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Numerics Boundary Conditions

Overview
PALM is (almost) using simple, standard and fast numerical schemes:

I Spatial and temporal discretization by finite differences
I Explicit timestep methods:

- Euler
- Runge-Kutta, second or third order

I Advection method
- Upstream
- Piacsek-Williams (second order central finite differences)
- Bott-Chlond-scheme (monotone, positiv definit, for scalars only)
- 5th-order scheme of Wicker and Skamarock, (as used in WRF model)

I Poisson-equation for pressure
- Direct FFT-method
- Multigrid-method

I Lagrangian particle model included
I Boundary conditions:

- Cyclic and non-cyclic horizontal boundary conditions
- Surface layer with Monin-Obukhov similarity
- Topography
- Turbulent inflow (for non-cyclic horizontal boundary conditions)
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Numerics Boundary Conditions

Numerics

Numerical Grid

I Equations are spatially discretized on an Arakawa-C grid.

I All scalar variables s (e.g. , p∗, e, Km, Kh) are defined at the cell centers.

I Velocity components (u, v , w) are shifted by half of the grid spacing.

I Spacings are equidistant, stretching along z is possible.

general definition (cylic):
Ψ(0:nz+1,-1:ny+1,-1:nx+1)
Ψ(:,-1,:) = Ψ(:,ny,:)
Ψ(:,ny+1,:) = Ψ(:,0,:)
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Numerics Boundary Conditions

Numerics

Timestep Methods (I)

I Euler

∂ψ(t)

∂t
= F (ψ(t))→ ψ(t + ∆t)− ψ(t)

∆t
≈ F (ψ(t))

u
∆t

∆x
= C < 1

for stability

ψ(t + ∆t) = ψ(t) + ∆t · F (ψ(t)) O(∆t)
(used for SGS-TKE in special cases)

I Runge-Kutta, third-order

k1 = F (ψ(t))

k2 = F
(
ψ(t) + 1

3
∆t · k1

)
k3 = F

(
ψ(t)− 3

16
∆t · k1 + 15

16
∆t · k2

)
ψ(t + ∆t) = ψ(t) + 1

30
∆t(5k1 + 9k2 + 16k3) O(∆t2) C ≤ 0.9
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Numerics Boundary Conditions

Numerics

Timestep Methods (II)

In the PALM code, the different timestep schemes are treated by one equation
using switches:
ψ(t+∆t) = (1−c1)·ψ(t−∆t)+c1 ·ψ(t)+∆t ·[c2 · F (ψ(t)) + c3 · F (ψ(t −∆t))]

Scheme c1 c2 c3

Euler 1 1 0
RK (1st step) 1 1/3 0
RK (2nd step) 1 15/16 -25/48
RK (3rd step) 1 8/15 1/15

ψ(t −∆t) = ψ(t) after each RK substep

ψ(t) = ψ(t + ∆t)
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Numerics Boundary Conditions

Numerics

Advection Methods (I)

I Piacsek Williams C3 (1970, J. Comput. Phy., 6, 392).

I Scheme of 2nd order accuracy.

I Conserves integrals of linear and quadratic quantities.

I Requires incompressibility → flux form of advection term.

∂(uψ)

∂x

∣∣∣∣
i

=
1

2∆x

(
ui+ 1

2
ψi+1 − ui− 1

2
ψi−1

)

I In case of momentum advection (e.g. ψ = u), ui−1 and ui+1 have
to be obtained by linear interpolation.

I May cause 2∆x wiggles in case of sharp gradients.
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Numerics Boundary Conditions

Numerics

Advection Methods (II)

I Bott-Chlond
- Chlond (1994)

- Monotone, positive definit. Can only be used for scalars
- Conserves sharp gradients
- Numerically expensive
- Not optimized for use on cache-based machines.

I Default: Wicker and Skamarock scheme (5th order)
- Much better accuracy than Piacsek Williams
- Much simpler algorithm than Bott-Chlond
- Requires additional ghost layers
- Adds additional numerical dissipation
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Numerics Boundary Conditions

Numerics

Advection Methods – Wicker/Skamarock (I)
I Wicker and Skamarock (2002, Mon. Wea. Rev. 130, 2088 – 2097).

