

Institute of Meteorology and Climatology, Leibniz Universität Hannover

Content

Content

- General concept of the building surface model
- Differences to land surface model
- Usage
- Examples
- Indoor climate model: Outline

Concept

General concept

- Representation of buildings as obstacles
- Commonly done in CFD models, but
 - No thermodynamics, or
 - Prescribed surface temperature / fluxes at building surfaces.
 - Thermodynamic interactions are usually ignored!
- If interactions between atmosphere and buildings are important:
 - Building surface model (BSM)
- Treatment similar as in Land surface model (LSM) (1D, building surfaces on Cartesian grid)
- Coupled to indoor climate model (ICM)
- Terms BSM and USM (urban surface model, deprecated) used synonymously

T_{op_room}

Indoor

Building surface model

Concept

General concept

- Energy balance solver for T_{a}
- Tile approach:
 - Wall fraction c_wall
 - Window fraction c_win
 - Green fraction c green
- 3-layer wall model

Boundary condition:

ICM: T

no ICM: T

T_{o.wall}

To,green

To,win

O

 $\mathbf{O}\mathbf{O}$

T_{i.wall}

T_{i.win}

(*) wall thickness on 3D grid in PALM

Outdoor Bare/ green walls and windows

o.wall

T_{o,win}

Concept

General concept

- Physical properties of surfaces, walls, windows, green elements are stored in a database
- Insulation of windows is characterized by the U-value (in a single layer)
- Absorption of shortwave radiation inside window layers follows logarithmic function
- Absorbed heat by windows is taken into account
- Green elements similar to LSM, but extraction of water from deeper soil layers by plants is neglected (substrate is saturated for now)

Leibniz

Universität Hannover

For details, see
 Resler et al. (2017, Geosci.
 Model Dev., Vol 10)

Concept

Building database

- Physical properties of surfaces, walls, windows, green elements are stored in a database
- Classification:

building_type	Description (Usage, Year of construction)			
0	User-defined			
1	Residential, < 1950			
2	Residential, 1950 - 2000			
3	Residential, > 2000			
4	Office, < 1950			
5	Office, 1950 - 2000			
6	Office, > 2000			

t t t o 2 t o 4 t o 2 t o 4 Hannover

Concept

Building database

 Each building_type in the database sets 136 parameters automatically

$building_pars(:,2) = (/$	/	S.			
0.73_wp, 8	S !	< parameter	0	_	wall fraction above ground floor level
0.27_wp, 8	S !	< parameter	1	-	window fraction above ground floor level
0.0_wp, 8	i 1	< parameter	2	-	green fraction above ground floor level
0.0 wp, 8	£ !	< parameter	3	-	green fraction roof above ground floor level
1.5 wp, 8	<u>د</u> ا	< parameter	4	_	LAI roof
1.5 wp, 8	S !	< parameter	5	-	LAI on wall above ground floor level
2000000.0 wp. 8	5 I	< parameter	6	-	heat capacity 1st/2nd wall layer above ground floor level
103000.0 wp, 8	x !	< parameter	7	-	heat capacity 3rd wall layer above ground floor level
900000.0 wp, 8	S !	< parameter	8	_	heat capacity 4th wall layer above ground floor level
0.35 wp, 8	S !	< parameter	9	-	thermal conductivity 1st/2nd wall layer above ground floor level
0.38_wp, 8	÷ !	< parameter	10	-	thermal conductivity 3rd wall layer above ground floor level
0.04_wp, 8	£ !	< parameter	11	-	thermal conductivity 4th wall layer above ground floor level
299.15_wp, 8	i 1	< parameter	12	_	indoor target summer temperature
293.15_wp, 8	S !	< parameter	13	-	indoor target winter temperature
0.92_wp, 8	S !	< parameter	14	-	wall emissivity above ground floor level
0.86_wp, 8	S !	< parameter	15	-	green emissivity above ground floor level
0.87_wp, 8	S !	< parameter	16	_	window emissivity above ground floor level
0.7_wp, 8	S !	< parameter	17	-	window transmissivity above ground floor level
0.001_wp, 8	S !	< parameter	18	-	z0 roughness above ground floor level
0.0001_wp, 8	<u>s</u> !	< parameter	19	-	zOh/zOg roughness heat/humidity above ground floor level
4.0_wp, 8	<u>s</u> !	< parameter	20	_	ground floor level height
0.78_wp, 8	§ !	< parameter	21	-	wall fraction ground floor level
0.22_wp, 8	5 !	< parameter	22	-	window fraction ground floor level
0.0_wp, 8	S !	< parameter	23	-	green fraction ground floor level
0.0_wp, 8	S !	< parameter	24	_	green fraction roof ground floor level
1.5_wp, 8	S !	< parameter	25	-	LAI on wall ground floor level
2000000.0_wp, &	S !	< parameter	26	-	heat capacity 1st/2nd wall layer ground floor level
103000.0_wp, 8	S !	< parameter	27	-	heat capacity 3rd wall layer ground floor level
900000.0_wp, &	Se !	< parameter	28	-	heat capacity 4th wall layer ground floor level
0.35_wp, 8	S !	< parameter	29	-	thermal conductivity 1st/2nd wall layer ground floor level
0.38_wp, 8	x !	< parameter	30	-	thermal conductivity 3rd wall layer ground floor level
0.04_wp, 8	S !	< parameter	31	-	thermal conductivity 4th wall layer ground floor level
0.92_wp, 8	S !	< parameter	32	_	wall emissivity ground floor level
0.11_wp, 8	S !	< parameter	33	-	window emissivity ground floor level

