

Institute of Meteorology and Climatology, Leibniz Universität Hannover

LES For Beginners LES in a nutshell

Leibniz Universität Hannover

critical concentration level

after Schatzmann and Leitl (2001)

building

С

PALM seminar 2023

Х

Important points for carrying out simulations (I)

Carrying out LES requires several important points to be taken care off!

Domain size

Must be large enough to capture all relevant scales of turbulence. It should contain several of the largest structures (for possible interactions among them, and for sufficient statistics). → carry out sensitivity study

Grid spacing

- Must be fine enough to resolve most of the turbulent transport (explicit transport >> subgrid-scale transport, E_{SGS} < (<<) E_{resolved}).
 - \rightarrow check profiles of resolved-scale and subgrid-scale fluxes
- Results should not depend on the grid spacing. \rightarrow carry out sensitivity study

Horizontal boundary conditions

- The inflow/outflow boundaries must not effect the flow turbulence, therefore cyclic boundary conditions are used in most cases.
- In case of Dirichlet conditions at inflow boundaries, a turbulence signal has to be added at the inflow.

Important points for carrying out simulations (II)

Simulation time

- Simulations have to be run for a long time to reach a (quasi-) stationary state and stable statistics, both for mean flow AND turbulence. There will always be a spinup time for turbulence at the beginning.
 - \rightarrow check the time series of velocity components or resolved-scale TKE
- In case of horizontally homogeneous initial and boundary conditions, the onset of turbulence has to be triggered by imposing random disturbances to the flow. Otherwise, there may be no turbulence!

Data analysis

- Results during the spinup of turbulence should not be used for analysis. Data analysis should start only after onset of turbulence and after the mean flow has reached a (quasi-) stationary state.
- Getting correct mean flow profiles often requires additional temporal averaging of the data (e.g., over the eddy-turnover timescale in the convective boundary layer). Turbulence statistics might be poor if averaging is insufficient.

Page 6

LES For Beginners LES for a homogeneous CBL

Setup:

homogeneously heated surface, temperature inversion at z = 800 m, domain size: 2 * 2 km², Δ = 50 m cyclic horizontal boundary conditions

- particles = passive tracers
- diameter ~ |vertical velocity|
- (isosurface = cumulus cloud)

└─ simple LES for a homogeneous CBL, example output (I)

Mean state profiles

- Data horizontally averaged over the whole model domain
- Meaningful for horizontally homogeneous cases only

– How to calculate turbulence quantities from LES data? (I)

LES distinguishes between resolved-scale and subgrid-scale quantities

- Turbulent fluctuations are in general defined as the deviation from a mean state $\langle \phi \rangle$. The mean can be, e.g., a spatial or a temporal mean.
- Prognostic (volume averaged) quantities in LES contain both the mean flow **and** the resolved-scale turbulence: $\overline{\phi} = \langle \overline{\phi} \rangle + \overline{\phi} *$
- Resolved-scale turbulence quantities have to be calculated from the resolvedscale prognostic quantities.
- Some subgrid-scale quantities (mainly the SGS-fluxes) can be calculated directly (but most of them are unknown!).

How to calculate turbulence quantities from LES data? (II)

- Example: calculating the turbulent transport (turbulent momentum flux)
 - Resolved-scale transport includes transport by mean flow and transport by resolved-scale turbulence:

$$\frac{\partial \overline{u_i}}{\partial t} = \dots - \frac{\partial \overline{u_k} \overline{u_i}}{\partial x_k} \dots - \frac{\partial \overline{u_k' u_i'}}{\partial x_k} \qquad \qquad \text{resolved-scale transport} \\ \text{subgrid-scale transport} \end{cases}$$

In case of horizontal homogeneity:

LES For Beginners

 $\begin{array}{c} \overline{u_i} = \left\langle \overline{u_i} \right\rangle + \overline{u_i} * \longrightarrow & \text{deviation with respect to horizontal} \\ \uparrow & \downarrow & \downarrow \\ & \uparrow & \uparrow & \downarrow \\ & \text{horizontal average (varies with z)} & \downarrow & \downarrow \\ & \text{instantaneous value} & \overline{u_i} * = \overline{u_i} - \left\langle \overline{u_i} \right\rangle \end{array}$

Resolved-scale **turbulent** transport: $\langle \overline{u_k} * \overline{u_i} * \rangle$

spatial eddy-correlation (EC) method

Universität

- How to calculate turbulence quantities from LES data? (III)

Spatial eddy-correlation method

- Advantage: Can be calculated at any time step from the instantaneous data (they are all resident in the memory).
- Uncertainty of turbulence quantities can be improved by enlarging the data set.
 - enlarged domain size (requires horizontally homogeneous conditions)
 - additional temporal average (requires turbulence to be in a stationary state)
 - ensemble runs (if non-homogeneous and non-stationary)
- In LES models (like PALM) many of the resolved-scale turbulence quantities (turbulent fluxes, variances, higher order moments) are calculated online (during the simulation) and output as vertical profiles. Calculation in a post-processing step would result in excessive data output.
- Attention: Spatial EC method only works under condition of a horizontally homogeneous mean flow! See lecture *topography* for how to handle horizontally inhomogeneous flow conditions using the temporal EC method.

^L simple LES for a homogeneous CBL, example output (II)

power spectrum of vertical velocity

PALM seminar 2023