
The PALM User-Interface

The PALM User-Interface

PALM group

Institute of Meteorology and Climatology, Leibniz Universität Hannover

last update: 21st September 2015

PALM group PALM Seminar 1 / 18

The PALM User-Interface

The PALM User-Interface

Purpose of the User-Interface

I The standard (default) PALM code cannot account for every specific demand of
a user. In order to include these specific demands, the user would have to
modify the standard code.

Problem:

I New releases of PALM (current release is 3.10) would require the user to add his
modifications to the new release again.

Solution:

I PALM offers a “user-interface“, i.e. a set of subroutines, where the user can add
his modifications, and which can be re-used for future releases of the standard
PALM code.

I By using the user-interface, the standard code does not have to be modified by
the user in most of the cases.

I The user-interface subroutines are almost “empty“ by default. They are called
from the standard PALM code but (with some very minor exceptions) do not
contain any executable code.

PALM group PALM Seminar 2 / 18

The PALM User-Interface

The PALM User-Interface

Purpose of the User-Interface
I The standard (default) PALM code cannot account for every specific demand of

a user. In order to include these specific demands, the user would have to
modify the standard code.

Problem:

I New releases of PALM (current release is 3.10) would require the user to add his
modifications to the new release again.

Solution:

I PALM offers a “user-interface“, i.e. a set of subroutines, where the user can add
his modifications, and which can be re-used for future releases of the standard
PALM code.

I By using the user-interface, the standard code does not have to be modified by
the user in most of the cases.

I The user-interface subroutines are almost “empty“ by default. They are called
from the standard PALM code but (with some very minor exceptions) do not
contain any executable code.

PALM group PALM Seminar 2 / 18

The PALM User-Interface

The PALM User-Interface

Purpose of the User-Interface
I The standard (default) PALM code cannot account for every specific demand of

a user. In order to include these specific demands, the user would have to
modify the standard code.

Problem:

I New releases of PALM (current release is 3.10) would require the user to add his
modifications to the new release again.

Solution:

I PALM offers a “user-interface“, i.e. a set of subroutines, where the user can add
his modifications, and which can be re-used for future releases of the standard
PALM code.

I By using the user-interface, the standard code does not have to be modified by
the user in most of the cases.

I The user-interface subroutines are almost “empty“ by default. They are called
from the standard PALM code but (with some very minor exceptions) do not
contain any executable code.

PALM group PALM Seminar 2 / 18

The PALM User-Interface

The PALM User-Interface

Purpose of the User-Interface
I The standard (default) PALM code cannot account for every specific demand of

a user. In order to include these specific demands, the user would have to
modify the standard code.

Problem:

I New releases of PALM (current release is 3.10) would require the user to add his
modifications to the new release again.

Solution:

I PALM offers a “user-interface“, i.e. a set of subroutines, where the user can add
his modifications, and which can be re-used for future releases of the standard
PALM code.

I By using the user-interface, the standard code does not have to be modified by
the user in most of the cases.

I The user-interface subroutines are almost “empty“ by default. They are called
from the standard PALM code but (with some very minor exceptions) do not
contain any executable code.

PALM group PALM Seminar 2 / 18

The PALM User-Interface

The PALM User-Interface

Purpose of the User-Interface
I The standard (default) PALM code cannot account for every specific demand of

a user. In order to include these specific demands, the user would have to
modify the standard code.

Problem:

I New releases of PALM (current release is 3.10) would require the user to add his
modifications to the new release again.

Solution:

I PALM offers a “user-interface“, i.e. a set of subroutines, where the user can add
his modifications, and which can be re-used for future releases of the standard
PALM code.

I By using the user-interface, the standard code does not have to be modified by
the user in most of the cases.

I The user-interface subroutines are almost “empty“ by default. They are called
from the standard PALM code but (with some very minor exceptions) do not
contain any executable code.

PALM group PALM Seminar 2 / 18

The PALM User-Interface

The PALM User-Interface

Purpose of the User-Interface
I The standard (default) PALM code cannot account for every specific demand of

a user. In order to include these specific demands, the user would have to
modify the standard code.

Problem:

I New releases of PALM (current release is 3.10) would require the user to add his
modifications to the new release again.

Solution:

I PALM offers a “user-interface“, i.e. a set of subroutines, where the user can add
his modifications, and which can be re-used for future releases of the standard
PALM code.

I By using the user-interface, the standard code does not have to be modified by
the user in most of the cases.

I The user-interface subroutines are almost “empty“ by default. They are called
from the standard PALM code but (with some very minor exceptions) do not
contain any executable code.

PALM group PALM Seminar 2 / 18

The PALM User-Interface

The PALM User-Interface

General Structure of the User-Interface
I All routines can be found under .../trunk/SOURCE.

I There is one file for each routine. Filenames are user *.f90.
Example: user last actions.f90

SUBROUTINE user last actions

!--!
!
! Description:
! ------------
! Execution of user-defined actions at the end of a job.
!--!

USE control parameters
USE kinds
USE user

IMPLICIT NONE

!
!-- Here the user-defined actions at the end of a job follow.
!-- Sample for user-defined output:

IF (write binary(1:4) == ’true’) THEN

! IF (ALLOCATED(u2 av)) THEN
! WRITE (14) ’u2 av ’; WRITE (14) u2 av
! ENDIF

WRITE (14) ’*** end user *** ’

ENDIF

END SUBROUTINE user last actions

PALM group PALM Seminar 3 / 18

The PALM User-Interface

The PALM User-Interface

General Structure of the User-Interface
I All routines can be found under .../trunk/SOURCE.
I There is one file for each routine. Filenames are user *.f90.

Example: user last actions.f90

SUBROUTINE user last actions

!--!
!
! Description:
! ------------
! Execution of user-defined actions at the end of a job.
!--!

