div>
14085
14086
14087
14088
14089
14090
14091
14092      <br>
14093
14094
14095
14096
14097
14098
14099      <br>
14100
14101
14102
14103
14104
14105
14106A differing timestep scheme can be choosed for the
14107subgrid-scale TKE using parameter <a href="#use_upstream_for_tke">use_upstream_for_tke</a>.<br>
14108
14109
14110
14111
14112
14113
14114
14115      </td>
14116
14117
14118
14119
14120
14121
14122 </tr>
14123
14124
14125
14126
14127
14128
14129 <tr>
14130
14131
14132
14133
14134
14135
14136 <td style="text-align: left; vertical-align: top;"><span style="font-weight: bold;"><a name="topography"></a></span><span style="font-weight: bold;">topography</span></td>
14137
14138
14139
14140
14141
14142
14143
14144      <td style="vertical-align: top;">C * 40</td>
14145
14146
14147
14148
14149
14150
14151 <td style="vertical-align: top;"><span style="font-style: italic;">'flat'</span></td>
14152
14153
14154
14155
14156
14157
14158 <td>
14159     
14160     
14161     
14162     
14163     
14164     
14165      <p>Topography mode.&nbsp; </p>
14166
14167
14168
14169
14170
14171
14172 
14173     
14174     
14175     
14176     
14177     
14178     
14179      <p>The user can
14180choose between the following modes:<br>
14181
14182
14183
14184
14185
14186
14187 </p>
14188
14189
14190
14191
14192
14193
14194 
14195     
14196     
14197     
14198     
14199     
14200     
14201      <p><span style="font-style: italic;">'flat'</span><br>
14202
14203
14204
14205
14206
14207
14208 </p>
14209
14210
14211
14212
14213
14214
14215
14216     
14217     
14218     
14219     
14220     
14221     
14222      <div style="margin-left: 40px;">Flat surface.</div>
14223
14224
14225
14226
14227
14228
14229 
14230     
14231     
14232     
14233     
14234     
14235     
14236      <p><span style="font-style: italic;">'single_building'</span><br>
14237
14238
14239
14240
14241
14242
14243
14244      </p>
14245
14246
14247
14248
14249
14250
14251 
14252     
14253     
14254     
14255     
14256     
14257     
14258      <div style="margin-left: 40px;">Flow
14259around&nbsp;a single rectangular building mounted on a flat surface.<br>
14260
14261
14262
14263
14264
14265
14266
14267The building size and location can be specified by the parameters <a href="#building_height">building_height</a>, <a href="#building_length_x">building_length_x</a>, <a href="#building_length_y">building_length_y</a>, <a href="#building_wall_left">building_wall_left</a> and <a href="#building_wall_south">building_wall_south</a>.<font color="#000000"><br></font></div>
14268
14269
14270
14271
14272
14273
14274
14275      <span style="font-style: italic;"></span> 
14276     
14277     
14278     
14279     
14280     
14281     
14282      <p><span style="font-style: italic;">'single_street_canyon'</span><br>
14283
14284
14285
14286
14287
14288
14289
14290      </p>
14291
14292
14293
14294
14295
14296
14297 
14298     
14299     
14300     
14301     
14302     
14303     
14304      <div style="margin-left: 40px;">Flow
14305over a single, quasi-2D street canyon of infinite length oriented either in x- or in y-direction.<br>
14306
14307
14308
14309
14310
14311
14312
14313The canyon size, orientation and location can be specified by the parameters <a href="chapter_4.1.html#canyon_height">canyon_height</a> plus <span style="font-weight: bold;">either</span>&nbsp;<a href="chapter_4.1.html#canyon_width_x">canyon_width_x</a> and <a href="chapter_4.1.html#canyon_wall_left">canyon_wall_left</a> <span style="font-weight: bold;">or</span>&nbsp; <a href="chapter_4.1.html#canyon_width_y">canyon_width_y</a> and <a href="chapter_4.1.html#canyon_wall_south">canyon_wall_south</a>.<font color="#000000"><br></font></div>
14314
14315
14316
14317
14318
14319
14320
14321      <span style="font-style: italic;"></span>&nbsp;<span style="font-style: italic;"></span><p><span style="font-style: italic;">'read_from_file'</span><br>
14322
14323
14324
14325
14326
14327
14328
14329      </p>
14330
14331
14332
14333
14334
14335
14336 
14337     
14338     
14339     
14340     
14341     
14342     
14343      <div style="margin-left: 40px;">Flow around
14344arbitrary topography.<br>
14345
14346
14347
14348
14349
14350
14351
14352This mode requires the input file <a href="chapter_3.4.html#TOPOGRAPHY_DATA">TOPOGRAPHY_DATA</a><font color="#000000">. This file contains </font><font color="#000000"><font color="#000000">the&nbsp;</font></font><font color="#000000">arbitrary topography </font><font color="#000000"><font color="#000000">height
14353information</font></font><font color="#000000">
14354in m. These data&nbsp;<span style="font-style: italic;"></span>must
14355exactly match the horizontal grid.<br></font> </div>
14356
14357
14358
14359
14360
14361
14362 <span style="font-style: italic;"><br>
14363
14364
14365
14366
14367
14368
14369 </span><font color="#000000">
14370Alternatively, the user may add code to the user interface subroutine <a href="chapter_3.5.1.html#user_init_grid">user_init_grid</a>
14371to allow further topography modes. </font>These require to explicitly set the<span style="font-weight: bold;"> </span><a href="#topography_grid_convention">topography_grid_convention</a>&nbsp;to either <span style="font-style: italic;">'cell_edge'</span> or <span style="font-style: italic;">'cell_center'</span>.<br>
14372
14373      <font color="#000000">
14374
14375
14376
14377
14378 <br>
14379
14380
14381
14382
14383
14384
14385
14386Non-flat <span style="font-weight: bold;">topography</span>
14387modes may assign a</font>
14388kinematic sensible<font color="#000000"> <a href="chapter_4.1.html#wall_heatflux">wall_heatflux</a> and a kinematic <a href="chapter_4.1.html#wall_humidityflux">wall_humidityflux</a> (requires <a href="chapter_4.1.html#humidity">humidity</a> = .T.) or a <a href="chapter_4.1.html#wall_scalarflux">wall_scalarflux</a> (requires <a href="chapter_4.1.html#passive_scalar">passive_scalar</a> = .T.) at the five topography faces.</font><br>
14389
14390      <font color="#000000">
14391
14392
14393
14394
14395 <br>
14396
14397
14398
14399
14400
14401
14402
14403All non-flat <span style="font-weight: bold;">topography</span>
14404modes </font>require the use of <a href="#momentum_advec">momentum_advec</a>
14405= <a href="#scalar_advec">scalar_advec</a>
14406= '<i>pw-scheme'</i>, <a href="chapter_4.2.html#psolver">psolver</a>
14407/= <i>'sor</i><i>'</i>,
14408      <i>&nbsp;</i><a href="#alpha_surface">alpha_surface</a>
14409= 0.0,<span style="font-style: italic;"></span>&nbsp;<a style="" href="#galilei_transformation">galilei_transformation</a>
14410= <span style="font-style: italic;">.F.</span>,&nbsp;<a href="#cloud_physics">cloud_physics&nbsp;</a> = <span style="font-style: italic;">.F.</span>,&nbsp; <a href="#cloud_droplets">cloud_droplets</a> = <span style="font-style: italic;">.F.</span>, and <a href="#prandtl_layer">prandtl_layer</a> = .T..<br>
14411
14412
14413
14414
14415
14416
14417
14418      <font color="#000000"><br>
14419
14420
14421
14422
14423
14424
14425
14426Note that an inclined model domain requires the use of <span style="font-weight: bold;">topography</span> = <span style="font-style: italic;">'flat'</span> and a
14427nonzero </font><a href="#alpha_surface">alpha_surface</a>.</td>
14428
14429
14430
14431
14432
14433
14434
14435    </tr>
14436
14437
14438
14439
14440
14441
14442 <tr><td style="vertical-align: top;"><a name="topography_grid_convention"></a><span style="font-weight: bold;">topography_grid_</span><br style="font-weight: bold;"><span style="font-weight: bold;">convention</span></td><td style="vertical-align: top;">C*11</td><td style="vertical-align: top;"><span style="font-style: italic;">default depends on value of <a href="chapter_4.1.html#topography">topography</a>; see text for details</span></td><td>Convention for defining the&nbsp;topography grid.<br><br>Possible values are<br><ul><li><span style="font-style: italic;">'cell_edge':&nbsp;</span>the distance between cell edges defines the extent of topography. This setting is normally for <span style="font-style: italic;">generic topographies</span>, i.e. topographies that are constructed using length parameters. For example, <a href="chapter_4.1.html#topography">topography</a> = <span style="font-style: italic;">'single_building'</span> is constructed using <a href="chapter_4.1.html#building_length_x">building_length_x</a> and <a href="chapter_4.1.html#building_length_y">building_length_y</a>.
