
Parallelization

Parallelization

PALM group

Institute of Meteorology and Climatology, Leibniz Universität Hannover

last update: 21st September 2015

PALM group PALM Seminar 1 / 17

Parallelization

Parallelization

Basics of Parallelization
Parallelization:

I All processor elements (PE, core) are carrying out the same program code
(SIMD).

I Each PE of a parallel computer operates on a different set of data.

Realization:

each PE solves the equations for a
different subdomain of the total
domain

each PE only knows the variable
values from its subdomain,
communication / data exchange
between PEs is necessary
message passing model (MPI)

program loops are parallelized, i.e.
each processor solves for a subset of
the total index range

!$OMP DO

DO i = 1, 100

.

.

.
ENDDO

!$acc kernels

DO i = 1, 100

.

.

.
ENDDO

parallelization can easily be done by
the compiler, if all PEs have access to
all variables (shared memory)
shared memory model (OpenMP)
accelerator model (OpenACC)

PALM group PALM Seminar 2 / 17

Parallelization

Parallelization

Basics of Parallelization
Parallelization:

I All processor elements (PE, core) are carrying out the same program code
(SIMD).

I Each PE of a parallel computer operates on a different set of data.

Realization:

each PE solves the equations for a
different subdomain of the total
domain

each PE only knows the variable
values from its subdomain,
communication / data exchange
between PEs is necessary
message passing model (MPI)

program loops are parallelized, i.e.
each processor solves for a subset of
the total index range

!$OMP DO

DO i = 1, 100

.

.

.
ENDDO

!$acc kernels

DO i = 1, 100

.

.

.
ENDDO

parallelization can easily be done by
the compiler, if all PEs have access to
all variables (shared memory)
shared memory model (OpenMP)
accelerator model (OpenACC)

PALM group PALM Seminar 2 / 17

Parallelization

Parallelization

Basics of Parallelization
Parallelization:

I All processor elements (PE, core) are carrying out the same program code
(SIMD).

I Each PE of a parallel computer operates on a different set of data.

Realization:

each PE solves the equations for a
different subdomain of the total
domain

each PE only knows the variable
values from its subdomain,
communication / data exchange
between PEs is necessary
message passing model (MPI)

program loops are parallelized, i.e.
each processor solves for a subset of
the total index range

!$OMP DO

DO i = 1, 100

.

.

.
ENDDO

!$acc kernels

DO i = 1, 100

.

.

.
ENDDO

parallelization can easily be done by
the compiler, if all PEs have access to
all variables (shared memory)
shared memory model (OpenMP)
accelerator model (OpenACC)

PALM group PALM Seminar 2 / 17

Parallelization

Parallelization

Basics of Parallelization
Parallelization:

I All processor elements (PE, core) are carrying out the same program code
(SIMD).

I Each PE of a parallel computer operates on a different set of data.

Realization:

each PE solves the equations for a
different subdomain of the total
domain

each PE only knows the variable
values from its subdomain,
communication / data exchange
between PEs is necessary
message passing model (MPI)

program loops are parallelized, i.e.
each processor solves for a subset of
the total index range

!$OMP DO

DO i = 1, 100

.

.

.
ENDDO

!$acc kernels

DO i = 1, 100

.

.

.
ENDDO

parallelization can easily be done by
the compiler, if all PEs have access to
all variables (shared memory)
shared memory model (OpenMP)
accelerator model (OpenACC)

PALM group PALM Seminar 2 / 17

Parallelization

Parallelization

Basics of Parallelization
Parallelization:

I All processor elements (PE, core) are carrying out the same program code
(SIMD).

I Each PE of a parallel computer operates on a different set of data.

Realization:

each PE solves the equations for a
different subdomain of the total
domain

each PE only knows the variable
values from its subdomain,
communication / data exchange
between PEs is necessary
message passing model (MPI)

program loops are parallelized, i.e.
each processor solves for a subset of
the total index range

!$OMP DO

DO i = 1, 100

.

.

.
ENDDO

!$acc kernels

DO i = 1, 100

.

.

.
ENDDO

parallelization can easily be done by
the compiler, if all PEs have access to
all variables (shared memory)
shared memory model (OpenMP)
accelerator model (OpenACC)

PALM group PALM Seminar 2 / 17

Parallelization

Parallelization

Basics of Parallelization
Parallelization:

I All processor elements (PE, core) are carrying out the same program code
(SIMD).

I Each PE of a parallel computer operates on a different set of data.

Realization:

each PE solves the equations for a
different subdomain of the total
domain

each PE only knows the variable
values from its subdomain,
communication / data exchange
between PEs is necessary
message passing model (MPI)

program loops are parallelized, i.e.
each processor solves for a subset of
the total index range

!$OMP DO

DO i = 1, 100

.

.

.
ENDDO

!$acc kernels

DO i = 1, 100

.

.

.
ENDDO

parallelization can easily be done by
the compiler, if all PEs have access to
all variables (shared memory)
shared memory model (OpenMP)
accelerator model (OpenACC)

PALM group PALM Seminar 2 / 17

Parallelization

Parallelization

Basics of Parallelization
Parallelization:

I All processor elements (PE, core) are carrying out the same program code
(SIMD).

I Each PE of a parallel computer operates on a different set of data.

Realization:

each PE solves the equations for a
different subdomain of the total
domain

each PE only knows the variable
values from its subdomain,
communication / data exchange
between PEs is necessary

message passing model (MPI)

program loops are parallelized, i.e.
each processor solves for a subset of
the total index range

!$OMP DO

DO i = 1, 100

.

.

.
ENDDO

!$acc kernels

DO i = 1, 100

.

.

.
ENDDO

parallelization can easily be done by
the compiler, if all PEs have access to
all variables (shared memory)
shared memory model (OpenMP)
accelerator model (OpenACC)

PALM group PALM Seminar 2 / 17

Parallelization

Parallelization

Basics of Parallelization
Parallelization:

I All processor elements (PE, core) are carrying out the same program code
(SIMD).

I Each PE of a parallel computer operates on a different set of data.

Realization:

each PE solves the equations for a
different subdomain of the total
domain

each PE only knows the variable
values from its subdomain,
communication / data exchange
between PEs is necessary

message passing model (MPI)

program loops are parallelized, i.e.
each processor solves for a subset of
the total index range

!$OMP DO

DO i = 1, 100

.

.

.
ENDDO

!$acc kernels

DO i = 1, 100

.

.

.
ENDDO

parallelization can easily be done by
the compiler, if all PEs have access to
all variables (shared memory)

shared memory model (OpenMP)
accelerator model (OpenACC)

PALM group PALM Seminar 2 / 17

Parallelization

Parallelization

Basics of Parallelization
Parallelization:

I All processor elements (PE, core) are carrying out the same program code
(SIMD).

