

Institute of Meteorology and Climatology, Leibniz Universität Hannover

Wind Turbine Model

Wind turbine basics

Degrees of freedom

- Yaw angle (horizontal angle of attack to rotor axis)
- Blade Pitch (Rotation of blades to adjust rotation)
- Tilt angle (vertical angle of attach to rotor axis)
- (+ pitch and roll for tower with offshore floating foundations)

Wind Turbine Model

Wind turbine basics

Pain group Steel Association

Wind turbine basics

Actuator Line Model (ALM)

- Based on blade element momentum (BEM) method
- Rotors treated as lines, divided into segments
- Lift and drag force are calculated for each segment Δr :

$$F_{L_{b,r}} = \frac{1}{2} \rho C_L V_{rel}^2 c \Delta r \qquad F_{D_{b,r}} = \frac{1}{2} \rho C_D V_{rel}^2 c \Delta r$$

- Lift C_{I} and drag C_{D} coefficients from look-up tables
- Projection on axial (F_N Torque) and

$$F_{\theta_{b,r}} = F_{L_{b,r}} \sin \varphi + F_{D_{b,r}} \cos \varphi \qquad \varphi = \arctan\left(\frac{V_N}{\Omega r - V_{\theta}}\right)$$

Wind turbine basics

Rotating Actuator Disk Model (ADM-R)

- Rotor disk instead of lines (\rightarrow time step issue solved)
- Rotor plane is permeable disk

 $f_d = \frac{1}{2} \rho U_{rel}^2 c_d(\alpha) \frac{N_b c}{2 \pi r_{red}}$

- Forces are not uniformly distributed (BEM forces)
- (similar to Wu & Porte-Agel, 2011)
- Rotor plane divided into rings and segments
- Lift and drag forces are calculated for each segment: $f_l = \frac{1}{2}\rho U_{rel}^2 c_l(\alpha) \frac{N_b c}{2 \pi r_{seq}}$ perpendicular to inflow

 U_{rel} relative velocity lift coefficient C_1 number of blades solidity factor $2\pi r_{soc}$

(percentage of circumference that is covered with blades)

Wind turbine basics

Rotating Actuator Disk Model (ADM-R)

• Projection on axial (f_N) and tangential (f_{ρ}) directions as for ALM:

$$f_N = f_l \cos \phi + f_d \sin \phi$$
 $f_\theta = f_l \sin \phi - f_d \cos \phi$

• Smearing to a Gaussian kernel to avoid numerical instabilities

- Overview of typical parameterizations

ALM	ADM	ADM-R	
Actuator Line Model (Calaf et al. 2010)	Actuator Disk Model (Troldborg 2008)	Actuator Disk Model with Rotation	
Local forces (lines) (BEM equations)	Spatially constant loads	Local forces (segments) (BEM equations)	
Rotation (resolved blades)	No rotation	Rotation (blades not resolved)	
Very slow (small time step)	Very fast	Fast (significantly faster than ALM)	
THIT I HAVE A REAL PROPERTY OF A			

Leibniz Universität Hannover

102

Overview of typical parameterizations

Drag force approach:

$$F_{tower} = -\frac{1}{2} \rho C_{D_{tower}} V_{ref}^2 \qquad V_{ref} = V_{local} \qquad C_{D_{tower}} = 1.2$$

$$F_{nacelle} = -\frac{1}{2} \rho C_{D_{nacelle}} V_{ref}^2 \qquad V_{ref} = V_{rotor} \qquad C_{D_{nacelle}} = 0.85$$

 Forces are added to the axial component of the forces generated by the rotor

Leibniz

Universität Hannover

How to use the WTM

Add NAMELIST &wind_turbine_parameters

```
&wind_turbine_parameters
...
n_turbines = 2,
hub_x = 400.0, 400.0,
hub_y = 500.0, 1500.0,
...
```

For all available parameters refer to:

https://docs.palm-model.org/23.04/Reference/LES_Model/Namelists/#wind-turbine -parameters

- Add file <job_identifier>_wtm, that contains rotor blade data:
 - airfoil, chord and twist distribution along the blade
 - lift and drag coefficients for used airfoils
 - File with data for the NREL 5MW turbine is available at:

/palm_model_system/packages/palm/model/tests/cases/wind_turbine_model/ INPUT/wind_turbine_model_wtm

How to use the WTM

•NREL 5 MW Reference Turbine

- Detailed data about the rotor blades is needed for ADM-R (and ALM), but usually confidential
- PALM-WTM is this shipped with the NREL 5-MW reference offshore turbine (Jonkman et al. 2009)
- Representative characteristics for current multi-MW turbines
 - ³ Hub height: 90 m
 - [}] Rotor diameter: 126 m
 - ³ Nacelle diameter: 3 m
 - ³ Tower diameter: 4 m
 - $\Omega = 12.1 \text{ rpm}$

paim group

 3 C_L and C_D from look-up tables (depend on angle of attack and distance to hub)

- Rotor blade data in _wtm-file (1/2)
- Assign airfoils to radial positions along the blade:

Define twist angle and chord length:

Leibniz

Universität Hannover

Rotor blade data in _wtm-file (2/2)

Define lift and drag coefficients for each airfoil and angle of attack:

Most important parameters

Wind turbine controler

- Generator torque speed controller (Jonkman et al. 2009)
 - ³ Must be adjusted for other turbines
 - ³ Most properties can be adjusted via Fortran NAMELIST
- Pitch controller
- Active and automatic **yaw controller**
- All controllers can be switched on/off:
 - speed_control = .F./.T.
 - } pitch_control = .F./.T.
 - yaw_control = .F./.T.

Most important parameters

single parameters, that are valid for all turbines:

- n_turbines = 2 number of wind turbines
- pitch_control = .TRUE. activate pitch control
- yaw_control = .TRUE. activate yaw control

Ist parameters, individual for each turbine:

- hub_x = 400.0, 400.0, x-coordinate of the hub
- hub_y = 500.0, 1500.0, y-coordinate of the hub
- hub_z = 90.0, 90.0, z-coordinate of the hub (hub height)
- rotor_radius = 63.0, 63.0, rotor radius

Output files

- One output file with time series of operational data of all turbines is saved in /<job_identifier>/OUTPUT/<job_identifier>_wtm.nc
- operational data are e.g.:
 - rotational speed
 - torque
 - power
 - blade pitch angle
 - yaw angle
 - ...

[•]Use non-cyclic boundary conditions and the turbulence recycling method:

- Be aware of the blockage effect:
 - Ensure that the wind turbines have enough distance to the recycling plane
 - 1 10 km required, depending on wind farm size and meteorological setup

```
&initialization_parameters
    bc_lr = 'dirichlet/radiation',
    initializing_actions = 'cyclic_fill',
    turbulent_inflow = .TRUE.,
    recycling_width = 4000.0,
    inflow_damping_height = 700.0,
/
```

[•]Use non-cyclic boundary conditions and the synthetic turbulence generator:

no experience so far

.eibniz

Universität Hannover

Additional notes

PALM has two wind turbines included

- 5 MW onshore NREL Reference turbine (available in the palm tests, see previous slides)
- 15 MW offshore IEA Reference turbine (will be used in the wind turbine exercise, currently not available in the PALM respository!)

ADM-R in PALM: Visualization

PALM-WTM validation/comparison

• PALM simulation of an idealized wind farm

- Offshore conditions
 - $z_0 = 0.0002 \text{ m}, <u_{hub} = 8 \text{ m/s}$
 - Neutral statification
- Non-cyclic horizontal boundary conditions with turbulent inflow

Fingrou Grid sensitivity test: 16 m, 12 m, 8 m, 4 m, 2 m

t l t o 2 t o 0 4 Hannover

Validation: single wake (T9)

Validation: single wake (T9)

- ALM and ADM-R give almost identical results!
- Near wake is only reproduced ALM and ADM-R
- Far wake is also reproduced by all

Validation: single wake (T9)

- ALM and ADM-R give almost identical results!
- Near wake is only reproduced ALM and ADM-R
- Far wake is also reproduced by all

Computational costs:

	ADM	ALM	ADM-R
Δ = 8 m	1	12.8	1.5
Δ = 4 m	1	8.1	2.0
Δ = 2 m	1	4.1	2.7

til Leibniz Universität Log 4 Hannover

Validation: single wake (T9)

- ADM does not capture near wake and wake rotation
- Differences become small in the far wake

tit Leibniz Universität Log 4 Hannover

Validation: multiple wakes (T4-T8)

Validation: multiple wakes (T4-T8)

• u-deficit, maximum behind 2nd turbine

• Recovery area due to increased turbulence

The grade of the strong of the

Validation: grid sensitivity (ADM-R, T9)

- Large-scale wake structure is well-reproduced at coarse grid
- Finer structures at finer grid spacings

l l l o 2 lo o 4 Hannover

Validation: grid sensitivity (T9)

• Near wake: ADM-R: 30 grid points per rotor required

ADM: no sensitivity

Bran wake: no sensitivity

Example Application

1 l Leibniz Lo 2 Universität Lo 9 4 Hannover

- Useful URLs

technical documentation:

https://palm.muk.uni-hannover.de/trac/wiki/doc/tec/wtm

•description of namelist parameters:

https://docs.palm-model.org/23.04/Reference/LES_Model/Namelists/#wind-turbine-pa rameters

•example test case:

palm_model_system/packages/palm/model/tests/cases/wind_turbine_model/INPUT/

