

Institute of Meteorology and Climatology, Leibniz Universität Hannover

Content

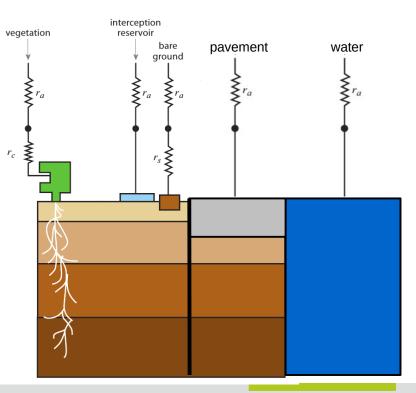
Content

- Energy balance solver
- Soil model
- 3D vegetation
- Treatment of pavements and water bodies
- Technical aspects & usage
- Example applications

Concept

Why using a land surface model (LSM)?

- Traditional surface boundary conditions in LES:
 - Prescribed surface fluxes of sensible (H) and latent heat (LE)
 - Prescribed surface temperature and humidity
- Problems:
 - Requires accurate measurement data (incorporating reaction of plants)
 - No forecasting
 - Feedback processes are neglected (vegetation-soil, turbulence, clouds)
- Solution:
 - Interactive LSM that calculates surface fluxes
 - Advantage: Only information on vegetation, soil and radiation is needed
 - Disadvantage: Information on vegetation, soil, and radiation is needed



Concept

LSM in PALM

- Land surface parameterization based on the TESSEL scheme (IFS)
- Energy balance solver for the skin/surface temperature
- Multi-layer soil model (default: 8 layers, 6 types)
- Interception reservoir on plants
- Liquid water reservoir on pavements and bare soil
- Surface types:
 - Vegetation (18 types)
 - Pavement (15 types)
 - Water (5 types)
- Limitations:
 - No frozen water / snow (coming soon
 - No lateral transport
 - Vegetation is flat

l l l l l o 2 l o 4 Hannover

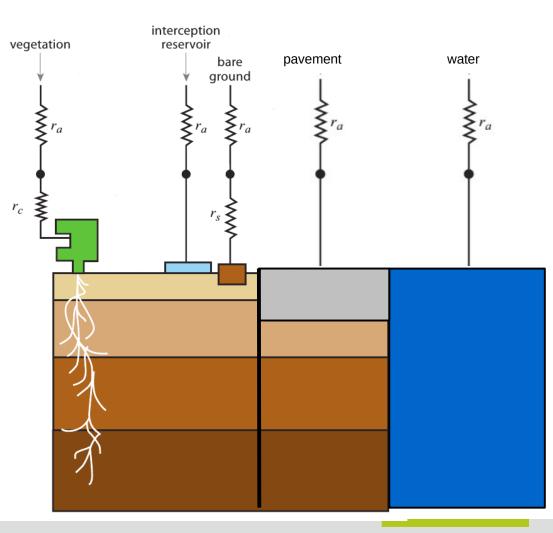
Energy balance solver

Surface energy balance

Prognostic equation for the (skin-layer) radiative temperature:

$$C_0 \frac{dT_0}{dt} = R_{\rm n} - H - LE - G$$

- C_0 : Heat capacity of the skin layer (J m⁻² K⁻¹)
- T_0 : Radiative temperature of the skin layer (K)
- $R_{\rm n}$: Net radiation at the surface (W m⁻²)
- *H*: Sensible heat flux at the surface (W m^{-2})
- *LE*: Latent heat flux at the surface (W m^{-2})
- G: Ground heat flux (W m⁻²)



t l l t o 2 t o 2 t o 4 Hannover

Concept

Resistance parameterization

- Exchange of sensible heat:
 r_a: aerodynamic resistance
- Exchange of latent heat:
- r_a: aerodynamic resistance
- r_c: canopy resistance
- r_s: bare soil resistance
- (r₁ = 0 : liquid water resistance)

L Energy balance solver

Parameterization of turbulent surface heat fluxes

$$H = -
ho \, c_{
m p} \, rac{1}{r_{
m a}}(heta_1 - heta_0)$$

- θ_1 : potential temperature at 1st grid level (K)
- θ_0 : potential temperature at surface (K)

$$LE = -
ho I_{\mathrm{v}} \ rac{1}{r_{\mathrm{a}} + r_{\mathrm{s}}} (q_{\mathrm{v},1} - q_{\mathrm{v},\mathrm{sat}}(T_0))$$

q_{v,1}: water vapor mixing ratio at 1st grid level (kg kg⁻¹)
 q_{v,sat}(T₀): water vapor mixing ratio at saturation (kg kg⁻¹) at Temperature T₀

Energy balance solver

Parameterization of soil heat flux

Vegetated surfaces (skin layer):

$$G = \Lambda(T_0 - T_{\mathrm{soil},1})$$

with

$$\Lambda = \frac{\Lambda_{\rm skin} \Lambda_{\rm soil}}{\Lambda_{\rm skin} + \Lambda_{\rm soil}}$$

- Λ_{skin} : Heat conductivity of the vegetation canopy (W m⁻² K⁻¹)
- $\Lambda_{soil} = \lambda / dz$: Total heat conductivity of the uppermost soil layer (W m⁻² K⁻¹) with λ : heat conductivity of the uppermost soil layer (W m⁻¹ K⁻¹)
- *T*_{soil,1}: Temperature of uppermost soil layer (K)

Energy balance solver

Parameterization of soil heat flux

Bare soil:

$$G = \Lambda_{\mathrm{soil}}(T_0 - T_{\mathrm{soil},1})$$

- $\Lambda_{soil} = \lambda / dz$: Total heat conductivity of the uppermost soil layer (W m⁻² K⁻¹)
- *T*_{soil,1}: Temperature of 1st soil layer (K)

tit to 2 to 2 to 2 Hannover

Energy balance solver

Parameterization of soil heat flux

Pavement:

$$G = \Lambda_{\mathrm{pavement}} (T_0 - T_{\mathrm{pavement},1})$$

- $\Lambda_{\text{pavement}} = \lambda / dz$: Total heat conductivity of the uppermost pavement layer (W m⁻² K⁻¹)
- *T*_{pavement,1}: Temperature of 1st pavement layer (K)

