

Institute of Meteorology and Climatology, Leibniz Universität Hannover

Why is there a need for a grid nesting?

City of Berlin

- 10 m resolution: 10⁹-10¹⁰ grid points
- 1 m resolution: 10¹²-10¹³ grid points

Not feasible for detailed parameter studies, even with 10 m resolution everywhere!

Why is there a need for a grid nesting?

City of Berlin

50 m resolution: 10⁷-10⁸ grid points

50 m resolution is feasible, but it might be too coarse for using it everywhere!

Increase grid resolution for domain of interest

• 1 m resolution: 10⁸ grid points

Attention: Too high grid spacing ratios can create unrealistic results

Why is there a need for a grid nesting?

- Boundary layer processes contain a wide range of scales, ranging from the mesoscale, e.g. urban heat island, down to the microscale, e.g. effects of single trees, building and roof shapes, local emissions, etc.
- To consider both large model domains at a small grid size would be required not feasible today, even not on supercomputers !
- Idea: Consider mesoscale processes on a coarser grid and refine the grid within the domain of interest

50 m resolution: 10⁷-10⁸ grid points

Increase grid resolution for domain of interest

1 km

• 1 m resolution: 10⁸ grid points

50 m resolution is feasible, but it might be too coarse!

Presentation outline

- General/Technical information about the self-nesting method → PALM's first nesting system
 - Steering
 - Examples
- Mesoscale (Offline) nesting in large-scale models (e.g., COSMO) → PALM's second nesting system
- Outlook and open points

General information

Grid nesting

Basics of the nesting

- **Goal:** Reduce computational costs significantly
 - Enable simulations with a large domain and detailed analysis within domain of interest
 - Enable industrial application of LES with PALM (urban environments, site assessment in wind energy)
- Idea:
 - High grid resolution within domain of interest
 - Coarse grid resolution of other/outer parts of model domain
- Precondition/Requirement:
 - Nested domain results should correspond to results of the "classical" nonnested simulation, where a uniform grid spacing identical to the grid spacing in the nested domain is used in the whole domain

- General information

Grid nesting

General principles 3D nesting – Domain Structure

- Self-nesting is a PALM-PALM-coupling with two or more simulations running in parallel to each other with a continuous communication at runtime.
- One root domain (outermost and coarsestresolution LES domain) and up to 63 child domains embedded into the root model are possible
- Childs can be recursively nested within each other → model domain can be parent and child at the same time (see child 1)
- Child domains can also be parallel to each other sharing same parent domain

- General information

Grid nesting

General principles 3D nesting – Domain Structure

- All child domains must be completely inside their parent domain → no overlapping of parallel child domains → they have one parent domain
- Outer boundaries of child domain must match the underlying parent grid lines in all directions, lower boundary surface-bound
- Inside child domain all parent-grid lines must match the corresponding child-grid lines
- → Grid-spacing ratios in each direction must be integer valued.
- → Vertical grid stretching is only allowed in the root domain above the top level of the highest nested domain

General principles 3D nesting – Domain Structure

- 2D Domain decomposition of child domains during parallelization must be realized in a way that the sub-domain size is never smaller than the parent grid spacing in the respective direction
- 4 parent grid cells between the boundaries of child and parent domains are necessary

- Two-way (default mode) or one-way coupling is possible
- All prognostic variables are coupled except the SGS-TKE e (has no real benefit and a coupling of e is everything else than straightforward since it strongly depends on grid resolution)
- Most important requirements for the nesting algorithm: Minimizing flux conservation errors and enabling complex topography

- Data in ? (parent to child)
- Data out ? (child to parent)

- Two-way coupling/nesting:
 - The focus is on both parent and child domain (e.g., dispersion scenarios)
 - Child domain obtains boundary-conditions from parent through zero order or linear interpolation
 - For boundary-normal velocity components, the original parent values are used (e.g., left child boundary u-component, values are set directly on the boundary → zero order interpolation):