USE control parameters
USE kinds
USE user

IMPLICIT NONE

!
!-- Here the user-defined actions at the end of a job follow.
!-- Sample for user-defined output:

IF (write binary(1:4) == ’true’) THEN

! IF (ALLOCATED(u2 av)) THEN
! WRITE (14) ’u2 av ’; WRITE (14) u2 av
! ENDIF

WRITE (14) ’*** end user *** ’

ENDIF

END SUBROUTINE user last actions

PALM group PALM Seminar 3 / 18

The PALM User-Interface

The PALM User-Interface

General Structure of the User-Interface
I All routines can be found under .../trunk/SOURCE.
I There is one file for each routine. Filenames are user *.f90.

Example: user last actions.f90

SUBROUTINE user last actions

!--!
!
! Description:
! ------------
! Execution of user-defined actions at the end of a job.
!--!

USE control parameters
USE kinds
USE user

IMPLICIT NONE

!
!-- Here the user-defined actions at the end of a job follow.
!-- Sample for user-defined output:

IF (write binary(1:4) == ’true’) THEN

! IF (ALLOCATED(u2 av)) THEN
! WRITE (14) ’u2 av ’; WRITE (14) u2 av
! ENDIF

WRITE (14) ’*** end user *** ’

ENDIF

END SUBROUTINE user last actions

PALM group PALM Seminar 3 / 18

The PALM User-Interface

The PALM User-Interface

Embedding of User-Interface Routines
I The user-interface routines are called from specific, well-defined locations in the

standard PALM code.

Example from palm.f90:

...
!
!-- If required, final user-defined actions, and
!-- last actions on the open files and close files. Unit 14 was opened
!-- in write 3d binary but it is closed here, to allow writing on this
!-- unit in routine user last actions.

CALL cpu log(log point(4), ’last actions’, ’start’)
DO i = 0, io blocks-1

IF (i == io group) THEN
CALL user last actions
IF (write binary(1:4) == ’true’) CALL close file(14)

ENDIF
#if defined(parallel)

CALL MPI BARRIER(comm2d, ierr)
#endif

ENDDO
CALL close file(0)
CALL close dvrp
CALL cpu log(log point(4), ’last actions’, ’stop’)

...

!
!-- Take final CPU-time for CPU-time analysis

CALL cpu log(log point(1), ’total’, ’stop’)
CALL cpu statistics

#if defined(parallel)
CALL MPI FINALIZE(ierr)

#endif

END PROGRAM palm

PALM group PALM Seminar 4 / 18

The PALM User-Interface

The PALM User-Interface

Embedding of User-Interface Routines
I The user-interface routines are called from specific, well-defined locations in the

standard PALM code.

Example from palm.f90:

...
!
!-- If required, final user-defined actions, and
!-- last actions on the open files and close files. Unit 14 was opened
!-- in write 3d binary but it is closed here, to allow writing on this
!-- unit in routine user last actions.

CALL cpu log(log point(4), ’last actions’, ’start’)
DO i = 0, io blocks-1

IF (i == io group) THEN
CALL user last actions
IF (write binary(1:4) == ’true’) CALL close file(14)

ENDIF
#if defined(parallel)

CALL MPI BARRIER(comm2d, ierr)
#endif

ENDDO
CALL close file(0)
CALL close dvrp
CALL cpu log(log point(4), ’last actions’, ’stop’)

...

!
!-- Take final CPU-time for CPU-time analysis

CALL cpu log(log point(1), ’total’, ’stop’)
CALL cpu statistics

#if defined(parallel)
CALL MPI FINALIZE(ierr)

#endif

END PROGRAM palm

PALM group PALM Seminar 4 / 18

The PALM User-Interface

The PALM User-Interface

Embedding of User-Interface Routines
Flow Chart Overview (I): Initial Steps

PALM

parin user parin

init grid user init grid

check parameters

user check data output/ pr

user check parameters

init 3d model

user init 3d model

read 3d binary

user read restart data

user init plant canopy

lpm init user lpm init

user init

header user header

PALM group PALM Seminar 5 / 18

The PALM User-Interface

The PALM User-Interface

Embedding of User-Interface Routines
Flow Chart Overview (II): Time Integration Loop

time integration

user actions (’before timestep’)

prognostic equations vector prognostic equations cache user actions (’* tendency’)

lpm user lpm advec

exchange horiz

swap timelevel

pres

user actions (’after integration’)

flow statistics user statistics

sum up 3d data user 3d data averaging

user actions (’after timestep’)

data output *** user dvrp coltab

user data output 2d user data output 3d

PALM group PALM Seminar 6 / 18

The PALM User-Interface

The PALM User-Interface

Embedding of User-Interface Routines
Flow Chart Overview (III): Final Steps

PALM

time integration

write 3d binary write var list

header

user last actions

cpu statistics

PALM group PALM Seminar 7 / 18

The PALM User-Interface

The PALM User-Interface

Complete List of User-Interface Routines (I)
Name Arguments Called from Task
user 3d data averaging mode, variable average 3d data +

sum up 3d data

temporal averaging for user-
defined quantities

user actions

user actions

location

i, j, location
time integration +
prognostic equations

e.g. additional forces to be in-
cluded in the prognostic equa-
tions

user dummy

(user additional

routines.f90)

- - - - - - for additional subroutines de-
fined by the user

user check data output variable, unit check parameters +
init masks

check the user-defined output
quantities

user check data output pr variable, var count,
unit

check parameters check the user-defined profile
output quantities

user check parameters - - - check parameters check user-defined variables
user data output 2d av, variable, found,

grid, local pf, two d

data output 2d output/calculation of additional
user-defined quantities

user data output 3d av, variable, found,
local pf, nz do

data output 3d output/calculation of additional
user-defined quantities

user data output dvrp output variable,
local pf

data output dvrp output of additional user-defined
quantities

user data output mask av, variable, found,
local pf

data output mask output of additional masked
user-defined quantities

user define netcdf grid variable, found, grid x,
grid y, grid z

netcdf defining the grid for additional
output quantities

user dvrp coltab mode, variable data output dvrp defining color tables for particles
user header io header output user variables to header
user init - - - init 3d model e.g. reading from restart file