I Based on flux form of advection term

I Difference of fluxes at the edge of the grid cell is used to discretise
advection term

∂ψ
∂t

= −∇(uiψ) ≈ −
F
i+ 1

2
−F

i− 1
2

∆x

Fi− 1
2

Fi+ 1
2

PALM group PALM Seminar 8 / 22



Numerics Boundary Conditions

Numerics

Advection Methods – Wicker/Skamarock (II)

Finite difference approximation of 6th order

F 6th
i− 1

2

= 1
60ui− 1

2
(37(Ψi + Ψi−1)− 8(Ψi+1 + Ψi−2) + (Ψi+2 + Ψi−3))

Artificially added numerical dissipation term

− 1
60

∣∣∣ui− 1
2

∣∣∣ (10(Ψi −Ψi−1)− 5(Ψi+1 −Ψi−2) + (Ψi+2 −Ψi−3))
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Numerics Boundary Conditions

Numerics

Advection Methods – Wicker/Skamarock (III)

F 6th
i− 1

2

= 1
60ui− 1

2
(37(Ψi + Ψi−1)− 8(Ψi+1 + Ψi−2) + (Ψi+2 + Ψi−3))

Centered Finite
Differences
produces numerical
oscillations
(”wiggles”) near
sharp gradients.
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Numerics Boundary Conditions

Numerics

Advection Methods – Wicker/Skamarock (IV)

F 5th
i− 1

2
= F 6th

i− 1
2
− 1

60

∣∣∣ui− 1
2

∣∣∣ (10(Ψi −Ψi−1)− 5(Ψi+1 −Ψi−2) + (Ψi+2 −Ψi−3))

Advantage
Numerical Dissipation
damps small scale
oscillations.

Disadvantage
In a turbulent flow
numerical dissipation
removes energy from
small scales.
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Numerics Boundary Conditions

Numerics

Advection Methods – Wicker/Skamarock (V)

I Better resolution of larger scales (> 8 ∆x) and hence less
numerical energy transfer from larger to smaller scales
compared to lower order schemes.

I Less spectral energy at smaller scales.
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Numerics Boundary Conditions

Numerics

Pressure Solver (I)
I Governing equations of PALM require incompressibility

I Incompressibility is reached by a predictor-corrector method
1. Momentum equations are solved without the pressure term giving a
provisional velocity field which is not free of divergence.

ut+∆t
iprov

= uti + ∆t
(
− ∂
∂xk

utku
t
i − (εijk fju

t
k − εi3k f3ugk ) + g θ

∗t

θ0
δi3 − ∂

∂xk
u′ku
′
i

t
)

2. Assign all remaining divergences to the (perturbation) pressure p∗ so that
the new corrected velocity field is the sum of the provisional, divergent field and
the perturbation pressure term.

ut+∆t
i = ut+∆t

iprov
+ ∆t

(
− 1
ρ0

∂p∗t

∂xi

)
3. The divergence operator is applied to this equation. Demanding a corrected
velocity field free of divergence, this leads to a Poisson equation for the
perturbation pressure.

∂2p∗t

∂x2
i

= ρ0
∆t

∂ut+∆t
iprov

∂xi

4. After solving the Poisson equation, the final velocity field is
calculated as given in step 2.
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Numerics Boundary Conditions

Numerics

Pressure Solver (II)

I FFT-solver
1. Discretization of the Poisson-equation by central differences

2. 2D discrete FFT in both horizontal directions
3. Solving the resulting tridiagonal set of linear equations
4. Inverse 2D discrete FFT in both horizontal directions leading to
the perturbation pressure

I Very fast and accurate, O(n log n), n: number of gridpoints
I CPU requirement < 50% of total CPU time
I Due to non-locality of the FFT, transpositions are required on

parallel computers
I Requires periodic boundary conditions and uniform grids along

x and y
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Numerics Boundary Conditions

Numerics

Pressure Solver (III)
I Multigrid-method

I Iterative solver
basic idea: Poisson equation is transformed to a fixed point problem:
~pk+1 = T · ~pk + ~ck

starting from a first guess, the solution will be improved by repeated
execution of the fixed point problem:

~p1 = T · ~p0 + ~c0

~p2 = T · ~p1 + ~c1
...