I Each PE of a parallel computer operates on a different set of data.

Realization:

each PE solves the equations for a
different subdomain of the total
domain

each PE only knows the variable
values from its subdomain,
communication / data exchange
between PEs is necessary
message passing model (MPI)

program loops are parallelized, i.e.
each processor solves for a subset of
the total index range

!$OMP DO

DO i = 1, 100

.

.

.
ENDDO

!$acc kernels

DO i = 1, 100

.

.

.
ENDDO

parallelization can easily be done by
the compiler, if all PEs have access to
all variables (shared memory)

shared memory model (OpenMP)
accelerator model (OpenACC)

PALM group PALM Seminar 2 / 17

Parallelization

Parallelization

Basics of Parallelization
Parallelization:

I All processor elements (PE, core) are carrying out the same program code
(SIMD).

I Each PE of a parallel computer operates on a different set of data.

Realization:

each PE solves the equations for a
different subdomain of the total
domain

each PE only knows the variable
values from its subdomain,
communication / data exchange
between PEs is necessary
message passing model (MPI)

program loops are parallelized, i.e.
each processor solves for a subset of
the total index range

!$OMP DO

DO i = 1, 100

.

.

.
ENDDO

!$acc kernels

DO i = 1, 100

.

.

.
ENDDO

parallelization can easily be done by
the compiler, if all PEs have access to
all variables (shared memory)
shared memory model (OpenMP)
accelerator model (OpenACC)

PALM group PALM Seminar 2 / 17

Parallelization

Parallelization

Basic Architectures of Massively Parallel Computers

Network

distributed memory

(Cray-XC30)

adressable memory

shared memory

(SGI-Altix, multicore PCs)

MPI
OpenMP

OpenACC

clustered
systems

(IBM-Regatta, Linux-Cluster,

NEC-SX, SGI-ICE, Cray-XC)

p p p p p p

node
processor
adressable memory

PALM group PALM Seminar 3 / 17

Parallelization

Parallelization

Basic Architectures of Massively Parallel Computers

Network

distributed memory

(Cray-XC30)

adressable memory

shared memory

(SGI-Altix, multicore PCs)

MPI
OpenMP

OpenACC

clustered
systems

(IBM-Regatta, Linux-Cluster,

NEC-SX, SGI-ICE, Cray-XC)

p p p p p p

node

processor
adressable memory

PALM group PALM Seminar 3 / 17

Parallelization

Parallelization

Basic Architectures of Massively Parallel Computers

Network

distributed memory

(Cray-XC30)

adressable memory

shared memory

(SGI-Altix, multicore PCs)

MPI
OpenMP

OpenACC

clustered
systems

(IBM-Regatta, Linux-Cluster,

NEC-SX, SGI-ICE, Cray-XC)

p p p p p p

node

processor
adressable memory

PALM group PALM Seminar 3 / 17

Parallelization

Parallelization

Basic Architectures of Massively Parallel Computers

Network

distributed memory

(Cray-XC30)

adressable memory

shared memory

(SGI-Altix, multicore PCs)

MPI
OpenMP

OpenACC

clustered
systems

(IBM-Regatta, Linux-Cluster,

NEC-SX, SGI-ICE, Cray-XC)

p p p p p p

node

processor
adressable memory

PALM group PALM Seminar 3 / 17

Parallelization

Parallelization

Basic Architectures of Massively Parallel Computers

Network

distributed memory

(Cray-XC30)

adressable memory

shared memory

(SGI-Altix, multicore PCs)

MPI
OpenMP

OpenACC

clustered
systems

(IBM-Regatta, Linux-Cluster,

NEC-SX, SGI-ICE, Cray-XC)

p p p p p p

node
processor
adressable memory

PALM group PALM Seminar 3 / 17

Parallelization

Parallelization

Basic Architectures of Massively Parallel Computers

Network

distributed memory

(Cray-XC30)

adressable memory

shared memory

(SGI-Altix, multicore PCs)

MPI
OpenMP

OpenACC

clustered
systems

(IBM-Regatta, Linux-Cluster,

NEC-SX, SGI-ICE, Cray-XC)

p p p p p p

node
processor
adressable memory

PALM group PALM Seminar 3 / 17

Parallelization

Parallelization

Basic Architectures of Massively Parallel Computers

Network

distributed memory

(Cray-XC30)

adressable memory

shared memory

(SGI-Altix, multicore PCs)

MPI

OpenMP

OpenACC

clustered
systems

(IBM-Regatta, Linux-Cluster,

NEC-SX, SGI-ICE, Cray-XC)

p p p p p p

node
processor
adressable memory

PALM group PALM Seminar 3 / 17

Parallelization

Parallelization

Basic Architectures of Massively Parallel Computers

Network

distributed memory

(Cray-XC30)

adressable memory

shared memory

(SGI-Altix, multicore PCs)

MPI
OpenMP

OpenACC

clustered
systems

(IBM-Regatta, Linux-Cluster,

NEC-SX, SGI-ICE, Cray-XC)

p p p p p p

node
processor
adressable memory

PALM group PALM Seminar 3 / 17

Parallelization

Parallelization

PALM Parallelization Model

General demands for a parallelized program:

I Load balancing
I Small communication overhead
I Scalability (up to large numbers of processors)

The basic parallelization method used for PALM is a 2D-domain decomposition
along x and y :

contiguous data in memory (FORTRAN):

columns of i
no contiguous data at all

columns of k
planes of k,j (all data contiguous)

I Alternatively, a 1D-decomposition along x or y may be used.

I Message passing is realized using MPI.

I OpenMP parallelization as well as mixed usage of OpenMP and MPI is realized.

PALM group PALM Seminar 4 / 17

Parallelization

Parallelization

PALM Parallelization Model
General demands for a parallelized program:

I Load balancing
I Small communication overhead
I Scalability (up to large numbers of processors)

The basic parallelization method used for PALM is a 2D-domain decomposition
along x and y :

contiguous data in memory (FORTRAN):

columns of i
no contiguous data at all

columns of k
planes of k,j (all data contiguous)

I Alternatively, a 1D-decomposition along x or y may be used.

I Message passing is realized using MPI.

I OpenMP parallelization as well as mixed usage of OpenMP and MPI is realized.

PALM group PALM Seminar 4 / 17

Parallelization

Parallelization

PALM Parallelization Model
General demands for a parallelized program:

I Load balancing

I Small communication overhead
I Scalability (up to large numbers of processors)

The basic parallelization method used for PALM is a 2D-domain decomposition
along x and y :

contiguous data in memory (FORTRAN):

columns of i
no contiguous data at all

columns of k
planes of k,j (all data contiguous)

I Alternatively, a 1D-decomposition along x or y may be used.