Energy balance solver

Parameterization of soil heat flux

Water surfaces:

$$G = 10e^{10}(T_0 - T_{
m water})$$

- T_0 is always equal to the water temperature!
- *T*_{water}: Water temperature (K) fixed value at the moment!
 (see parameter water_temperature)

Energy balance solver

Heat capacity of the surface

$$C_0 \frac{dT_0}{dt} = R_{\rm n} - H - LE - G$$

- Vegetation surfaces (skin layer):
 - $C_0 = 0$ (skin layer has no heat capacity!)
- Bare soil (no skin layer):
 - $C_0 \neq 0$: heat capacity of the uppermost soil layer
- Pavement (no skin layer):
 - $C_0 \neq 0$: heat capacity of the uppermost pavement layer
- Water:
 - $C_0 = 0$ (surface temperature equals water temperature)

t l t o 2 t o 0 4 Hannover

Energy balance solver

Surface energy balance

$$egin{split} C_0 rac{dT_0}{dt} &= R_\mathrm{n} - H - LE - G \ &= R_\mathrm{n} +
ho \; c_\mathrm{p} \; rac{1}{r_\mathrm{a}} (heta_1 - heta_0) +
ho \; l_\mathrm{v} \; rac{1}{r_\mathrm{a} + r_\mathrm{s}} (extbf{q}_\mathrm{v,1} - extbf{q}_\mathrm{v,sat}(extbf{T}_0)) - ightarrow (extbf{T}_0 - extbf{T}_\mathrm{soil,1}) \end{split}$$

- Land surface parameterization
- Input from soil model
- Input from atmosphere model
- Input from radiation model

1 l Leibniz 1 o 2 Universität 1 o 9 4 Hannover

– Energy balance solver

Land surface parameterization (I): calculation of r_a

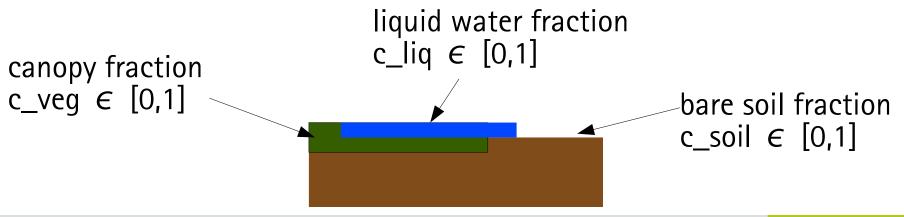
• r_a is the aerodynamic resistance due to roughness and stability:

$$egin{aligned} \mathcal{H} &= -
ho \, \, oldsymbol{c}_{\mathrm{p}} \, \, rac{1}{r_{\mathrm{a}}}(heta_{1} - heta_{0}) \ &=
ho \, \, oldsymbol{c}_{\mathrm{p}} \, \, \overline{w' heta'}_{0} \ &= -
ho \, \, oldsymbol{c}_{\mathrm{p}} \, \, oldsymbol{u}_{*} \, \, oldsymbol{ heta}_{*} \end{aligned}$$

$$u_* \,\, heta_* = rac{1}{r_{
m a}}(heta_1 - heta_0) \
ightarrow r_{
m a} = rac{ heta_1 - heta_0}{u_* \,\, heta_*}$$

• u^* and θ^* are calculated based on Monin-Obukhov similarity theory

Energy balance solver



Land surface parameterization (II): calculation of r_s

• r_s is the surface resistance due to plant canopy or bare soil:

$$r_{
m s} = egin{cases} r_{
m c} & {
m plants} \ r_{
m soil} & {
m soil} \ 0 & {
m interception water} \end{cases}$$

Surface coverage:

Energy balance solver

Land surface parameterization (III): calculation r_c

- r_c is the stomatal resistance of plants (m s⁻¹)
- Parameterization after Jarvis (1976):

$$r_{\rm c} = rac{r_{
m c,min}}{LAI} f_1(R_{
m sw,in}) f_2(\widetilde{m}) f_3(e_{
m def})$$

 $r_{c,\min}$: Minimum stomatal resistance (ms^{-1}) LAI: Leaf area index $(m^2 m^{-2})$ f_i : Correction functions $(f_i \ge 1)$ $R_{sw,in}$: Incoming shortwave radiation $(W m^{-2})$ \widetilde{m} : Layer-averaged soil moisture $(m^3 m^{-3})$ e_{def} : Water-vapor pressure deficit (hPa)

– Energy balance solver

Land surface parameterization (III): calculation of r_c

- r_{soil} is the bare soil resistance (m s⁻¹)
- Parameterization after Jarvis (1976):

$$r_{\rm soil} = r_{
m soil,min} f_{2b}(m_{
m soil,1})$$

 $r_{
m soil,min}$: Minimum soil resistance (m s⁻¹) f_{2b} : Correction function ($f_i \ge 1$) $m_{
m soil,1}$: Soil moisture of the uppermost layer (m³m⁻³)

lil Leibniz universität to 2 Hannover

Energy balance solver

Land surface parameterization (IV): calculation of LE

• LE is calculated separately for all fractions:

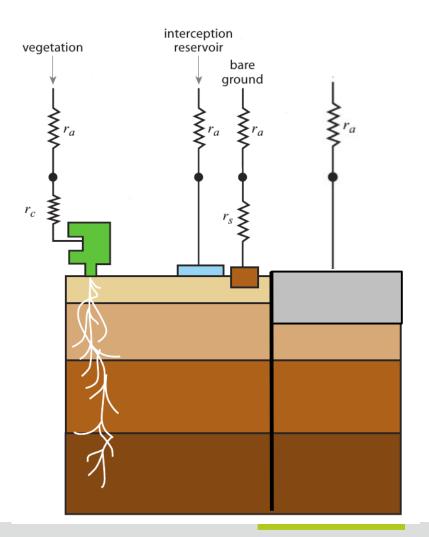
$$egin{split} LE_{
m veg} &= -
ho \, \, I_{
m v} \, \, rac{1}{r_{
m a}+r_{
m c}}(q_{
m v,1}-q_{
m v,sat}(T_0)) \ LE_{
m soil} &= -
ho \, \, I_{
m v} \, \, rac{1}{r_{
m a}+r_{
m soil}}(q_{
m v,1}-q_{
m v,sat}(T_0)) \ LE_{
m liq} &= -
ho \, \, I_{
m v} \, \, rac{1}{r_{
m a}}(q_{
m v,1}-q_{
m v,sat}(T_0)) \end{split}$$

Prognostic equation for liquid water reservoir:

$$rac{dm_{
m liq}}{dt} = rac{LE_{
m liq}}{
ho_{
m l} \ I_{
m v}}$$

• Total LE (Evapotranspiration):

$$LE = c_{\text{veg}}(1 - c_{\text{liq}}) LE_{\text{veg}} + c_{\text{liq}} LE_{\text{liq}} + (1 - c_{\text{veg}})(1 - c_{\text{liq}}) LE_{\text{soil}}$$


til Leibniz Universität Loo 4 Hannover

Land surface model

L Soil model

Soil model basics

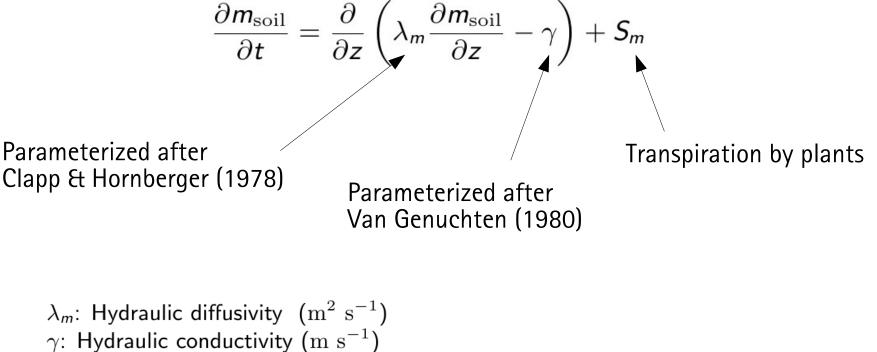
- Multiple (8) layers with varying depth
- Vertical transport of heat and water
- Preferential withdrawal from different soil layers with root extraction

Heat diffusion: Fourier's law

Prognostic equation for T_{soil}

$$(\rho C)_{\text{soil}} \frac{\partial T_{\text{soil}}}{\partial t} = \frac{\partial}{\partial z} \left(\lambda_T \frac{\partial T_{\text{soil}}}{\partial z} \right)$$
depends on porosity and the water content of the soil depends on the soil type and the water content

$$(
ho C)_{soil}$$
: Volumetric heat capacity (J m⁻³ K⁻¹)
 λ_T : Thermal heat conductivity (W m⁻¹ K⁻¹)



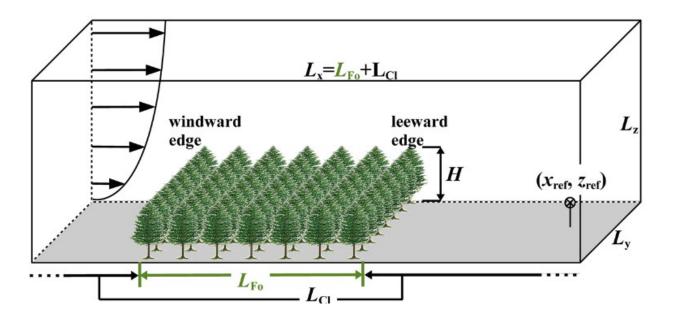
L Soil model

_and surface model

Soil water transport: Richard's equation

Prognostic equation for m_{soil} (m³ m⁻³)

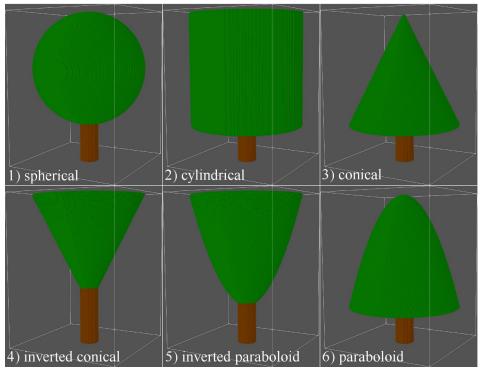
 S_m : Sink term due to root extraction (m³ m⁻³ s⁻¹)



Plant canopy model

3D Vegetation

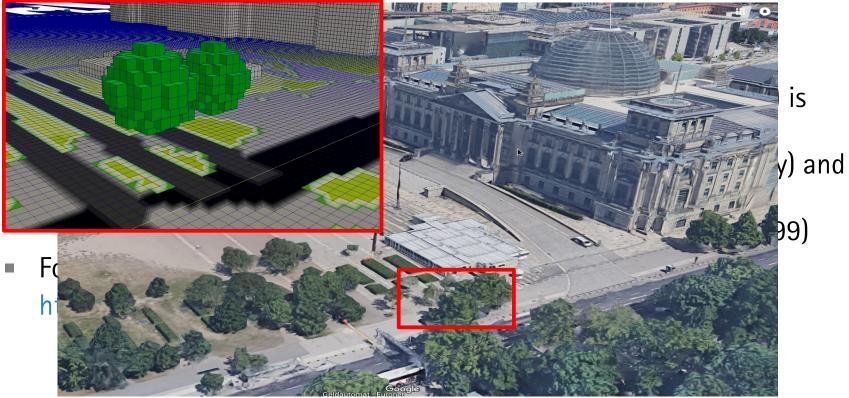
- Interactions of 3D vegetation objects with the atmosphere are treated in the plant canopy model:
 - Plants are represented by Leaf area density (LAD) and Basal area density (BAD) fields



