
Code parallelization

Institute of Meteorology and Climatology, Leibniz Universität Hannover

group

Page 2

Code parallelization

PALM seminar group

 Basics of parallelization

 PALM parallelization concept

 How to use the parallelized version of PALM

 MPI communication and virtual processor grid within PALM

 Parallel I/O

Content

Page 3

Code parallelization

PALM seminar group

 All processor elements (PE, core) carry out the same program code (SIMD)

 Each PE of a computer operates on a different set of data

Basics of parallelization

 Realization:
 Each PE solves the equations for a

different subdomain of the total domain.

 Each PE only knows the variables' values
of it's subdomain.

 Communication / data exchange between
PEs required.

 Done by Message Passing Interface (MPI).

 Program loops are parallelized using
directives. Each PE solves for a subset
of the total index range.

 Parallelization can be easily done by the
compiler, if all PEs have access to all
variables (shared memory).

 Shared memory model (OpenMP), also
used for GPU programming (OpenACC).

!$OMP DO
 DO i = 1, 100
 .
 .
 ENDDO

2
1

0 3
4

5

6
7

8

Page 4

Code parallelization

PALM seminar group

adressable memory

PE PE PE PE PE PE

shared memory
(manycore PCs)

clustered hybrid
systems

(IBM-Power, Linux-Cluster,
Bull/Atos, Cray-XC, NEC-Aurora)

MPI OpenMP

network

processor

adressable memory

distributed memory
(Cray-XC40)

node

Basic architectures of massively parallel computers

Page 5

Code parallelization

PALM seminar group

 General demands for a parallelized program:
 Good load balancing (all cores should have same workload)

 Small communication overhead (otherwise speed-up may get lost)

 Scalability (up to large number of processors, otherwise they can‘t be used)

PALM parallelization concept

 Basic parallelization method used for PALM is a 2D domain decomposition
along x and y:

 No vertical decomposition because calculations for surface grid points are more expensive
 No load balance!

 Array indexing f(k,j,i) is used in PALM.

 Message passing is realized using MPI.

 OpenMP parallelization as well as hybrid usage of OpenMP and MPI is realized.

Data to be communicated should be
contiguous in memory (Fortran)!

 columns of i , no contiguous data at all

 columns of k , planes of k,j (all data
contiguous)

k,z

j,y
i,x

f(k,j,i)

f(i,j,k)

2
1

0 3
4

5

6
7

8

Page 6

Code parallelization

PALM seminar group

 Central finite differences cause local data dependencies
(only boundary data have to be transferred)

 Solution: introduction of ghost points
u(:,:,nxl:nxr), u(:,:,nxl-1:nxr+1)

 FFT and linear equation solver cause non-local data
dependencies (all 3D data have to be transferred)

 Solution: transposition of 3D arrays

PALM parallelization model

xx
ii

i

2
11

0 3 6
1

2 5 8
74

z → x x → y y → z

Example below shows transpositions for solving the Poisson equation.

0

3

6

1
2

5

8
7

4

x-FFT y-FFT

0

3

6

1 2

5

87

4

Tridia

0
3

6

1 2
5

87
4

nxl nxr

Page 7

Code parallelization

PALM seminar group

 The parallel version of PALM is activated by line

 %cpp_options -D__parallel

in PALM‘s configuration file .palm.config.<ci> This is the setting in the default
configuration file .palm.config.default.

 Additionally, the number of required cores (PEs) and the number of tasks per node
(number of PEs to be used on one node) have to be provided. –T option is required in
batch mode only.

 palmrun ... –X64 –T8 ...

 If “tasks per node“ is not an integral divisor of the total number of requested processor
cores (PEs), some PEs of the „last“ node are not used (but the user probably has to
pay for them).

 Using the Open-MP parallelization does not yield any advantage over using a pure
domain decomposition with MPI (contrary to expectations, it mostly slows down the
computational speed), but this may change on cluster systems for very large number
of cores (>100000?), or in case of 1D decompositions with large number of cores.

How to use the parallelized version of PALM

Page 8

Code parallelization

PALM seminar group

 MPI (message passing interface) is a portable interface for communication between
PEs (FORTRAN or C library).

 All MPI calls must be within

 CALL MPI_INIT(ierror)
 ...
 CALL MPI_FINALIZE(ierror)

 MPI calls within PALM are available when using %cpp_options -D__parallel

 Communication is needed for

 exchange of ghost points

 transpositions (FFT-poisson-solver)

 calculating statistics / global sums (e.g. for calculating horizontal averages)

 data exchange in case of nesting

 raytracing within the urban surface model (shading effects)

 I/O of restart data

 Additional MPI calls are required to define the so-called virtual processor grid and to
define special data types needed for more comfortable exchange of data.

MPI communication within PALM

Page 9

Code parallelization

PALM seminar group

 The processor grid and special data types are defined in file init_pegrid.f90

 PALM uses a two-dimensional virtual processor grid (in case of a 1D-decomposition, it
has only one element along y). It is defined by a so-called communicator (here:
comm2d):
 ndim = 2
 npe_xy(1) = npex ! # of cores along x
 npe_xy(2) = npey ! # of cores along y
 cyclic(1) = .TRUE.
 cyclic(2) = .TRUE.
 CALL MPI_CART_CREATE(MPI_COMM_WORLD, ndim, npe_xy, &
 cyclic, reorder, comm2d, ierr)

 The processor number (ID) with respect to this processor grid, myid, is given by:

 CALL MPI_COMM_RANK(comm2d, myid, ierr)

 The IDs of the neighbouring PEs are determined by:

 CALL MPI_CARD_SHIFT(comm2d, 0, 1, pleft, pright, ierr)
 CALL MPI_CARD_SHIFT(comm2d, 1, 1, psouth, pnorth, ierr)

Virtual processor grid in PALM

0

3

6

1

4

7 8

5

2

virtual grid with ids

cyclic neighbours

Page 10

Code parallelization

PALM seminar group

 Ghost points are stored in additional array elements added at the horizontal boundaries of
the subdomains, e.g.

 u(:,:,nxl-nbgp), u(:,:,nxr+nbgp) ! left and right boundary
 u(:,nys-nbgp,:), u(:,nyn+nbgp,:) ! south and north boundary
 ! nbgp: number of ghost points

 The actual code uses nxlg=nxl-nbgp, etc...