14443The advantage of this setting is that the actual size of generic
14444topography is independent of the grid size, provided that the length
14445parameters are an integer multiple of the grid lengths&nbsp;<a href="chapter_4.1.html#dx">dx</a> and&nbsp;<a href="chapter_4.1.html#dy">dy</a>. This is convenient&nbsp;for resolution parameter studies.</li><li><span style="font-style: italic;">'cell_center'</span><span style="font-style: italic;">:&nbsp;</span>the number of topography cells define the extent of topography. This setting is normally for <span style="font-style: italic;">rastered real topographies</span> derived from digital elevation models.&nbsp;For example, <a href="chapter_4.1.html#topography">topography</a> = <span style="font-style: italic;">'read_from_file'</span> is constructed using&nbsp;the input file <a href="chapter_3.4.html#TOPOGRAPHY_DATA">TOPOGRAPHY_DATA</a><font color="#000000">.&nbsp;</font>The
14446advantage of this setting is that the&nbsp;rastered topography cells of
14447the input file are directly mapped to topography grid boxes in PALM. <span style="font-style: italic;"></span></li></ul>The example files&nbsp;<big><code>example_topo_file</code></big> and&nbsp;<big><code>example_building</code></big> in <big><code>trunk/EXAMPLES/</code></big>
14448illustrate the difference between
14449both approaches. Both examples simulate a single building and yield the
14450same results. The former uses a rastered topography input file with <span style="font-style: italic;">'cell_center'</span> convention, the latter applies a generic topography with <span style="font-style: italic;">'cell_edge'</span> convention.<br><br>The default value is<br><ul><li><span style="font-style: italic;">'cell_edge' </span>if <a href="chapter_4.1.html#topography">topography</a> = <span style="font-style: italic;">'single_building'</span> or <span style="font-style: italic;">'single_street_canyon'</span>,</li><li><span style="font-style: italic;">'cell_center'</span><span style="font-style: italic;"></span> if <a href="chapter_4.1.html#topography">topography</a> = <span style="font-style: italic;">'read_from_file'</span>,</li><li><span style="font-style: italic;">none (' '</span> ) otherwise, leading to an abort if&nbsp;<span style="font-weight: bold;">topography_grid_convention</span> is not set.</li></ul>This means that <br><ul><li>For PALM simulations using a <span style="font-style: italic;">user-defined topography</span>, the<span style="font-weight: bold;"> topography_grid_convention</span> must be explicitly set to either <span style="font-style: italic;">'cell_edge'</span> or <span style="font-style: italic;">'cell_center'</span>.</li><li>For PALM simulations using a <span style="font-style: italic;">standard topography</span> <span style="font-style: italic;">('single_building'</span>, <span style="font-style: italic;">'single_street_canyon'</span> or <span style="font-style: italic;">'read_from_file')</span>, it is possible but not required to set the&nbsp; <span style="font-weight: bold;">topography_grid_convention</span> because appropriate default values apply.</li></ul></td></tr><tr>
14451
14452
14453
14454
14455
14456
14457      <td style="vertical-align: top;"><a name="top_heatflux"></a><span style="font-weight: bold;">top_heatflux</span></td>
14458
14459
14460
14461
14462
14463
14464      <td style="vertical-align: top;">R</td>
14465
14466
14467
14468
14469
14470
14471      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br>
14472
14473
14474
14475
14476
14477
14478
14479heatflux</span></td>
14480
14481
14482
14483
14484
14485
14486      <td style="vertical-align: top;">
14487     
14488     
14489     
14490     
14491     
14492     
14493      <p>Kinematic
14494sensible heat flux at the top boundary (in K m/s).&nbsp; </p>
14495
14496
14497
14498
14499
14500
14501
14502     
14503     
14504     
14505     
14506     
14507     
14508      <p>If a value is assigned to this parameter, the internal
14509two-dimensional surface heat flux field <span style="font-family: monospace;">tswst</span> is
14510initialized with the value of <span style="font-weight: bold;">top_heatflux</span>&nbsp;as
14511top (horizontally homogeneous) boundary condition for the
14512temperature equation. This additionally requires that a Neumann
14513condition must be used for the potential temperature (see <a href="chapter_4.1.html#bc_pt_t">bc_pt_t</a>),
14514because otherwise the resolved scale may contribute to
14515the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14516
14517
14518
14519
14520
14521
14522
14523     
14524     
14525     
14526     
14527     
14528     
14529      <p><span style="font-weight: bold;">Note:</span><br>
14530
14531
14532
14533
14534
14535
14536The
14537application of a top heat flux additionally requires the setting of
14538initial parameter <a href="#use_top_fluxes">use_top_fluxes</a>
14539= .T..<span style="font-style: italic;"></span><span style="font-weight: bold;"></span> </p>
14540
14541
14542
14543
14544
14545
14546     
14547     
14548     
14549     
14550     
14551     
14552      <p>No
14553Prandtl-layer is available at the top boundary so far.</p>
14554
14555
14556
14557
14558
14559
14560     
14561     
14562     
14563     
14564     
14565     
14566      <p>See
14567also <a href="#surface_heatflux">surface_heatflux</a>.</p>
14568
14569
14570
14571
14572
14573
14574
14575      </td>
14576
14577
14578
14579
14580
14581
14582    </tr>
14583
14584
14585
14586
14587
14588
14589    <tr>
14590
14591
14592
14593
14594
14595
14596      <td style="vertical-align: top;"><a name="top_momentumflux_u"></a><span style="font-weight: bold;">top_momentumflux_u</span></td>
14597
14598
14599
14600
14601
14602
14603      <td style="vertical-align: top;">R</td>
14604
14605
14606
14607
14608
14609
14610      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed momentumflux</span></td>
14611
14612
14613
14614
14615
14616
14617      <td style="vertical-align: top;">Momentum flux along x at the top boundary (in m2/s2).<br>
14618
14619
14620
14621
14622
14623
14624     
14625     
14626     
14627     
14628     
14629     
14630      <p>If a value is assigned to this parameter, the internal
14631two-dimensional u-momentum flux field <span style="font-family: monospace;">uswst</span> is
14632initialized with the value of <span style="font-weight: bold;">top_momentumflux_u</span> as
14633top (horizontally homogeneous) boundary condition for the u-momentum equation.</p>
14634
14635
14636
14637
14638
14639
14640     
14641     
14642     
14643     
14644     
14645     
14646      <p><span style="font-weight: bold;">Notes:</span><br>
14647
14648
14649
14650
14651
14652
14653The
14654application of a top momentum flux additionally requires the setting of
14655initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a>
14656= .T.. Setting of <span style="font-weight: bold;">top_momentumflux_u</span> requires setting of <a href="#top_momentumflux_v">top_momentumflux_v</a> also.</p>
14657
14658
14659
14660
14661
14662
14663     
14664     
14665     
14666     
14667     
14668     
14669      <p>A&nbsp;Neumann
14670condition should be used for the u velocity component (see <a href="chapter_4.1.html#bc_uv_t">bc_uv_t</a>),
14671because otherwise the resolved scale may contribute to
14672the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14673
14674
14675
14676
14677
14678
14679
14680      <span style="font-weight: bold;"></span>
14681     
14682     
14683     
14684     
14685     
14686     
14687      <p>No
14688Prandtl-layer is available at the top boundary so far.</p>
14689
14690
14691
14692
14693
14694
14695     
14696     
14697     
14698     
14699     
14700     
14701      <p> The <a href="chapter_3.8.html">coupled</a> ocean parameter file&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a> should include dummy REAL value assignments to both <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> and&nbsp;<a href="chapter_4.1.html#top_momentumflux_v">top_momentumflux_v</a> (e.g.&nbsp;top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to enable the momentum flux coupling.</p>
14702
14703
14704
14705
14706
14707
14708      </td>
14709
14710
14711
14712
14713
14714
14715    </tr>
14716
14717
14718
14719
14720
14721
14722    <tr>
14723
14724
14725
14726
14727
14728
14729      <td style="vertical-align: top;"><a name="top_momentumflux_v"></a><span style="font-weight: bold;">top_momentumflux_v</span></td>
14730
14731
14732
14733
14734
14735
14736      <td style="vertical-align: top;">R</td>
14737
14738
14739
14740
14741
