o% N
& 2 | 0; Z] Universitit
N (v/‘ to g4 || Hannover

PALM Code Structure & Features

p@ng roup

Institute of Meteorology and Climatology, Leibniz Universitat Hannover

o'f;:;. ”’(Leibniz
PALM Code Structure & Features %J oo £ | it

L General remarks

" This lecture gives a brief overview about the code structure of PALM.

" Please note:

There is ongoing work on further modularization of the PALM code,

which will affect parts of the program structure that is presented in this
lecture.

Palmgroup Page 2

i; { | Leibniz

PALM Code Structure & Features %J oo g | Hamererat
L Overview

" PALM is written in FORTRANZ2008.

" With some very minor exceptions, the code is using the FORTRAN
standard, so it should compile without error on any FORTRAN 2003/2008
compiler (90/95 may give problems).

" Machine dependent code segments, e.g. calls of routines from external
libraries (e.g. NetCDF or FFTW), which may not be available on some
machines, are activated using preprocessor directives.

" The serial and parallel (MP1) PALM version is also activated by
preprocessor directives.

" The automatic installer automatically sets the approriate preprocessor
directives. For manual settings of directives see
https://palm.muk.uni-hannover.de/trac/wiki/doc/app/cpp_options.

F@“greup Page 3

https://palm.muk.uni-hannover.de/trac/wiki/doc/app/cpp_options
https://palm.muk.uni-hannover.de/trac/wiki/doc/app/cpp_options

Q'Z:;. ”’(Leibniz
PALM Code Structure & Features %J oo g | Hamererat

L Overview

" The code is divided into several files, each file containing:

" asingle MODULE (ending with _mod.f90), including several associated
SUBROUTINEs, or

" asingle SUBROUTINE, e.qg. file parin.f90 contains SUBROUTINE parin.

" PALM includes a special user module (user_module.f90) designed to add
additional code written by the user.

Why should you use the user module instead of directly modiying the
source code?

" The user module very rarely changes in future PALM releases and can be
easily re-used by newer versions of PALM without requiring extensive
changes.

@“greup Page 4

o'f;:;. ”'(Leibniz
PALM Code Structure & Features .0 | s

- General structure

¢9¢: 4 [Hannover

o Steering MPI Setup Initialization Time Integration Termination
)
(&)
Module
Interface
0
Q
>
s,
o
S
[...]
o <
Q
Q
-]
7]
AR
PalM group

Page 5

Leibniz

PALM Code Structure & Features 12| Haiveritat
L Code structure

| palm |

| steering | | mpi_setup | | initialization | | time_integration | termination

4 A h h

h ‘ init_3d_model LOOP simulation time
h

h

topography
init

| |

surface | LOQP intermediate timestep |
init f

prognostic boundary pressure
equations conditions solver

T_‘_‘

| module_interface |
@ w M @ @ -output(t=0] (‘befo_:ec-g(;\ﬂ;ste:p‘) @%@ S ('aﬁéitcitﬁg;ep') L0 el gl

SUpPpPOrt—i i e

| support |

AR
Palm group Page 6

o'f::;. ”’(Leibniz
PALM Code Structure & Features %J oo £ | it

L Detailed structure

PALM (palm.f90)

parin

init_pegrid

init_grid

check parameters

init_3d_model

header

time_integration

wrd_global / wrd_local

cpu_statistics

Palm group

Read steering parameters

Create processor topology (for parallel PALM mode)
Create grid-depending constants

Check setting & dependencies of steering parameters
Allocate arrays and initialize 3D model

Output important information about current run

Integrate model equations (statistical analysis, data output)
Binary output for restarts

Execute user-defined last actions (if user module is used)

Output of measured cpu times

Page 7

PALM Code Structure & Features / H B
L Detailed structure

PALM (palm.f90)

parin <module>_parin " Read input parameters from namelist file

" Read control parameters from restart file in
case of restart run

<module>_rrd_global

l@“grcup Page 8

QZI:’ ”'(Leibniz
PALM Code Structure & Features %J 002 | Hammeat
L Detailed structure

PALM (palm.f90)

