

SGS Models

PALM group

Institute of Meteorology and Climatology, Leibniz Universität Hannover

last update: 21st September 2015

 \triangleright The SGS model has to parameterize the effect of the SGS motions (small-scale turbulence) on the large eddies (resolved-scale turbulence).

- \triangleright The SGS model has to parameterize the effect of the SGS motions (small-scale turbulence) on the large eddies (resolved-scale turbulence).
- \blacktriangleright Features of small-scale turbulence: local, isotropic, dissipative (inertial subrange)

- \triangleright The SGS model has to parameterize the effect of the SGS motions (small-scale turbulence) on the large eddies (resolved-scale turbulence).
- \blacktriangleright Features of small-scale turbulence: local, isotropic, dissipative (inertial subrange)
- ▶ SGS stresses should depend on:
	- \triangleright local resolved-scale field and / or
	- \triangleright past history of the local fluid (via a PDE)

- \triangleright The SGS model has to parameterize the effect of the SGS motions (small-scale turbulence) on the large eddies (resolved-scale turbulence).
- \blacktriangleright Features of small-scale turbulence: local, isotropic, dissipative (inertial subrange)
- ▶ SGS stresses should depend on:
	- \triangleright local resolved-scale field and / or
	- \triangleright past history of the local fluid (via a PDE)
- \triangleright Importance of the model depends on how much energy is contained in the subgrid-scales:
	- $E_{SGS}/E < 50\%$: results relatively insensitive to the model, (but sensitive to the numerics, e.g. in case of upwind scheme)
	- $E_{SGS}/E = 1$: model more important

- \triangleright The SGS model has to parameterize the effect of the SGS motions (small-scale turbulence) on the large eddies (resolved-scale turbulence).
- \blacktriangleright Features of small-scale turbulence: local, isotropic, dissipative (inertial subrange)
- SGS stresses should depend on:
	- \triangleright local resolved-scale field and / or
	- \triangleright past history of the local fluid (via a PDE)
- \triangleright Importance of the model depends on how much energy is contained in the subgrid-scales:
	- $E_{SGS}/E < 50\%$: results relatively insensitive to the model, (but sensitive to the numerics, e.g. in case of upwind scheme)
	- $E_{SGS}/E = 1$: model more important
	- If the large-scale eddies are not resolved, the SGS model and the LES will fail at all!

Requirements that a good SGS model must fulfill:

 \blacktriangleright Represent interactions with small scales.

Requirements that a good SGS model must fulfill:

- \blacktriangleright Represent interactions with small scales.
- \blacktriangleright Provide adequate dissipation

(transport of energy from the resolved grid scales to the unresolved grid scales; the rate of dissipation ε in this context is the flux of energy through the inertial subrange).

- \blacktriangleright Represent interactions with small scales.
- \blacktriangleright Provide adequate dissipation (transport of energy from the resolved grid scales to the unresolved grid scales; the rate of dissipation ε in this context is the flux of energy through the inertial subrange).
- \triangleright Dissipation rate must depend on the large scales of the flow rather than being imposed arbitrarily by the model. The SGS model must depend on the large-scale statistics and must be sufficiently flexible to adjust to changes in these statistics.

- \blacktriangleright Represent interactions with small scales.
- \blacktriangleright Provide adequate dissipation (transport of energy from the resolved grid scales to the unresolved grid scales; the rate of dissipation ε in this context is the flux of energy through the inertial subrange).
- \triangleright Dissipation rate must depend on the large scales of the flow rather than being imposed arbitrarily by the model. The SGS model must depend on the large-scale statistics and must be sufficiently flexible to adjust to changes in these statistics.
- In energy conserving codes (ideal for LES) the only way for TKE to leave the resolved modes is by the dissipation provided by the SGS model.