Data in (parent to child)
 Interpolation

Data out (child to parent)
Anterpolation

- Two-way coupling/nesting:
 - The focus is on both parent and child domain (e.g., dispersion scenarios)
 - Child domain obtains boundary-conditions from parent through zero order or linear interpolation
 - For scalars, averaged parent values from the nest boundary are used (e.g., left child boundary, values are set for the first ghost point based on two surrounding parent grid values → linear interpolation):

Data in (parent to child)
 Interpolation

Data out (child to parent)
Anterpolation

- Two-way coupling/nesting:
 - The focus is on both parent and child domain (e.g., dispersion scenarios)
 - Child domain obtains boundary-conditions from parent through zero order or linear interpolation
 - For staggered velocity components with respect to the boundary-normal velocity the following formula is used (e.g., left child boundary v-component, values are set for the first ghost point based on four surrounding parent grid values → linearly interpolated twice or once):

Data in (parent to child)
 Interpolation

Two-way coupling/nesting:

- For e, a simple Neumann condition (zero-gradient) is used on child domain boundaries
- The reason behind the (randomly appearing) interpolation scheme is explained in detail in "A Nested Multi-Scale System Implemented in the Large-Eddy Simulation Model PALM" by Hellsten et al. and goes far beyond an introduction

Data in (parent to child)
 Interpolation

Data out (child to parent) Anterpolation

Two-way coupling/nesting:

- Child influences parent through anterpolation
- Mapping the fine-grid solution back to the parent domain
- Averaging over one parent-domain grid volume around the parent grid node of the variable in question (i.e., top-hat filtering)

$$\widehat{\phi}_{I,J,K} = \frac{1}{N_{I,J,K}} \sum_{i_1(I)}^{i_2(I)} \sum_{j_1(J)}^{j_2(J)} \sum_{k_1(K)}^{k_2(K)} \phi_{i,j,k}$$

 Buffer zones of two prognostic gird points, where the anterpolation is omitted, are applied next to the child-domain boundaries (except bottom boundary) to avoid an unstable feedback loop between anterpolation and interpolation

Data in (parent to child)
 Interpolation

 \rightarrow The results must always be examined regarding unphysical feedbacks between parent and child

Page 16

General principles 3D nesting – Data transfer

One-way coupling/nesting:

General information

Grid nesting

- The focus is only on the child domain (e.g., complex terrain)
- Anterpolation step is omitted (saves computational costs)
- Parent simulation is independent from child simulation – no feedback
- Decoupling of turbulence may lead to strong discontinuities

 \rightarrow The results of parent and child may become very different from each other but unphysical feedbacks between parent and child are uncritical

 Coupling operations are made at each Runge-Kutta time sub-step just before the pressure solver independent from the coupling method

paimgroup

Grid nesting

General information

 2D: Root domain size exactly matches the extension of the child in one horizontal direction

1D: All domains have the same horizontal extent → pure vertical nesting

Special setups – Domain Structure

General information

Grid nesting

General principles – Initialization, boundary conditions, pressure solver

- Child domain is by default initialized with 3D volume data from parent, any other initialization, e.g. `set_constant_profiles' will be overwritten.
- Boundary conditions at lateral and top boundaries of nested domains are internally set to `nested'
 - Zero-gradient conditions for pressure (Neumann condition)
 - Dirichlet conditions for prognostic quantities derived from interpolation
 - For the root domain of a nested run the default is as usual (e.g., 'cyclic' for lateral boundaries)
 - Exception: pure vertical nesting (lateral boundaries of parent and child are the same), where still cyclic lateral boundary conditions are applied as default

Nesting for RANS/LES mode

- PALM can run either in LES or in RANS mode different turbulence closures (two for each)
- Nesting can be applied for both modes:

General information

Grid nesting

- RANS RANS nesting (1-way or 2-way coupling)
- LES LES nesting (1-way or 2-way coupling)
- RANS LES nesting (1-way coupling only) mechanism requires to initiate turbulence at lateral boundaries – synthetic turbulence generator

RANS	RANS – parametrized turbulence
RANS	LES - fully developed turbulence Turbulence generator Flow adjustment zone

Technical Implementation – PMC

- Main challenge is the two-level parallelism:
 → Domains run in parallel and they are internally parallelized
- PALM Model Coupler (PMC), written by an external programmer (Klaus Ketelsen), handles data transfer
- It uses one-sided MPI communication, also called remote memory access (RMA), together with MPI windows (shared memory regions) for data transfer
- PMC can rather be seen as a black box and should never be touched
- It contains pmc_child_mod, pmc_general_mod, pmc_handle_communicator_mod, pmc_mpi_wrapper_mod, and pmc_parent_mod

Technical Implementation – PMC interface

- Interface which contains all required subroutines, etc. for nesting provides "easy" way to add new prognostic quantities → PMC interface
- PMC is called from the module pmc_interface_mod
- pmc_interface_mod contains all interpolation and anterpolation algorithms as well as other necessary operations (e.g., initialization operations)
- Interface has been mainly developed by Antti Hellsten, a collegue from Helsinki, Finland
- A publication called "A Nested Multi-Scale System Implemented in the Large-Eddy Simulation Model PALM" is available since 2021.
- A special interface to the Lagrangian Particle Model is also available to handle particle transfer between parent and child → pmc_particle_interface

Data Exchange – Two-way nesting

 Cascade mode - Overlap mode - Mixed mode (default) (only of relevance for recursively nested child domains)

From coarse to fine: Child waits until it has received data from the coarse model, does the interpolation, and then sends the data to the finer model

From fine to coarse: Parent waits until it has received data from the finer model, does the anterpolation, and then sends the data to the coarser model

Data Exchange – Two-way nesting

 Cascade mode - Overlap mode - Mixed mode (default) (only of relevance for recursively nested child domains)

coarse medium fine

From coarse to fine: All parents immediately send data after timestep synchronization. The childs fetch the data via MPI_Get and do the interpolation

From fine to coarse: Anterpolation can also be done simultaneously for all models. Afterwards the data is transferred to the coarse model in parallel

medium

fine

coarse

Data Exchange – Two-way nesting

 Cascade mode - Overlap mode - Mixed mode (default) (only of relevance for recursively nested child domains)

Parameter file

- Each domain has its own parameter file: $\rightarrow _p3d$ (*PARIN*), $_p3d_N02$ (*PARIN_N02*),...
- Additional NAMELIST group name: nesting_parameters
 → provides information about all domains
 → only in PARIN (root model)
- Other input files (e.g topography, static and dynamic driver) are given for each domain
 → using domain tags e.g., _static_N02, static_N03, ...

Parameter file – example parent (example_p3d)

Parameter file – example child (example_p3d_N02)

nx = 127, ny = 63, nz = 32,

Miscellaneous

- Assure that the total number of given cores match the sum of cores given for each domain
- Take care of a reasonable load balance between child and parent, i.e., subdomain sizes in terms of grid points should be comparable. Otherwise the parent always waits for the child or vice versa.

palmrun -r example -a "d3#" -X 128...

```
&nesting_parameters
    domain_layouts = 'palm_coarse', 1, -1,
        'palm_fine', 2, 1,
        64, 0.0, 0.0,
        'palm_fine', 2, 1,
        64, 320.0, 160.0,
        nesting_mode = 'two-way',
        nesting_datatransfer_mode = 'mixed',
/
```


- Pure convective boundary layer with zero mean wind (homogeneously heated, flat terrain)
- Neutral boundary layer with background wind (purely shear-driven, flatterrain)
- Neutrally-stratified urban boundary layer over a regular staggered arrangement of building cubes