14742
14743      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed momentumflux</span></td>
14744
14745
14746
14747
14748
14749
14750      <td style="vertical-align: top;">Momentum flux along y at the top boundary (in m2/s2).<br>
14751
14752
14753
14754
14755
14756
14757     
14758     
14759     
14760     
14761     
14762     
14763      <p>If a value is assigned to this parameter, the internal
14764two-dimensional v-momentum flux field <span style="font-family: monospace;">vswst</span> is
14765initialized with the value of <span style="font-weight: bold;">top_momentumflux_v</span> as
14766top (horizontally homogeneous) boundary condition for the v-momentum equation.</p>
14767
14768
14769
14770
14771
14772
14773     
14774     
14775     
14776     
14777     
14778     
14779      <p><span style="font-weight: bold;">Notes:</span><br>
14780
14781
14782
14783
14784
14785
14786The
14787application of a top momentum flux additionally requires the setting of
14788initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a>
14789= .T.. Setting of <span style="font-weight: bold;">top_momentumflux_v</span> requires setting of <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> also.</p>
14790
14791
14792
14793
14794
14795
14796     
14797     
14798     
14799     
14800     
14801     
14802      <p>A&nbsp;Neumann
14803condition should be used for the v velocity component (see <a href="chapter_4.1.html#bc_uv_t">bc_uv_t</a>),
14804because otherwise the resolved scale may contribute to
14805the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14806
14807
14808
14809
14810
14811
14812
14813      <span style="font-weight: bold;"></span>
14814     
14815     
14816     
14817     
14818     
14819     
14820      <p>No
14821Prandtl-layer is available at the top boundary so far.</p>
14822
14823
14824
14825
14826
14827
14828     
14829     
14830     
14831     
14832     
14833     
14834      <p> The <a href="chapter_3.8.html">coupled</a> ocean parameter file&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a> should include dummy REAL value assignments to both <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> and&nbsp;<a href="chapter_4.1.html#top_momentumflux_v">top_momentumflux_v</a> (e.g.&nbsp;top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to enable the momentum flux coupling.</p>
14835
14836
14837
14838
14839
14840
14841      </td>
14842
14843
14844
14845
14846
14847
14848    </tr>
14849
14850
14851
14852
14853
14854
14855    <tr>
14856
14857
14858
14859
14860
14861
14862      <td style="vertical-align: top;"><a name="top_salinityflux"></a><span style="font-weight: bold;">top_salinityflux</span></td>
14863
14864
14865
14866
14867
14868
14869      <td style="vertical-align: top;">R</td>
14870
14871
14872
14873
14874
14875
14876      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br>
14877
14878
14879
14880
14881
14882
14883
14884salinityflux</span></td>
14885
14886
14887
14888
14889
14890
14891      <td style="vertical-align: top;">
14892     
14893     
14894     
14895     
14896     
14897     
14898      <p>Kinematic
14899salinity flux at the top boundary, i.e. the sea surface (in psu m/s).&nbsp; </p>
14900
14901
14902
14903
14904
14905
14906
14907     
14908     
14909     
14910     
14911     
14912     
14913      <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p>
14914
14915
14916
14917
14918
14919
14920     
14921     
14922     
14923     
14924     
14925     
14926      <p>If a value is assigned to this parameter, the internal
14927two-dimensional surface heat flux field <span style="font-family: monospace;">saswst</span> is
14928initialized with the value of <span style="font-weight: bold;">top_salinityflux</span>&nbsp;as
14929top (horizontally homogeneous) boundary condition for the salinity equation. This additionally requires that a Neumann
14930condition must be used for the salinity (see <a href="chapter_4.1.html#bc_sa_t">bc_sa_t</a>),
14931because otherwise the resolved scale may contribute to
14932the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14933
14934
14935
14936
14937
14938
14939
14940     
14941     
14942     
14943     
14944     
14945     
14946      <p><span style="font-weight: bold;">Note:</span><br>
14947
14948
14949
14950
14951
14952
14953The
14954application of a salinity flux at the model top additionally requires the setting of
14955initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a>
14956= .T..<span style="font-style: italic;"></span><span style="font-weight: bold;"></span> </p>
14957
14958
14959
14960
14961
14962
14963     
14964     
14965     
14966     
14967     
14968     
14969      <p>See
14970also <a href="chapter_4.1.html#bottom_salinityflux">bottom_salinityflux</a>.</p>
14971
14972
14973
14974
14975
14976
14977      </td>
14978
14979
14980
14981
14982
14983
14984    </tr>
14985
14986
14987
14988
14989
14990
14991    <tr><td style="vertical-align: top;"><a name="turbulent_inflow"></a><span style="font-weight: bold;">turbulent_inflow</span></td><td style="vertical-align: top;">L</td><td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td><td style="vertical-align: top;">Generates a turbulent inflow at side boundaries using a turbulence recycling method.<br><br>Turbulent inflow is realized using the turbulence recycling method from Lund et al. (1998, J. Comp. Phys., <span style="font-weight: bold;">140</span>, 233-258) modified by Kataoka and Mizuno (2002, Wind and Structures, <span style="font-weight: bold;">5</span>, 379-392).<br><br>A turbulent inflow requires Dirichlet conditions at the respective inflow boundary. <span style="font-weight: bold;">So far, a turbulent inflow is realized from the left (west) side only, i.e. </span><a style="font-weight: bold;" href="chapter_4.1.html#bc_lr">bc_lr</a><span style="font-weight: bold;">&nbsp;=</span><span style="font-style: italic; font-weight: bold;"> 'dirichlet/radiation'</span><span style="font-weight: bold;"> is required!</span><br><br>The initial (quasi-stationary) turbulence field should be generated by a precursor run and used by setting <a href="chapter_4.1.html#initializing_actions">initializing_actions</a> =<span style="font-style: italic;"> 'cyclic_fill'</span>.<br><br>The distance of the recycling plane from the inflow boundary can be set with parameter <a href="chapter_4.1.html#recycling_width">recycling_width</a>.
14992The heigth above ground above which the turbulence signal is not used
14993for recycling and the width of the layer within&nbsp;the magnitude of
14994the turbulence signal is damped from 100% to 0% can be set with
14995parameters <a href="chapter_4.1.html#inflow_damping_height">inflow_damping_height</a> and <a href="chapter_4.1.html#inflow_damping_width">inflow_damping_width</a>.<br><br>The detailed setup for a turbulent inflow is described in <a href="chapter_3.9.html">chapter 3.9</a>.</td></tr><tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="u_bulk"></a>u_bulk</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td><td>u-component of the predefined bulk velocity (in m/s).<br><br>This parameter comes into effect if <a href="#conserve_volume_flow">conserve_volume_flow</a> = <span style="font-style: italic;">.T.</span> and <a href="#conserve_volume_flow_mode">conserve_volume_flow_mode</a> = <span style="font-style: italic;">'bulk_velocity'</span>.</td></tr><tr>
14996
14997
14998
14999
15000
15001
15002 <td style="vertical-align: top;">
15003     
15004     
15005     
15006     
15007     
15008     
15009      <p><a name="ug_surface"></a><span style="font-weight: bold;">ug_surface</span></p>
15010
15011
15012
15013
15014
15015
15016
15017      </td>
15018
15019
15020
15021
15022
15023
15024 <td style="vertical-align: top;">R<br>
15025
15026
15027
15028
15029
15030
15031 </td>
15032
15033
15034
15035
15036
15037
15038
15039      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
15040
15041
15042
15043
15044
15045
15046 </td>
15047
15048
15049
15050
15051
15052
15053
15054      <td style="vertical-align: top;">u-component of the
15055geostrophic
15056wind at the surface (in m/s).<br>
15057
15058
15059
15060
15061
15062
15063 <br>
15064
15065
15066
15067
15068
15069
15070
15071This parameter assigns the value of the u-component of the geostrophic
15072wind (ug) at the surface (k=0). Starting from this value, the initial
15073vertical profile of the <br>
15074
15075
15076
15077
15078
15079
15080
15081u-component of the geostrophic wind is constructed with <a href="#ug_vertical_gradient">ug_vertical_gradient</a>
15082and <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>.