PALM group PALM Seminar 8 / 18

The PALM User-Interface

The PALM User-Interface

Complete List of User-Interface Routines (II)
Name Arguments Called from Task
user init 3d model - - - init 3d model special initializations
user init grid gls init grid defining a special topography
user init plant canopy - - - init 3d model setting of leaf area density and

canopy drag coefficient
user last actions - - - palm e.g. output for restart runs
user lpm advec - - - lpm modification of particles after

advection
user lpm init - - - lpm init defining initial particle sources
user lpm set attributes - - - lpm defining particles attributes
MODULE user

(user module.f90)

- - - - - - contains user defined variables

user parin parin reading user variables
user read restart data i, nxlfa, nxl on file,

nxrfa, nxr on file,
nynfa, nyn on file,
nysfa, nys on file,
offset xa, offset ya,
overlap count, tmp 2d,
tmp 3d

read 3d binary reading user-defined 2d/3d-
arrays from the restart file

user spectra mode, m, pr calc spectra +
data output spectra

output/calculation of additional
user-defined quantities

user statistics mode, sr, tn flow statistics calculating additional horizontal
averages + time series quantities

See PALM online documentation under
http://palm.muk.uni-hannover.de/trac/wiki/doc/app/userint
for detailed explanations.

PALM group PALM Seminar 9 / 18

The PALM User-Interface

The PALM User-Interface

Data Access / Exchange

I Between the standard PALM code and the user-interface:

I by including the respective PALM modules in the user-interface
subroutines.

SUBROUTINE user actions(location)

USE arrays 3d

USE control parameters

USE cpulog

USE indices

USE interfaces

USE pegrid

USE user

IMPLICIT NONE

CHARACTER (LEN=∗) :: location

INTEGER :: i, j, k

I Within the user-interface:
I by the module user (file user module.f90), which is used in every

subroutine included in the interface.
This module is (and should be) never used in the standard PALM code
(otherwise, the default code would depend on the user
interface).

PALM group PALM Seminar 10 / 18

The PALM User-Interface

The PALM User-Interface

Data Access / Exchange
I Between the standard PALM code and the user-interface:

I by including the respective PALM modules in the user-interface
subroutines.

SUBROUTINE user actions(location)

USE arrays 3d

USE control parameters

USE cpulog

USE indices

USE interfaces

USE pegrid

USE user

IMPLICIT NONE

CHARACTER (LEN=∗) :: location

INTEGER :: i, j, k

I Within the user-interface:
I by the module user (file user module.f90), which is used in every

subroutine included in the interface.
This module is (and should be) never used in the standard PALM code
(otherwise, the default code would depend on the user
interface).

PALM group PALM Seminar 10 / 18

The PALM User-Interface

The PALM User-Interface

Data Access / Exchange
I Between the standard PALM code and the user-interface:

I by including the respective PALM modules in the user-interface
subroutines.

SUBROUTINE user actions(location)

USE arrays 3d

USE control parameters

USE cpulog

USE indices

USE interfaces

USE pegrid

USE user

IMPLICIT NONE

CHARACTER (LEN=∗) :: location

INTEGER :: i, j, k

I Within the user-interface:
I by the module user (file user module.f90), which is used in every

subroutine included in the interface.
This module is (and should be) never used in the standard PALM code
(otherwise, the default code would depend on the user
interface).

PALM group PALM Seminar 10 / 18

The PALM User-Interface

The PALM User-Interface

Data Access / Exchange
I Between the standard PALM code and the user-interface:

I by including the respective PALM modules in the user-interface
subroutines.

SUBROUTINE user actions(location)

USE arrays 3d

USE control parameters

USE cpulog

USE indices

USE interfaces

USE pegrid

USE user

IMPLICIT NONE

CHARACTER (LEN=∗) :: location

INTEGER :: i, j, k

I Within the user-interface:
I by the module user (file user module.f90), which is used in every

subroutine included in the interface.
This module is (and should be) never used in the standard PALM code
(otherwise, the default code would depend on the user
interface).

PALM group PALM Seminar 10 / 18

The PALM User-Interface

The PALM User-Interface

Usage of user actions (I)
I user actions is designed to add additional terms to the prognostic equations

or to carry out special actions at the beginning or the end of each timestep.

I Therefore, several calls of user actions can be found in the default PALM
routines time integration and prognostic equations. The place from which
it is called is communicated to the routine by a string-argument, e.g.

CALL user actions(’u-tendency’)

It means that this call is from a line within prognostic equations, where the
tendencies for the u-component are calculated and integrated:

DO i = nxl, nxr

DO j = nys, nyn

...

CALL diffusion u(i, j)

CALL coriolis(i, j, 1)

...

CALL user actions(i, j, ’u-tendency’)

!

!-- Prognostic equation for u-velocity component

DO k = nzb u inner(j,i)+1, nzt

u p(k,j,i) = u(k,j,i) + dt 3d * (tsc(2) * tend(k,j,i) + &

tsc(3) * tu m(k,j,i)) &

- tsc(5) * rdf(k) * (u(k,j,i) - ug(k))

ENDDO

...

PALM group PALM Seminar 11 / 18

The PALM User-Interface

The PALM User-Interface

Usage of user actions (I)
I user actions is designed to add additional terms to the prognostic equations

or to carry out special actions at the beginning or the end of each timestep.

I Therefore, several calls of user actions can be found in the default PALM
routines time integration and prognostic equations. The place from which
it is called is communicated to the routine by a string-argument, e.g.

CALL user actions(’u-tendency’)

It means that this call is from a line within prognostic equations, where the
tendencies for the u-component are calculated and integrated:

DO i = nxl, nxr

DO j = nys, nyn

...

