= 3^rd^ order Runge-Kutta scheme = For the dicretization in time a 3^rd^ order low-storage Runge-Kutta scheme with 3 stages recommended by Williamson (1979) is used. Generally an N-stage Runge-Kutta scheme discretizes an ordinary differential equation of the form {{{ #!Latex \[ \frac{d \psi}{d t} & = & f(t,\psi) \] }}} as follows ( Baldauf, 2008 ): {{{ #!Latex \[ \psi^{(0)} = \psi^{n}, \] \[ k^{i} = f(t^{n} + \Delta t\,\alpha_{i},\,\psi^{i-1}), \] \[ \psi^{i} = \psi^{n} + \Delta t\,\sum^{i}_{j=1}\,\beta_{i+1,j}\,k^{j}, \quad \textnormal{mit} \quad i \in [1,2,...,N] \] \[ \psi^{n+1} = \psi^{N}. \] }}} The coefficients can written in a Butcher-Tableau in the following way: || α,,1,, || β,,1,1,, || 0 || ... || || || || α,,2,, || β,,2,1,, || β,,2,2,, || 0 || ... || || || ... || ... || || || || || || α,,N,, || β,,N,1,, || β,,N,2,, || ... || β,,N,N-1,, || 0 || || || β,,N+1,1,, || β,,N+1,2,, || ... || β,,N+1,N-1,, || β,,N+1,N,, || The appendant coefficients for the used Runge-Kutta scheme reads: || 0 || 0 || 0 || 0 || || 1/3 || 1/3 || 0 || 0 || || 1/2 || -3/16 || 15/16 || 0 || || || 1/6 || 3/10 || 8/15 || For the implementation it is advantageous to compute ψ^N^ from the intermediate solutions ψ^1^ and ψ^2^ and combine the local tendencies in one array after the second substep to save storage (therefor low-storage scheme) as follows: {{{ #!Latex \[ \hat\psi_{1} & = & \psi_{n} + \frac{1}{3} \Delta t f\left(\psi_{n}\right) \] \[ \hat\psi_{2} & = & \hat\psi_{1} + \frac{1}{48} \Delta t \left( 45 f\left(\hat\psi_1\right) - 25 f\left(\psi_{n}\right) \right) \] \[ f\left(\hat\psi_{1}\right) & = &-153 f\left(\hat\psi_{1}\right) + 85 f\left(\psi_{n}\right) \] \[ \hat\psi_{3} & = & \left( \psi_{n+1} \right) = \hat\psi_{2} + \frac{1}{240} \Delta t \left( 128 f\left(\hat\psi_2\right) + 16 f \left(\hat\psi_{1}\right) \right) \] }}} For reasons of clarity the time integration for several schemes ( further scheme are: Leap-frog, Euler and 2^nd^ order Runge-Kutta scheme ) is implemented as following ( here for example for the u-component of velocity ): {{{ #!Latex \begin{split} u_p\left(k,j,i\right) = \left(1.0 - tsc\left(1\right) \right) * u\_m\left(k,j,i\right) + tsc\left(1\right) * u\left(k,j,i\right) + dt\_3d * \left( \\ tsc\left(2\right) * tend\left(k,j,i\right) + tsc\left(3\right) * tu\_m\left(k,j,i\right) \\ + tsc\left(4\right) * \left(p\left(k,j,i)\right) - p\left(k,j,i-1\right) \right) * ddx \ \ ) \\ - tsc\left(5\right) * rdf\left(k\right) * \left(u\left(k,j,i) - ug \right) \end{split} }}} and steered by the array tsc Sorry for incompleteness. A further description will follow in the next days.