I Message passing is realized using MPI.

I OpenMP parallelization as well as mixed usage of OpenMP and MPI is realized.

PALM group PALM Seminar 4 / 17

Parallelization

Parallelization

PALM Parallelization Model
General demands for a parallelized program:

I Load balancing
I Small communication overhead

I Scalability (up to large numbers of processors)

The basic parallelization method used for PALM is a 2D-domain decomposition
along x and y :

contiguous data in memory (FORTRAN):

columns of i
no contiguous data at all

columns of k
planes of k,j (all data contiguous)

I Alternatively, a 1D-decomposition along x or y may be used.

I Message passing is realized using MPI.

I OpenMP parallelization as well as mixed usage of OpenMP and MPI is realized.

PALM group PALM Seminar 4 / 17

Parallelization

Parallelization

PALM Parallelization Model
General demands for a parallelized program:

I Load balancing
I Small communication overhead
I Scalability (up to large numbers of processors)

The basic parallelization method used for PALM is a 2D-domain decomposition
along x and y :

contiguous data in memory (FORTRAN):

columns of i
no contiguous data at all

columns of k
planes of k,j (all data contiguous)

I Alternatively, a 1D-decomposition along x or y may be used.

I Message passing is realized using MPI.

I OpenMP parallelization as well as mixed usage of OpenMP and MPI is realized.

PALM group PALM Seminar 4 / 17

Parallelization

Parallelization

PALM Parallelization Model
General demands for a parallelized program:

I Load balancing
I Small communication overhead
I Scalability (up to large numbers of processors)

The basic parallelization method used for PALM is a 2D-domain decomposition
along x and y :

contiguous data in memory (FORTRAN):

columns of i
no contiguous data at all

columns of k
planes of k,j (all data contiguous)

I Alternatively, a 1D-decomposition along x or y may be used.

I Message passing is realized using MPI.

I OpenMP parallelization as well as mixed usage of OpenMP and MPI is realized.

PALM group PALM Seminar 4 / 17

Parallelization

Parallelization

PALM Parallelization Model
General demands for a parallelized program:

I Load balancing
I Small communication overhead
I Scalability (up to large numbers of processors)

The basic parallelization method used for PALM is a 2D-domain decomposition
along x and y :

contiguous data in memory (FORTRAN):

columns of i
no contiguous data at all

columns of k
planes of k,j (all data contiguous)

I Alternatively, a 1D-decomposition along x or y may be used.

I Message passing is realized using MPI.

I OpenMP parallelization as well as mixed usage of OpenMP and MPI is realized.

PALM group PALM Seminar 4 / 17

Parallelization

Parallelization

PALM Parallelization Model
General demands for a parallelized program:

I Load balancing
I Small communication overhead
I Scalability (up to large numbers of processors)

The basic parallelization method used for PALM is a 2D-domain decomposition
along x and y :

contiguous data in memory (FORTRAN):

columns of i
no contiguous data at all

columns of k
planes of k,j (all data contiguous)

I Alternatively, a 1D-decomposition along x or y may be used.

I Message passing is realized using MPI.

I OpenMP parallelization as well as mixed usage of OpenMP and MPI is realized.

PALM group PALM Seminar 4 / 17

Parallelization

Parallelization

PALM Parallelization Model
General demands for a parallelized program:

I Load balancing
I Small communication overhead
I Scalability (up to large numbers of processors)

The basic parallelization method used for PALM is a 2D-domain decomposition
along x and y :

contiguous data in memory (FORTRAN):

columns of i
no contiguous data at all

columns of k
planes of k,j (all data contiguous)

I Alternatively, a 1D-decomposition along x or y may be used.

I Message passing is realized using MPI.

I OpenMP parallelization as well as mixed usage of OpenMP and MPI is realized.

PALM group PALM Seminar 4 / 17

Parallelization

Parallelization

PALM Parallelization Model
General demands for a parallelized program:

I Load balancing
I Small communication overhead
I Scalability (up to large numbers of processors)

The basic parallelization method used for PALM is a 2D-domain decomposition
along x and y :

contiguous data in memory (FORTRAN):

columns of i
no contiguous data at all

columns of k
planes of k,j (all data contiguous)

I Alternatively, a 1D-decomposition along x or y may be used.

I Message passing is realized using MPI.

I OpenMP parallelization as well as mixed usage of OpenMP and MPI is realized.

PALM group PALM Seminar 4 / 17

Parallelization

Parallelization

PALM Parallelization Model
General demands for a parallelized program:

I Load balancing
I Small communication overhead
I Scalability (up to large numbers of processors)

The basic parallelization method used for PALM is a 2D-domain decomposition
along x and y :

contiguous data in memory (FORTRAN):

columns of i
no contiguous data at all

columns of k
planes of k,j (all data contiguous)

I Alternatively, a 1D-decomposition along x or y may be used.

I Message passing is realized using MPI.

I OpenMP parallelization as well as mixed usage of OpenMP and MPI is realized.

PALM group PALM Seminar 4 / 17

Parallelization

Parallelization

PALM Parallelization Model
General demands for a parallelized program:

I Load balancing
I Small communication overhead
I Scalability (up to large numbers of processors)

The basic parallelization method used for PALM is a 2D-domain decomposition
along x and y :

contiguous data in memory (FORTRAN):

columns of i
no contiguous data at all

columns of k
planes of k,j (all data contiguous)

I Alternatively, a 1D-decomposition along x or y may be used.

I Message passing is realized using MPI.

I OpenMP parallelization as well as mixed usage of OpenMP and MPI is realized.