Concept

Building database

- Each building_type in the database sets 136 parameters automatically
- A selected number of parameters can be overwritten in the static driver

└─ Concept

Technical details

Calculation of surface resistances for vertical surfaces (LSM and BSM)

Horizontal: Monin-Obukhov Similarity Theory

 $H = -\rho \ c_{\rm p} \ \frac{1}{r_{\rm a}}(\theta_1 - \theta_0)$

$$H = \left(\frac{z_0}{z_{0,\text{concrete}}} \left(11.8 - 4.2U\right) - 4.0\right) \left(\theta_1 - \theta_0\right)$$

$$egin{aligned} u_* \,\, heta_* &= rac{1}{r_{
m a}}(heta_1 - heta_0) \ &
ightarrow r_{
m a} &= rac{ heta_1 - heta_0}{u_* \,\, heta_*} \end{aligned}$$

painigroup

 $= \rho \ c_{\rm p} \ \overline{w'\theta'}_0$

 $= -\rho c_{\rm p} u_* \theta_*$

$$\rightarrow r_{\rm a} = \frac{\rho c_p}{\left(\frac{z_0}{z_{0,\text{concrete}}} \left(11.8 - 4.2U\right) - 4.0\right)}$$

l l t o 2 t o 2 t o 4 Hannover

L Usage

Namelist input parameters

- If NAMELIST is set BSM, is activated
- If no ICM is used: set inner temperatures as boundary conditions
- Attention: there are some deprecated parameters that should not be used (especially when a static driver provides all information)

```
&urban_surface_parameters
```

```
wall_inner_temperature = 295.0,
window_inner_temperature = 295.0,
roof_inner_temperature = 295.0,
```

```
    See also
https://docs.palm-model.org/23.04/Reference/LES_Model/Nameli
sts/#urban-surface-parameters
```


t l to 2 Hannover

Building surface model

Input from static driver

- Building type is stored in variable building_type(y,x)
- 2D map, values 1-6
- More detailed information via building_pars(:,y,x) and

building_surface_pars(:,ns)

Other requirements

- In order to use BSM or the LSM in complex terrain, a special scheme for urban radiative transfer is needed (RTM)
- In most cases, BSM and LSM must be used at the same time
- ICM is an optional component

L Usage

Output variables

```
&runtime parameters
   data output = ...,
           'usm t wall north',
           'usm_t_window_south,
           'usm t green west',
           'usm_swc_east',
           'usm surfz',
           'usm surfcat',
           'usm surfwintrans',
           'usm wshf',
           'usm gsws', 'usm gsws veg', 'usm gsws lig',
           'usm_wghf', 'usm_wghf_window', 'usm_wghf_green',
           'usm_ighf', 'usm_ighf_window', 'usm_ighf_green',
           'usm t surf wall', 'usm_t_surf_window', 'usm_t_surf_green',
           'usm theta 10cm',
           'usm t wall', 'usm t window', 'usm_t_green',
           'usm_swc',
```


L Usage

Limitations and upcoming improvements

- The BSM code still does not fully comply with PALM's coding standard and naming convention
- Some parts are deprecated and will be removed and or revised in near future (USM vs BSM naming convention)
- Our goal: a <u>Unified Surface Model (USM)</u>
- Green facade/roof substrate is always saturated
- Issues with partial greening of surfaces (to be fixed soon)
- Slanted roofs will be available (immersed boundary condition)
- More building types will be implemented
- Snowpack on buildings is under development

Surface temperature at Ernst-Reuter-Platz, Berlin

Examples

L Indoor climate

Indoor climate model (ICM)

- Based on an analytic solution of Fourier's equation
- Resistance model
- Time-stepping: Crank-Nicolson, dt = 1 h
- Output quantities: operative room temperature, energy demand for heating/cooling/lighting/ventilation, waste heat
- Uses the same information from the building database
- Coupling to BSM:
 - Inner wall/window/roof temperatures → indoor model
 - Near-facade temperature → indoor model
 - Inner wall heat flux \rightarrow BSM

L Indoor climate

Indoor climate model (ICM)

- Based on an analytic solution of Fourier's equation
- Resistance model
- Time-stepping: Crank-Nicolson, dt = 1 h
- Output quantities: operative room temperature, energy demand for heating/cooling/lighting/ventilation, waste heat
- Uses the same information from the building database
- Coupling to BSM:
 - Inner wall/window/roof temperatures → indoor model
 - Near-facade temperature → indoor model
 - Inner wall heat flux → BSM

Validation and first application:

- Pfafferott et al. (2021, 10.5194/gmd-14-3511-2021)
- Maronga et al. (2022, 10.1175/JAMC-D-21-0216.1)

L Indoor climate

- Usage I: Input parameters
 - The ICM is activated via NAMELIST:

```
&indoor_parameters
initial_indoor_temperature = 293.0,
/
```

Building types have to be given in static driver file

└─ Indoor climate

Usage II: Output quantities

Output quantities

```
&runtime_parameters
    data_output = im_t_indoor_mean,
        im_hf_roof,
        im_hf_roof_waste,
        im_hf_wall_win,
        im_hf_wall_win_waste,
/
```

