
group

Institute of Meteorology and Climatology, Leibniz Universität Hannover

Debugging

Page 2 group PALM seminar

Debugging

 Missing or wrong options in the palmrun call.

 Errors in the configuration files.

 Errors in the NAMELIST parameter file.

 Errors in the ssh-installation (authentication), if a remote host is used for batch
jobs.

 FORTRAN errors in the user code (user-interface files).

 PALM runtime errors due to:
 wrong parameter settings,

 errors in the user code,

 errors in PALM‘s default code, which have not been detected so far (e.g. because
some parameter combinations have never been tried so far).

PALM runs can give rise to a large variety of errors ...

Some of the main possible reasons for errors are:

Principal sources of errors

Page 3 group PALM seminar

Debugging

Find out the principal reason of the error(s):

 Carefully analyze the job protocol file (or messages on the terminal, in case of
interactive runs) for any error messages or unexpected behaviour.

 In case of batch runs on a remote host, if the job protocol file is missing on the
local host, try if you can find it in ~/job_queue on the remote host.

 If the job has run into a time limit, no job protocol files or messages might be
created at all (system depending).

 Some typical errors which may occur during execution of palmrun are
automatically detected and displayed by palmrun in the job protocol or on
the terminal: Respective error messages will begin with "+++".

 Compile and run time error messages will only appear in the job protocol or on
the terminal (in case of interactive runs).

 In case of runtime errors, terminal messages may give first helpful hints about
where errors are located.

 Check the trouble tickets for possible solutions, in case that someone ran into
a similar problem. (https://palm-model.org/trac/wiki/tickets)

First steps of debugging

https://palm-model.org/trac/wiki/tickets

Page 4 group PALM seminar

Debugging

 In case of runtime errors, the available information depends on the compiler and on the
compiler settings.

 The default options for the Intel-compiler (-O3 for fast execution) give almost no
information, e.g. about the subroutine or the line number of the code where the error
occured. Execution is even continued in case of floating point errors!

 Floating point error detection and traceback can be activated with compiler options

ifort -fpe0 -debug -traceback -O0 ...

 A default .palm.config.default_trace for the trace mode can be found in folder
palm_model_system/packages/palm/share/config.

 Settings for default:

 Settings for default_trace:

 See https://www.palm-model.org/trac/wiki/doc/app/recommended_compiler_options for
debug options required by other compilers.

Debugging runtime errors (I)

%compiler_options –fpe0 –O3 –fp-model source

%compiler_options -fpe0 –O0 -check –traceback –g …

https://www.palm-model.org/trac/wiki/doc/app/recommended_compiler_options

Page 5 group PALM seminar

Debugging

 Calling palmbuild –c default_trace will compile the code with compiler options
provided by .palm.config.default_trace. The pre-compiled code will be put into a
separate make depository:

Enabling debug options slows down the execution speed significantly!

palm_model_system/…./model

MAKE_DEPOSITORY_default/

current_version/ src
Makefile
advec_particles.f90
advec_s_bc.f90
...

MAKE_DEPOSITORY_default_trace/

 The palmrun option -c (the configuration identifier) decides, which version is used:

 palmrun ... -c default ... will use the optimized version
 palmrun ... -c default_trace ... will use the debug version

Debugging runtime errors (II)

Page 6 group PALM seminar

Debugging

 Still often these options do not help to determine and localize the
problem.

 There are several ways of handling these cases:
 PALM standard location messages which appear on the terminal (interactive

mode) or in the job protocol (batch mode).

 PALM standard debug messages which are output into specific debug files.
The messages explicitly need to be switched on.

 The print/write debugger: Manual output of additional informations to the
debug files.

 debuggers like dbx or GUI-based debuggers like “totalview“ or
“Allinea DDT“

Debugging runtime errors (III)

Page 7 group PALM seminar

Debugging

 Printed to terminal or job protocol:

PALM location messages

*** execution starts in directory
 "/localdata/raasch/example_cbl.766"
--
*** running on: bora bora bora bora
*** execute command:
 "mpiexec -machinefile hostfile -n 4 palm"

 15:23:18 -start---- reading environment parameters from ENVPAR
 15:23:18 -finished- reading environment parameters from ENVPAR
 15:23:18 -start---- reading NAMELIST parameters from PARIN
 15:23:18 -finished- reading NAMELIST parameters from PARIN
 15:23:18 -start---- creating virtual PE grids + MPI derived data types
 15:23:18 -finished- creating virtual PE grids + MPI derived data types
 15:23:18 -start---- checking parameters
 15:23:18 -finished- checking parameters
 15:23:18 -start---- model initialization
 15:23:18 -start---- initializing surface layer
 15:23:18 -finished- initializing surface layer
 15:23:18 -finished- model initialization
 15:23:18 -start---- atmosphere (and/or ocean) time-stepping

 CALL location_message('checking parameters', 'start')
 ...
 CALL location_message('checking parameters', 'finished')

 In the PALM code, e.g. SOURCE file check_parameters.f90:

Page 8 group PALM seminar

Debugging

 Output of debug messages requires setting of runtime parameters

 debug_output = .TRUE., debug_output_timestep = .TRUE.
 Output will be written into files DEBUG_000000, DEBUG_000001, etc. in PALM‘s

temporary working directory. You need to set palmrun-option “-B“, because otherwise
the temporary working directory is deleted at the end of the run!

 The name of PALM‘s temporary working directory is generated from environment
variable fast_io_catalog (see .palm.config.<ci>), the run identifier, and a five
digit random number:

 /<fast_io_catalog>/<run identifier>.<random number>
 Contents of a debug file look like this:

PALM debug messages (I)

System time: 09:27:25 | simulated time (s): 0.000 | -start- reading module-specific parameters
System time: 09:27:25 | simulated time (s): 0.000 | -end--- reading module-specific parameters
System time: 09:27:26 | simulated time (s): 0.000 | -start- checking module-specific data output ts
System time: 09:27:26 | simulated time (s): 0.000 | -end--- checking module-specific data output ts
System time: 09:27:26 | simulated time (s): 0.000 | -start- checking module-specific parameters
System time: 09:27:26 | simulated time (s): 0.000 | -end--- checking module-specific parameters
System time: 09:27:26 | simulated time (s): 0.000 | -start- allocating arrays
System time: 09:27:26 | simulated time (s): 0.000 | -start- initializing module-specific arrays

 IF (debug_output) CALL debug_message('allocating arrays', 'start')
 ...
 IF (debug_output) CALL debug_message('allocating arrays', 'end')

 In the PALM code, e.g. the source file init_3d_model.f90:

Page 9 group PALM seminar

Debugging
PALM debug messages (II)

 If required, add additional messages in the default code (or your user-interface code) to
narrow down the location.

 After the location has been identified, you can write values of specific variables to the
debug file (which has FORTRAN I/O unit number 9), which you suspect to cause the
problem:

 Very important: All output is buffered, i.e. it will not be directly written to disc. In case of
program aborts, the buffer contents are lost, so the output of the last write statements
are not available. You have to prevent this problem by flushing the buffer after each
print/write statement.

 Don‘t forget to re-compile with palmbuild after you have modified the code!

 IF (debug_output) CALL debug_message('user position 1', 'start')

 IF (debug_output) THEN
 CALL debug_message('user position 1', 'start’)
 WRITE(9, *) 'variable a = ', a, 'variable b = ', b
 FLUSH(9)
 ENDIF

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