15083The
15084profile constructed in that way is used for creating the initial
15085vertical velocity profile of the 3d-model. Either it is applied, as it
15086has been specified by the user (<a href="#initializing_actions">initializing_actions</a>
15087= 'set_constant_profiles') or it is used for calculating a stationary
15088boundary layer wind profile (<a href="#initializing_actions">initializing_actions</a>
15089= 'set_1d-model_profiles'). If ug is constant with height (i.e. ug(k)=<span style="font-weight: bold;">ug_surface</span>)
15090and&nbsp; has a large
15091value, it is recommended to use a Galilei-transformation of the
15092coordinate system, if possible (see <a href="#galilei_transformation">galilei_transformation</a>),
15093in order to obtain larger time steps.<br>
15094
15095
15096
15097
15098
15099
15100      <br>
15101
15102
15103
15104
15105
15106
15107      <span style="font-weight: bold;">Attention:</span><br>
15108
15109
15110
15111
15112
15113
15114In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
15115this parameter gives the geostrophic velocity value (i.e. the pressure gradient) at the sea surface, which is
15116at k=nzt. The profile is then constructed from the surface down to the
15117bottom of the model.<br>
15118
15119
15120
15121
15122
15123
15124 </td>
15125
15126
15127
15128
15129
15130
15131 </tr>
15132
15133
15134
15135
15136
15137
15138
15139    <tr>
15140
15141
15142
15143
15144
15145
15146 <td style="vertical-align: top;"> 
15147     
15148     
15149     
15150     
15151     
15152     
15153      <p><a name="ug_vertical_gradient"></a><span style="font-weight: bold;">ug_vertical_gradient</span></p>
15154
15155
15156
15157
15158
15159
15160
15161      </td>
15162
15163
15164
15165
15166
15167
15168 <td style="vertical-align: top;">R(10)<br>
15169
15170
15171
15172
15173
15174
15175
15176      </td>
15177
15178
15179
15180
15181
15182
15183 <td style="vertical-align: top;"><span style="font-style: italic;">10
15184* 0.0</span><br>
15185
15186
15187
15188
15189
15190
15191 </td>
15192
15193
15194
15195
15196
15197
15198 <td style="vertical-align: top;">Gradient(s) of the initial
15199profile of the&nbsp; u-component of the geostrophic wind (in
152001/100s).<br>
15201
15202
15203
15204
15205
15206
15207 <br>
15208
15209
15210
15211
15212
15213
15214
15215The gradient holds starting from the height level defined by <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>
15216(precisely: for all uv levels k where zu(k) &gt; <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>,
15217ug(k) is set: ug(k) = ug(k-1) + dzu(k) * <span style="font-weight: bold;">ug_vertical_gradient</span>)
15218up to the top
15219boundary or up to the next height level defined by <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>.
15220A
15221total of 10 different gradients for 11 height intervals (10
15222intervals&nbsp; if <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>(1)
15223= 0.0) can be assigned. The surface geostrophic wind is assigned by <a href="#ug_surface">ug_surface</a>.<br>
15224
15225
15226
15227
15228
15229
15230      <br>
15231
15232
15233
15234
15235
15236
15237      <span style="font-weight: bold;">Attention:</span><br>
15238
15239
15240
15241
15242
15243
15244In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
15245the profile is constructed like described above, but starting from the
15246sea surface (k=nzt) down to the bottom boundary of the model. Height
15247levels have then to be given as negative values, e.g. <span style="font-weight: bold;">ug_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.<br>
15248
15249
15250
15251
15252
15253
15254 </td>
15255
15256
15257
15258
15259
15260
15261
15262    </tr>
15263
15264
15265
15266
15267
15268
15269 <tr>
15270
15271
15272
15273
15274
15275
15276 <td style="vertical-align: top;">
15277     
15278     
15279     
15280     
15281     
15282     
15283      <p><a name="ug_vertical_gradient_level"></a><span style="font-weight: bold;">ug_vertical_gradient_level</span></p>
15284
15285
15286
15287
15288
15289
15290
15291      </td>
15292
15293
15294
15295
15296
15297
15298 <td style="vertical-align: top;">R(10)<br>
15299
15300
15301
15302
15303
15304
15305
15306      </td>
15307
15308
15309
15310
15311
15312
15313 <td style="vertical-align: top;"><span style="font-style: italic;">10
15314* 0.0</span><br>
15315
15316
15317
15318
15319
15320
15321 </td>
15322
15323
15324
15325
15326
15327
15328 <td style="vertical-align: top;">Height level from which on the
15329gradient defined by <a href="#ug_vertical_gradient">ug_vertical_gradient</a>
15330is effective (in m).<br>
15331
15332
15333
15334
15335
15336
15337 <br>
15338
15339
15340
15341
15342
15343
15344
15345The height levels have to be assigned in ascending order. For the
15346piecewise construction of a profile of the u-component of the
15347geostrophic wind component (ug) see <a href="#ug_vertical_gradient">ug_vertical_gradient</a>.<br>
15348
15349
15350
15351
15352
15353
15354      <br>
15355
15356
15357
15358
15359
15360
15361      <span style="font-weight: bold;">Attention:</span><br>
15362
15363
15364
15365
15366
15367
15368In case of ocean runs&nbsp;(see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.</td>
15369
15370
15371
15372
15373
15374
15375 </tr>
15376
15377
15378
15379
15380
15381
15382 <tr>
15383
15384
15385
15386
15387
15388
15389 <td style="vertical-align: top;"> 
15390     
15391     
15392     
15393     
15394     
15395     
15396      <p><a name="ups_limit_e"></a><b>ups_limit_e</b></p>
15397
15398
15399
15400
15401
15402
15403
15404      </td>
15405
15406
15407
15408
15409
15410
15411 <td style="vertical-align: top;">R</td>
15412
15413
15414
15415
15416
15417
15418
15419      <td style="vertical-align: top;"><i>0.0</i></td>
15420
15421
15422
15423
15424
15425
15426
15427      <td style="vertical-align: top;"> 
15428     
15429     
15430     
15431     
15432     
15433     
15434      <p>Subgrid-scale
15435turbulent kinetic energy difference used as
15436criterion for applying the upstream scheme when upstream-spline
15437advection is switched on (in m<sup>2</sup>/s<sup>2</sup>).
15438&nbsp; </p>
15439
15440
15441
15442
15443
15444
15445 
15446     
15447     
15448     
15449     
15450     
15451     
15452      <p>This variable steers the appropriate
15453treatment of the
15454advection of the subgrid-scale turbulent kinetic energy in case that
15455the uptream-spline scheme is used . For further information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp; </p>
15456
15457
15458
15459
15460
15461
15462
15463     
15464     
15465     
15466     
15467     
15468     
15469      <p>Only positive values are allowed for <b>ups_limit_e</b>.
15470      </p>
15471
15472
15473
15474
15475
15476
15477 </td>
15478
15479
15480
15481
15482
15483
15484 </tr>
15485
15486
15487
15488
15489
15490
15491 <tr>
15492
15493
15494
15495
15496
15497
15498 <td style="vertical-align: top;"> 
15499     
15500     
15501     
15502     
15503     
15504     
15505      <p><a name="ups_limit_pt"></a><b>ups_limit_pt</b></p>
15506
15507
15508
15509
15510
15511
15512
15513      </td>
15514
15515
15516
15517
15518
15519
15520 <td style="vertical-align: top;">R</td>
15521
15522
15523
15524
15525
15526
15527
15528      <td style="vertical-align: top;"><i>0.0</i></td>
15529
15530
15531
15532
15533
15534
15535
15536      <td style="vertical-align: top;"> 
15537     
15538     
15539     
15540     
15541     
15542     
15543      <p>Temperature
15544difference used as criterion for applying&nbsp;
15545the upstream scheme when upstream-spline advection&nbsp; is
15546switched on
15547(in K).&nbsp; </p>
15548
15549
15550
15551
15552
15553
15554 
15555     
15556     
15557     
15558     
15559     
15560     
15561      <p>This criterion is used if the
15562upstream-spline scheme is
15563switched on (see <a href="#scalar_advec">scalar_advec</a>).<br>
15564
15565
15566
15567
15568
15569
15570
15571If, for a given gridpoint, the absolute temperature difference with
15572respect to the upstream
15573grid point is smaller than the value given for <b>ups_limit_pt</b>,
15574the upstream scheme is used for this gridpoint (by default, the
15575upstream-spline scheme is always used). Reason: in case of a very small
15576upstream gradient, the advection should cause only a very small
15577tendency. However, in such situations the upstream-spline scheme may
15578give wrong tendencies at a
15579grid point due to spline overshooting, if simultaneously the downstream
15580gradient is very large. In such cases it may be more reasonable to use
15581the upstream scheme. The numerical diffusion caused by the upstream
15582schme remains small as long as the upstream gradients are small.<br>
15583
15584
15585
15586
15587
15588
15589
15590      </p>
15591
15592
15593
15594
15595
15596
15597 
15598     
15599     
15600     
15601     
15602     
15603     
15604      <p>The percentage of grid points for which the
15605upstream
15606scheme is actually used, can be output as a time series with respect to
15607the
15608three directions in space with run parameter (see <a href="chapter_4.2.html#dt_dots">dt_dots</a>, the
15609timeseries names in the NetCDF file are <i>'splptx'</i>, <i>'splpty'</i>,
15610      <i>'splptz'</i>). The percentage
15611of gridpoints&nbsp; should stay below a certain limit, however, it
15612is
15613not possible to give
15614a general limit, since it depends on the respective flow.&nbsp; </p>
15615
15616
15617
15618
15619
15620
15621
15622     
15623     
15624     
15625     
15626     
15627     
15628      <p>Only positive values are permitted for <b>ups_limit_pt</b>.<br>
15629
15630
15631
15632
15633
15634
15635
15636      </p>
15637
15638
15639
15640
15641
15642
15643
15644A more effective control of
15645the &#8220;overshoots&#8221; can be achieved with parameter <a href="#cut_spline_overshoot">cut_spline_overshoot</a>.