CALL diffusion u(i, j)

CALL coriolis(i, j, 1)

...

CALL user actions(i, j, ’u-tendency’)

!

!-- Prognostic equation for u-velocity component

DO k = nzb u inner(j,i)+1, nzt

u p(k,j,i) = u(k,j,i) + dt 3d * (tsc(2) * tend(k,j,i) + &

tsc(3) * tu m(k,j,i)) &

- tsc(5) * rdf(k) * (u(k,j,i) - ug(k))

ENDDO

...

PALM group PALM Seminar 11 / 18

The PALM User-Interface

The PALM User-Interface

Usage of user actions (I)
I user actions is designed to add additional terms to the prognostic equations

or to carry out special actions at the beginning or the end of each timestep.

I Therefore, several calls of user actions can be found in the default PALM
routines time integration and prognostic equations. The place from which
it is called is communicated to the routine by a string-argument, e.g.

CALL user actions(’u-tendency’)

It means that this call is from a line within prognostic equations, where the
tendencies for the u-component are calculated and integrated:

DO i = nxl, nxr

DO j = nys, nyn

...

CALL diffusion u(i, j)

CALL coriolis(i, j, 1)

...

CALL user actions(i, j, ’u-tendency’)

!

!-- Prognostic equation for u-velocity component

DO k = nzb u inner(j,i)+1, nzt

u p(k,j,i) = u(k,j,i) + dt 3d * (tsc(2) * tend(k,j,i) + &

tsc(3) * tu m(k,j,i)) &

- tsc(5) * rdf(k) * (u(k,j,i) - ug(k))

ENDDO

...

PALM group PALM Seminar 11 / 18

The PALM User-Interface

The PALM User-Interface

Usage of user actions (II)
I Additional tendencies have to be included by the user at the respective code line

in user actions:

SUBROUTINE user actions(location)

...

!

!-- Here the user-defined actions follow

!-- No calls for single grid points are allowed at locations before and

!-- after the timestep, since these calls are not within an i,j-loop

SELECT CASE (location)

...

CASE (’after timestep’)

!

!-- Enter actions to be done after every timestep here

CASE (’u-tendency’)

!

!-- Enter actions to be done in the u-tendency term here

DO i = nxl, nxr

DO j = nys, nyn

DO k = nxb+1, nzt

tend(k,j,i) = tend(k,j,i) - const * u(k,j,i) ...

ENDDO

ENDDO

ENDDO

CASE (’v-tendency’)

...

PALM group PALM Seminar 12 / 18

The PALM User-Interface

The PALM User-Interface

Usage of user actions (III)

I The different versions of prognostic equations (prognostic equations cache,
prognostic equations vector) contain different calls of user actions:

I From prognostic equations vector: CALL user actions(’u-tendency’)

I From prognostic equations,
prognostic equations cache: CALL user actions(i, j, ’u-tendency’)

I In case that prognostic equations

prognostic equations cache are
used, the user has to add his code in
the interface routine
user actions ij:

I Here, only the k-loop (vertical direction)
has to be used, because loops over
i and j are executed in
prognostic equations cache.

SUBROUTINE user actions ij(i, j, location)

USE control parameters
USE pegrid
USE user

IMPLICIT NONE

CHARACTER (LEN=*) :: location

INTEGER(iwp) :: i, idum, j

!
!-- Here the user-defined actions follow

SELECT CASE (location)

CASE (’u-tendency’)
!

!-- Enter actions to be done in the u-tendency term here
DO k = nzb+1, nzt-1

tend(k,j,i) = tend(k,j,i) + ...
ENDDO

CASE (’v-tendency’)

PALM group PALM Seminar 13 / 18

The PALM User-Interface

The PALM User-Interface

Usage of user actions (III)

I The different versions of prognostic equations (prognostic equations cache,
prognostic equations vector) contain different calls of user actions:

I From prognostic equations vector: CALL user actions(’u-tendency’)

I From prognostic equations,
prognostic equations cache: CALL user actions(i, j, ’u-tendency’)

I In case that prognostic equations

prognostic equations cache are
used, the user has to add his code in
the interface routine
user actions ij:

I Here, only the k-loop (vertical direction)
has to be used, because loops over
i and j are executed in
prognostic equations cache.

SUBROUTINE user actions ij(i, j, location)

USE control parameters
USE pegrid
USE user

IMPLICIT NONE

CHARACTER (LEN=*) :: location

INTEGER(iwp) :: i, idum, j

!
!-- Here the user-defined actions follow

SELECT CASE (location)

CASE (’u-tendency’)
!

!-- Enter actions to be done in the u-tendency term here
DO k = nzb+1, nzt-1

tend(k,j,i) = tend(k,j,i) + ...
ENDDO

CASE (’v-tendency’)

PALM group PALM Seminar 13 / 18

The PALM User-Interface

The PALM User-Interface

Usage of user actions (III)

I The different versions of prognostic equations (prognostic equations cache,
prognostic equations vector) contain different calls of user actions:

I From prognostic equations vector: CALL user actions(’u-tendency’)

I From prognostic equations,
prognostic equations cache: CALL user actions(i, j, ’u-tendency’)

I In case that prognostic equations

prognostic equations cache are
used, the user has to add his code in
the interface routine
user actions ij:

I Here, only the k-loop (vertical direction)
has to be used, because loops over
i and j are executed in
prognostic equations cache.

SUBROUTINE user actions ij(i, j, location)

USE control parameters
USE pegrid
USE user

IMPLICIT NONE

CHARACTER (LEN=*) :: location

INTEGER(iwp) :: i, idum, j

!
!-- Here the user-defined actions follow

SELECT CASE (location)

CASE (’u-tendency’)
!

