== Runtime parameters == ==== [#output Output steering] ==== ==== [#run Run steering] ==== \\\\ [=#output '''Output steering:]\\ ||='''Parameter Name''' =||='''FORTRAN Type''' =||= '''Default Value''' =||='''Explanation''' =|| |---------------- {{{#!td style="vertical-align:top; text-align:left;width: 150px" [=#averaging_interval '''averaging_interval'''] }}} {{{#!td style="vertical-align:top; text-align:left;style="width: 50px" R }}} {{{#!td style="vertical-align:top; text-align:left;style="width: 100px" 0.0 }}} {{{#!td Averaging interval for all output of temporally averaged data (in s).\\\\ This parameter defines the time interval length for temporally averaged data (vertical profiles, spectra, 2d cross-sections, 3d volume data). By default, data are not subject to temporal averaging. The interval length is limited by the parameter [#dt_data_output_av dt_data_output_av]. In any case, '''averaging_interval <= dt_data_output_av''' must hold.\\\\ If an interval is defined, then by default the average is calculated from the data values of all timesteps lying within this interval. The number of time levels entering into the average can be reduced with the parameter [[dt_averaging_input]].\\\\ If an averaging interval can not be completed at the end of a run, it will be finished at the beginning of the next restart run. Thus for restart runs, averaging intervals do not necessarily begin at the beginning of the run.\\\\ Parameters [#averaging_interval_pr averaging_interval_pr] and [[averaging_interval_sp]] can be used to define different averaging intervals for vertical profile data and spectra, respectively. }}} |---------------- {{{#!td style="vertical-align:top" [=#averaging_interval_pr '''averaging_interval_pr'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" value of [#averaging_interval averaging_interval] }}} {{{#!td Averaging interval for output of vertical profiles to local file [[DATA_1D_PR_NETCDF]] (in s).\\\\ If this parameter is given a non-zero value, temporally averaged vertical profile data are output. By default, profile data data are not subject to temporal averaging. The interval length is limited by the parameter [[dt_dopr]]. In any case '''averaging_interval_pr <= dt_dopr''' must hold.\\\\ If an interval is defined, then by default the average is calculated from the data values of all timesteps lying within this interval. The number of time levels entering into the average can be reduced with the parameter [[dt_averaging_input_pr]].\\\\ If an averaging interval can not be completed at the end of a run, it will be finished at the beginning of the next restart run. Thus for restart runs, averaging intervals do not necessarily begin at the beginning of the run. }}} |---------------- {{{#!td style="vertical-align:top" [=#dt_data_output_av '''dt_data_output_av'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 0.0 }}} {{{#!td }}} \\\\ '''Run steering:[=#run] '''\\ ||='''Parameter Name''' =||='''Type''' =||='''Default Value''' =||='''Explanation''' =|| |---------------- {{{#!td style="vertical-align:top" [=#call_psolver_at_all_substeps '''call_psolver_at_all_substeps'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .T. }}} {{{#!td Switch to steer the call of the pressure solver.\\\\ In order to speed-up performance, the Poisson equation for perturbation pressure (see [[psolver]]) can be called only at the last substep of multistep Runge-Kutta timestep schemes (see [[timestep_scheme]]) by setting '''call_psolver_at_all_substeps''' = ''.F.''. In many cases, this sufficiently reduces the divergence of the velocity field. Nevertheless, small-scale ripples (2-delta-x) may occur. In this case and in case of non-cyclic lateral boundary conditions, '''call_psolver_at_all_timesteps''' = ''.T.'' should be used. }}} |----------- {{{#!td style="vertical-align:top" [=#cfl_factor '''cfl_factor'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 0.1, 0.8 or 0.9 (see right) }}} {{{#!td Time step limiting factor.\\\\ In the model, the maximum allowed time step according to CFL and diffusion-criterion [[dt_max]] is reduced by dt = dt_max * '''cfl_factor''' in order to avoid stability problems which may arise in the vicinity of the maximum allowed timestep. The condition 0.0 < '''cfl_factor''' < 1.0 applies.\\\\ }}} {{{#!td style="vertical-align:top" [=#call_psolver_at_all_substeps '''call_psolver_at_all_substeps'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .T. }}} {{{#!td }}} {{{#!td style="vertical-align:top" [=#call_psolver_at_all_substeps '''call_psolver_at_all_substeps'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .T. }}} {{{#!td }}} {{{#!td style="vertical-align:top" [=#call_psolver_at_all_substeps '''call_psolver_at_all_substeps'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .T. }}} {{{#!td }}} {{{#!td style="vertical-align:top" [=#call_psolver_at_all_substeps '''call_psolver_at_all_substeps'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .T. }}} {{{#!td }}}