15646      </td>
15647
15648
15649
15650
15651
15652
15653 </tr>
15654
15655
15656
15657
15658
15659
15660 <tr>
15661
15662
15663
15664
15665
15666
15667 <td style="vertical-align: top;"> 
15668     
15669     
15670     
15671     
15672     
15673     
15674      <p><a name="ups_limit_u"></a><b>ups_limit_u</b></p>
15675
15676
15677
15678
15679
15680
15681
15682      </td>
15683
15684
15685
15686
15687
15688
15689 <td style="vertical-align: top;">R</td>
15690
15691
15692
15693
15694
15695
15696
15697      <td style="vertical-align: top;"><i>0.0</i></td>
15698
15699
15700
15701
15702
15703
15704
15705      <td style="vertical-align: top;"> 
15706     
15707     
15708     
15709     
15710     
15711     
15712      <p>Velocity
15713difference (u-component) used as criterion for
15714applying the upstream scheme
15715when upstream-spline advection is switched on (in m/s).&nbsp; </p>
15716
15717
15718
15719
15720
15721
15722
15723     
15724     
15725     
15726     
15727     
15728     
15729      <p>This variable steers the appropriate treatment of the
15730advection of the u-velocity-component in case that the upstream-spline
15731scheme is used. For further
15732information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp;
15733      </p>
15734
15735
15736
15737
15738
15739
15740 
15741     
15742     
15743     
15744     
15745     
15746     
15747      <p>Only positive values are permitted for <b>ups_limit_u</b>.</p>
15748
15749
15750
15751
15752
15753
15754
15755      </td>
15756
15757
15758
15759
15760
15761
15762 </tr>
15763
15764
15765
15766
15767
15768
15769 <tr>
15770
15771
15772
15773
15774
15775
15776 <td style="vertical-align: top;"> 
15777     
15778     
15779     
15780     
15781     
15782     
15783      <p><a name="ups_limit_v"></a><b>ups_limit_v</b></p>
15784
15785
15786
15787
15788
15789
15790
15791      </td>
15792
15793
15794
15795
15796
15797
15798 <td style="vertical-align: top;">R</td>
15799
15800
15801
15802
15803
15804
15805
15806      <td style="vertical-align: top;"><i>0.0</i></td>
15807
15808
15809
15810
15811
15812
15813
15814      <td style="vertical-align: top;"> 
15815     
15816     
15817     
15818     
15819     
15820     
15821      <p>Velocity
15822difference (v-component) used as criterion for
15823applying the upstream scheme
15824when upstream-spline advection is switched on (in m/s).&nbsp; </p>
15825
15826
15827
15828
15829
15830
15831
15832     
15833     
15834     
15835     
15836     
15837     
15838      <p>This variable steers the appropriate treatment of the
15839advection of the v-velocity-component in case that the upstream-spline
15840scheme is used. For further
15841information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp;
15842      </p>
15843
15844
15845
15846
15847
15848
15849 
15850     
15851     
15852     
15853     
15854     
15855     
15856      <p>Only positive values are permitted for <b>ups_limit_v</b>.</p>
15857
15858
15859
15860
15861
15862
15863
15864      </td>
15865
15866
15867
15868
15869
15870
15871 </tr>
15872
15873
15874
15875
15876
15877
15878 <tr>
15879
15880
15881
15882
15883
15884
15885 <td style="vertical-align: top;"> 
15886     
15887     
15888     
15889     
15890     
15891     
15892      <p><a name="ups_limit_w"></a><b>ups_limit_w</b></p>
15893
15894
15895
15896
15897
15898
15899
15900      </td>
15901
15902
15903
15904
15905
15906
15907 <td style="vertical-align: top;">R</td>
15908
15909
15910
15911
15912
15913
15914
15915      <td style="vertical-align: top;"><i>0.0</i></td>
15916
15917
15918
15919
15920
15921
15922
15923      <td style="vertical-align: top;"> 
15924     
15925     
15926     
15927     
15928     
15929     
15930      <p>Velocity
15931difference (w-component) used as criterion for
15932applying the upstream scheme
15933when upstream-spline advection is switched on (in m/s).&nbsp; </p>
15934
15935
15936
15937
15938
15939
15940
15941     
15942     
15943     
15944     
15945     
15946     
15947      <p>This variable steers the appropriate treatment of the
15948advection of the w-velocity-component in case that the upstream-spline
15949scheme is used. For further
15950information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp;
15951      </p>
15952
15953
15954
15955
15956
15957
15958 
15959     
15960     
15961     
15962     
15963     
15964     
15965      <p>Only positive values are permitted for <b>ups_limit_w</b>.</p>
15966
15967
15968
15969
15970
15971
15972
15973      </td>
15974
15975
15976
15977
15978
15979
15980 </tr>
15981
15982
15983
15984
15985
15986
15987 <tr>
15988
15989
15990
15991
15992
15993
15994 <td style="vertical-align: top;"> 
15995     
15996     
15997     
15998     
15999     
16000     
16001      <p><a name="use_surface_fluxes"></a><b>use_surface_fluxes</b></p>
16002
16003
16004
16005
16006
16007
16008
16009      </td>
16010
16011
16012
16013
16014
16015
16016 <td style="vertical-align: top;">L</td>
16017
16018
16019
16020
16021
16022
16023
16024      <td style="vertical-align: top;"><i>.F.</i></td>
16025
16026
16027
16028
16029
16030
16031
16032      <td style="vertical-align: top;"> 
16033     
16034     
16035     
16036     
16037     
16038     
16039      <p>Parameter to
16040steer the treatment of the subgrid-scale vertical
16041fluxes within the diffusion terms at k=1 (bottom boundary).<br>
16042
16043
16044
16045
16046
16047
16048 </p>
16049
16050
16051
16052
16053
16054
16055
16056     
16057     
16058     
16059     
16060     
16061     
16062      <p>By default, the near-surface subgrid-scale fluxes are
16063parameterized (like in the remaining model domain) using the gradient
16064approach. If <b>use_surface_fluxes</b>
16065= <i>.TRUE.</i>, the user-assigned surface fluxes are used
16066instead
16067(see <a href="#surface_heatflux">surface_heatflux</a>,
16068      <a href="#surface_waterflux">surface_waterflux</a>
16069and <a href="#surface_scalarflux">surface_scalarflux</a>)
16070      <span style="font-weight: bold;">or</span> the
16071surface fluxes are
16072calculated via the Prandtl layer relation (depends on the bottom
16073boundary conditions, see <a href="#bc_pt_b">bc_pt_b</a>,
16074      <a href="#bc_q_b">bc_q_b</a>
16075and <a href="#bc_s_b">bc_s_b</a>).<br>
16076
16077
16078
16079
16080
16081
16082 </p>
16083
16084
16085
16086
16087
16088
16089
16090     
16091     
16092     
16093     
16094     
16095     
16096      <p><b>use_surface_fluxes</b>
16097is automatically set <i>.TRUE.</i>, if a Prandtl layer is
16098used (see <a href="#prandtl_layer">prandtl_layer</a>).&nbsp;
16099      </p>
16100
16101
16102
16103
16104
16105
16106 
16107     
16108     
16109     
16110     
16111     
16112     
16113      <p>The user may prescribe the surface fluxes at the
16114bottom
16115boundary without using a Prandtl layer by setting <span style="font-weight: bold;">use_surface_fluxes</span> =
16116      <span style="font-style: italic;">.T.</span> and <span style="font-weight: bold;">prandtl_layer</span> = <span style="font-style: italic;">.F.</span>. If , in this
16117case, the
16118momentum flux (u<sub>*</sub><sup>2</sup>)
16119should also be prescribed,
16120the user must assign an appropriate value within the user-defined code.</p>
16121
16122
16123
16124
16125
16126
16127
16128      </td>
16129
16130
16131
16132
16133
16134
16135 </tr>
16136
16137
16138
16139
16140
16141
16142 <tr>
16143
16144
16145
16146
16147
16148
16149      <td style="vertical-align: top;"><a name="use_top_fluxes"></a><span style="font-weight: bold;">use_top_fluxes</span></td>
16150
16151
16152
16153
16154
16155
16156      <td style="vertical-align: top;">L</td>
16157
16158
16159
16160
16161
16162
16163      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
16164
16165
16166
16167
16168
16169
16170      <td style="vertical-align: top;"> 
16171     
16172     
16173     
16174     
16175     
16176     
16177      <p>Parameter to steer
16178the treatment of the subgrid-scale vertical
16179fluxes within the diffusion terms at k=nz (top boundary).</p>
16180
16181
16182
16183
16184
16185
16186     
16187     
16188     
16189     
16190     
16191     
16192      <p>By
16193default, the fluxes at nz are calculated using the gradient approach.