 The exchange of ghost points is located in file exchange_horiz.f90

 Simplified example: synchroneous exchange of ghost points along x (yz- planes: send
left, receive right plane):

 CALL MPI_SENDRECV(ar(nzb,nysg,nxl), ngp_yz, MPI_REAL, pleft, 0,
 ar(nzb,nysg,nxr+1), ngp_yz, MPI_REAL, pright, 0,comm2d,
 status, ierr)

 Special MPI data types (vectors) are defined for exchange of yz/xz-planes for performance
reasons and because array elements to be exchanged are not consecutively stored in
memory for xz-planes:

ngp_yz(0) = (nzt - nzb + 2) * (nyn - nys + 1 + 2 * nbgp)
CALL MPI_TYPE_VECTOR(nbgp, ngp_yz(0), ngp_yz(0), MPI_REAL, type_yz(0), ierr)
CALL MPI_TYPE_COMMIT(type_yz(0), ierr) ! see file init_pegrid.f90
CALL MPI_SENDRECV(ar(nzb,nysg,nxl), 1, type_yz(grid_level), pleft, 0, …)

Exchange of ghost points

Page 11

Code parallelization

PALM seminar group

 Transpositions are located in file transpose.f90 (several subroutines for 1D- or 2D-
decompositions; they are called mainly from the FFT pressure solver, see
poisfft_mod.f90.

 The following example is for a transposition from x to y, i.e. for the input array all data
elements along x reside on the same PE, while after the transposition, all elements
along y are on the same PE:

 CALL MPI_ALLTOALL(f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, &
 work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, comm1dy, ierr)

 The data resorting before and after the calls of MPI_ALLTOALL is highly optimized to
account for the different processor architectures and also allows for overlapping
communication and calculation.

 A further optimized FFT pressure solver is implemented in PALM release 23.04, which
requires only two transpositions. It is switched on via parameter
psolver = ‘poisfft_sm‘
and may give a speedup of more than 30% in case of large setups.

Transpositions

Page 12

Code parallelization

PALM seminar group

 PALM writes and reads some of the input/output files in parallel, i.e. each processor
writes/reads his own file. Each file then has a different name!
Example: binary files for restarts are written into a subfolder of PALM‘s temporary working
directory

 $fast_io_catalog/.../BINOUT/_000000
 .../BINOUT/_000001 etc.

 These files can be handled (copied) by palmrun using the file attribute pe in the
configuration file .palm.iofiles:

 BINOUT* out:lnpe restart $fast_io_catalog/$run_identifier/RESTART _d3d

 In this case, filenames are interpreted as directory names. The call

 palmrun -r example_cbl -a "... restart" ...

will copy the local directory BINOUT to the user directory

 .../RESTART_DATA/example_cbl_d3d

General comment:

 Parallel I/O on a large number of files (>1000) may cause severe file system problems (e.g.
on Lustre file systems).

 Workaround: reduce the maximum number of parallel I/O streams (see palmrun-option -w),
or use restart_data_format = ‘mpi‘ (will soon be PALM‘s default).

Parallel I/O

Page 13

Code parallelization

PALM seminar group

 2D- and 3D-data output is also written in parallel by the cores (2D: by default, 3D: generally).

 Because graphics software (ncview, ncl, ferret, etc.) expect the data to be in one file, these
output files have to be merged to one single file after PALM has finished. This is done by the utility
program combine_plot_fields, which is automatically executed by palmrun after the PALM
simulation has successfully finished.

 The executable combine_plot_fields is created during the installation process by calling
palmbuild.

 PALM writes 2D-data of the total domain directly into one NetCDF file (without invoking
combine_plot_fields) if runtime parameter data_output_2d_on_each_pe = .FALSE. has
been set.

 If you have a NetCDF4/HDF5 library which has parallel I/O support, PALM can write the 3D-data from
the total domain directly into one NetCDF file without invoking combine_plot_fields.

This requires setting of runtime parameter netcdf_data_format = 5 and PALM to be compiled
with cpp-options

 %cpp_options ... –D__netcdf –D__netcdf4 –D__netcdf4_parallel

 Attention: Installation of NetCDF4/HDF5 can be very tricky.

Parallel I/O for 2D/3D data

Page 14

Code parallelization

PALM seminar group

 Simulation using 1536 * 768 * 242 grid points (~ 60 GByte)

Sun Fire X4600, Tokyo Institute of
Technology (2D domain decomposition)

IBM-Regatta, HLRN, Hannover
(1D domain decomposition)

Performance examples (I)

Page 15 group PALM seminar 2018

Code parallelization

 Simulation with 43203 grid points (~ 13 TByte memory) with overlap
 (MPICH_GNI_MAX_EAGER_MSG_SIZE=16384)

PALM - Scalability

Cray XC40, HLRN-III 2nd stage, Haswell, Berlin

Many parts of PALM code are
already optimized for the new
NEC-Aurora vector engines.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

