SGS Models	Smagorinsky Model 00	Deardoff Modification	Summary / Important Points for Beginners 00	Example Output

SGS Models

PALM group

Institute of Meteorology and Climatology, Leibniz Universität Hannover

last update: 21st September 2015

SGS Models	Smagorinsky Model	Deardoff Modification	Summary / Important Points for Beginners	Example Output
●00	00		00	000
SGS Models				

The SGS model has to parameterize the effect of the SGS motions (small-scale turbulence) on the large eddies (resolved-scale turbulence).

SGS Models	Smagorinsky Model	Deardoff Modification	Summary / Important Points for Beginners	Example Output
●00	00		00	000
SGS Models				

- The SGS model has to parameterize the effect of the SGS motions (small-scale turbulence) on the large eddies (resolved-scale turbulence).
- Features of small-scale turbulence: local, isotropic, dissipative (inertial subrange)

SGS Models	Smagorinsky Model	Deardoff Modification	Summary / Important Points for Beginners	Example Output
●00	00		00	000
SGS Models				

- The SGS model has to parameterize the effect of the SGS motions (small-scale turbulence) on the large eddies (resolved-scale turbulence).
- Features of small-scale turbulence: local, isotropic, dissipative (inertial subrange)
- SGS stresses should depend on:
 - local resolved-scale field and / or
 - past history of the local fluid (via a PDE)

SGS Models	Smagorinsky Model	Deardoff Modification	Summary / Important Points for Beginners	Example Output
●00	00		00	000
SGS Models				

- The SGS model has to parameterize the effect of the SGS motions (small-scale turbulence) on the large eddies (resolved-scale turbulence).
- Features of small-scale turbulence: local, isotropic, dissipative (inertial subrange)
- SGS stresses should depend on:
 - local resolved-scale field and / or
 - past history of the local fluid (via a PDE)
- Importance of the model depends on how much energy is contained in the subgrid-scales:
 - ► E_{SGS}/E < 50%: results relatively insensitive to the model, (but sensitive to the numerics, e.g. in case of upwind scheme)
 - $E_{SGS}/E = 1$: model more important

SGS Models	Smagorinsky Model	Deardoff Modification	Summary / Important Points for Beginners	Example Output
●○○	00		00	000
SGS Models				

- The SGS model has to parameterize the effect of the SGS motions (small-scale turbulence) on the large eddies (resolved-scale turbulence).
- Features of small-scale turbulence: local, isotropic, dissipative (inertial subrange)
- SGS stresses should depend on:
 - local resolved-scale field and / or
 - past history of the local fluid (via a PDE)
- Importance of the model depends on how much energy is contained in the subgrid-scales:
 - ► E_{SGS}/E < 50%: results relatively insensitive to the model, (but sensitive to the numerics, e.g. in case of upwind scheme)
 - $E_{SGS}/E = 1$: model more important
 - If the large-scale eddies are not resolved, the SGS model and the LES will fail at all!

SGS Models ○●○	Smagorinsky Model 00	Deardoff Modification	Summary / Important Points for Beginners 00	Example Output
SGS Models				

Requirements that a good SGS model must fulfill:

Represent interactions with small scales.

SGS Models ○●○	Smagorinsky Model 00	Deardoff Modification	Summary / Important Points for Beginners 00	Example Output
SGS Models				

Requirements that a good SGS model must fulfill:

- Represent interactions with small scales.
- Provide adequate dissipation

(transport of energy from the resolved grid scales to the unresolved grid scales; the rate of dissipation ε in this context is the flux of energy through the inertial subrange).

SGS Models ○●○	Smagorinsky Model 00	Deardoff Modification	Summary / Important Points for Beginners 00	Example Output
SGS Models				

- Represent interactions with small scales.
- Provide adequate dissipation (transport of energy from the resolved grid scales to the unresolved grid scales; the rate of dissipation ε in this context is the flux of energy through the inertial subrange).
- Dissipation rate must depend on the large scales of the flow rather than being imposed arbitrarily by the model. The SGS model must depend on the large-scale statistics and must be sufficiently flexible to adjust to changes in these statistics.

SGS Models ○●○	Smagorinsky Model 00	Deardoff Modification	Summary / Important Points for Beginners 00	Example Output
SGS Models				

- Represent interactions with small scales.
- Provide adequate dissipation (transport of energy from the resolved grid scales to the unresolved grid scales; the rate of dissipation ε in this context is the flux of energy through the inertial subrange).
- Dissipation rate must depend on the large scales of the flow rather than being imposed arbitrarily by the model. The SGS model must depend on the large-scale statistics and must be sufficiently flexible to adjust to changes in these statistics.
- In energy conserving codes (ideal for LES) the only way for TKE to leave the resolved modes is by the dissipation provided by the SGS model.