" Determination of virtual processor topology (if not

init_pegrid prescribed by user) & computation of grid point number
and of local subdomains
PE3 PE2
PEO PE1

P .) S - o -
/
L4

@“group Page 9

o'f;:;. ”’(Leibniz
PALM Code Structure & Features %J 002 | Hammeat
L Detailed structure

PALM (palm.f90)

init_grid " Pre-calculation of metric grid coordinates on staggered
PALM grid, e.g.:
y4 [] []
[[
® ®
[] []
[— [—
® ®
[] []
[— [—
X

@1 group Page 10

o'f::;. ”’(Leibniz
PALM Code Structure & Features %J 002 | Hammeat
L Detailed structure

PALM (palm.f90)

" Check simulation setup for any inconsistencies
" Check output setup

check _parameters <module>_check_parameters

<module>_ check_data_output_ts

<module>_check_data_output_pr

<module>_check_data_output

In case of any problems, error messages appear in the job
protocol, labeled with a specific PALM error code number
SPALE

Details about error messages can be found at:

https://palm-model.org/trac/wiki/doc/app/errmsg

Palm group Page 11

http://palm-model.org/trac/wiki/doc/app/errmsg

PALM Code Structure & Features

Leibniz
Universitat

Hannover

L Detailed structure

PALM (palm.f90)

<module>_init_arrays

init_1d_model

init_surfaces

<module> rrd_local

init_3d_model

PalM group

Is_forcing_surf

disturb_field

pres

<module>_init

ws_init

Initialize module-specific arrays
Pre-calculate profiles via 1D model
Initialize surfaces

Read arrays from restart data files
Load large-scale forcing

Impose random perturbations

Call pressure solver

Initialization actions of the modules

Initialize Wicker-Skamarock scheme

Page 12

o'f;:;. ”’(Leibniz
PALM Code Structure & Features %J 002 | Hammeat
L Detailed structure

PALM (palm.f90)

header " Write information about steering parameters to file, useful
for job monitoring (see lecture “PALM steering”)

l@“ group Page 13

o'f::;. ”’(Leibniz
PALM Code Structure & Features %J 002 | Hammeat
L Detailed structure

PALM (palm.f90) " This is called at several positions
throughout time_integration

<module>_action has several
<module>_actions hooks for different positions
inside the time loop

hooks are addressed via strings,
e.g. ‘before_timestep’

<«— beginning of intermediate time loop

<module>_actions

time_integration <module>_prognostic_equations

Optimized for different computer
architectures

" cache-based machines

" vector-based machines

<module>_actions

palm group Page 14

{:{ J Leibniz

PALM Code Structure & Features &) 2| v
L Detailed structure

PALM (palm.f90) A

exchange_horiz " Exchange of ghost-point data
between neighbouring PEs

®" Also called at some other
locations

boundary_conds " Setting of boundary conditions

<module>_ swap_timelevel

" Swapping of prognostic
guantities data

time_integration

inflow/outflow_turbulence

" Calculating turbulent inflow
and/or outflow conditions

Palm group Page 15

PALM Code Structure & Features

o N
RY O t 0; Z] Universitat
\ A\ZQ t09:4 | Hannover

L Detailed structure

PALM (palm.f90)

time_integration

A

disturb_field

pres

surface_layer_fluxes

tcm__diffusivities

Palm group

<module>_actions

Random perturbations are
imposed to horizontal velocity
components

Pressure solver

Vertical turbulent fluxes in the
surface (constant-flux) layer are
computed

Computing of diffusion
coefficients

«<— end of intermediate time loop

Page 16

o'f::;. ”’(Leibniz
PALM Code Structure & Features %J 002 | Hammeat
L Detailed structure

PALM (palm.f90)

" Checking if run needs to be
terminated (due to insufficient
remaining CPU time) and
prepare for restart

check for_restart

flow_statistics " Flow statistics are calculated

data_output " Output of requested variables

<module>_actions

time_integration

timestep " Calculating next timestep width

Palm group Page 17

PALM Code Structure & Features

{:{ J Leibniz

i q Anem
t 0; Z] Universitat
too:4 | Hannover

L Detailed structure

PALM (palm.f90)