- \blacktriangleright Represent interactions with small scales.
- \blacktriangleright Provide adequate dissipation (transport of energy from the resolved grid scales to the unresolved grid scales; the rate of dissipation ε in this context is the flux of energy through the inertial subrange).
- \triangleright Dissipation rate must depend on the large scales of the flow rather than being imposed arbitrarily by the model. The SGS model must depend on the large-scale statistics and must be sufficiently flexible to adjust to changes in these statistics.
- In energy conserving codes (ideal for LES) the only way for TKE to leave the resolved modes is by the dissipation provided by the SGS model.
- \triangleright The primary goal of an SGS model is to obtain correct statistics of the energy containing scales of motion.

All the above observations suggest the use of an eddy viscosity type SGS model:

All the above observations suggest the use of an eddy viscosity type SGS model:

I Take idea from RANS modeling, introduce eddy viscosity ν ⁻

$$
\tau_{ki} = -\nu_{\mathcal{T}} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right) = -2\nu_{\mathcal{T}} \overline{S}_{ki} \quad \text{with} \quad \overline{S}_{ki} = \frac{1}{2} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right)
$$

filtered strain rate tensor

All the above observations suggest the use of an eddy viscosity type SGS model:

Take idea from RANS modeling, introduce eddy viscosity ν **_T:**

$$
\tau_{ki} = -\nu_{\mathcal{T}} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right) = -2\nu_{\mathcal{T}} \overline{S}_{ki} \qquad \text{with} \quad \overline{S}_{ki} = \frac{1}{2} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right)
$$

filtered strain rate tensor

Now we need a model for the eddy viscosity:

All the above observations suggest the use of an eddy viscosity type SGS model:

I Take idea from RANS modeling, introduce eddy viscosity ν ⁻

$$
\tau_{ki} = -\nu_{\mathcal{T}} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right) = -2\nu_{\mathcal{T}} \overline{S}_{ki} \quad \text{with} \quad \overline{S}_{ki} = \frac{1}{2} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right)
$$

filtered strain rate tensor

Now we need a model for the eddy viscosity:

Dimensionality of ν_{τ} is l^2/t

All the above observations suggest the use of an eddy viscosity type SGS model:

I Take idea from RANS modeling, introduce eddy viscosity ν ⁻

$$
\tau_{ki} = -\nu_{\mathcal{T}} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right) = -2\nu_{\mathcal{T}} \overline{S}_{ki} \quad \text{with} \quad \overline{S}_{ki} = \frac{1}{2} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right)
$$

filtered strain rate tensor

Now we need a model for the eddy viscosity:

- Dimensionality of ν_{τ} is l^2/t
- **D** Obvious choice: $\nu = \frac{Cq}{q}$ (q, l: characteristic velocity / length scale)

All the above observations suggest the use of an eddy viscosity type SGS model:

I Take idea from RANS modeling, introduce eddy viscosity ν ⁻

$$
\tau_{ki} = -\nu_{\mathcal{T}} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right) = -2\nu_{\mathcal{T}} \overline{S}_{ki} \quad \text{with} \quad \overline{S}_{ki} = \frac{1}{2} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right)
$$

filtered strain rate tensor

Now we need a model for the eddy viscosity:

- Dimensionality of ν_{τ} is l^2/t
- **D** Obvious choice: $\nu = \frac{Cq}{q}$ (q, l: characteristic velocity / length scale)
- \triangleright Turbulence length scale is easy to define: largest size of the unresolved scales is Δ $l = \Delta$

All the above observations suggest the use of an eddy viscosity type SGS model:

IF Take idea from RANS modeling, introduce eddy viscosity ν ⁻

$$
\tau_{ki} = -\nu_{\mathcal{T}} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right) = -2\nu_{\mathcal{T}} \overline{S}_{ki} \quad \text{with} \quad \overline{S}_{ki} = \frac{1}{2} \left(\frac{\partial \overline{u_k}}{\partial x_i} + \frac{\partial \overline{u_i}}{\partial x_k} \right)
$$

filtered strain rate tensor

Now we need a model for the eddy viscosity:

- Dimensionality of ν_{τ} is l^2/t
- **D** Obvious choice: $\nu = \frac{Cq}{q}$ (q, l: characteristic velocity / length scale)
- \triangleright Turbulence length scale is easy to define: largest size of the unresolved scales is Δ $l = \Delta$
- \triangleright Velocity scale not obvious (smallest resolved scales, their size is of the order of the variation of velocity over one grid element)

$$
q = l \frac{\partial \overline{u}}{\partial x} = l \overline{S}
$$
 for 3D: $\overline{S} = \sqrt{2 \overline{S}_{ki} \overline{S}_{ki}}$

characteristic filtered rate of strain

Combine previous expressions to obtain:

$$
\nu_{\mathcal{T}}=C\Delta^2\overline{S}=(\mathcal{C}_S\Delta)^2\overline{S}
$$

Combine previous expressions to obtain:

$$
\nu_T = C\Delta^2 \overline{S} = (C_S\Delta)^2 \overline{S}
$$

Model due to Smagorinsky (1963):

 \triangleright Originally designed at NCAR for global weather modeling.

Combine previous expressions to obtain:

$$
\nu_T = C\Delta^2 \overline{S} = (C_S\Delta)^2 \overline{S}
$$

Model due to Smagorinsky (1963):

- \triangleright Originally designed at NCAR for global weather modeling.
- \triangleright Can be derived in several ways: heuristically (above), from inertial range arguments (Lilly), from turbulence theory.

Combine previous expressions to obtain:

$$
\nu_T = C\Delta^2 \overline{S} = (C_S\Delta)^2 \overline{S}
$$

Model due to Smagorinsky (1963):

- \triangleright Originally designed at NCAR for global weather modeling.
- \triangleright Can be derived in several ways: heuristically (above), from inertial range arguments (Lilly), from turbulence theory.
- ► Constant predicted by all methods (based on theory, decay of isotropic turbulence): $C_S = \sqrt{C} \approx 0.2$

 \blacktriangleright Predicts many flows reasonably well

- \blacktriangleright Predicts many flows reasonably well
- \blacktriangleright Problems:
	- \triangleright Optimum parameter value varies with flow type:
		- ► Isotropic turbulence: $C_S \approx 0.2$
		- **►** Shear (channel) flows: $C_S \approx 0.065$

- \blacktriangleright Predicts many flows reasonably well
- \blacktriangleright Problems:
	- \triangleright Optimum parameter value varies with flow type:
		- ► Isotropic turbulence: $C_S \approx 0.2$
		- **►** Shear (channel) flows: $C_S \approx 0.065$
	- \blacktriangleright Length scale uncertain with anisotropic filter:

$$
(\Delta_x \Delta_y \Delta_z)^{1/3} \quad (\Delta_x + \Delta_y + \Delta_z)/3
$$

- \triangleright Predicts many flows reasonably well
- \blacktriangleright Problems:
	- \triangleright Optimum parameter value varies with flow type:
		- ► Isotropic turbulence: $C_S \approx 0.2$
		- **►** Shear (channel) flows: $C_S \approx 0.065$
	- \blacktriangleright Length scale uncertain with anisotropic filter:

$$
(\Delta_x \Delta_y \Delta_z)^{1/3} \quad (\Delta_x + \Delta_y + \Delta_z)/3
$$

- Needs modification to account for:
	- In stratification: $C_s = F(Ri, ...)$, Ri: Richardson number
	- **P** near-wall region: $C_s = F(z+)$, z +: distance from wall

$$
\nu_{\mathcal{T}} = Cql = C_M \Lambda \sqrt{\bar{e}} \quad \text{ with } \quad \bar{e} = \frac{\overline{u'_i u'_i}}{2} \quad \text{SGS-turbulent kinetic energy}
$$

- $\nu_{\mathcal{T}}=C q$ l = $C_M \Lambda \sqrt{\bar{e}}$ with $\bar{e}=\frac{\overline{u_i^{\prime}u_i^{\prime}}} {2}$ SGS-turbulent kinetic energy
	- \triangleright The SGS-TKE allows a much better estimation of the velocity scale for the SGS fluctuations and also contains information about the past history of the local fluid.

