= 3^rd^ order Runge-Kutta scheme = For the discretization in time a 3^rd^ order low-storage Runge-Kutta scheme with 3 stages is used recommended by Williamson (1980). Generally an N-stage Runge-Kutta scheme discretizes an ordinary differential equation of the form {{{ #!Latex $\dfrac{d \psi}{d t} = f(t,\psi)$ }}} as follows ( Baldauf, 2008 ): {{{ #!Latex \begin{align*} \psi^{(0)} &= \psi^{n}, \\ k^{i} &= f(t^{n} + \Delta t\,\alpha_{i},\,\psi^{i-1}), \\ \psi^{i} &= \psi^{n} + \Delta t\,\sum^{i}_{j=1}\,\beta_{i+1,j}\,k^{j}, \quad \textnormal{mit} \quad i \in [1,2,...,N] \\ \psi^{n+1} &= \psi^{N}. \end{align*} }}} The coefficients can be written in a so-called Butcher-Tableau: || α,,1,, || β,,1,1,, || {{{0}}} || ... || || || || α,,2,, || β,,2,1,, || β,,2,2,, || {{{0}}} || ... || || || ... || ... || || || || || || α,,N,, || β,,N,1,, || β,,N,2,, || ... || β,,N,N-1,, || {{{0}}} || || || β,,N+1,1,, || β,,N+1,2,, || ... || β,,N+1,N-1,, || β,,N+1,N,, || The appendant coefficients for the applied Runge-Kutta scheme reads: || {{{0}}} || {{{0}}} || {{{0}}} || {{{0}}} || || {{{1/3}}} || {{{1/3}}} || {{{0}}} || {{{0}}} || || {{{3/4}}} || {{{-3/16}}} || {{{15/16}}} || {{{0}}} || || || {{{1/6}}} || {{{3/10}}} || {{{8/15}}} || To save storage it is advantageous to compute ψ^N^ from the intermediate solutions ψ^1^ and ψ^2^ and combine the local tendencies in one array after the second substep (therefore low-storage scheme) as follows: {{{ #!Latex \begin{align*} \hat\psi_{1} &= \psi_{n} + \frac{1}{3} \Delta t f\left(\psi_{n}\right) \\ \hat\psi_{2} &= \hat\psi_{1} + \frac{1}{48} \Delta t \left( 45 f\left(\hat\psi_1\right) - 25 f\left(\psi_{n}\right) \right) \\ f\left(\hat\psi_{1}\right) &= -153 f\left(\hat\psi_{1}\right) + 85 f\left(\psi_{n}\right) \\ \hat\psi_{3} &= \left( \psi_{n+1} \right) = \hat\psi_{2} + \frac{1}{240} \Delta t \left( 128 f\left(\hat\psi_2\right) + 15 f \left(\hat\psi_{1}\right) \right) \end{align*} }}} For reasons of clarity the [../../app/inipar#timestep_scheme time integration] for several schemes (further schemes are: Leapfrog, Euler and 2^nd^ order Runge-Kutta scheme) is implemented as follows (here e.g. the u-component of velocity): {{{ u_p(k,j,i) = ( 1.0 - tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) + tsc(4) * ( p(k,j,i) - p(k,j,i-1)) * ddx ) - tsc(5) * rdf(k) * ( u(k,j,i) -ug ) }}} and steered by the array {{{tsc(1:5)}}} || {{{tsc(1)}}} || {{{tsc(2)}}} || {{{tsc(3)}}} || {{{tsc(4)}}} || {{{tsc(5)}}} || || {{{1}}} || {{{1/3}}} || {{{0}}} || {{{0}}} || {{{0}}} || 1^st^ substep || {{{1}}} || {{{15/16}}} || {{{-25/48}}} || {{{0}}} || {{{0}}} || 2^nd^ substep || {{{1}}} || {{{8/15}}} || {{{1/15}}} || {{{0}}} || {{{1}}} || 3^rd^ substep {{{u_p}}} is the prognosticated and {{{u}}} the current velocity at each substep. {{{u_m}}} denotes the velocity of the previous substep (needed for Leapfrog). {{{tend}}} is the current tendency and {{{tu_m}}} the combined tendencies of the prior substeps. {{{tsc(4)}}} steers the preconditioning of the [../../app/inipar#psolver pressure solver] and {{{tsc(5)}}} the [../../app/inipar#rayleigh_damping_factor rayleigh damping]. === References === * '''Baldauf, M., 2008:''' Stability analysis for linear discretisations of the advection equation with Runge-Kutta time integration. ''J. Comput. Phys.'', '''227''', 6638-6659. * '''Durran, D. R., 1999:''' ''Numerical methods for wave equations in geophysical fluid dynamics.'' Springer Verlag, New York, 1. Aufl., 465 S. * '''Williamson, J. H., 1980:''' Low-storage Runge-Kutta schemes. ''J. Comput. Phys.'', '''35''', 48-56.