16194If <b>use_top_fluxes</b>
16195= <i>.TRUE.</i>, the user-assigned top fluxes are used
16196instead
16197(see <a href="chapter_4.1.html#top_heatflux">top_heatflux</a>, <a href="#top_momentumflux_u">top_momentumflux_u</a>, <a href="#top_momentumflux_v">top_momentumflux_v</a>, <a href="#top_salinityflux">top_salinityflux</a>).</p>
16198
16199
16200
16201
16202
16203
16204     
16205     
16206     
16207     
16208     
16209     
16210      <p>Currently, no value for the latent heatflux can be assigned. In case of <span style="font-weight: bold;">use_top_fluxes</span> = <span style="font-style: italic;">.TRUE.</span>, the latent
16211heat flux at the top will be automatically set to zero.</p>
16212
16213
16214
16215
16216
16217
16218      </td>
16219
16220
16221
16222
16223
16224
16225    </tr>
16226
16227
16228
16229
16230
16231
16232    <tr>
16233
16234
16235
16236
16237
16238
16239
16240      <td style="vertical-align: top;"> 
16241     
16242     
16243     
16244     
16245     
16246     
16247      <p><a name="use_ug_for_galilei_tr"></a><b>use_ug_for_galilei_tr</b></p>
16248
16249
16250
16251
16252
16253
16254
16255      </td>
16256
16257
16258
16259
16260
16261
16262 <td style="vertical-align: top;">L</td>
16263
16264
16265
16266
16267
16268
16269
16270      <td style="vertical-align: top;"><i>.T.</i></td>
16271
16272
16273
16274
16275
16276
16277
16278      <td style="vertical-align: top;"> 
16279     
16280     
16281     
16282     
16283     
16284     
16285      <p>Switch to
16286determine the translation velocity in case that a
16287Galilean transformation is used.<br>
16288
16289
16290
16291
16292
16293
16294 </p>
16295
16296
16297
16298
16299
16300
16301 
16302     
16303     
16304     
16305     
16306     
16307     
16308      <p>In
16309case of a Galilean transformation (see <a href="#galilei_transformation">galilei_transformation</a>),
16310      <b>use_ug_for_galilei_tr</b>
16311= <i>.T.</i>&nbsp; ensures
16312that the coordinate system is translated with the geostrophic windspeed.<br>
16313
16314
16315
16316
16317
16318
16319
16320      </p>
16321
16322
16323
16324
16325
16326
16327 
16328     
16329     
16330     
16331     
16332     
16333     
16334      <p>Alternatively, with <b>use_ug_for_galilei_tr</b>
16335= <i>.F</i>.,
16336the
16337geostrophic wind can be replaced as translation speed by the (volume)
16338averaged velocity. However, in this case the user must be aware of fast
16339growing gravity waves, so this
16340choice is usually not recommended!</p>
16341
16342
16343
16344
16345
16346
16347 </td>
16348
16349
16350
16351
16352
16353
16354 </tr>
16355
16356
16357
16358
16359
16360
16361 <tr>
16362
16363
16364
16365
16366
16367
16368      <td align="left" valign="top"><a name="use_upstream_for_tke"></a><span style="font-weight: bold;">use_upstream_for_tke</span></td>
16369
16370
16371
16372
16373
16374
16375      <td align="left" valign="top">L</td>
16376
16377
16378
16379
16380
16381
16382      <td align="left" valign="top"><span style="font-style: italic;">.F.</span></td>
16383
16384
16385
16386
16387
16388
16389      <td align="left" valign="top">Parameter to choose the
16390advection/timestep scheme to be used for the subgrid-scale TKE.<br>
16391
16392
16393
16394
16395
16396
16397      <br>
16398
16399
16400
16401
16402
16403
16404By
16405default, the advection scheme and the timestep scheme to be used for
16406the subgrid-scale TKE are set by the initialization parameters <a href="#scalar_advec">scalar_advec</a> and <a href="#timestep_scheme">timestep_scheme</a>,
16407respectively. <span style="font-weight: bold;">use_upstream_for_tke</span>
16408= <span style="font-style: italic;">.T.</span>
16409forces the Euler-scheme and the upstream-scheme to be used as timestep
16410scheme and advection scheme, respectively. By these methods, the strong
16411(artificial) near-surface vertical gradients of the subgrid-scale TKE
16412are significantly reduced. This is required when subgrid-scale
16413velocities are used for advection of particles (see particle package
16414parameter <a href="chapter_4.2.html#use_sgs_for_particles">use_sgs_for_particles</a>).</td>
16415
16416
16417
16418
16419
16420
16421    </tr>
16422
16423
16424
16425
16426
16427
16428    <tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="v_bulk"></a>v_bulk</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td><td>v-component of the predefined bulk velocity (in m/s).<br><br>This parameter comes into effect if <a href="chapter_4.1.html#conserve_volume_flow">conserve_volume_flow</a> = <span style="font-style: italic;">.T.</span> and <a href="chapter_4.1.html#conserve_volume_flow_mode">conserve_volume_flow_mode</a> = <span style="font-style: italic;">'bulk_velocity'</span>.</td></tr><tr>
16429
16430
16431
16432
16433
16434
16435
16436      <td style="vertical-align: top;"> 
16437     
16438     
16439     
16440     
16441     
16442     
16443      <p><a name="vg_surface"></a><span style="font-weight: bold;">vg_surface</span></p>
16444
16445
16446
16447
16448
16449
16450
16451      </td>
16452
16453
16454
16455
16456
16457
16458 <td style="vertical-align: top;">R<br>
16459
16460
16461
16462
16463
16464
16465 </td>
16466
16467
16468
16469
16470
16471
16472
16473      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
16474
16475
16476
16477
16478
16479
16480 </td>
16481
16482
16483
16484
16485
16486
16487
16488      <td style="vertical-align: top;">v-component of the
16489geostrophic
16490wind at the surface (in m/s).<br>
16491
16492
16493
16494
16495
16496
16497 <br>
16498
16499
16500
16501
16502
16503
16504
16505This parameter assigns the value of the v-component of the geostrophic
16506wind (vg) at the surface (k=0). Starting from this value, the initial
16507vertical profile of the <br>
16508
16509
16510
16511
16512
16513
16514
16515v-component of the geostrophic wind is constructed with <a href="#vg_vertical_gradient">vg_vertical_gradient</a>
16516and <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>.