SGS Models ○●○	Smagorinsky Model 00	Deardoff Modification	Summary / Important Points for Beginners 00	Example Output
SGS Models				

- Represent interactions with small scales.
- Provide adequate dissipation (transport of energy from the resolved grid scales to the unresolved grid scales; the rate of dissipation ε in this context is the flux of energy through the inertial subrange).
- Dissipation rate must depend on the large scales of the flow rather than being imposed arbitrarily by the model. The SGS model must depend on the large-scale statistics and must be sufficiently flexible to adjust to changes in these statistics.
- In energy conserving codes (ideal for LES) the only way for TKE to leave the resolved modes is by the dissipation provided by the SGS model.
- The primary goal of an SGS model is to obtain correct statistics of the energy containing scales of motion.

SGS Models	Smagorinsky Model	Deardoff Modification	Summary / Important Points for Beginners	Example Output
00●	00		00	000
SGS Models				

All the above observations suggest the use of an eddy viscosity type SGS model:

SGS Models 00●	Smagorinsky Model 00	Deardoff Modification	Summary / Important Points for Beginners 00	Example Output
SGS Models				

All the above observations suggest the use of an eddy viscosity type SGS model:

• Take idea from RANS modeling, introduce eddy viscosity ν_T :

$$\tau_{ki} = -\nu_T \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right) = -2\nu_T \overline{S}_{ki} \qquad \text{with} \quad \overline{S}_{ki} = \frac{1}{2} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right)$$

filtered strain rate tensor

SGS Models 00●	Smagorinsky Model 00	Deardoff Modification	Summary / Important Points for Beginners 00	Example Output
SGS Models				

All the above observations suggest the use of an eddy viscosity type SGS model:

• Take idea from RANS modeling, introduce eddy viscosity ν_T :

$$\tau_{ki} = -\nu_T \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right) = -2\nu_T \overline{S}_{ki} \qquad \text{with} \quad \overline{S}_{ki} = \frac{1}{2} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right)$$

filtered strain rate tensor

Now we need a model for the eddy viscosity:

SGS Models 00●	Smagorinsky Model 00	Deardoff Modification	Summary / Important Points for Beginners 00	Example Output
SGS Models				

All the above observations suggest the use of an eddy viscosity type SGS model:

• Take idea from RANS modeling, introduce eddy viscosity ν_T :

$$\tau_{ki} = -\nu_T \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right) = -2\nu_T \overline{S}_{ki} \qquad \text{with} \quad \overline{S}_{ki} = \frac{1}{2} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right)$$

filtered strain rate tensor

Now we need a model for the eddy viscosity:

• Dimensionality of ν_T is l^2/t

SGS Models 00●	Smagorinsky Model 00	Deardoff Modification	Summary / Important Points for Beginners 00	Example Output
SGS Models				

All the above observations suggest the use of an eddy viscosity type SGS model:

• Take idea from RANS modeling, introduce eddy viscosity ν_T :

$$\tau_{ki} = -\nu_T \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right) = -2\nu_T \overline{S}_{ki} \qquad \text{with} \quad \overline{S}_{ki} = \frac{1}{2} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right)$$

filtered strain rate tensor

Now we need a model for the eddy viscosity:

- Dimensionality of ν_T is l^2/t
- Obvious choice: $\nu_T = Cql$ (q, l: characteristic velocity / length scale)

SGS Models 00●	Smagorinsky Model 00	Deardoff Modification	Summary / Important Points for Beginners 00	Example Output
SGS Models				

All the above observations suggest the use of an eddy viscosity type SGS model:

• Take idea from RANS modeling, introduce eddy viscosity ν_T :

$$\tau_{ki} = -\nu_T \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right) = -2\nu_T \overline{S}_{ki} \qquad \text{with} \quad \overline{S}_{ki} = \frac{1}{2} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right)$$

filtered strain rate tensor

Now we need a model for the eddy viscosity:

- Dimensionality of ν_T is l^2/t
- Obvious choice: $\nu_T = Cql$ (q, l: characteristic velocity / length scale)
- ► Turbulence length scale is easy to define: largest size of the unresolved scales is Δ $l = \Delta$

SGS Models 00●	Smagorinsky Model 00	Deardoff Modification	Summary / Important Points for Beginners 00	Example Output
SGS Models				

All the above observations suggest the use of an eddy viscosity type SGS model:

Take idea from RANS modeling, introduce eddy viscosity ν_T:

$$\tau_{ki} = -\nu_T \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right) = -2\nu_T \overline{S}_{ki} \qquad \text{with} \quad \overline{S}_{ki} = \frac{1}{2} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right)$$

filtered strain rate tensor

Now we need a model for the eddy viscosity:

- Dimensionality of ν_T is l^2/t
- Obvious choice: $\nu_T = Cql$ (q, l: characteristic velocity / length scale)
- ► Turbulence length scale is easy to define: largest size of the unresolved scales is Δ $l = \Delta$
- Velocity scale not obvious (smallest resolved scales, their size is of the order of the variation of velocity over one grid element)

$$q = I \frac{\partial \overline{u}}{\partial x} = I \overline{S}$$
 for 3D: $\overline{S} = \sqrt{2 \overline{S}_{ki} \overline{S}_{ki}}$

characteristic filtered rate of strain

SGS Models	Smagorinsky Model ●0	Deardoff Modification	Summary / Important Points for Beginners 00	Example Output 000
The Smagorins	ky Model			

Combine previous expressions to obtain:

$$\nu_{T} = C\Delta^{2}\overline{S} = (C_{S}\Delta)^{2}\overline{S}$$

Combine previous expressions to obtain:

$$\nu_T = C\Delta^2 \overline{S} = (C_S \Delta)^2 \overline{S}$$

Model due to Smagorinsky (1963):

Originally designed at NCAR for global weather modeling.

Combine previous expressions to obtain:

$$\nu_T = C\Delta^2 \overline{S} = (C_S \Delta)^2 \overline{S}$$

Model due to Smagorinsky (1963):

- Originally designed at NCAR for global weather modeling.
- Can be derived in several ways: heuristically (above), from inertial range arguments (Lilly), from turbulence theory.

Combine previous expressions to obtain:

$$\nu_{T} = C\Delta^{2}\overline{S} = (C_{S}\Delta)^{2}\overline{S}$$

Model due to Smagorinsky (1963):

- Originally designed at NCAR for global weather modeling.
- Can be derived in several ways: heuristically (above), from inertial range arguments (Lilly), from turbulence theory.
- ► Constant predicted by all methods (based on theory, decay of isotropic turbulence): $C_S = \sqrt{C} \approx 0.2$

SGS Models	Smagorinsky Model 0●	Deardoff Modification	Summary / Important Points for Beginners 00	Example Output
The Smagorins	ky Model			

Predicts many flows reasonably well

- Predicts many flows reasonably well
- Problems:
 - Optimum parameter value varies with flow type:
 - Isotropic turbulence: $C_S \approx 0.2$
 - Shear (channel) flows: $C_S \approx 0.065$

- Predicts many flows reasonably well
- Problems:
 - Optimum parameter value varies with flow type:
 - Isotropic turbulence: $C_S \approx 0.2$
 - Shear (channel) flows: $C_S \approx 0.065$
 - Length scale uncertain with anisotropic filter:

$$(\Delta_x \Delta_y \Delta_z)^{1/3}$$
 $(\Delta_x + \Delta_y + \Delta_z)/3$

- Predicts many flows reasonably well
- Problems:
 - Optimum parameter value varies with flow type:
 - Isotropic turbulence: $C_S \approx 0.2$
 - Shear (channel) flows: $C_S \approx 0.065$
 - Length scale uncertain with anisotropic filter:

$$(\Delta_x \Delta_y \Delta_z)^{1/3}$$
 $(\Delta_x + \Delta_y + \Delta_z)/3$

- Needs modification to account for:
 - stratification: $C_S = F(Ri, ...)$, Ri: Richardson number
 - near-wall region: $C_S = F(z+)$, z+: distance from wall

SGS Models	Smagorinsky Model	Deardoff Modification	Summary / Important Points for Beginners	Example Output
000	00	●00	00	000
Deardoff Modif	ication			

$$u_T = Cql = C_M \Lambda \sqrt{\bar{e}} \quad \text{with} \quad \bar{e} = \frac{\overline{u'_i u'_i}}{2} \quad \text{SGS-turbulent kinetic energy}$$

- $\nu_T = Cql = C_M \Lambda \sqrt{\bar{e}}$ with $\bar{e} = \frac{\overline{u'_i u'_i}}{2}$ SGS-turbulent kinetic energy
 - The SGS-TKE allows a much better estimation of the velocity scale for the SGS fluctuations and also contains information about the past history of the local fluid.