Plant canopy model

3D Vegetation

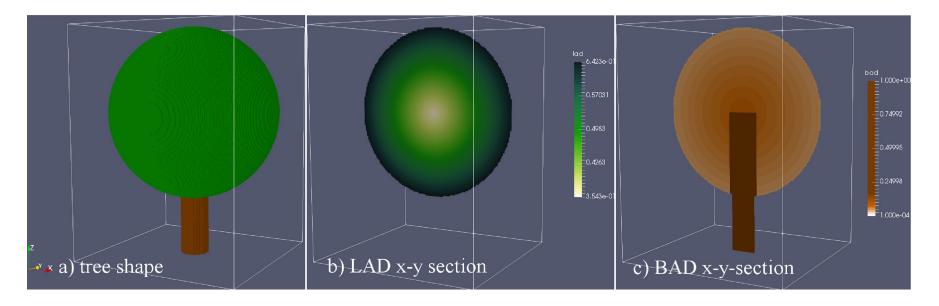
- Interactions of 3D vegetation objects with the atmosphere are treated in the plant canopy model:
 - Plants are represented by Leaf area density (LAD) and Basal area density (BAD) fields



Plant canopy model

Plant canopy model: Outline

Interactions of 3D vegetation objects with the atmosphere are treated in the plant canopy model:



Plant canopy model

3D Vegetation

- Interactions of 3D vegetation objects with the atmosphere are treated in the plant canopy model:
 - Plants are represented by Leaf area density (LAD) and Basal area density (BAD) fields

Plant canopy model

3D Vegetation

- Interactions of 3D vegetation objects with the atmosphere are treated in the plant canopy model:
 - Plants are represented by LAD+BAD fields
 - Sink for momentum based on drag force approach
 - Interaction with radiation (absorption of energy, shading) is done in RTM (see next lecture)
 - Absorbed energy goes into sensible heat (no heat capacity) and transpiration
 - Transpiration via Jarvis-Steward model (Daudet et al., 1999)
- For details, see:

https://palm.muk.uni-hannover.de/trac/wiki/doc/tec/canopy

 \square Technical aspects

Summary of prognostic equations

- Four prognostic equations:
 - (Skin layer) radiative temperature T_0
 - Liquid water in interception reservoir m_{liq} (for vegetation and pavement)
 - Soil temperature at all depths (except water surfaces)
 - Soil moisture at all depths (except water surfaces)

L Technical aspects

Numerical solution of the energy balance I

• Solving for T_0 :

$$\begin{aligned} C_0 \frac{T_0}{dt} = & S_0 \ \tau \ \sin(\Psi) - \alpha \ S_0 \ \tau \ \sin(\Psi) + \epsilon_{\text{atm}} \ \sigma \ T_1^4 - \epsilon \ \sigma \ T_0^4 \\ & + \rho \ c_{\text{p}} \ \frac{1}{r_{\text{a}}} (\theta_1 - \theta_0) + \rho \ I_{\text{v}} \ \frac{1}{r_{\text{a}} + r_{\text{s}}} (q_{\text{v},1} - q_{\text{v},\text{sat}}(T_0)) \\ & - \Lambda(T_0 - T_{\text{soil},1}) \end{aligned}$$

- Problem: non-linear terms, requires iteration method
- Solution: Taylor series expansion at T_0^{t-1} :

$$T_0^{4,t} = T_0^{4,t-1} + 4 T_0^{3,t-1} (T_0^t - T_0^{4,t-1})$$
$$q_{v,sat}(T_0^t) = q_{v,sat}(T_0^{t-1}) + \frac{dq_{v,sat}}{dT} (T_0^t - T_0^{t-1})$$

L Technical aspects

Numerical solution of the energy balance II

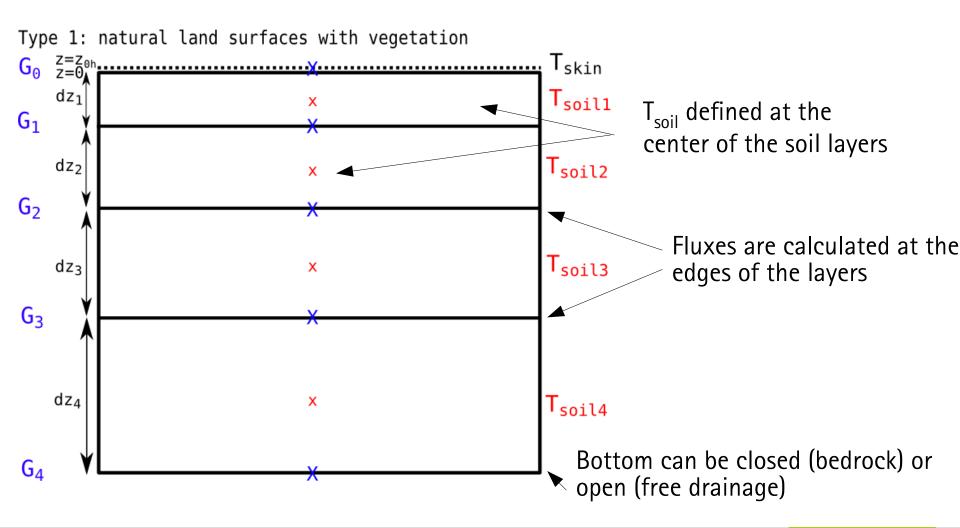
• Prognostic-diagnostic equation for T_0 :

$$T_0 = rac{A \cdot \Delta t + C_0 \cdot T_0^{t-1}}{C_0 + B \cdot \Delta t}$$

with coefficients A, B

- Equation can be solved with the standard time-stepping scheme in PALM (e.g. Runge-Kutta-3) – no iteration needed!
- Special case: $C_0 = 0$: diagnostic equation

$$T_0 = \frac{A}{B}$$



└─ Technical aspects

Discretization of the soil (4-layer example)