PALM group PALM Seminar 4 / 17

Parallelization

Parallelization

Implications of Decomposition

I Central finite differences cause local
data dependencies

solution: introduction of ghost
points

∂ψ

∂x

∣∣∣∣
i

=
ψi+1 − ψi−1

2∆x

I FFT and linear equation solver cause
non-local data dependencies

solution: transposition of 3D-arrays

Example: transpositions for solving the Poisson
equation

PALM group PALM Seminar 5 / 17

Parallelization

Parallelization

Implications of Decomposition
I Central finite differences cause local

data dependencies

solution: introduction of ghost
points

∂ψ

∂x

∣∣∣∣
i

=
ψi+1 − ψi−1

2∆x

I FFT and linear equation solver cause
non-local data dependencies

solution: transposition of 3D-arrays

Example: transpositions for solving the Poisson
equation

PALM group PALM Seminar 5 / 17

Parallelization

Parallelization

Implications of Decomposition
I Central finite differences cause local

data dependencies

solution: introduction of ghost
points

∂ψ

∂x

∣∣∣∣
i

=
ψi+1 − ψi−1

2∆x

I FFT and linear equation solver cause
non-local data dependencies

solution: transposition of 3D-arrays

Example: transpositions for solving the Poisson
equation

PALM group PALM Seminar 5 / 17

Parallelization

Parallelization

Implications of Decomposition
I Central finite differences cause local

data dependencies

solution: introduction of ghost
points

∂ψ

∂x

∣∣∣∣
i

=
ψi+1 − ψi−1

2∆x

I FFT and linear equation solver cause
non-local data dependencies

solution: transposition of 3D-arrays

Example: transpositions for solving the Poisson
equation

PALM group PALM Seminar 5 / 17

Parallelization

Parallelization

Implications of Decomposition
I Central finite differences cause local

data dependencies

solution: introduction of ghost
points

∂ψ

∂x

∣∣∣∣
i

=
ψi+1 − ψi−1

2∆x

I FFT and linear equation solver cause
non-local data dependencies

solution: transposition of 3D-arrays

Example: transpositions for solving the Poisson
equation

PALM group PALM Seminar 5 / 17

Parallelization

Parallelization

How to Use the Parallelized Version of PALM
I The parallel version of PALM is switched on by mrun-option ”-K parallel”. Additionally,

the number of required processors and the number of tasks per node (number of PEs to
be used on one node) have to be provided:

mrun ... -K parallel -X64 -T8 ...

I From an accounting point of view, it is always most efficient to use all PEs of a node (e.g.
-T8) (in case of a ”non-shared” usage of nodes).

I If a normal unix-kernel operating system (not a micro-kernel) is running on each CPU,
then there migth be a speed-up of the code, if 1-2 PEs less than the total number of PEs
on the node are used.

I On machines with a comparably slow network, a 1D-decomposition (along x) should be
used, because then only two transpositions have to be carried out by the pressure solver. A
1D-decomposition is automatically used for NEC-machines (e.g. -h necriam). The virtual
processor grid to be used can be set manually by d3par-parameters npex and npey.

I Using the Open-MP parallelization does not yield any advantage over using a pure domain
decomposition with MPI (contrary to expectations, it mostly slows down the
computational speed), but this may change on cluster systems for very large number of
processors (>10000?) or with Intel-Xeon-Phi accelerator boards.

PALM group PALM Seminar 6 / 17

Parallelization

Parallelization

How to Use the Parallelized Version of PALM
I The parallel version of PALM is switched on by mrun-option ”-K parallel”. Additionally,

the number of required processors and the number of tasks per node (number of PEs to
be used on one node) have to be provided:

mrun ... -K parallel -X64 -T8 ...

I From an accounting point of view, it is always most efficient to use all PEs of a node (e.g.
-T8) (in case of a ”non-shared” usage of nodes).

I If a normal unix-kernel operating system (not a micro-kernel) is running on each CPU,
then there migth be a speed-up of the code, if 1-2 PEs less than the total number of PEs
on the node are used.

I On machines with a comparably slow network, a 1D-decomposition (along x) should be
used, because then only two transpositions have to be carried out by the pressure solver. A
1D-decomposition is automatically used for NEC-machines (e.g. -h necriam). The virtual
processor grid to be used can be set manually by d3par-parameters npex and npey.

I Using the Open-MP parallelization does not yield any advantage over using a pure domain
decomposition with MPI (contrary to expectations, it mostly slows down the
computational speed), but this may change on cluster systems for very large number of
processors (>10000?) or with Intel-Xeon-Phi accelerator boards.

PALM group PALM Seminar 6 / 17

Parallelization

Parallelization

How to Use the Parallelized Version of PALM
I The parallel version of PALM is switched on by mrun-option ”-K parallel”. Additionally,

the number of required processors and the number of tasks per node (number of PEs to
be used on one node) have to be provided:

mrun ... -K parallel -X64 -T8 ...

I From an accounting point of view, it is always most efficient to use all PEs of a node (e.g.
-T8) (in case of a ”non-shared” usage of nodes).

I If a normal unix-kernel operating system (not a micro-kernel) is running on each CPU,
then there migth be a speed-up of the code, if 1-2 PEs less than the total number of PEs
on the node are used.

I On machines with a comparably slow network, a 1D-decomposition (along x) should be
used, because then only two transpositions have to be carried out by the pressure solver. A
1D-decomposition is automatically used for NEC-machines (e.g. -h necriam). The virtual
processor grid to be used can be set manually by d3par-parameters npex and npey.

I Using the Open-MP parallelization does not yield any advantage over using a pure domain
decomposition with MPI (contrary to expectations, it mostly slows down the
computational speed), but this may change on cluster systems for very large number of
processors (>10000?) or with Intel-Xeon-Phi accelerator boards.

PALM group PALM Seminar 6 / 17

Parallelization

Parallelization

How to Use the Parallelized Version of PALM
I The parallel version of PALM is switched on by mrun-option ”-K parallel”. Additionally,

the number of required processors and the number of tasks per node (number of PEs to
be used on one node) have to be provided:

mrun ... -K parallel -X64 -T8 ...

I From an accounting point of view, it is always most efficient to use all PEs of a node (e.g.
-T8) (in case of a ”non-shared” usage of nodes).

I If a normal unix-kernel operating system (not a micro-kernel) is running on each CPU,
then there migth be a speed-up of the code, if 1-2 PEs less than the total number of PEs
on the node are used.

I On machines with a comparably slow network, a 1D-decomposition (along x) should be
used, because then only two transpositions have to be carried out by the pressure solver. A
1D-decomposition is automatically used for NEC-machines (e.g. -h necriam). The virtual
processor grid to be used can be set manually by d3par-parameters npex and npey.

I Using the Open-MP parallelization does not yield any advantage over using a pure domain
decomposition with MPI (contrary to expectations, it mostly slows down the
computational speed), but this may change on cluster systems for very large number of
processors (>10000?) or with Intel-Xeon-Phi accelerator boards.

PALM group PALM Seminar 6 / 17

Parallelization

Parallelization

How to Use the Parallelized Version of PALM
I The parallel version of PALM is switched on by mrun-option ”-K parallel”. Additionally,

the number of required processors and the number of tasks per node (number of PEs to
be used on one node) have to be provided:

mrun ... -K parallel -X64 -T8 ...

I From an accounting point of view, it is always most efficient to use all PEs of a node (e.g.
-T8) (in case of a ”non-shared” usage of nodes).