16517The
16518profile
16519constructed in that way is used for creating the initial vertical
16520velocity profile of the 3d-model. Either it is applied, as it has been
16521specified by the user (<a href="#initializing_actions">initializing_actions</a>
16522= 'set_constant_profiles')
16523or it is used for calculating a stationary boundary layer wind profile
16524(<a href="#initializing_actions">initializing_actions</a>
16525=
16526'set_1d-model_profiles'). If vg is constant
16527with height (i.e. vg(k)=<span style="font-weight: bold;">vg_surface</span>)
16528and&nbsp; has a large value, it is
16529recommended to use a Galilei-transformation of the coordinate system,
16530if possible (see <a href="#galilei_transformation">galilei_transformation</a>),
16531in order to obtain larger
16532time steps.<br>
16533
16534
16535
16536
16537
16538
16539      <br>
16540
16541
16542
16543
16544
16545
16546      <span style="font-weight: bold;">Attention:</span><br>
16547
16548
16549
16550
16551
16552
16553In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
16554this parameter gives the geostrophic velocity value (i.e. the pressure gradient) at the sea surface, which is
16555at k=nzt. The profile is then constructed from the surface down to the
16556bottom of the model.</td>
16557
16558
16559
16560
16561
16562
16563 </tr>
16564
16565
16566
16567
16568
16569
16570 <tr>
16571
16572
16573
16574
16575
16576
16577 <td style="vertical-align: top;"> 
16578     
16579     
16580     
16581     
16582     
16583     
16584      <p><a name="vg_vertical_gradient"></a><span style="font-weight: bold;">vg_vertical_gradient</span></p>
16585
16586
16587
16588
16589
16590
16591
16592      </td>
16593
16594
16595
16596
16597
16598
16599 <td style="vertical-align: top;">R(10)<br>
16600
16601
16602
16603
16604
16605
16606
16607      </td>
16608
16609
16610
16611
16612
16613
16614 <td style="vertical-align: top;"><span style="font-style: italic;">10
16615* 0.0</span><br>
16616
16617
16618
16619
16620
16621
16622 </td>
16623
16624
16625
16626
16627
16628
16629 <td style="vertical-align: top;">Gradient(s) of the initial
16630profile of the&nbsp; v-component of the geostrophic wind (in
166311/100s).<br>
16632
16633
16634
16635
16636
16637
16638 <br>
16639
16640
16641
16642
16643
16644
16645
16646The gradient holds starting from the height level defined by <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>
16647(precisely: for all uv levels k where zu(k)
16648&gt; <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>,
16649vg(k) is set: vg(k) = vg(k-1) + dzu(k)
16650* <span style="font-weight: bold;">vg_vertical_gradient</span>)
16651up to
16652the top boundary or up to the next height
16653level defined by <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>.
16654A total of 10 different
16655gradients for 11 height intervals (10 intervals&nbsp; if <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>(1)
16656=
166570.0) can be assigned. The surface
16658geostrophic wind is assigned by <a href="#vg_surface">vg_surface</a>.<br>
16659
16660
16661
16662
16663
16664
16665      <br>
16666
16667
16668
16669
16670
16671
16672      <span style="font-weight: bold;">Attention:</span><br>
16673
16674
16675
16676
16677
16678
16679In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
16680the profile is constructed like described above, but starting from the
16681sea surface (k=nzt) down to the bottom boundary of the model. Height
16682levels have then to be given as negative values, e.g. <span style="font-weight: bold;">vg_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.</td>
16683
16684
16685
16686
16687
16688
16689
16690    </tr>
16691
16692
16693
16694
16695
16696
16697 <tr>
16698
16699
16700
16701
16702
16703
16704 <td style="vertical-align: top;">
16705     
16706     
16707     
16708     
16709     
16710     
16711      <p><a name="vg_vertical_gradient_level"></a><span style="font-weight: bold;">vg_vertical_gradient_level</span></p>
16712
16713
16714
16715
16716
16717
16718
16719      </td>
16720
16721
16722
16723
16724
16725
16726 <td style="vertical-align: top;">R(10)<br>
16727
16728
16729
16730
16731
16732
16733
16734      </td>
16735
16736
16737
16738
16739
16740
16741 <td style="vertical-align: top;"><span style="font-style: italic;">10
16742* 0.0</span><br>
16743
16744
16745
16746
16747
16748
16749 </td>
16750
16751
16752
16753
16754
16755
16756 <td style="vertical-align: top;">Height level from which on the
16757gradient defined by <a href="#vg_vertical_gradient">vg_vertical_gradient</a>
16758is effective (in m).<br>
16759
16760
16761
16762
16763
16764
16765 <br>
16766
16767
16768
16769
16770
16771
16772
16773The height levels have to be assigned in ascending order. For the
16774piecewise construction of a profile of the v-component of the
16775geostrophic wind component (vg) see <a href="#vg_vertical_gradient">vg_vertical_gradient</a>.<br>
16776
16777
16778
16779
16780
16781
16782      <br>
16783
16784
16785
16786
16787
16788
16789      <span style="font-weight: bold;">Attention:</span><br>
16790
16791
16792
16793
16794
16795
16796In case of ocean runs&nbsp;(see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.</td>
16797
16798
16799
16800
16801
16802
16803
16804    </tr>
16805
16806
16807
16808
16809
16810
16811 <tr>
16812
16813
16814
16815
16816
16817
16818 <td style="vertical-align: top;">
16819     
16820     
16821     
16822     
16823     
16824     
16825      <p><a name="wall_adjustment"></a><b>wall_adjustment</b></p>
16826
16827
16828
16829
16830
16831
16832
16833      </td>
16834
16835
16836
16837
16838
16839
16840 <td style="vertical-align: top;">L</td>
16841
16842
16843
16844
16845
16846
16847
16848      <td style="vertical-align: top;"><i>.T.</i></td>
16849
16850
16851
16852
16853
16854
16855
16856      <td style="vertical-align: top;"> 
16857     
16858     
16859     
16860     
16861     
16862     
16863      <p>Parameter to
16864restrict the mixing length in the vicinity of the
16865bottom
16866boundary (and near vertical walls of a non-flat <a href="chapter_4.1.html#topography">topography</a>).&nbsp; </p>
16867
16868
16869
16870
16871
16872
16873 
16874     
16875     
16876     
16877     
16878     
16879     
16880      <p>With <b>wall_adjustment</b>
16881= <i>.TRUE., </i>the mixing
16882length is limited to a maximum of&nbsp; 1.8 * z. This condition
16883typically affects only the
16884first grid points above the bottom boundary.</p>
16885
16886
16887     
16888     
16889      <p>In case of&nbsp; a non-flat <a href="chapter_4.1.html#topography">topography</a> the respective horizontal distance from vertical walls is used.</p>
16890
16891
16892
16893
16894
16895
16896 </td>
16897
16898
16899
16900
16901
16902
16903 </tr>
16904
16905
16906
16907
16908
16909
16910
16911    <tr>
16912
16913
16914
16915
16916
16917
16918 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="wall_heatflux"></a>wall_heatflux</span></td>
16919
16920
16921
16922
16923
16924
16925
16926      <td style="vertical-align: top;">R(5)</td>
16927
16928
16929
16930
16931
16932
16933 <td style="vertical-align: top;"><span style="font-style: italic;">5 * 0.0</span></td>
16934
16935
16936
16937
16938
16939
16940 <td>Prescribed
16941kinematic sensible heat flux in K m/s
16942at the five topography faces:<br>
16943
16944
16945
16946
16947
16948
16949 <br>
16950
16951
16952
16953
16954
16955
16956 
16957     
16958     
16959     
16960     
16961     
16962     
16963      <div style="margin-left: 40px;"><span style="font-weight: bold;">wall_heatflux(0)&nbsp;&nbsp;
16964&nbsp;</span>top face<br>
16965
16966
16967
16968
16969
16970
16971 <span style="font-weight: bold;">wall_heatflux(1)&nbsp;&nbsp;&nbsp;
16972      </span>left face<br>
16973
16974
16975
16976
16977
16978
16979 <span style="font-weight: bold;">wall_heatflux(2)&nbsp;&nbsp;&nbsp;
16980      </span>right face<br>
16981
16982
16983
16984
16985
16986
16987 <span style="font-weight: bold;">wall_heatflux(3)&nbsp;&nbsp;&nbsp;
16988      </span>south face<br>
16989
16990
16991
16992
16993
16994
16995 <span style="font-weight: bold;">wall_heatflux(4)&nbsp;&nbsp;&nbsp;
16996      </span>north face</div>
16997
16998
16999
17000
17001
17002
17003 <br>
17004
17005
17006
17007
17008
17009
17010
17011This parameter applies only in case of a non-flat <a href="#topography">topography</a>.&nbsp;The
17012parameter <a href="#random_heatflux">random_heatflux</a>
17013can be used to impose random perturbations on the internal
17014two-dimensional surface heat
17015flux field <span style="font-style: italic;">shf</span>
17016that is composed of <a href="#surface_heatflux">surface_heatflux</a>
17017at the bottom surface and <span style="font-weight: bold;">wall_heatflux(0)</span>
17018at the topography top face.&nbsp;</td>
17019
17020
17021
17022
17023
17024
17025 </tr>
17026
17027
17028
17029
17030  <tr>
17031
17032
17033
17034
17035
17036
17037 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="wall_humidityflux"></a>wall_humidityflux</span></td>
17038
17039
17040
17041
17042
17043
17044
17045      <td style="vertical-align: top;">R(5)</td>
17046
17047
17048
17049
17050
17051
17052 <td style="vertical-align: top;"><span style="font-style: italic;">5 * 0.0</span></td>
17053
17054
17055
17056
17057
17058
17059 <td>Prescribed
17060kinematic humidity flux in m/s
17061at the five topography faces:<br>
17062
17063
17064
17065
17066
17067
17068 <br>
17069
17070
17071
17072
17073
17074
17075 
17076     
17077     
17078     
17079     
17080     
17081     
17082      <div style="margin-left: 40px;"><span style="font-weight: bold;">wall_humidityflux(0)&nbsp;&nbsp;
17083&nbsp;</span>top face<br>
17084
17085
17086
17087
17088
17089
17090 <span style="font-weight: bold;">wall_humidityflux(1)&nbsp;&nbsp;&nbsp;
17091      </span>left face<br>
17092
17093
17094
17095
17096
17097
17098 <span style="font-weight: bold;">wall_humidityflux(2)&nbsp;&nbsp;&nbsp;
17099      </span>right face<br>
17100
17101
17102
17103
17104
17105
17106 <span style="font-weight: bold;">wall_humidityflux(3)&nbsp;&nbsp;&nbsp;
17107      </span>south face<br>
17108
17109
17110
17111
17112
17113
17114 <span style="font-weight: bold;">wall_humidityflux(4)&nbsp;&nbsp;&nbsp;
17115      </span>north face</div>
17116
17117
17118
17119
17120
17121
17122 <br>
17123
17124
17125
17126
17127
17128
17129
17130This parameter applies only in case of a non-flat <a href="#topography">topography</a> and <a href="#humidity">humidity</a> = .T.