- Usage & special features

LSM constants

8 fixed parameters:

$$\begin{split} \beta_{\rm CH} &= 6.04 : \ \mbox{Clapp \& Hornberger exponent} \\ \lambda_{\rm h,dry} &= 0.19 \, {\rm W} \, {\rm m}^{-1} \, {\rm K}^{-1} : \ \mbox{Heat conductivity of dry soil} \\ \lambda_{\rm h,sm} &= 3.44 \, {\rm W} \, {\rm m}^{-1} \, {\rm K}^{-1} : \ \mbox{Heat conductivity of soil matrix} \\ \lambda_{\rm h,water} &= 0.57 \, {\rm W} \, {\rm m}^{-1} \, {\rm K}^{-1} : \ \mbox{Heat conductivity of water} \\ \psi_{\rm sat} &= -0.388 : \ \mbox{Soil matrix potential at saturation} \\ (\rho C)_{\rm soil}) &= 2.19 e^6 \, {\rm J} \, {\rm m}^{-3} \, {\rm K}^{-1} : \ \ \mbox{Volumetric heat capacity of soil} \\ (\rho C)_{\rm water}) &= 4.20 e^6 \, {\rm J} \, {\rm m}^{-3} \, {\rm K}^{-1} : \ \ \ \mbox{Volumetric heat capacity of water} \\ m_{\rm max} &= 0.2 \, {\rm mm} : \ \ \mbox{Maximum water column on vegetation} \end{split}$$

— Usage & special features

Input parameters

- Required input parameters:
 - about 20 parameters to be specified by the user
 - Initial soil profiles of T_{soil} and m_{soil}
 - List of all parameters:

https://docs.palm-model.org/23.04/Reference/LES_Model/Namelists /#land-surface-parameters

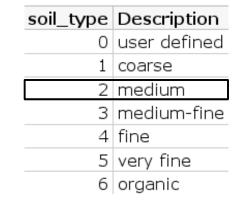
- Simplified setup:
 - Specification of a surface type ('vegetation', 'water', 'pavement') and a default class (e.g. vegetation_type = 1-18)
 - Specification of a soil type (soil_type = 1-6)
 - Initial profiles of T_{soil} and m_{soil}
 - Specification of a deep soil temperature
 - All parameters can be changed individually!

- Usage & special features

Predefined vegetation types

- Classification according to land cover
- 12 parameters are set

vegetation_type	Description
0	user defined
1	bare soil
2	crops, mixed farming
3	short grass
4	evergreen needleleaf trees
5	deciduous needleleaf trees
6	evergreen broadleaf trees
7	deciduous broadleaf trees
8	tall grass
9	desert
10	tundra
11	irrigated crops
12	semidesert
13*	ice caps and glaciers
14	bogs and marshes
15	evergreen shrubs
16	deciduous shrubs
17	mixed forest/woodland
18	interrupted forest

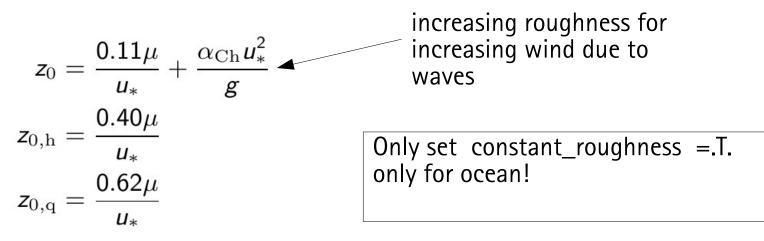

vegetation_type	r_c_min (s/m)	LAI (m²/m²)	c_veg	gD (1/hPa)	z0_vegetation (m)	z0h_vegetation	lambda_s (W/m²/K)	lambda_u (W/m²/K)	f_sw_in	c_surface	albedo_type	emissivity
1	180.0	3.00	1.00	0.00	0.005	0.5E-4	10.0	10.0	0.05	0.0	0	0.94
2	180.0	3.00	1.00	0.00	0.10	0.0001	10.0	10.0	0.05	0.0	2	0.95
3	110.0	2.00	1.00	0.00	0.03	0.30E-4	10.0	10.0	0.05	0.0	2	0.95
4	500.0	5.00	1.00	0.03	2.00	2.00	20.0	15.0	0.03	0.0	5	0.97
5	500.0	5.00	1.00	0.03	2.00	2.00	20.0	15.0	0.03	0.0	6	0.97
6	175.0	5.00	1.00	0.03	2.00	2.00	20.0	15.0	0.03	0.0	8	0.97
7	240.0	6.00	0.99	0.13	2.00	2.00	20.0	15.0	0.03	0.0	9	0.97
8	100.0	2.00	0.70	0.00	0.47	0.47E-2	10.0	10.0	0.05	0.0	8	0.97
9	250.0	0.05	0.00	0.00	0.013	0.013E-2	15.0	15.0	0.00	0.0	3	0.94
10	80.0	1.00	0.50	0.00	0.034	0.034E-2	10.0	10.0	0.05	0.0	11	0.97
11	180.0	3.00	1.00	0.00	0.5	0.50E-2	10.0	10.0	0.05	0.0	13	0.97
12	150.0	0.50	0.10	0.00	0.17	0.17E-2	10.0	10.0	0.05	0.0	2	0.97
13*	0.0	0.00	0.00	0.00	1.3E-3	1.3E-4	58.0	58.0	0.00	0.0	11	0.97
14	240.0	4.00	0.60	0.00	0.83	0.83E-2	10.0	10.0	0.05	0.0	4	0.97
15	225.0	3.00	0.50	0.00	0.10	0.10E-2	10.0	10.0	0.05	0.0	4	0.97
16	225.0	1.50	0.50	0.00	0.25	0.25E-2	10.0	10.0	0.05	0.0	4	0.97
17	250.0	5.00	1.00	0.03	2.00	2.00E-2	20.0	15.0	0.03	0.0	7	0.97
18	175.0	2.50	1.00	0.03	1.10	1.10E-2	20.0	15.0	0.03	0.0	8	0.97