I If a normal unix-kernel operating system (not a micro-kernel) is running on each CPU,
then there migth be a speed-up of the code, if 1-2 PEs less than the total number of PEs
on the node are used.

I On machines with a comparably slow network, a 1D-decomposition (along x) should be
used, because then only two transpositions have to be carried out by the pressure solver. A
1D-decomposition is automatically used for NEC-machines (e.g. -h necriam). The virtual
processor grid to be used can be set manually by d3par-parameters npex and npey.

I Using the Open-MP parallelization does not yield any advantage over using a pure domain
decomposition with MPI (contrary to expectations, it mostly slows down the
computational speed), but this may change on cluster systems for very large number of
processors (>10000?) or with Intel-Xeon-Phi accelerator boards.

PALM group PALM Seminar 6 / 17

Parallelization

Parallelization

MPI Communication

I MPI (message passing interface) is a portable interface for communication between PEs
(FORTRAN or C library).

I MPI on the Cray-XC30 of HLRN-III is provided with module PrgEnv-cray which is loaded
by default.

I All MPI calls must be within
CALL MPI INIT(ierror)
...
CALL MPI FINALIZE(ierror)

PALM group PALM Seminar 7 / 17

Parallelization

Parallelization

MPI Communication

I MPI (message passing interface) is a portable interface for communication between PEs
(FORTRAN or C library).

I MPI on the Cray-XC30 of HLRN-III is provided with module PrgEnv-cray which is loaded
by default.

I All MPI calls must be within
CALL MPI INIT(ierror)
...
CALL MPI FINALIZE(ierror)

PALM group PALM Seminar 7 / 17

Parallelization

Parallelization

MPI Communication

I MPI (message passing interface) is a portable interface for communication between PEs
(FORTRAN or C library).

I MPI on the Cray-XC30 of HLRN-III is provided with module PrgEnv-cray which is loaded
by default.

I All MPI calls must be within
CALL MPI INIT(ierror)
...
CALL MPI FINALIZE(ierror)

PALM group PALM Seminar 7 / 17

Parallelization

Parallelization

Communication Within PALM

I MPI calls within PALM are available when using the mrun-option
”-K parallel”.

I Communication is needed for

I exchange of ghost points
I transpositions (FFT-poisson-solver)
I calculating global sums (e.g. for calculating horizontal averages)

I Additional MPI calls are required to define the so-called virtual
processor grid and to define special data types needed for more
comfortable exchange of data.

PALM group PALM Seminar 8 / 17

Parallelization

Parallelization

Communication Within PALM

I MPI calls within PALM are available when using the mrun-option
”-K parallel”.

I Communication is needed for

I exchange of ghost points

I transpositions (FFT-poisson-solver)
I calculating global sums (e.g. for calculating horizontal averages)

I Additional MPI calls are required to define the so-called virtual
processor grid and to define special data types needed for more
comfortable exchange of data.

PALM group PALM Seminar 8 / 17

Parallelization

Parallelization

Communication Within PALM

I MPI calls within PALM are available when using the mrun-option
”-K parallel”.

I Communication is needed for

I exchange of ghost points
I transpositions (FFT-poisson-solver)

I calculating global sums (e.g. for calculating horizontal averages)

I Additional MPI calls are required to define the so-called virtual
processor grid and to define special data types needed for more
comfortable exchange of data.

PALM group PALM Seminar 8 / 17

Parallelization

Parallelization

Communication Within PALM

I MPI calls within PALM are available when using the mrun-option
”-K parallel”.

I Communication is needed for

I exchange of ghost points
I transpositions (FFT-poisson-solver)
I calculating global sums (e.g. for calculating horizontal averages)

I Additional MPI calls are required to define the so-called virtual
processor grid and to define special data types needed for more
comfortable exchange of data.

PALM group PALM Seminar 8 / 17

Parallelization

Parallelization

Communication Within PALM

I MPI calls within PALM are available when using the mrun-option
”-K parallel”.

I Communication is needed for

I exchange of ghost points
I transpositions (FFT-poisson-solver)
I calculating global sums (e.g. for calculating horizontal averages)

I Additional MPI calls are required to define the so-called virtual
processor grid and to define special data types needed for more
comfortable exchange of data.

PALM group PALM Seminar 8 / 17

Parallelization

Parallelization

Virtual Processor Grid Used in PALM
The processor grid and special data types are defined in file init pegrid.f90

I PALM uses a two-dimensional virtual processor grid (in case of a
1D-decomposition, it has only one element along y). It is defined by a so called
communicator (here: comm2d):

ndim = 2

pdims(1) = npex ! # of processors along x

pdims(2) = npey ! # of processors along y

cyclic(1) = .TRUE.

cyclic(2) = .TRUE.

CALL MPI CART CREATE(MPI COMM WORLD, ndim, pdims, cyclic, reorder, &

comm2d, ierr)

I The processor number (id) with respect to this processor grid, myid, is given by:

CALL MPI COMM RANK(comm2d, myid, ierr)

I The ids of the neighbouring PEs are determined by:

CALL MPI CARD SHIFT(comm2d, 0, 1, pleft, pright, ierr)

CALL MPI CARD SHIFT(comm2d, 1, 1, psouth, pnorth, ierr)

PALM group PALM Seminar 9 / 17

Parallelization

Parallelization

Virtual Processor Grid Used in PALM
The processor grid and special data types are defined in file init pegrid.f90

I PALM uses a two-dimensional virtual processor grid (in case of a
1D-decomposition, it has only one element along y). It is defined by a so called
communicator (here: comm2d):

ndim = 2

pdims(1) = npex ! # of processors along x

pdims(2) = npey ! # of processors along y

cyclic(1) = .TRUE.

cyclic(2) = .TRUE.

CALL MPI CART CREATE(MPI COMM WORLD, ndim, pdims, cyclic, reorder, &

comm2d, ierr)

I The processor number (id) with respect to this processor grid, myid, is given by:

CALL MPI COMM RANK(comm2d, myid, ierr)

I The ids of the neighbouring PEs are determined by:

CALL MPI CARD SHIFT(comm2d, 0, 1, pleft, pright, ierr)

CALL MPI CARD SHIFT(comm2d, 1, 1, psouth, pnorth, ierr)

PALM group PALM Seminar 9 / 17

Parallelization

Parallelization

Virtual Processor Grid Used in PALM
The processor grid and special data types are defined in file init pegrid.f90

I PALM uses a two-dimensional virtual processor grid (in case of a
1D-decomposition, it has only one element along y). It is defined by a so called
communicator (here: comm2d):

ndim = 2

pdims(1) = npex ! # of processors along x

pdims(2) = npey ! # of processors along y

cyclic(1) = .TRUE.

cyclic(2) = .TRUE.