!-- Enter actions to be done in the u-tendency term here
DO k = nzb+1, nzt-1

tend(k,j,i) = tend(k,j,i) + ...
ENDDO

CASE (’v-tendency’)

PALM group PALM Seminar 13 / 18

The PALM User-Interface

The PALM User-Interface

Usage of user actions (III)

I The different versions of prognostic equations (prognostic equations cache,
prognostic equations vector) contain different calls of user actions:

I From prognostic equations vector: CALL user actions(’u-tendency’)

I From prognostic equations,
prognostic equations cache: CALL user actions(i, j, ’u-tendency’)

I In case that prognostic equations

prognostic equations cache are
used, the user has to add his code in
the interface routine
user actions ij:

I Here, only the k-loop (vertical direction)
has to be used, because loops over
i and j are executed in
prognostic equations cache.

SUBROUTINE user actions ij(i, j, location)

USE control parameters
USE pegrid
USE user

IMPLICIT NONE

CHARACTER (LEN=*) :: location

INTEGER(iwp) :: i, idum, j

!
!-- Here the user-defined actions follow

SELECT CASE (location)

CASE (’u-tendency’)
!

!-- Enter actions to be done in the u-tendency term here
DO k = nzb+1, nzt-1

tend(k,j,i) = tend(k,j,i) + ...
ENDDO

CASE (’v-tendency’)

PALM group PALM Seminar 13 / 18

The PALM User-Interface

The PALM User-Interface

Usage of user actions (III)

I The different versions of prognostic equations (prognostic equations cache,
prognostic equations vector) contain different calls of user actions:

I From prognostic equations vector: CALL user actions(’u-tendency’)

I From prognostic equations,
prognostic equations cache: CALL user actions(i, j, ’u-tendency’)

I In case that prognostic equations

prognostic equations cache are
used, the user has to add his code in
the interface routine
user actions ij:

I Here, only the k-loop (vertical direction)
has to be used, because loops over
i and j are executed in
prognostic equations cache.

SUBROUTINE user actions ij(i, j, location)

USE control parameters
USE pegrid
USE user

IMPLICIT NONE

CHARACTER (LEN=*) :: location

INTEGER(iwp) :: i, idum, j

!
!-- Here the user-defined actions follow

SELECT CASE (location)

CASE (’u-tendency’)
!

!-- Enter actions to be done in the u-tendency term here
DO k = nzb+1, nzt-1

tend(k,j,i) = tend(k,j,i) + ...
ENDDO

CASE (’v-tendency’)

PALM group PALM Seminar 13 / 18

The PALM User-Interface

The PALM User-Interface

Steering the User-Interface
For steering the user-interface code, the user may want to add some additional variables and
set their respective values within the parameter-file (e.g. example cbl p3d). This requires the
following actions (example for a variable named foo):

1. Add the variable name to module user in order to define it and to make it
available in all user-interface subroutines. Set a default value for this variable.

MODULE user
...
REAL(wp) :: foo = 0.0
...
END MODULE user

2. Add the variable to the NAMELIST /userpar/. This NAMELIST already
contains four predefined variables.

SUBROUTINE user parin
...

NAMELIST /userpar/ data output pr user, data output user,

foo, region
...
END SUBROUTINE user parin

3. Add the NAMELIST &userpar to the parameter file (e.g. example cbl p3d)
and assign a value to this variable.

&inipar nx = ... /

&d3par end time = 3600.0, ... /

&userpar foo = 12345.6 /

4. Output the variable’s value using user header.

PALM group PALM Seminar 14 / 18

The PALM User-Interface

The PALM User-Interface

Steering the User-Interface
For steering the user-interface code, the user may want to add some additional variables and
set their respective values within the parameter-file (e.g. example cbl p3d). This requires the
following actions (example for a variable named foo):

1. Add the variable name to module user in order to define it and to make it
available in all user-interface subroutines. Set a default value for this variable.

MODULE user
...
REAL(wp) :: foo = 0.0
...
END MODULE user

2. Add the variable to the NAMELIST /userpar/. This NAMELIST already
contains four predefined variables.

SUBROUTINE user parin
...

NAMELIST /userpar/ data output pr user, data output user,

foo, region
...
END SUBROUTINE user parin

3. Add the NAMELIST &userpar to the parameter file (e.g. example cbl p3d)
and assign a value to this variable.

&inipar nx = ... /

&d3par end time = 3600.0, ... /

&userpar foo = 12345.6 /

4. Output the variable’s value using user header.

PALM group PALM Seminar 14 / 18

The PALM User-Interface

The PALM User-Interface

Steering the User-Interface
For steering the user-interface code, the user may want to add some additional variables and
set their respective values within the parameter-file (e.g. example cbl p3d). This requires the
following actions (example for a variable named foo):

1. Add the variable name to module user in order to define it and to make it
available in all user-interface subroutines. Set a default value for this variable.

MODULE user
...
REAL(wp) :: foo = 0.0
...
END MODULE user

2. Add the variable to the NAMELIST /userpar/. This NAMELIST already
contains four predefined variables.

SUBROUTINE user parin
...

NAMELIST /userpar/ data output pr user, data output user,

foo, region
...
END SUBROUTINE user parin

3. Add the NAMELIST &userpar to the parameter file (e.g. example cbl p3d)
and assign a value to this variable.

&inipar nx = ... /

&d3par end time = 3600.0, ... /

&userpar foo = 12345.6 /

4. Output the variable’s value using user header.

PALM group PALM Seminar 14 / 18

The PALM User-Interface

The PALM User-Interface

Steering the User-Interface
For steering the user-interface code, the user may want to add some additional variables and
set their respective values within the parameter-file (e.g. example cbl p3d). This requires the
following actions (example for a variable named foo):

1. Add the variable name to module user in order to define it and to make it
available in all user-interface subroutines. Set a default value for this variable.