$$
\nu_{\mathcal{T}} = Cql = C_M \Lambda \sqrt{\bar{e}} \quad \text{ with } \quad \bar{e} = \frac{\overline{u_1' u_1'}}{2} \quad \text{SGS-turbulent kinetic energy}
$$

 \triangleright The SGS-TKE allows a much better estimation of the velocity scale for the SGS fluctuations and also contains information about the past history of the local fluid.

$$
C_M = \text{const.} = 0.1
$$
\n
$$
\Lambda = \begin{cases} \min(0.7 \cdot z, \Delta), \\ \min(0.7 \cdot z, \Delta, 0.76\sqrt{\bar{e}} \left[\frac{\mathcal{E}}{\Theta_0} \frac{\partial \bar{\Theta}}{\partial z} \right]^{-1/2} \right), \end{cases}
$$

 $\Delta = \left(\Delta x \Delta y \Delta z\right)^{1/3}$

unstable or neutral stratification , stable stratification

 \triangleright SGS-TKE from prognostic equation

$$
\frac{\partial \bar{\epsilon}}{\partial t} = -\bar{u_k}\frac{\partial \bar{\epsilon}}{\partial x_k} - \tau_{ki}\frac{\partial \bar{u_i}}{\partial x_k} + \frac{\mathcal{g}}{\Theta_0}\overline{u'_3\Theta'} - \frac{\partial}{\partial x_k}\left\{\overline{u'_k\left(e' + \frac{\pi'}{\rho_0}\right)}\right\} - \epsilon
$$

$$
\tau_{ki} = -K_m \left(\frac{\partial \bar{u}_i}{\partial x_k} + \frac{\partial \bar{u}_k}{\partial x_i} \right) + \frac{2}{3} \delta_{ik} \bar{e} \quad \text{with} \quad K_m = 0.1 \cdot \Lambda \sqrt{\bar{e}}
$$

$$
H_k = \overline{u'_k \Theta'} = -K_h \frac{\partial \overline{\Theta}}{\partial x_k} \quad \text{with} \quad K_h = \left(1 + 2\frac{\Lambda}{\Delta}\right)
$$

$$
W_k = \overline{u'_k q'} = -K_h \frac{\partial \bar{q}}{\partial x_k}
$$

$$
\frac{\partial}{\partial x_k} \left[u'_k \left(e' + \frac{\pi'}{\rho_0} \right) \right] = - \frac{\partial}{\partial x_k} \nu_e \frac{\partial \bar{e}}{\partial x_k}
$$

$$
\epsilon = \mathcal{C}_{\epsilon} \tfrac{\bar{\mathbf{e}}^{3/2}}{\Lambda}
$$

 $\nu_e = 2\nu_\tau$

$$
\mathcal{C}_\epsilon = 0.19 + 0.74 \tfrac{\Lambda}{\Delta}
$$

 \blacktriangleright There are still problems with this parameterization:

- \blacktriangleright There are still problems with this parameterization:
	- The model overestimates the velocity shear near the wall.

- \blacktriangleright There are still problems with this parameterization:
	- The model overestimates the velocity shear near the wall.
	- C_M is still a constant but actually varies for different types of flows.

- \blacktriangleright There are still problems with this parameterization:
	- The model overestimates the velocity shear near the wall.
	- C_M is still a constant but actually varies for different types of flows.
	- Backscatter of energy from the SGS-turbulence to the resolved-scale flow can not be considered.

- \blacktriangleright There are still problems with this parameterization:
	- The model overestimates the velocity shear near the wall.
	- C_M is still a constant but actually varies for different types of flows.
	- Backscatter of energy from the SGS-turbulence to the resolved-scale flow can not be considered.
- ▶ Several other SGS models have been developed:
	- Two part eddy viscosity model (Sullivan, et al.)

- \blacktriangleright There are still problems with this parameterization:
	- The model overestimates the velocity shear near the wall.
	- C_M is still a constant but actually varies for different types of flows.
	- Backscatter of energy from the SGS-turbulence to the resolved-scale flow can not be considered.
- ▶ Several other SGS models have been developed:
	- Two part eddy viscosity model (Sullivan, et al.)
	- Scale similarity model (Bardina et al.)