CALL MPI CART CREATE(MPI COMM WORLD, ndim, pdims, cyclic, reorder, &

comm2d, ierr)

I The processor number (id) with respect to this processor grid, myid, is given by:

CALL MPI COMM RANK(comm2d, myid, ierr)

I The ids of the neighbouring PEs are determined by:

CALL MPI CARD SHIFT(comm2d, 0, 1, pleft, pright, ierr)

CALL MPI CARD SHIFT(comm2d, 1, 1, psouth, pnorth, ierr)

PALM group PALM Seminar 9 / 17

Parallelization

Parallelization

Virtual Processor Grid Used in PALM
The processor grid and special data types are defined in file init pegrid.f90

I PALM uses a two-dimensional virtual processor grid (in case of a
1D-decomposition, it has only one element along y). It is defined by a so called
communicator (here: comm2d):

ndim = 2

pdims(1) = npex ! # of processors along x

pdims(2) = npey ! # of processors along y

cyclic(1) = .TRUE.

cyclic(2) = .TRUE.

CALL MPI CART CREATE(MPI COMM WORLD, ndim, pdims, cyclic, reorder, &

comm2d, ierr)

I The processor number (id) with respect to this processor grid, myid, is given by:

CALL MPI COMM RANK(comm2d, myid, ierr)

I The ids of the neighbouring PEs are determined by:

CALL MPI CARD SHIFT(comm2d, 0, 1, pleft, pright, ierr)

CALL MPI CARD SHIFT(comm2d, 1, 1, psouth, pnorth, ierr)

PALM group PALM Seminar 9 / 17

Parallelization

Parallelization

Exchange of ghost points
I Ghost points are stored in additional array elements added at the horizontal

boundaries of the subdomains, e.g.

u(:,:,nxl-nbgp), u(:,:,nxr+nbgp) ! left and right boundary

u(:,nys-nbgp,:), u(:,nyn+nbgp,:) ! south and north boundary

The actual code uses nxlg=nxl-nbgp, etc...

I The exchange of ghost points is done in file exchange horiz.f90

Simplified example: synchroneous exchange of ghost points along x (yz-planes,
send left, receive right plane):

CALL MPI SENDRECV(ar(nzb,nysg,nxl), ngp yz, MPI REAL, pleft, 0,

ar(nzb,nysg,nxr+1), ngp yz, MPI REAL, pright, 0,

comm2d, status, ierr)

I In the real code special MPI data types (vectors) are defined for exchange of
yz/xz-planes for performance reasons and because array elements to be
exchanged are not consecutively stored in memory for xz-planes:

ngp yz(0) = (nzt - nzb + 2) * (nyn - nys + 1 + 2 * nbgp)

CALL MPI TYPE VECTOR(nbgp, ngp yz(0), ngp yz(0), MPI REAL, type yz(0), ierr)

CALL MPI TYPE COMMIT(type yz(0), ierr) ! see file init pegrid.f90

CALL MPI SENDRECV(ar(nzb,nysg,nxl), 1, type yz(grid level), pleft, 0, ...

PALM group PALM Seminar 10 / 17

Parallelization

Parallelization

Exchange of ghost points
I Ghost points are stored in additional array elements added at the horizontal

boundaries of the subdomains, e.g.

u(:,:,nxl-nbgp), u(:,:,nxr+nbgp) ! left and right boundary

u(:,nys-nbgp,:), u(:,nyn+nbgp,:) ! south and north boundary

The actual code uses nxlg=nxl-nbgp, etc...

I The exchange of ghost points is done in file exchange horiz.f90

Simplified example: synchroneous exchange of ghost points along x (yz-planes,
send left, receive right plane):

CALL MPI SENDRECV(ar(nzb,nysg,nxl), ngp yz, MPI REAL, pleft, 0,

ar(nzb,nysg,nxr+1), ngp yz, MPI REAL, pright, 0,

comm2d, status, ierr)

I In the real code special MPI data types (vectors) are defined for exchange of
yz/xz-planes for performance reasons and because array elements to be
exchanged are not consecutively stored in memory for xz-planes:

ngp yz(0) = (nzt - nzb + 2) * (nyn - nys + 1 + 2 * nbgp)

CALL MPI TYPE VECTOR(nbgp, ngp yz(0), ngp yz(0), MPI REAL, type yz(0), ierr)

CALL MPI TYPE COMMIT(type yz(0), ierr) ! see file init pegrid.f90

CALL MPI SENDRECV(ar(nzb,nysg,nxl), 1, type yz(grid level), pleft, 0, ...

PALM group PALM Seminar 10 / 17

Parallelization

Parallelization

Exchange of ghost points
I Ghost points are stored in additional array elements added at the horizontal

boundaries of the subdomains, e.g.

u(:,:,nxl-nbgp), u(:,:,nxr+nbgp) ! left and right boundary

u(:,nys-nbgp,:), u(:,nyn+nbgp,:) ! south and north boundary

The actual code uses nxlg=nxl-nbgp, etc...

I The exchange of ghost points is done in file exchange horiz.f90

Simplified example: synchroneous exchange of ghost points along x (yz-planes,
send left, receive right plane):

CALL MPI SENDRECV(ar(nzb,nysg,nxl), ngp yz, MPI REAL, pleft, 0,

ar(nzb,nysg,nxr+1), ngp yz, MPI REAL, pright, 0,

comm2d, status, ierr)

I In the real code special MPI data types (vectors) are defined for exchange of
yz/xz-planes for performance reasons and because array elements to be
exchanged are not consecutively stored in memory for xz-planes:

ngp yz(0) = (nzt - nzb + 2) * (nyn - nys + 1 + 2 * nbgp)

CALL MPI TYPE VECTOR(nbgp, ngp yz(0), ngp yz(0), MPI REAL, type yz(0), ierr)

CALL MPI TYPE COMMIT(type yz(0), ierr) ! see file init pegrid.f90

CALL MPI SENDRECV(ar(nzb,nysg,nxl), 1, type yz(grid level), pleft, 0, ...

PALM group PALM Seminar 10 / 17

Parallelization

Parallelization

Transpositions

I Transpositions can be found in file transpose.f90 (several subroutines for
1D- or 2D-decompositions; they are called mainly from the FFT pressure
solver, see poisfft.f90.

I The following example is for a transposition from x to y , i.e. for the input
array all data elements along x reside on the same PE, while after the
transposition, all elements along y are on the same PE:

!