MODULE user
...
REAL(wp) :: foo = 0.0
...
END MODULE user

2. Add the variable to the NAMELIST /userpar/. This NAMELIST already
contains four predefined variables.

SUBROUTINE user parin
...

NAMELIST /userpar/ data output pr user, data output user,

foo, region
...
END SUBROUTINE user parin

3. Add the NAMELIST &userpar to the parameter file (e.g. example cbl p3d)
and assign a value to this variable.

&inipar nx = ... /

&d3par end time = 3600.0, ... /

&userpar foo = 12345.6 /

4. Output the variable’s value using user header.

PALM group PALM Seminar 14 / 18

The PALM User-Interface

The PALM User-Interface

User-Defined Output

I A very typical request of users is the calculation and output of quantities which
are not part of PALM’s standard output (e.g. a 3D-array of the resolved-scale
vertical heat (temperature) flux).

I The default user interface includes a number of subroutines which allow the
calculation of user-defined quantities and output of these quantities as profiles,
timeseries, 2d cross section or 3d volume data. These are e.g.
user check data output, user check data output pr,
user define netcdf grid, user statistics,
user 3d data averaging, user data output 2d,
user data output 3d.

I The respective subroutines contain, as an example, code lines (written as
comment lines) for calculating and output the square of the u-component
velocity.

I These quantities are output to PALM‘s standard netCDF files, i.e.
DATA 1D PR NETCDF, DATA 1D TS NETCDF, DATA 2D XY NETCDF or
DATA 3D NETCDF.

I The online documentation gives very detailed instructions about how to modify
the interface in order to output user-defined quantities under

http://palm.muk.uni-hannover.de/trac/wiki/doc/app/userint/output

PALM group PALM Seminar 15 / 18

The PALM User-Interface

The PALM User-Interface

User-Defined Output
I A very typical request of users is the calculation and output of quantities which

are not part of PALM’s standard output (e.g. a 3D-array of the resolved-scale
vertical heat (temperature) flux).

I The default user interface includes a number of subroutines which allow the
calculation of user-defined quantities and output of these quantities as profiles,
timeseries, 2d cross section or 3d volume data. These are e.g.
user check data output, user check data output pr,
user define netcdf grid, user statistics,
user 3d data averaging, user data output 2d,
user data output 3d.

I The respective subroutines contain, as an example, code lines (written as
comment lines) for calculating and output the square of the u-component
velocity.

I These quantities are output to PALM‘s standard netCDF files, i.e.
DATA 1D PR NETCDF, DATA 1D TS NETCDF, DATA 2D XY NETCDF or
DATA 3D NETCDF.

I The online documentation gives very detailed instructions about how to modify
the interface in order to output user-defined quantities under

http://palm.muk.uni-hannover.de/trac/wiki/doc/app/userint/output

PALM group PALM Seminar 15 / 18

The PALM User-Interface

The PALM User-Interface

User-Defined Output
I A very typical request of users is the calculation and output of quantities which

are not part of PALM’s standard output (e.g. a 3D-array of the resolved-scale
vertical heat (temperature) flux).

I The default user interface includes a number of subroutines which allow the
calculation of user-defined quantities and output of these quantities as profiles,
timeseries, 2d cross section or 3d volume data. These are e.g.
user check data output, user check data output pr,
user define netcdf grid, user statistics,
user 3d data averaging, user data output 2d,
user data output 3d.

I The respective subroutines contain, as an example, code lines (written as
comment lines) for calculating and output the square of the u-component
velocity.

I These quantities are output to PALM‘s standard netCDF files, i.e.
DATA 1D PR NETCDF, DATA 1D TS NETCDF, DATA 2D XY NETCDF or
DATA 3D NETCDF.

I The online documentation gives very detailed instructions about how to modify
the interface in order to output user-defined quantities under

http://palm.muk.uni-hannover.de/trac/wiki/doc/app/userint/output

PALM group PALM Seminar 15 / 18

The PALM User-Interface

The PALM User-Interface

User-Defined Output
I A very typical request of users is the calculation and output of quantities which

are not part of PALM’s standard output (e.g. a 3D-array of the resolved-scale
vertical heat (temperature) flux).

I The default user interface includes a number of subroutines which allow the
calculation of user-defined quantities and output of these quantities as profiles,
timeseries, 2d cross section or 3d volume data. These are e.g.
user check data output, user check data output pr,
user define netcdf grid, user statistics,
user 3d data averaging, user data output 2d,
user data output 3d.

I The respective subroutines contain, as an example, code lines (written as
comment lines) for calculating and output the square of the u-component
velocity.

I These quantities are output to PALM‘s standard netCDF files, i.e.
DATA 1D PR NETCDF, DATA 1D TS NETCDF, DATA 2D XY NETCDF or
DATA 3D NETCDF.

I The online documentation gives very detailed instructions about how to modify
the interface in order to output user-defined quantities under

http://palm.muk.uni-hannover.de/trac/wiki/doc/app/userint/output

PALM group PALM Seminar 15 / 18

The PALM User-Interface

The PALM User-Interface

User-Defined Output
I A very typical request of users is the calculation and output of quantities which

are not part of PALM’s standard output (e.g. a 3D-array of the resolved-scale
vertical heat (temperature) flux).

I The default user interface includes a number of subroutines which allow the
calculation of user-defined quantities and output of these quantities as profiles,
timeseries, 2d cross section or 3d volume data. These are e.g.
user check data output, user check data output pr,
user define netcdf grid, user statistics,
user 3d data averaging, user data output 2d,
user data output 3d.

I The respective subroutines contain, as an example, code lines (written as
comment lines) for calculating and output the square of the u-component
velocity.

I These quantities are output to PALM‘s standard netCDF files, i.e.
DATA 1D PR NETCDF, DATA 1D TS NETCDF, DATA 2D XY NETCDF or
DATA 3D NETCDF.