$$\nu_T = Cql = C_M \Lambda \sqrt{\bar{e}}$$
 with $\bar{e} = \frac{\overline{u'_i u'_i}}{2}$ SGS-turbulent kinetic energy

The SGS-TKE allows a much better estimation of the velocity scale for the SGS fluctuations and also contains information about the past history of the local fluid.

$$\begin{split} C_{M} &= const. = 0.1 \\ \Lambda &= \begin{cases} \min\left(0.7 \cdot z, \Delta\right), \\ \min\left(0.7 \cdot z, \Delta, 0.76\sqrt{\bar{e}} \left[\frac{g}{\Theta_{0}} \frac{\partial \bar{\Theta}}{\partial z}\right]^{-1/2} \right) \end{cases} \end{split}$$

 $\Delta = \left(\Delta x \Delta y \Delta z\right)^{1/3}$

unstable or neutral stratification stable stratification

Leibniz Universit Hannover

SGS Models	Smagorinsky Model 00	Deardoff Modification ○●○	Summary / Important Points for Beginners	Example Output
Deardoff Modifi	cation			

SGS-TKE from prognostic equation

$$\frac{\partial \bar{e}}{\partial t} = -\bar{u_k} \frac{\partial \bar{e}}{\partial x_k} - \tau_{ki} \frac{\partial \bar{u_i}}{\partial x_k} + \frac{g}{\Theta_0} \overline{u'_3 \Theta'} - \frac{\partial}{\partial x_k} \left\{ \overline{u'_k \left(e' + \frac{\pi'}{\rho_0} \right)} \right\} - \epsilon$$

$$\tau_{ki} = -K_m \left(\frac{\partial \bar{u}_i}{\partial x_k} + \frac{\partial \bar{u}_k}{\partial x_i} \right) + \frac{2}{3} \delta_{ik} \bar{e} \qquad \text{with} \qquad K_m = 0.1 \cdot \Lambda \sqrt{\bar{e}}$$

$$H_k = \overline{u'_k \Theta'} = -K_h \frac{\partial \Theta}{\partial x_k}$$
 with $K_h = (1 + 2\frac{\Lambda}{\Delta})$

$$W_k = \overline{u'_k q'} = -K_h \frac{\partial \bar{q}}{\partial x_k}$$

$$\frac{\partial}{\partial x_k} \left[\overline{u'_k \left(e' + \frac{\pi'}{\rho_0} \right)} \right] = -\frac{\partial}{\partial x_k} \nu_e \frac{\partial \bar{e}}{\partial x_k}$$

$$\nu_e = 2\nu_T$$

 $\epsilon = C_{\epsilon} \frac{\bar{e}^{3/2}}{\Lambda}$

PALM group

$$\mathcal{C}_{\epsilon}=0.19+0.74rac{\Lambda}{\Delta}$$

There are still problems with this parameterization:

SGS Models	Smagorinsky Model 00	Deardoff Modification	Summary / Important Points for Beginners 00	Example Output 000
Deardoff Modification				

- There are still problems with this parameterization:
 - The model overestimates the velocity shear near the wall.

SGS Models	Smagorinsky Model	Deardoff Modification	Summary / Important Points for Beginners	Example Output
000	00		00	000
Deardoff Modifi	ication			

- There are still problems with this parameterization:
 - The model overestimates the velocity shear near the wall.
 - C_M is still a constant but actually varies for different types of flows.

SGS Models 000	Smagorinsky Model 00	Deardoff Modification	Summary / Important Points for Beginners	Example Output 000			
Deardoff Modification							

- There are still problems with this parameterization:
 - The model overestimates the velocity shear near the wall.
 - C_M is still a constant but actually varies for different types of flows.
 - Backscatter of energy from the SGS-turbulence to the resolved-scale flow can not be considered.

- There are still problems with this parameterization:
 - The model overestimates the velocity shear near the wall.
 - C_M is still a constant but actually varies for different types of flows.
 - Backscatter of energy from the SGS-turbulence to the resolved-scale flow can not be considered.
- Several other SGS models have been developed:
 - Two part eddy viscosity model (Sullivan, et al.)

- There are still problems with this parameterization:
 - The model overestimates the velocity shear near the wall.
 - C_M is still a constant but actually varies for different types of flows.
 - Backscatter of energy from the SGS-turbulence to the resolved-scale flow can not be considered.
- Several other SGS models have been developed:
 - Two part eddy viscosity model (Sullivan, et al.)
 - Scale similarity model (Bardina et al.)