<module>_ wrd_global

wrd_global / wrd_local

<module>_wrd_local

Palm group

" Write data required for restarts
" Steering parameters

" 3d arrays of prognostic
variables

Page 18

o'f;:;. ”'(Leibniz
PALM Code Structure & Features %J 002 | Hammeat
L Detailed structure

PALM (palm.f90)

— user_last_actions | " Any other last actions before end of simulation

F@” group Page 19

o'f;:;. ”’(Leibniz
PALM Code Structure & Features %J 002 | Hammeat
L Detailed structure

PALM (palm.f90)

cpu_statistics " Calculate and output information about required CPU
time, in total and for certain parts of PALM, e.g. “all progn.
equations” or “pres” (see lecture “PALM steering”)

@“ group Page 20

o'f;:;. ”’(Leibniz
PALM Code Structure & Features %) ool | Homeereat
L Content - Part 2

" Global variables

" Preprocessor directives

" Automatic documentation using Doxygen
" Important variables and their declaration

l@“grcup Page 21

o'z:;. ”’(Leibniz
PALM Code Structure & Features %) 0512 | ot
L Global variables

" Global variables and parameters are defined in modules. 90
" Only variables that are used in multiple parts of PALM
" Defined in different MODULES, e.g., pt is defined in arrays_3d:

MODULE arrays_3d
[...]
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, TARGET :: pt
[...]
END MODULE

Palmgroup Page 22

Leibniz

PALM Code Structure & Features 1 I s
L Global variables

" USE statement to load variables in other routines:

SUBROUTINE buoyancy(var, wind_component)

USE arrays_3d, &
ONLY: pt, pt_slope_ref, ref_state, tend

USE control_parameters, &
ONLY: atmos_ocean_sign, cos_alpha_surface

[...]

END SUBROUTINE buoyancy

l@“ group Page 23

o'z:;. ”’(Leibniz
PALM Code Structure & Features %) 150:4 | Harnwer
L Preprocessor directives

" Preprocessor directives are special lines in the code which allow to compile
alternative parts of the code depending on so-called “define string switches*

" Code example:

#if defined (_ parallel)
CALL MPI_ALLREDUCE(a, b, nzt-nzb, MPI_REAL, MPI_SUM,
comm2d, ierr)
#else
b =a
#endif

" If the compiler is called as
ifort -fpp -D_ parallel
then the #if branch is compiled

" If the compiler is called without option -D___parallel
the #else branch is compiled

l@“ group Page 24

o’f;:;. ”’(Leibniz
PALM Code Structure & Features %) 150:4 | Harnwer
L Preprocessor directives

" The preprocessor directives require to activate their processing with a specific
compiler option, which is e.g. -cpp for the Intel compiler.

" Preprocessor directives and options have to be given in the %cpp_options
line of the palmrun configuration file (.palm.config.<ci>, see lecture
“PALM steering")

" Preprocessor options may differ for different compilers

" Define-string switches can be combined using logical AND (&&)/OR (||)
operators:

#if defined(_ _abc && _ def)
#1f defined(__abc || __def)

" Logical NOT operator:

#if ! defined(__abc)

@“ group Page 25

o'z:;. ”’(Leibniz
PALM Code Structure & Features %) 150:4 | Harnwer
L Preprocessor directives

Additional use of preprocessor directives

" Replacing strings in the code, e.qg.,

%cpp_options -cpp -DMPI_REAL=MPI_DOUBLE_PRECISION

replaces MPI_REAL with MPI_DOUBLE_PRECISION before compiling

" Planned use: switch ON/OFF entire modules, e.g. Lagrangian particle model
" Unnecessary code is not compiled
" Less compiling time
" Less memory consumption

Palmgroup Page 26

PALM Code Structure & Features

2 i1 | Leibniz
S (/‘ t 0; Z] Universitat
\ \ZQ t09:4 | Hannover

" List of define-string switches used in PALM

PALM mode __parallel
__single_precision

System specific __dbm
__hec

Software specific __intel_compiler
__mpifh

__netcdf, _ netcdf4,
__netcdf4_parallel

_ _fftw
__rrtmg
__rrtmg

Parallel PALM version
Use 32-bit arithmetic (still in test phase)

IBM Regatta systems
NEC-SX systems
Compilers

Old MPI libraries

NetCDF I/O with different NetCDF
versions

Fast FFT
Radiative transfer model

External radiation model library (see
lecture)

" Switches set under %cpp_options in .palm.config.<ci> file are
automatically used by palmbuild for compiling.