I The online documentation gives very detailed instructions about how to modify
the interface in order to output user-defined quantities under

http://palm.muk.uni-hannover.de/trac/wiki/doc/app/userint/output

PALM group PALM Seminar 15 / 18

The PALM User-Interface

The PALM User-Interface

User-Defined Output
I A very typical request of users is the calculation and output of quantities which

are not part of PALM’s standard output (e.g. a 3D-array of the resolved-scale
vertical heat (temperature) flux).

I The default user interface includes a number of subroutines which allow the
calculation of user-defined quantities and output of these quantities as profiles,
timeseries, 2d cross section or 3d volume data. These are e.g.
user check data output, user check data output pr,
user define netcdf grid, user statistics,
user 3d data averaging, user data output 2d,
user data output 3d.

I The respective subroutines contain, as an example, code lines (written as
comment lines) for calculating and output the square of the u-component
velocity.

I These quantities are output to PALM‘s standard netCDF files, i.e.
DATA 1D PR NETCDF, DATA 1D TS NETCDF, DATA 2D XY NETCDF or
DATA 3D NETCDF.

I The online documentation gives very detailed instructions about how to modify
the interface in order to output user-defined quantities under

http://palm.muk.uni-hannover.de/trac/wiki/doc/app/userint/output

PALM group PALM Seminar 15 / 18

The PALM User-Interface

The PALM User-Interface

User-Defined Data for Restart Runs (I)

I It might be neccessary to save the values of user-defined variables at the end of
a model run in order to use them for a restart run.

This can be done using the routine user last actions.
“14“ is the file-id for the restart file (local filename BINOUT):

SUBROUTINE user last actions

...

WRITE (14) ’foo ’; WRITE (14) foo

WRITE (14) ’bar ’; WRITE (14) bar

WRITE (14) ’*** end user *** ’

END SUBROUTINE user last actions

PALM group PALM Seminar 16 / 18

The PALM User-Interface

The PALM User-Interface

User-Defined Data for Restart Runs (II)
I Additionally, these variables have to be read from the restart file (file-id “13“ ,

local filename BININ) by adding code to the routine user read restart data:

SUBROUTINE user read restart data(i, nxlfa, nxl on file, nxrfa, nxr on file, &

nynfa, nyn on file, nysfa, nys on file, &

offset xa, offset ya, overlap count, &

tmp 2d, tmp 3d)

...

IF (initializing actions == ’read restart data’) THEN

READ (13) field char

DO WHILE (TRIM(field char) ’*** end user ***’)

nxlf = nxlfa(i,k) ...

SELECT CASE (TRIM(field char))

CASE (’foo’)

IF (.NOT. ALLOCATED(foo)) THEN

ALLOCATE(foo(nzb:nzt+1,nysg:nyng,nxlg:nxrg))

ENDIF

IF (k == 1) READ (13) tmp 3d

foo(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &

tmp 3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)

...

END SELECT

ENDDO

READ (13) field char

ENDDO

ENDIF

END SUBROUTINE user read restart data

PALM group PALM Seminar 17 / 18

The PALM User-Interface

The PALM User-Interface

Using the User-Interface with mrun
Users can add their own (modified) user-interface to a PALM-run by carrying out the following steps:

1. Copy the default (empty) user-interface files that you need (e.g. user module.f90, user parin.f90, user actions.f90) to a
directory of your choice, e.g.:

cd ~/palm/current version

mkdir -p USER CODE/example cbl

cp trunk/SOURCE/user module.f90 USER CODE/example cbl/user module.f90

cp trunk/SOURCE/user parin.f90 USER CODE/example cbl/user parin.f90

...

2. Set an additional path in the configuration file .mrun.config to allow mrun to find and include this file:

%add source path $base directory/USER CODE/$fname

3. Modify the interface routines according to your needs.

4. Start a PALM run by executing

mrun -d example cbl ...

The files user *.f90 will be automatically compiled within the job / interactive run and will replace the respective
PALM default user-interface files.

I The modified user-interface file cannot be pre-compiled by using mbuild!

I The above method allows to use different user-interfaces for different runs. Just store the respective interface-files in
subdirectories USER CODE/abcd, USER CODE/cdef, etc. and start mrun with option “-d abcd“, “-d cdef“, etc.

PALM group PALM Seminar 18 / 18

The PALM User-Interface

The PALM User-Interface

Using the User-Interface with mrun
Users can add their own (modified) user-interface to a PALM-run by carrying out the following steps:

1. Copy the default (empty) user-interface files that you need (e.g. user module.f90, user parin.f90, user actions.f90) to a
directory of your choice, e.g.:

cd ~/palm/current version

mkdir -p USER CODE/example cbl

cp trunk/SOURCE/user module.f90 USER CODE/example cbl/user module.f90

cp trunk/SOURCE/user parin.f90 USER CODE/example cbl/user parin.f90

...

2. Set an additional path in the configuration file .mrun.config to allow mrun to find and include this file:

%add source path $base directory/USER CODE/$fname

3. Modify the interface routines according to your needs.

4. Start a PALM run by executing

mrun -d example cbl ...

The files user *.f90 will be automatically compiled within the job / interactive run and will replace the respective
PALM default user-interface files.

I The modified user-interface file cannot be pre-compiled by using mbuild!

I The above method allows to use different user-interfaces for different runs. Just store the respective interface-files in
subdirectories USER CODE/abcd, USER CODE/cdef, etc. and start mrun with option “-d abcd“, “-d cdef“, etc.

PALM group PALM Seminar 18 / 18

The PALM User-Interface

The PALM User-Interface

Using the User-Interface with mrun
Users can add their own (modified) user-interface to a PALM-run by carrying out the following steps:

1. Copy the default (empty) user-interface files that you need (e.g. user module.f90, user parin.f90, user actions.f90) to a
directory of your choice, e.g.:

cd ~/palm/current version

mkdir -p USER CODE/example cbl

cp trunk/SOURCE/user module.f90 USER CODE/example cbl/user module.f90

cp trunk/SOURCE/user parin.f90 USER CODE/example cbl/user parin.f90

...