!-- in SUBROUTINE transpose xy:

CALL MPI ALLTOALL(f inv(nys x,nzb x,0), sendrecvcount xy, MPI REAL, &

work(1,nzb y, nxl y,0), sendrecvcount xy, MPI REAL, &

comm1dy, ierr)

I The data resorting before and after the calls of MPI ALLTOALL is highly
optimized to account for the different processor architectures and even allows
for overlapping communication and calculation.

PALM group PALM Seminar 11 / 17

Parallelization

Parallelization

Transpositions

I Transpositions can be found in file transpose.f90 (several subroutines for
1D- or 2D-decompositions; they are called mainly from the FFT pressure
solver, see poisfft.f90.

I The following example is for a transposition from x to y , i.e. for the input
array all data elements along x reside on the same PE, while after the
transposition, all elements along y are on the same PE:

!

!-- in SUBROUTINE transpose xy:

CALL MPI ALLTOALL(f inv(nys x,nzb x,0), sendrecvcount xy, MPI REAL, &

work(1,nzb y, nxl y,0), sendrecvcount xy, MPI REAL, &

comm1dy, ierr)

I The data resorting before and after the calls of MPI ALLTOALL is highly
optimized to account for the different processor architectures and even allows
for overlapping communication and calculation.

PALM group PALM Seminar 11 / 17

Parallelization

Parallelization

Transpositions

I Transpositions can be found in file transpose.f90 (several subroutines for
1D- or 2D-decompositions; they are called mainly from the FFT pressure
solver, see poisfft.f90.

I The following example is for a transposition from x to y , i.e. for the input
array all data elements along x reside on the same PE, while after the
transposition, all elements along y are on the same PE:

!

!-- in SUBROUTINE transpose xy:

CALL MPI ALLTOALL(f inv(nys x,nzb x,0), sendrecvcount xy, MPI REAL, &

work(1,nzb y, nxl y,0), sendrecvcount xy, MPI REAL, &

comm1dy, ierr)

I The data resorting before and after the calls of MPI ALLTOALL is highly
optimized to account for the different processor architectures and even allows
for overlapping communication and calculation.

PALM group PALM Seminar 11 / 17

Parallelization

Parallelization

Parallel I/O
I PALM writes and reads some of the input/output files in parallel, i.e. each processor

writes/reads his own file. Each file then has a different name!

Example: binary files for restart are written into a subdirectory of the PALM working
directory:

BINOUT/ 0000

BINOUT/ 0001
...

I These files can be handled (copied) by mrun using the file attribute pe in the
configuration file:
BINOUT out:loc:pe restart ~/palm/current version/JOBS/$fname/RESTART d3d

In this case, filenames are interpreted as directory names. An mrun call using option
”-d example cbl -r restart” will copy the local directory BINOUT to the directory
.../RESTART/example cbl d3d .

General comment:

I Parallel I/O on a large number of files (>1000) currently may cause severe file system
problems (e.g. on Lustre file systems).
Workaround: reduce the maximum number of parallel I/O streams

(see mrun-option -w)

PALM group PALM Seminar 12 / 17

Parallelization

Parallelization

Parallel I/O
I PALM writes and reads some of the input/output files in parallel, i.e. each processor

writes/reads his own file. Each file then has a different name!

Example: binary files for restart are written into a subdirectory of the PALM working
directory:

BINOUT/ 0000

BINOUT/ 0001
...

I These files can be handled (copied) by mrun using the file attribute pe in the
configuration file:
BINOUT out:loc:pe restart ~/palm/current version/JOBS/$fname/RESTART d3d

In this case, filenames are interpreted as directory names. An mrun call using option
”-d example cbl -r restart” will copy the local directory BINOUT to the directory
.../RESTART/example cbl d3d .

General comment:

I Parallel I/O on a large number of files (>1000) currently may cause severe file system
problems (e.g. on Lustre file systems).
Workaround: reduce the maximum number of parallel I/O streams

(see mrun-option -w)

PALM group PALM Seminar 12 / 17

Parallelization

Parallelization

Parallel I/O
I PALM writes and reads some of the input/output files in parallel, i.e. each processor

writes/reads his own file. Each file then has a different name!

Example: binary files for restart are written into a subdirectory of the PALM working
directory:

BINOUT/ 0000

BINOUT/ 0001
...

I These files can be handled (copied) by mrun using the file attribute pe in the
configuration file:
BINOUT out:loc:pe restart ~/palm/current version/JOBS/$fname/RESTART d3d

In this case, filenames are interpreted as directory names. An mrun call using option
”-d example cbl -r restart” will copy the local directory BINOUT to the directory
.../RESTART/example cbl d3d .

General comment:

I Parallel I/O on a large number of files (>1000) currently may cause severe file system
problems (e.g. on Lustre file systems).
Workaround: reduce the maximum number of parallel I/O streams

(see mrun-option -w)

PALM group PALM Seminar 12 / 17

Parallelization

Parallelization

Parallel I/O
I PALM writes and reads some of the input/output files in parallel, i.e. each processor

writes/reads his own file. Each file then has a different name!

Example: binary files for restart are written into a subdirectory of the PALM working
directory:

BINOUT/ 0000

BINOUT/ 0001
...

I These files can be handled (copied) by mrun using the file attribute pe in the
configuration file:
BINOUT out:loc:pe restart ~/palm/current version/JOBS/$fname/RESTART d3d

In this case, filenames are interpreted as directory names. An mrun call using option
”-d example cbl -r restart” will copy the local directory BINOUT to the directory
.../RESTART/example cbl d3d .

General comment:

I Parallel I/O on a large number of files (>1000) currently may cause severe file system
problems (e.g. on Lustre file systems).
Workaround: reduce the maximum number of parallel I/O streams

(see mrun-option -w)

PALM group PALM Seminar 12 / 17

Parallelization

Parallelization

PALM Parallel I/O for 2D/3D Data

I 2D- and 3D-data output is also written in parallel by the processors (2D:
by default, 3D: generally).

I Because the graphics software (ncview, ncl, ferret, etc.) expect the
data to be in one file, these output files have to be merged to one single
file after PALM has finished.

This is done within the job by calling the utility program
combine plot fields.x after PALM has successfully finished.

I combine plot fields.x is automatically executed by mrun.

I The executable combine plot fields.x is created during the
installation process by the command

mbuild -u -h <host identifier>

PALM group PALM Seminar 13 / 17

Parallelization

Parallelization

PALM Parallel I/O for 2D/3D Data

I 2D- and 3D-data output is also written in parallel by the processors (2D:
by default, 3D: generally).

I Because the graphics software (ncview, ncl, ferret, etc.) expect the
data to be in one file, these output files have to be merged to one single
file after PALM has finished.

This is done within the job by calling the utility program
combine plot fields.x after PALM has successfully finished.