Usage & special features

Predefined soil types

- Soil classification according to porosity
- 8 parameters are set

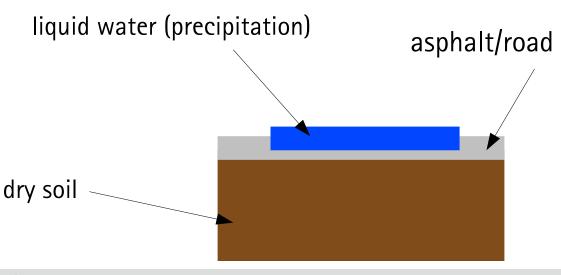
soil_type	alpha_vg	l_vg	n_vg	gamma_w_sat (m/s)	m_sat (m³/m³)	m_fc (m³/m³)	m_wilt (m³/m³)	m_res (m³/m³)
1	3.83	1.150	1.38	6.94E-6	0.403	0.244	0.059	0.025
2	3.14	-2.342	1.28	1.16E-6	0.439	0.347	0.151	0.010
3	0.83	-0.588	1.25	0.26E-6	0.430	0.383	0.133	0.010
4	3.67	-1.977	1.10	2.87E-6	0.520	0.448	0.279	0.010
5	2.65	2.500	1.10	1.74E-6	0.614	0.541	0.335	0.010
6	1.30	0.400	1.20	1.20E-6	0.766	0.663	0.267	0.010



- Usage & special features

Special case: inland water / ocean

- No soil model
- One layer water body
- Roughness lengths can be parameterized after Charnock (1955) and Beljaars (1994):


 $\label{eq:ach} \begin{aligned} &lpha_{\mathrm{Ch}} = 0.018: \ \mbox{Charnock constant} \\ &\mu: \ \mbox{Molecular viscosity } (\mathrm{m}^2 \ \mathrm{s}^{-1}) \\ g: \ \mbox{Gravitational acceleration } (\mathrm{m} \ \mathrm{s}^{-2}) \end{aligned}$

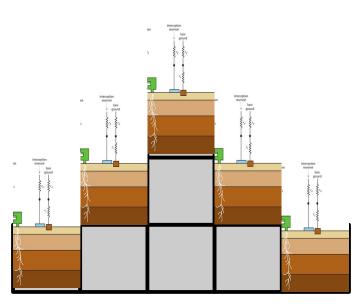
Usage & special features

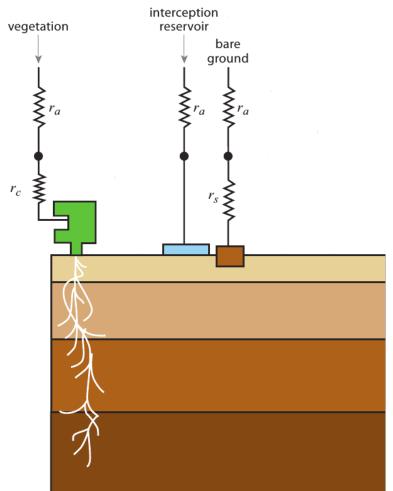
Special case: pavement/roads

- Impervious surface (asphalt/concrete etc.)
- Dry soil below (no moisture transport)
- Thermal diffusion between pavement and soil is considered
- Interception reservoir
- Variable depth of the impervious surface

0 user defined
1 asphalt/concrete mix
2 asphalt (asphalt concrete)
3 concrete (Portland concrete)
4 sett
5 paving stones
6 cobblestone
7 metal
8 wood
9 gravel
10 fine gravel
11 pebblestone
12 woodchips
13 tartan (sports)
14 artifical turf (sports)

15 clay (sports)

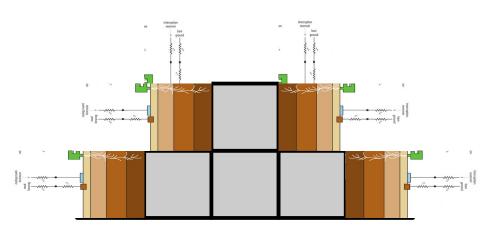


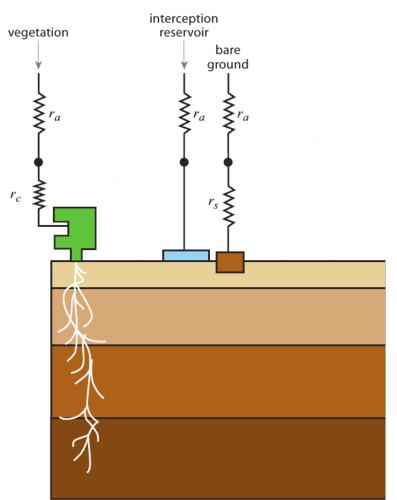


Usage & special features

Special case: complex terrain

- How to treat vertically-oriented surfaces?
- For now: apply LSM and integrate in horizontal direction
- Each surface element is independent
- Requires special radiation code





Usage & special features

Special case: complex terrain

- How to treat vertically-oriented surfaces?
- For now: apply LSM and integrate in horizontal direction
- Each surface element is independent
- Requires special radiation code

_eibniz Universität lannover

Usage & special features

&land_surface_parameters NAMELIST

Minimum configuration in _p3d file:

&land_surface_parameters		
surface_type	<pre>= 'vegetation',</pre>	
vegetation_type	= 3, ! short grassl	and
soil_type	= 3 ! medium-fine	
soil temperature	= 290.0, 289.0, 288.0, 286.0,	! levels 1-4
	285.0, 285.0, 285.0, 285.0,	! levels 5-8
dz soil	= 0.01, 0.02, 0.04, 0.07,	! levels 1-4
_	0.15, 0.21, 0.72, 1.89,	! levels 5-8
root fraction	= 0.10, 0.20, 0.30, 0.10,	! levels 1-4
_	0.05, 0.00, 0.00, 0.00,	! levels 5-8
deep soil tempera		! deep soil
/		

- For a list of all available parameters, see https://docs.palm-model.org/23.04/Reference/LES_Model/Namelists /#land-surface-parameters Note: the LSM always requires a radiation model (next talk...)!

