

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Development and Application of an Online Coupled Chemistry Urban Microscale Model PALM-4U

Basit Khan¹, Renate Forkel¹, Sabine Banzhaf², Emmanuele Russo², Farah Kanani-Sühring³, Matthias Mauder¹, Björn Maronga³, Siegfried Raasch³, Mona Kurppa⁴, and Klaus Ketelsen⁵

¹Karlsruher Institut für Technologie (IMK-IFU), ²Freie Universität Berlin (FUB), Institute of Meteorology, TrUmf, ³Leibniz Universität Hannover (LUH), IMUK, ⁴University of Helsinki, ⁵Independent Software Consultant

OUTLINE

Background

- The MOSAIK Project
- o PALM, The LES Model
- PALM-4U Components

Chemistry in PALM-4U

- **o** Interface between Chemistry and PALM-4U
- Current Features

A Case Study from Downtown Berlin-Germany

- o Model Setup
- Simulation Domain
- o **Results**

Summary and Outlook

BACKGROUND

The MOSAIK Project

The German Federal Ministry of Education and Research (BMBF), funded a joint project in 2016, named as Model-based city planning and application in climate change (MOSAIK) to develop an urban climate model within the framework of Urban Climate Under Change ([UC]²).

Main Aim

To develop a highly-efficient, state-of-the-art highresolution microscale urban climate model that allows for building and turbulence-resolving simulations of large cities such as Berlin (Germany).

PALM, the core Model

PALM (Raasch and Schröter, 2001; Maronga et al., 2015) was selected as the core model for the new microscale UC model named as PALM-4U of large cities such as Berlin (Germany).

12.04.2018

1995: Prof. Siegfried Raasch! After his first successful PALM LES run.

PALM, The LES Model.

- The PALM is based on the non-hydrostatic, filtered, incompressible Navier-Stokes equations in Boussinesq-approximated form.
- The Model has 6 prognostic quantities (u, v, w, θ , q_v and an optional 's' for passive tracer).
- An additional equation for subgrid scale TKE 'e' (default LES mode) OR The total TKE (RANS mode).

Prof. Siegfried Raasch in 2018

GEFÖRDERT VOM Bundesministerium für Bildung und Forschung

[Background]

PALM-4U

• PALM-4U = PALM-LES + Urban Climatology + Air Chemistry

CHEMISTRY IN PALM-4U

PALM-4U! A Microscale Urban Climate & Air Quality Model

12.04.2018

Current Features

Current Features of Chemistry Model in PALM-4U Modeling System:

- An 'Online' coupled chemistry in LES mode for Gas-phase chemistry.
- Chemical reactions,
- Advection and diffusion
- Photolysis
- Ability to take any user provided chemical mechanism
- Passive tracer
- Nesting
- Static emissions in time and space.

A Case Study from Downtown Berlin - Germany

Model Setup

Freie Universität

- o nX = nY = 96, nZ = 120; dX=dY=dZ = 10 m; Ug = Vg = 1.0 m s⁻¹
- Day & Time: 21 July, 5:00 UTC; Simulation length = 6 hours.
- Modules: radiation, urban surface model, land surface model, canopy model, chemistry model, photolysis model
- Emissions related to OpenStreetmap street types:
 Enhancement factor for main roads = 01.667, Reduction factor for side roads = 0.334
- Emission: NO= 1.318 ppm s⁻¹;NO₂= 0.368 ppm s⁻¹; RH=0.1804 ppm s⁻¹; PM10 = 0.75 ug m² s⁻¹.
- □ The mechanism has 11 gas-phase chemical species and one non-reactive aerosol(PM10).

$\{1.\}$ NO2 + hv = NO + O3	:	phot(j_no2)		
$\{2.\}$ O3 + hv = 2OH + O2	:	phot(j_o31d)		
$\{3.\}$ NO + O3 = NO2	:	arr2(1.8E-12_dp,	1370.0_dp,	temp)
$\{4.\}$ RH + OH = RO2 + H2O	:	arr2(2.E-11_dp,	500.0_dp,	temp)
$\{5.\}$ RO2 + NO = NO2 + RCHO +	HO2:	arr2(4.2E-12_dp,	-180.0_dp,	temp)
$\{6.\}$ HO2 + NO = NO2 + OH	:	arr2(3.7E-12_dp,	-240.0_dp,	temp)
$\{7.\}$ NO2 + OH = HNO3	:	$arr2(1.15E-11_dp,$	0.0_dp,	temp)
{8.} PM10 = PM10	:	1.0_dp		

12.04.2018

Bundesminister für Bildung und Forschung

Simulation Domain

[A Case Study-Berlin]

[A Case Study-Berlin]

[A Case Study-Berlin]

Horizontal cross-sections; Level: 5 meter; Left Panel: NO₂ shaded, W-Contours, Right Panel: O₃ shaded and hrizontal wind vectors.

Vertical cross-sections; Left Panel: NO₂ shaded, W-Contours, Right Panel: O₃ shaded, potential temperature contours.

Summary and Outlook

Summary

- Turbulence and building resolving LES PALM-4U model allows accurate simulation of advection, reaction, and deposition of atmospheric trace gases and aerosols at appropriate scale.
- PALM-4U is a potential candidate for the future state-of-the-art comprehensive urban climate modelling system that could be used for the assessment, prediction and investigation of urban climatology, air quality and city planning of large urban areas.

Coming soon ...

- Chemistry forcing at the lateral boundaries of the parent domain
- Aerosol chemistry (SIA and SOA). SALSA sectional aerosol model (Kokkola et al., 2008) in the process to be incorporated in PALM-4U.
- Deposition module for chemical species and aerosols.
- Detailed anthropogenic emissions (temporal and spatial disaggregation, VOC split etc.).
- Reynolds Averaged, Navier-Stokes (RANS) Mode for larger domain, longer simulations and complex mechanisms.

Wenn du Luft atmest, solltest Du Dich darum kümmern!