- \blacktriangleright There are still problems with this parameterization:
	- The model overestimates the velocity shear near the wall.
	- C_M is still a constant but actually varies for different types of flows.
	- Backscatter of energy from the SGS-turbulence to the resolved-scale flow can not be considered.
- ▶ Several other SGS models have been developed:
	- Two part eddy viscosity model (Sullivan, et al.)
	- Scale similarity model (Bardina et al.)
	- Backscatter model (Mason)

- \blacktriangleright There are still problems with this parameterization:
	- The model overestimates the velocity shear near the wall.
	- $-C_M$ is still a constant but actually varies for different types of flows.
	- Backscatter of energy from the SGS-turbulence to the resolved-scale flow can not be considered.
- ▶ Several other SGS models have been developed:
	- Two part eddy viscosity model (Sullivan, et al.)
	- Scale similarity model (Bardina et al.)
	- Backscatter model (Mason)
- However, for fine grid resolutions (E_{SGS} << E) LES results become almost independent from the different models (Beare et al., 2006, BLM).

Summary / Important Points for Beginners (I)

LES: volume average

x

Summary / Important Points for Beginners (I)

LES: volume average

x

Summary / Important Points for Beginners (I)

 P ALM group 10 / 14

Summary / Important Points for Beginners (I)

Universität 100 Hannover

P ALM group 10 / 14

Summary / Important Points for Beginners (I)

critical concentration level

after Schatzmann and Leitl (2001)

building

 P ALM group 10 / 14

Summary / Important Points for Beginners (I)

critical concentration level

after Schatzmann and Leitl (2001)

smooth result

Summary / Important Points for Beginners (II)

For an LES it always has to be guaranteed that the main energy containing eddies of the respective turbulent flow can really be simulated by the numerical model:

Summary / Important Points for Beginners (II)

For an LES it always has to be guaranteed that the main energy containing eddies of the respective turbulent flow can really be simulated by the numerical model:

 \blacktriangleright The grid spacing has to be fine enough.

Summary / Important Points for Beginners (II)

For an LES it always has to be guaranteed that the main energy containing eddies of the respective turbulent flow can really be simulated by the numerical model:

- \blacktriangleright The grid spacing has to be fine enough.
- \blacktriangleright Esgs \lt (\lt \lt) E

Summary / Important Points for Beginners (II)

For an LES it always has to be guaranteed that the main energy containing eddies of the respective turbulent flow can really be simulated by the numerical model:

- \blacktriangleright The grid spacing has to be fine enough.
- \blacktriangleright Esgs \lt (\lt \lt) E
- \blacktriangleright The inflow/outflow boundaries must not effect the flow turbulence

(therefore cyclic boundary conditions are used in most cases).

Summary / Important Points for Beginners (II)

For an LES it always has to be guaranteed that the main energy containing eddies of the respective turbulent flow can really be simulated by the numerical model:

- \blacktriangleright The grid spacing has to be fine enough.
- \blacktriangleright Esgs \lt (\lt \lt) E
- \blacktriangleright The inflow/outflow boundaries must not effect the flow turbulence

(therefore cyclic boundary conditions are used in most cases).

 \blacktriangleright In case of homogeneous initial and boundary conditions, the onset of turbulence has to be triggered by imposing random fluctuations.

Summary / Important Points for Beginners (II)

For an LES it always has to be guaranteed that the main energy containing eddies of the respective turbulent flow can really be simulated by the numerical model:

- \blacktriangleright The grid spacing has to be fine enough.
- \blacktriangleright Esgs \lt (\lt \lt) E
- \blacktriangleright The inflow/outflow boundaries must not effect the flow turbulence

(therefore cyclic boundary conditions are used in most cases).

- \blacktriangleright In case of homogeneous initial and boundary conditions, the onset of turbulence has to be triggered by imposing random fluctuations.
- \triangleright Simulations have to be run for a long time to reach a stationary state and stable statistics.

 \blacktriangleright LES of a convective boundary layer

Some Symbols

- 97