Usage & special features

Limitations & Challenges

- LSM Vegetation is always flat
- 3D plant canopy is available but not coupled to soil water (trees have enough water for transpiration)
- Combine 3D canopy + LSM for the under-tree surface
- Very simply water body treatment
- Intense precipitation cannot be treated (no run-off model)
- Partial absorption of shortwave radiation by the canopy is not considered yet
- Ice phase (snow pack, frozen soil) not implemented yet
 - $(\rightarrow \text{ some vegetation types will not work})$

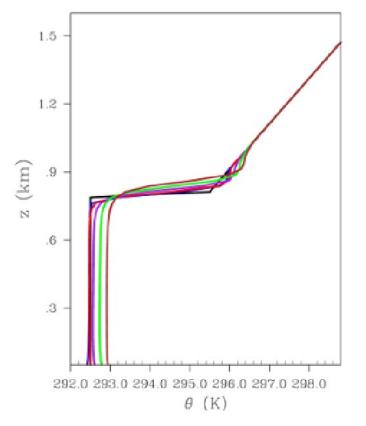
Coming soon

- Snow pack will be available in the next PALM release
- Sea and land ice will be available in the next PALM release
- Slanted surfaces (immersed boundary condition) available soonish

Application scenarios

Application scenarios for the LSM

- Scenario 1: Interaction between land surface and turbulence in the convective boundary layer
 - Two-way feedback between the turbulent eddies and the land surface
 - Forecasting requires the surface to develop dynamically
- Scenario 2: Nocturnal boundary layer
 - Surface fluxes are difficult to measure during nighttime
 - Low clouds (fog) can have a large impact on the energy balance (longwave radiation)
 - Highly unstationary conditions

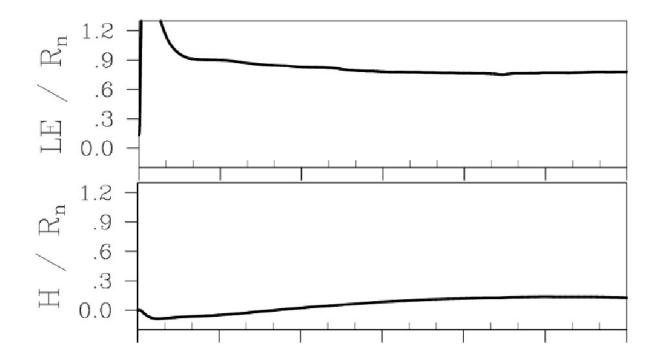

Application scenarios

Example 1: Convective boundary layer

Setup:

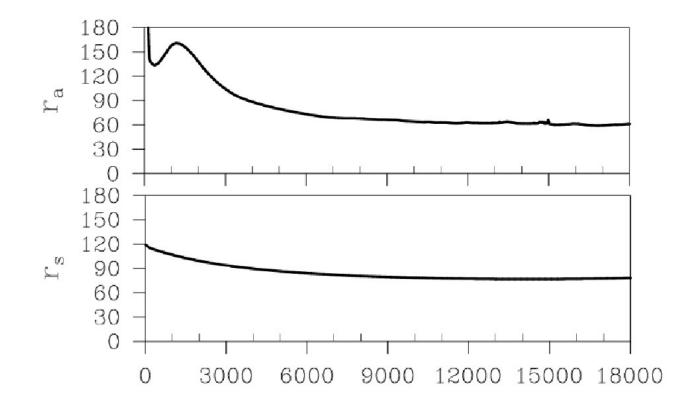
b到时group

- Grassland
- Summer day radiative forcing (0800 – 1300 UTC)
- 2.5 m/s geostrophic wind
- Grid: dx = dy = 50 m, dz = 25 m
- 4 layers in soil
- Initial conditions: neutral with capping inversion