I combine plot fields.x is automatically executed by mrun.

I The executable combine plot fields.x is created during the
installation process by the command

mbuild -u -h <host identifier>

PALM group PALM Seminar 13 / 17

Parallelization

Parallelization

PALM Parallel I/O for 2D/3D Data

I 2D- and 3D-data output is also written in parallel by the processors (2D:
by default, 3D: generally).

I Because the graphics software (ncview, ncl, ferret, etc.) expect the
data to be in one file, these output files have to be merged to one single
file after PALM has finished.

This is done within the job by calling the utility program
combine plot fields.x after PALM has successfully finished.

I combine plot fields.x is automatically executed by mrun.

I The executable combine plot fields.x is created during the
installation process by the command

mbuild -u -h <host identifier>

PALM group PALM Seminar 13 / 17

Parallelization

Parallelization

PALM Parallel I/O for 2D/3D Data

I 2D- and 3D-data output is also written in parallel by the processors (2D:
by default, 3D: generally).

I Because the graphics software (ncview, ncl, ferret, etc.) expect the
data to be in one file, these output files have to be merged to one single
file after PALM has finished.

This is done within the job by calling the utility program
combine plot fields.x after PALM has successfully finished.

I combine plot fields.x is automatically executed by mrun.

I The executable combine plot fields.x is created during the
installation process by the command

mbuild -u -h <host identifier>

PALM group PALM Seminar 13 / 17

Parallelization

Parallelization

PALM Parallel I/O for 2D/3D Data with netCDF4/HDF5

I The Cray XC30 of HLRN-III allows direct parallel I/O to a netCDF file

I modules cray hdf5 parallel and cray netcdf hdf5parallel have to
be loaded

I cpp-switches -D netcdf, -D netcdf4, -D netcdf4 parallel have to
be set

I Both is done in the default HLRN-III block of the configuration file
(lccrayh)

I d3par-parameter netcdf data format=5 has to be set in the parameter
file

I combine plot fields.x is not required in this case

PALM group PALM Seminar 14 / 17

Parallelization

Parallelization

PALM Parallel I/O for 2D/3D Data with netCDF4/HDF5

I The Cray XC30 of HLRN-III allows direct parallel I/O to a netCDF file

I modules cray hdf5 parallel and cray netcdf hdf5parallel have to
be loaded

I cpp-switches -D netcdf, -D netcdf4, -D netcdf4 parallel have to
be set

I Both is done in the default HLRN-III block of the configuration file
(lccrayh)

I d3par-parameter netcdf data format=5 has to be set in the parameter
file

I combine plot fields.x is not required in this case

PALM group PALM Seminar 14 / 17

Parallelization

Parallelization

PALM Parallel I/O for 2D/3D Data with netCDF4/HDF5

I The Cray XC30 of HLRN-III allows direct parallel I/O to a netCDF file

I modules cray hdf5 parallel and cray netcdf hdf5parallel have to
be loaded

I cpp-switches -D netcdf, -D netcdf4, -D netcdf4 parallel have to
be set

I Both is done in the default HLRN-III block of the configuration file
(lccrayh)

I d3par-parameter netcdf data format=5 has to be set in the parameter
file

I combine plot fields.x is not required in this case

PALM group PALM Seminar 14 / 17

Parallelization

Parallelization

PALM Parallel I/O for 2D/3D Data with netCDF4/HDF5

I The Cray XC30 of HLRN-III allows direct parallel I/O to a netCDF file

I modules cray hdf5 parallel and cray netcdf hdf5parallel have to
be loaded

I cpp-switches -D netcdf, -D netcdf4, -D netcdf4 parallel have to
be set

I Both is done in the default HLRN-III block of the configuration file
(lccrayh)

I d3par-parameter netcdf data format=5 has to be set in the parameter
file

I combine plot fields.x is not required in this case

PALM group PALM Seminar 14 / 17

Parallelization

Parallelization

PALM Parallel I/O for 2D/3D Data with netCDF4/HDF5

I The Cray XC30 of HLRN-III allows direct parallel I/O to a netCDF file

I modules cray hdf5 parallel and cray netcdf hdf5parallel have to
be loaded

I cpp-switches -D netcdf, -D netcdf4, -D netcdf4 parallel have to
be set

I Both is done in the default HLRN-III block of the configuration file
(lccrayh)

I d3par-parameter netcdf data format=5 has to be set in the parameter
file

I combine plot fields.x is not required in this case

PALM group PALM Seminar 14 / 17

Parallelization

Parallelization

PALM Parallel I/O for 2D/3D Data with netCDF4/HDF5

I The Cray XC30 of HLRN-III allows direct parallel I/O to a netCDF file

I modules cray hdf5 parallel and cray netcdf hdf5parallel have to
be loaded

I cpp-switches -D netcdf, -D netcdf4, -D netcdf4 parallel have to
be set

I Both is done in the default HLRN-III block of the configuration file
(lccrayh)

I d3par-parameter netcdf data format=5 has to be set in the parameter
file

I combine plot fields.x is not required in this case

PALM group PALM Seminar 14 / 17

Parallelization

Parallelization

Performance Examples (I)

I Simulation using 1536 * 768 * 242 grid points (∼ 60 GByte)

IBM-Regatta, HLRN, Hannover
(1D domain decomposition)

Sun Fire X4600, Tokyo Institute
of Technology
(2D domain decomposition)

PALM group PALM Seminar 15 / 17

Parallelization

Parallelization

Performance Examples (II)

I Simulation with 20483 grid points (∼ 2 TByte memory)

SGI-ICE2, HLRN-II, Hannover
(2D-domain decomposition)

largest simulation feasible on
that system:

40963 grid points

PALM group PALM Seminar 16 / 17

Parallelization

Parallelization

Performance Examples (II)

I Simulation with 20483 grid points (∼ 2 TByte memory)

SGI-ICE2, HLRN-II, Hannover
(2D-domain decomposition)

largest simulation feasible on
that system:

40963 grid points

PALM group PALM Seminar 16 / 17

Parallelization

Parallelization

Performance Examples (III)

I Simulation with 43203 grid points (∼ 13 TByte memory)

Cray-XC40, HLRN-III, Hannover
(2D-domain decomposition)

currently largest simulation
feasible on that system:

56003 grid points

PALM group PALM Seminar 17 / 17

Parallelization

Parallelization

Performance Examples (III)

I Simulation with 43203 grid points (∼ 13 TByte memory)

Cray-XC40, HLRN-III, Hannover
(2D-domain decomposition)

currently largest simulation
feasible on that system:

56003 grid points

PALM group PALM Seminar 17 / 17

	Parallelization
	Parallelization