2. Set an additional path in the configuration file .mrun.config to allow mrun to find and include this file:

%add source path $base directory/USER CODE/$fname

3. Modify the interface routines according to your needs.

4. Start a PALM run by executing

mrun -d example cbl ...

The files user *.f90 will be automatically compiled within the job / interactive run and will replace the respective
PALM default user-interface files.

I The modified user-interface file cannot be pre-compiled by using mbuild!

I The above method allows to use different user-interfaces for different runs. Just store the respective interface-files in
subdirectories USER CODE/abcd, USER CODE/cdef, etc. and start mrun with option “-d abcd“, “-d cdef“, etc.

PALM group PALM Seminar 18 / 18

The PALM User-Interface

The PALM User-Interface

Using the User-Interface with mrun
Users can add their own (modified) user-interface to a PALM-run by carrying out the following steps:

1. Copy the default (empty) user-interface files that you need (e.g. user module.f90, user parin.f90, user actions.f90) to a
directory of your choice, e.g.:

cd ~/palm/current version

mkdir -p USER CODE/example cbl

cp trunk/SOURCE/user module.f90 USER CODE/example cbl/user module.f90

cp trunk/SOURCE/user parin.f90 USER CODE/example cbl/user parin.f90

...

2. Set an additional path in the configuration file .mrun.config to allow mrun to find and include this file:

%add source path $base directory/USER CODE/$fname

3. Modify the interface routines according to your needs.

4. Start a PALM run by executing

mrun -d example cbl ...

The files user *.f90 will be automatically compiled within the job / interactive run and will replace the respective
PALM default user-interface files.

I The modified user-interface file cannot be pre-compiled by using mbuild!

I The above method allows to use different user-interfaces for different runs. Just store the respective interface-files in
subdirectories USER CODE/abcd, USER CODE/cdef, etc. and start mrun with option “-d abcd“, “-d cdef“, etc.

PALM group PALM Seminar 18 / 18

The PALM User-Interface

The PALM User-Interface

Using the User-Interface with mrun
Users can add their own (modified) user-interface to a PALM-run by carrying out the following steps:

1. Copy the default (empty) user-interface files that you need (e.g. user module.f90, user parin.f90, user actions.f90) to a
directory of your choice, e.g.:

cd ~/palm/current version

mkdir -p USER CODE/example cbl

cp trunk/SOURCE/user module.f90 USER CODE/example cbl/user module.f90

cp trunk/SOURCE/user parin.f90 USER CODE/example cbl/user parin.f90

...

2. Set an additional path in the configuration file .mrun.config to allow mrun to find and include this file:

%add source path $base directory/USER CODE/$fname

3. Modify the interface routines according to your needs.

4. Start a PALM run by executing

mrun -d example cbl ...

The files user *.f90 will be automatically compiled within the job / interactive run and will replace the respective
PALM default user-interface files.

I The modified user-interface file cannot be pre-compiled by using mbuild!

I The above method allows to use different user-interfaces for different runs. Just store the respective interface-files in
subdirectories USER CODE/abcd, USER CODE/cdef, etc. and start mrun with option “-d abcd“, “-d cdef“, etc.

PALM group PALM Seminar 18 / 18

The PALM User-Interface

The PALM User-Interface

Using the User-Interface with mrun
Users can add their own (modified) user-interface to a PALM-run by carrying out the following steps:

1. Copy the default (empty) user-interface files that you need (e.g. user module.f90, user parin.f90, user actions.f90) to a
directory of your choice, e.g.:

cd ~/palm/current version

mkdir -p USER CODE/example cbl

cp trunk/SOURCE/user module.f90 USER CODE/example cbl/user module.f90

cp trunk/SOURCE/user parin.f90 USER CODE/example cbl/user parin.f90

...

2. Set an additional path in the configuration file .mrun.config to allow mrun to find and include this file:

%add source path $base directory/USER CODE/$fname

3. Modify the interface routines according to your needs.

4. Start a PALM run by executing

mrun -d example cbl ...

The files user *.f90 will be automatically compiled within the job / interactive run and will replace the respective
PALM default user-interface files.

I The modified user-interface file cannot be pre-compiled by using mbuild!

I The above method allows to use different user-interfaces for different runs. Just store the respective interface-files in
subdirectories USER CODE/abcd, USER CODE/cdef, etc. and start mrun with option “-d abcd“, “-d cdef“, etc.

PALM group PALM Seminar 18 / 18

The PALM User-Interface

The PALM User-Interface

Using the User-Interface with mrun
Users can add their own (modified) user-interface to a PALM-run by carrying out the following steps:

1. Copy the default (empty) user-interface files that you need (e.g. user module.f90, user parin.f90, user actions.f90) to a
directory of your choice, e.g.:

cd ~/palm/current version

mkdir -p USER CODE/example cbl

cp trunk/SOURCE/user module.f90 USER CODE/example cbl/user module.f90

cp trunk/SOURCE/user parin.f90 USER CODE/example cbl/user parin.f90

...

2. Set an additional path in the configuration file .mrun.config to allow mrun to find and include this file:

%add source path $base directory/USER CODE/$fname

3. Modify the interface routines according to your needs.

4. Start a PALM run by executing

mrun -d example cbl ...

The files user *.f90 will be automatically compiled within the job / interactive run and will replace the respective
PALM default user-interface files.

I The modified user-interface file cannot be pre-compiled by using mbuild!

I The above method allows to use different user-interfaces for different runs. Just store the respective interface-files in
subdirectories USER CODE/abcd, USER CODE/cdef, etc. and start mrun with option “-d abcd“, “-d cdef“, etc.

PALM group PALM Seminar 18 / 18

	The PALM User-Interface
	The PALM User-Interface