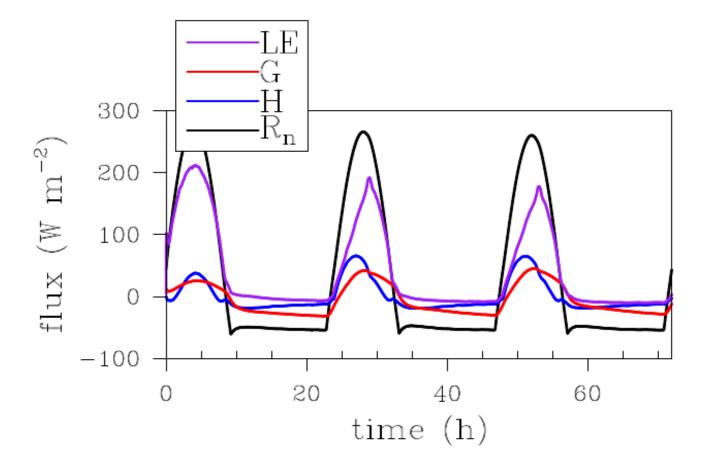
└─ Application scenarios

Example 1: Convective boundary layer



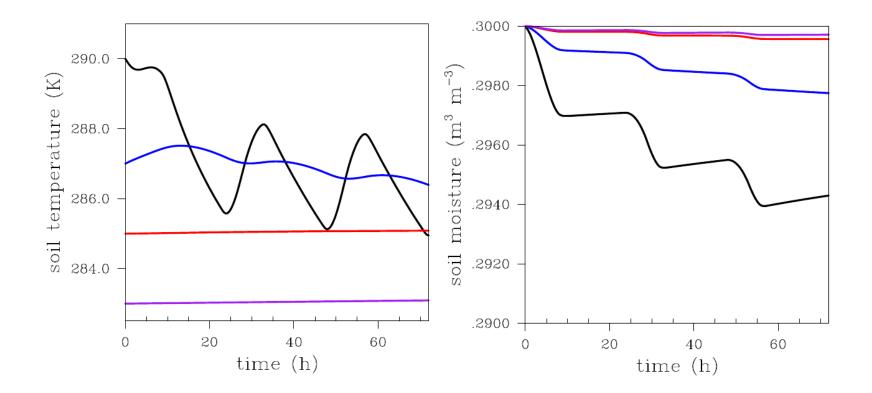
└─ Application scenarios

Example 1: Convective boundary layer



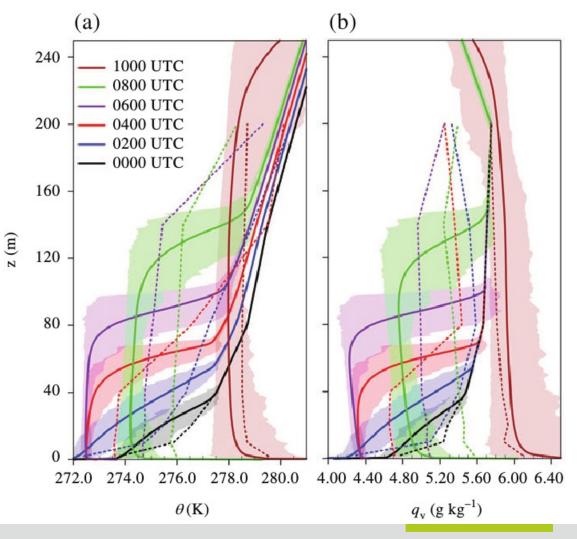
Application scenarios

Example 1: Convective boundary layer (multi-day run!)



Application scenarios

Example 1: Convective boundary layer (multi-day run!)

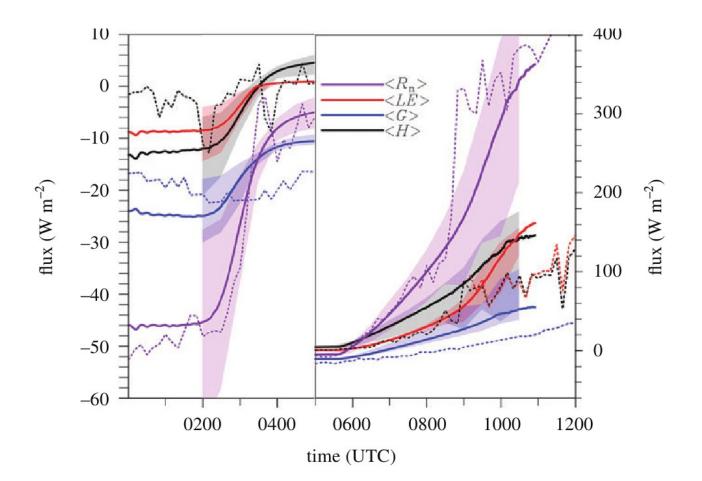


t c 2 t o 2 t o 2 t o 0 t d 2 t o 0 t d t t Leibniz Universität Hannover

Application scenarios

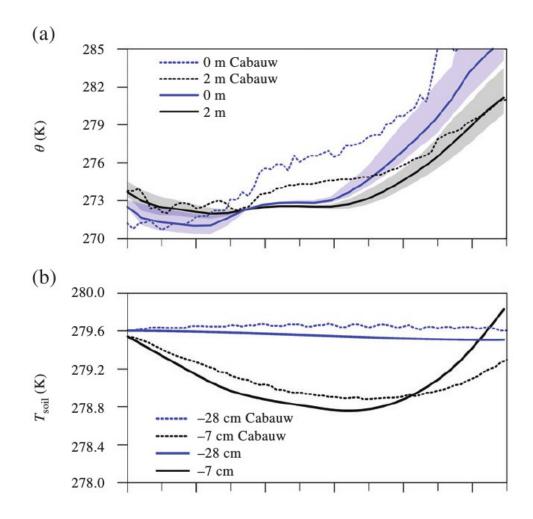
Example 2: Nocturnal boundary layer (with fog)

- Setup:
 - Cabauw
 (short grass)
 - 00 12 UTC
 - Grid: 1 m
 - 4 layers in soil
 - Initial conditions: Cabauw obs.



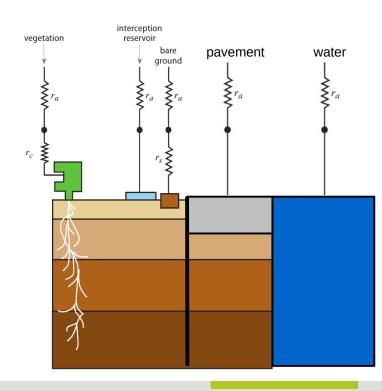
└─ Application scenarios

Example 2: Nocturnal boundary layer (with fog)



└─ Application scenarios

Example 2: Nocturnal boundary layer (with fog)


L Summary

Summary

- Energy balance solver for different surface types
- Multiple (8) layers with varying depth
- Vertical transport of heat and water
- Currently no ice phase
- Requires a radiation model
- Validation of the LSM:
- Gehrke et al. (2021, https://doi.org/10.5194/gmd-14-5307-2021)

Outlook

- PALM also has an urban surface model for building surfaces (BSM/USM)
- Complex terrain requires special radiation code (shading, reflections)