Palm group

Page 27

o'z:;. ”’(Leibniz
PALM Code Structure & Features %) 150:4 | Harnwer
L Automatic documentation using Doxygen

" Doxygen:
“Doxygen is the de facto standard tool for generating documentation from
annotated C++ sources, but it also supports other popular programming
languages such as [...] Fortran [...].“

" Automatic documentation from the source code via tags.
" Tags currently used in PALM:

Description of variables REAL :: ol !< Obukhov length

File/Routine description I> This Routine does things
To do lists 1> @todo Missing implementation of...
Bugs 1> @bug 1D model crashes when...
Important notes 1> @note Soil layer must not be

1> too thin

l@“ group Page 28

PALM Code Structure & Features

L Doxygen demonstration

PALM

Modules List Module Members. ‘

¥ PALM
Todo List
Bug List
¥ Modules

¥ Module Members
» Data Types List
» Files

Main Page | Related Pages Data Types List | Files |

Modules List

Here is a list of all modules with brief descriptions:

[advec_s_bc_mod

[0 advec_s_pw_mod

[advec_s_up_mod
[0 advec_u_pw_mod

[0 advec_u_up_mod
[advec_v_pw_mod

0 advec_v_up_mod
[advec_w_pw_mod

[0 advec_w_up_mod
0 advec_ws

[0 advection
[arrays_3d
D averaging
D basic_constants_and_equations_mod

D biometeorology_mod

0 bulk_cloud_model_mod
D buoyancy_mod

D calc_mean_profile_mod
0 chem_emissions_mod
[chem_gasphase_mod
0 chem_modules

[0 chem_photolysis_mod

Advection term for scalar quantfities using the Bott-Chlond scheme. Computation in individual steps for each of the three dimensions. Limiting assumptions: So far the scheme has been assuming equidistant grid
spacing. As thisis not the case in the streiched portion of the z-direction, there dzw(k) is used as a substiiute for a constant grid length This certainly causes incorrectresults, however, itis hoped that they are not
1oo apparent for weakly streiched grids. NOTE: This is a provisional, non-optimised version!

Advection term for scalar variables using the Piacsek and Williams scheme (form C3). Contrary to PW itself, for reasons of accuracy their scheme is slightly modified as follows: the values of those scalars thatare
used for the computation of the flux divergence are reduced by the value of the relevant scalar at the location where the difference is computed (sk(k,,i)). NOTE: at the first grid point above the surface computation
still takes place!

Advection term for scalar quantities using the Upstream scheme. NOTE: veriical advection atk=1 still has wrong grid spacing for w>0! The same problem occurs for all topography boundaries!

Advection term for u velocity-component using Piacsek and Williams. Vertical advection at the first grid point above the surface is done with normal centred differences, because otherwise no information from the
surface would be communicated upwards due to w=0 atK=nzb

Advection term for the u velocity-component using upsiream scheme. NOTE: vertical adveciion atk=1 still has wrong grid spacing for w>0! The same problem occurs for all topography boundaries!

Advection term for v velocity-component using Piacsek and Williams. Vertical advection at the first grid point above the surface is done with normal cenfred differences, because otherwise no informatfion from te
surface would be communicated upwards due to w=0 atK=nzb

Advection term for the v velocity-component using upsfream scheme. NOTE: verfical advecion atk=1 stll has wrong grid spacing for w>=0 The same problem occurs for all fopography boundaries!

Advection term for w velocity-component using Piacsek and Williams. Vertical adveciion at the first grid point above the surface is done with normal centred differences, because otherwise no information frem the
surface would be communicated upwards due to w=0 atk=nzb

Advection term for the w velocity-component using upstream scheme. NOTE: veriical advection atk=1 siill has wrong grid spacing for w>0 The same problem occurs for all opography boundaries!