17131</td>
17132
17133
17134
17135
17136
17137
17138 </tr>
17139 
17140 
17141 <tr>
17142
17143
17144
17145
17146
17147
17148 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="wall_scalarflux"></a>wall_scalarflux</span></td>
17149
17150
17151
17152
17153
17154
17155
17156      <td style="vertical-align: top;">R(5)</td>
17157
17158
17159
17160
17161
17162
17163 <td style="vertical-align: top;"><span style="font-style: italic;">5 * 0.0</span></td>
17164
17165
17166
17167
17168
17169
17170 <td>Prescribed scalar flux in kg/(m<sup>2</sup> s)
17171at the five topography faces:<br>
17172
17173
17174
17175
17176
17177
17178 <br>
17179
17180
17181
17182
17183
17184
17185 
17186     
17187     
17188     
17189     
17190     
17191     
17192      <div style="margin-left: 40px;"><span style="font-weight: bold;">wall_scalarflux(0)&nbsp;&nbsp;
17193&nbsp;</span>top face<br>
17194
17195
17196
17197
17198
17199
17200 <span style="font-weight: bold;">wall_scalarflux(1)&nbsp;&nbsp;&nbsp;
17201      </span>left face<br>
17202
17203
17204
17205
17206
17207
17208 <span style="font-weight: bold;">wall_scalarflux(2)&nbsp;&nbsp;&nbsp;
17209      </span>right face<br>
17210
17211
17212
17213
17214
17215
17216 <span style="font-weight: bold;">wall_scalarflux(3)&nbsp;&nbsp;&nbsp;
17217      </span>south face<br>
17218
17219
17220
17221
17222
17223
17224 <span style="font-weight: bold;">wall_scalarflux(4)&nbsp;&nbsp;&nbsp;
17225      </span>north face</div>
17226
17227
17228
17229
17230
17231
17232 <br>
17233
17234
17235
17236
17237
17238
17239
17240This parameter applies only in case of a non-flat <a href="#topography">topography</a> and <a href="#passive_scalar">passive_scalar</a> = .T.
17241</td>
17242
17243
17244
17245
17246
17247
17248 </tr>
17249
17250
17251 
17252
17253 <tr>
17254
17255 <td style="vertical-align: top;"> 
17256     
17257  <p><a name="ws_vertical_gradient"></a><b>ws_vertical_gradient</b></p>
17258
17259 </td>
17260
17261  <td style="vertical-align: top;">R (10)</td>
17262
17263  <td style="vertical-align: top;"><i>10 * 0.0</i></td>
17264
17265  <td style="vertical-align: top;"> 
17266     
17267    <p>Gradient(s) of the profile for the large scale subsidence/ascent velocity
17268       (in (m/s) / 100 m).&nbsp; </p>
17269     
17270      <p>This gradient holds starting from the height&nbsp;
17271        level defined by <a href="#ws_vertical_gradient_level">ws_vertical_gradient_level</a>
17272       (precisely: for all uv levels k where zu(k) &gt;
17273       ws_vertical_gradient_level,
17274       w_subs(k) is set: w_subs(k) = w_subs(k-1) + dzu(k) * <b>ws_vertical_gradient</b>)
17275       up to the top boundary or up to the next height level defined
17276       by <a href="#ws_vertical_gradient_level">ws_vertical_gradient_level</a>.
17277       A total of 10 different gradients for 11 height intervals (10 intervals
17278       if <a href="#ws_vertical_gradient_level">ws_vertical_gradient_level</a>(1)
17279       = <i>0.0</i>) can be assigned. &nbsp;
17280      </p>
17281     
17282      <p>Example:&nbsp; </p>
17283     
17284      <ul>
17285     
17286        <p><b>ws_vertical_gradient</b>
17287= <i>-0.002</i>, <i>0.0</i>,&nbsp; <br>
17288
17289        <b>ws_vertical_gradient_level</b> = <i>0.0</i>,
17290        <i>1000.0</i>,</p>
17291     
17292      </ul>   
17293     
17294      <p>That defines the subsidence/ascent profile to be linear up
17295         to z = 1000.0 m with a surface value of 0 m/s.
17296         For z &gt; 1000.0 m up to the top boundary the gradient is <i>0.0</i> (m/s) / 100 m
17297         (it is assumed that the assigned height levels correspond
17298         with uv levels).</p>
17299           
17300       <p>With an appropriate construction of w_subs the height of the boundary layer z_i
17301        can be kept approximately constant.</p>
17302     
17303   <p><span style="font-weight: bold;">Attention:</span><br>
17304
17305      The large scale vertical motion is only applied to the prognostic equation for the scalar quantities (potential
17306      temperature, humidity if  <a href="chapter_4.1.html#humidity">humidity</a> = .T. or passive scalar if <a href="chapter_4.1.html#passive_scalar">passive_scalar</a> = .T.) because it cannot be applied to the momentum equations due to incompressibility.
17307      Thus, the model is not mass consistent.</p>
17308
17309
17310 </td>
17311
17312 </tr>
17313
17314
17315 
17316
17317 <tr>
17318
17319 <td style="vertical-align: top;">   
17320     
17321      <p><a name="ws_vertical_gradient_level"></a><b>ws_vertical_gradient</b>
17322      <br><b>_level</b></p>
17323
17324 </td>
17325
17326 <td style="vertical-align: top;">R (10)</td>
17327
17328 <td style="vertical-align: top;"> 
17329         
17330      <p><i>10 *</i>&nbsp;
17331      <span style="font-style: italic;">0.0</span><br>
17332      </p>
17333
17334 </td>
17335
17336
17337 <td style="vertical-align: top;">
17338           
17339      <p>Height level from which on the gradient for the subsidence/ascent velocity  defined by
17340      <a href="#ws_vertical_gradient">ws_vertical_gradient</a>
17341      is effective (in m).&nbsp; </p>
17342   
17343      <p>The height levels have to be assigned in ascending order. The
17344default values result in a profile which is zero everywhere regardless of the
17345values of <a href="#ws_vertical_gradient">ws_vertical_gradient</a>.
17346For the piecewise construction of the subsidence/ascent velocity profile see <a href="#ws_vertical_gradient">ws_vertical_gradient</a>.</p>
17347      </td>
17348
17349 </tr>
17350
17351 
17352 
17353  </tbody>
17354</table>
17355
17356
17357
17358
17359
17360
17361<br>
17362
17363
17364
17365
17366
17367
17368
17369<p style="line-height: 100%;"><br>
17370
17371
17372
17373
17374
17375
17376<font color="#000080"><font color="#000080"><a href="chapter_4.0.html"><font color="#000080"><img name="Grafik1" src="left.gif" align="bottom" border="2" height="32" width="32"></font></a><a href="index.html"><font color="#000080"><img name="Grafik2" src="up.gif" align="bottom" border="2" height="32" width="32"></font></a><a href="chapter_4.2.html"><font color="#000080"><img name="Grafik3" src="right.gif" align="bottom" border="2" height="32" width="32"></font></a></font></font></p>
17377
17378
17379
17380
17381
17382
17383
17384<p style="line-height: 100%;"><i>Last
17385change:&nbsp;</i> $Id: chapter_4.1.html 555 2010-09-07 07:32:53Z raasch $ </p>
17386
17387
17388
17389
17390
17391
17392
17393<br>
17394
17395
17396
17397
17398
17399
17400<br>
17401
17402
17403
17404
17405
17406
17407
17408</body></html>
Note: See TracBrowser for help on using the repository browser.