- There are still problems with this parameterization:
 - The model overestimates the velocity shear near the wall.
 - C_M is still a constant but actually varies for different types of flows.
 - Backscatter of energy from the SGS-turbulence to the resolved-scale flow can not be considered.
- Several other SGS models have been developed:
 - Two part eddy viscosity model (Sullivan, et al.)
 - Scale similarity model (Bardina et al.)
 - Backscatter model (Mason)

- There are still problems with this parameterization:
 - The model overestimates the velocity shear near the wall.
 - C_M is still a constant but actually varies for different types of flows.
 - Backscatter of energy from the SGS-turbulence to the resolved-scale flow can not be considered.
- Several other SGS models have been developed:
 - Two part eddy viscosity model (Sullivan, et al.)
 - Scale similarity model (Bardina et al.)
 - Backscatter model (Mason)
- However, for fine grid resolutions ($E_{SGS} << E$) LES results become almost independent from the different models (Beare et al., 2006, BLM).

6 Models Smagorinsky Model Deardoff Modification Summary / Important Points for Beginners Example 000 000 000

Summary / Important Points for Beginners

Summary / Important Points for Beginners (I)

LES: volume average

Leibniz

100

Summary / Important Points for Beginners (I)

LES: volume average

Summary / Important Points for Beginners (I)

Summary / Important Points for Beginners (I)

PALM Seminar

Summary / Important Points for Beginners (I)

Summary / Important Points for Beginners (I)

Summary / Important Points for Beginners (I)

PALM Seminar

Deardoff Modification Summary / Important Points for Beginners •0 Summary / Important Points for Beginners

Summary / Important Points for Beginners (I)

Summary / Important Points for Beginners (I)

_ _ critical concentration level

smooth result

PALM group

Summary / Important Points for Beginners (I)

_ _ _ critical concentration level

smooth result

after Schatzmann and Leitl (2001)

PALM group

PALM Seminar

Summary / Important Points for Beginners (II)

For an LES it always has to be guaranteed that the main energy containing eddies of the respective turbulent flow can really be simulated by the numerical model:

Summary / Important Points for Beginners (II)

For an LES it always has to be guaranteed that the main energy containing eddies of the respective turbulent flow can really be simulated by the numerical model:

The grid spacing has to be fine enough.

Summary / Important Points for Beginners (II)

For an LES it always has to be guaranteed that the main energy containing eddies of the respective turbulent flow can really be simulated by the numerical model:

- The grid spacing has to be fine enough.
- ► E_{SGS} < (<<) E

Summary / Important Points for Beginners (II)

For an LES it always has to be guaranteed that the main energy containing eddies of the respective turbulent flow can really be simulated by the numerical model:

- The grid spacing has to be fine enough.
- ► E_{SGS} < (<<) E
- The inflow/outflow boundaries must not effect the flow turbulence

(therefore cyclic boundary conditions are used in most cases).

Summary / Important Points for Beginners (II)

For an LES it always has to be guaranteed that the main energy containing eddies of the respective turbulent flow can really be simulated by the numerical model:

- The grid spacing has to be fine enough.
- ► E_{SGS} < (<<) E
- The inflow/outflow boundaries must not effect the flow turbulence

(therefore cyclic boundary conditions are used in most cases).

In case of homogeneous initial and boundary conditions, the onset of turbulence has to be triggered by imposing random fluctuations.

Summary / Important Points for Beginners (II)

For an LES it always has to be guaranteed that the main energy containing eddies of the respective turbulent flow can really be simulated by the numerical model:

- The grid spacing has to be fine enough.
- ► E_{SGS} < (<<) E
- The inflow/outflow boundaries must not effect the flow turbulence

(therefore cyclic boundary conditions are used in most cases).

- In case of homogeneous initial and boundary conditions, the onset of turbulence has to be triggered by imposing random fluctuations.
- Simulations have to be run for a long time to reach a stationary state and stable statistics.

LES of a convective boundary layer

PALM group

PALM Seminar

Leibniz Universität

Hannover

SGS Models 000	Smagorinsky Model 00	Deardoff Modification	Summary / Important Points for Beginners 00	Example Output		
Example Output						

Some Symbols

		$\Phi = gz$	geopotential
$u_i (I = 1, 2, 3)$ u, v, w	velocity components	p	pressure
x_i (<i>i</i> = 1, 2, 3)	spatial coordinates	ρ	density
Α, y, 2	notantial tomporature	f _i	Coriolis Parameter
Ψ	passive scalar	ϵ_{ijk}	alternating symbol
T	actual Temperatur	$ u, u_{\Psi}$	molecular diffusivity
		Q, Q_{Ψ}	sources or sinks

102 Universität 1004 Hannover