Advection scheme for scalars and momentum using the flux formulation of Wicker and Skamarock 5th order. Additionally the module contains of a routine using for inifalisation and steering of the statical evaluation.
The computation of twrbulent fluxes takes place inside the advection routines. Near nen-cyclic boundaries the order of the applied advection scheme is degraded. A divergence correction is applied. Itis necessary for
topography, since the divergence is not sufficienty reduced, resulting in erroneous fluxes and could lead 1o numerical instabiliies

Definition of global variables

Definition of all arrays defined on the computaional grid
Definition of variables needed for time-averaging of 2d/3d data
This module contains all basic (physical) constants and functions for the calculation of diagnostic quantities

Biometeorology module consisiing of two parts: 1.: Human thermal comfortmodule calculating thermal perception of a sample human being under the current meteorological conditions. 2.: Calculation of vitamin-D
weighted UV exposure
Calculate bulk cloud microphysics

Buoyancy term of the third compenent of the equation of motion
Calculate the horizontally averaged vertical temperature profile (pr=4 in case of potential temperature, 44in case of viriual potential femperature, and 64 in case of density (ocean runs))

MODULE for reading-in Chemistry Emissions data

Definition of global PALM-4U chemisty variables
Photolysis models and interfaces (Adapted from photolysis_medel_med.f90)

Generated on Wed Jun 12 2019 17:30:14 far PALM by (;!mey‘ggn 1811

PalM group

Page 29

I; { | Leibniz

PALM Code Structure & Features . I s
" How to use Doxygen

" Install Doxygen and dot on your system.
" Run script: palmdocs

" At the end of the output, palmdocs will tell you, where to find the newly
generated HTML Documentation. To view the docs, open the file
PALM_doc.html in your browser.

l@“ group Page 30

o'z:;. ”’(Leibniz
PALM Code Structure & Features %) 150:4 | Harnwer
L Important variables and their declaration

" 3D-arrays of prognostic variables are named ¥, and ¥_p for time level t, and t +
At, respectively, with Y =u,v,w, pt, q, s, e, sq, ...

" They are by default declared as W(z,y,x) or W(k,j,i), e.g.

u(nzb:nzt+1, nysg:nyng, nxlg:nxrg)

with

nysg = nys - nbgp, nyng = nyn + nbgp
nxlg = nxl - nbgp, nxrg = nxr + nbgp
nzb, nzt (bottom/top grid index)
nys, nyn (south/north grid index)
nxl, nxr (left/right grid index)

as the index limits of the (sub-)domain.

" nbgp is the number of ghost points which depends on the advection scheme
(nbgp = 3 for the default Wicker-Skamarock scheme).

l@“greup Page 31

o'z:;. ”’(Leibniz
PALM Code Structure & Features %) 150:4 | Harnwer
L Important variables and their declaration

" If only a single process/core is used, then

nx1l
nys

0; nxr
0; nyn

nx
ny

" For performance optimization, most of the 3D-variables are declared as
pointers, e.g.

REAL(wp), DIMENSION(:,:,:), POINTER :: u, u_p

" This does not affect the usage of these variables in the code in (almost) any
way.

l@“ group Page 32

PALM Code Structure & Features

i;(Leibniz
t 0 2] Universitit

to9'4 | Hannover

L Important variables and their declaration

variable

ZU

W

dz

dzu

ddzu
dx

ddx

current_timestep_number

time_since_reference_point

Palm group

iIndex bounds

nzb:nzt+1

nzb:nzt+1

1:10

1:nzt+1

1:nzt+1

meaning

heights of the scalar (u,v) grid
levels

heights of the w grid levels

vertical grid spacings

vertical grid spacings between
scalar grid levels

inverse of grid spacings

grid spacing along x

inverse of dx

timestep counter

simulated time in seconds

comment

zu(1)
zu(0)

0.5*dz(1)
-zu(1)

zw(0) 0

to be set in
&initialization-parameters

dzu(k) = zu(k)-zu(k-1)

ddzu(k) = 1.0/dzu(k)

to be setin
&initialization-parameters

ddx(k) = 1.0/dx

Page 33

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