Pure convective boundary layer

- Grid spacing ratio 20m:10m
- No discontinuities near boundaries in terms of shape and amplitude
- Finer structures within child domain with slightly stronger up/downdrafts
- Comparable size of hexagonal cells

Grid nesting

Pure convective boundary layer

- Grid spacing ratio 20m:10m
- No discontinuities near boundaries in terms of shape and amplitude
- Finer structures within child domain with slightly stronger up/downdrafts
- Comparable size of hexagonal cells
- Better representation of spectral properties for fine-grid simulation
- Fine-grid simulation comparable to child solution independent of the distance to the boundaries
- In pure convective case almost no adjustment zone required since turbulence is mostly produced locally

Grid nesting

Neutral boundary layer

Grid for both domains: 512 x 128 x 64 gridpoints Grid spacing: **16 m** (parent) and **8 m** (child) Position nest: lower_left_x = 3072 m, lower_left_y = 512 m PEs: each on 256 Coupling: Two-way

x-y cross-section of the streamwise velocity u

Examples

Spectra of *u*-component at different locations in streamwise direction

PALM seminar

Urban boundary layer – pollutant dispersion on the city block scale

 Cutout of a nested pollutant dispersion simulation within an idealized city block

Grid nesting

- Absolute value of rotation is shown
- Background wind from left to right
- Child domain shows much more details of the flow
- Vortices are often generated at the building's edges
- Back flow behind buildings

Urban boundary layer – pollutant dispersion on the building scale

 How do courtyards and openings affect pollutant dispersion?

- The environment of just one single building was nested
- Flow features together with concentration enable an evaluation of the pedestrian's well-being

Mesoscale nesting within larger-scale models

- Idea: consider changes in synoptic conditions
- Nest the model domain within larger-scale models, where the larger-scale model runs in advance
- Provide pre-processed (offline) time-dependent data from, e.g. COSMO or WRF model, at lateral and top boundaries of PALM domain via dynamic input file
- Boundary data is interpolated linearly in time

Grid nesting

COSMO

Mesoscale nesting within COSMO model

- COSMO-interface INIFOR pre-processing tool (developed by Eckhard Kadasch, DWD)
 - INItialization and FORcing

Grid nesting

COSMO

- Interpolation of COSMO data onto Cartesian grid
- Provides initialization data of wind, temperature, humidity and soil temperature / moisture
- Provides time-dependent information on boundaries (lateral and top) for all relevant quantities
- Data is stored in "dynamic driver", e.g., example_dynamic
- Synthetic turbulence generator at lateral boundaries required to initiate turbulence

Mesoscale nesting in COSMO model

 COSMO forcing of 8 hrs

Grid nesting

COSMO

- Flow adjustment zone is clearly visible
- Synoptic wind comes from northeast and turns to eastern direction
- Combination of band-like and cellular patterns

Remarks

• Open points self nesting:

Conclusion

Grid nesting

- CBL test cases show secondary circulation in time-averaged fields with an upward motion in the child domain and downward motions at the child boundaries (is an inherent feature of the nesting)
- Influence of coupling mode (one-way, two-way) must be analyzed in detail.
- Less experiences in RANS-RANS and RANS-LES nesting
- Particle nesting needs further testing especially regarding the treatment of stochastic subgrid-scale particle speeds
- Elevated child domains (under development)
- Open points offline/mesoscale nesting:
 - Pre-processing tools currently exist for COSMO or WRF. Interfaces for further models (e.g. ICON) currently under development.
- Documentation at:

https://palm.muk.uni-hannover.de/trac/wiki/doc/tec/nesting https://doi.org/10.5194/gmd-14-3185-2021 (Self-nesting - technical paper) https://doi.org/10.5194/gmd-14-5435-2021 (Mesoscale nesting - technical paper)

PALM online: https://palm.muk.uni-hannover.de

Our YouTube channel: youtube.com/user/palmhannover