~pk = T · ~pk−1 + ~ck−1

~pk+1 = T · ~pk + ~ck

Depending on the structure of the matrix T and vector c different iterative
solvers can be defined, e.g.: Jacobi-scheme (here on 2D-uniform grid):

pk+1
i,j = 1

4
·
(
pki−1,j + pki+1,j + pki,j−1 + pki,j+1 −∆x2f (i , j , k)

)

I With each iteration step k the improved solution converges towards the
exact solution.

I Iterative schemes are ’local schemes’ → information is needed
only from neighboring grid-points.

I Very low convergence: O(n2).
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Numerics Boundary Conditions

Numerics

Pressure Solver (IV)
I Multigrid-method

I Due to their locality, iterative solvers show a
frequency-dependent reduction of the residual: low frequencies
are reduced slower than high frequencies.

I The main idea of the multigrid method is to reduce errors of
different frequencies on grids with different grid spacing:

I errors of high frequency are reduced on fine grids
I errors of low frequency are reduced on coarse grids.
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Numerics Boundary Conditions

Numerics

Pressure Solver (V)

I Multigrid-method

I On each grid-level an approximate
solution of the fixed point equation is
obtained performing a few iterations.

I The solution is transmitted to the next
coarser grid-level where it is used as the
first guess to solve the fixed point
problem.

I This procedure is performed up to the
coarsest grid-level containing two
grid-points in each direction.

I From the coarsest grid-level the
procedure is passed in backward order
to get the final solution.

I For large grids faster than FFT method.
I V- and W-cycles are implemented.
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Numerics Boundary Conditions

Boundary Conditions

Boundary Conditions (I)

I Lateral (xy) boundary conditions:

I Cyclic by default, allowing undisturbed evolution / advection
of turbulence.

Ψ(−1) = Ψ(n)
Ψ(n + 1) = Ψ(0)

I Dirichlet (inflow) and radiation (outflow) conditions are
allowed along either x- or y -direction.

I In case of a Dirichlet condition, the inflow is laminar (by
default) and the domain has to be extended to allow for the
development of a turbulent state, if neccessary.

I Non-cyclic lateral conditions require the use of the
multigrid-method for solving the Poisson-equation.
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Numerics Boundary Conditions

Boundary Conditions

Boundary Conditions (II)

I Surface boundary condition:
I Monin-Obukhov-similarity is used by default,

i.e. a Prandtl-layer is assumed between the
surface and the first grid layer.
∂u
∂z

= u∗
κz

Φm; u∗ =
√
−w ′u′0 =

√
τ0
ρ

∂θ
∂z

= ϑ∗
κz

Φh; ϑ∗ =
w′θ′0
u∗

I Integration between z = z0 (roughness height)
and z = zp (top of Prandtl-layer, k = 1) gives
the only unknowns u∗ and θ∗ which then define
the surface momentum and heat flux, used as
the real boundary conditions.

I Φm, Φh: Dyer-Businger functions

Φm =


1 + 5Rif stable

1 neutral

(1− 16Rif)−1/4 unstable

Prandtl-layer

Rif =
g

θ̃
w ′θ′0

w ′u′ ∂u
∂z

Richardson flux number
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Numerics Boundary Conditions

Boundary Conditions

Boundary Conditions (III)
I Surface boundary condition:

I Monin-Obukhov-similarity is only valid for a horizontal surface with
homogeneous conditions.

I The surface temperature has to be prescribed. Alternatively, the
surface heat flux can be prescribed.

I Instead of MO-similarity, no-slip conditions or free-slip conditions
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Numerics Boundary Conditions

Boundary Conditions

Boundary Conditions (IV)

I Boundary conditions at the top (default)
I Dirichlet conditions for velocities: u = ug, v = vg, w = 0

I Neumann conditions (temporal constant gradients) for scalars:

∂θ

∂z
=

∂θ

∂z

∣∣∣∣
t=0

I Pressure: Dirichlet p = 0 ( Neumann
∂p

∂z
= 0 is better )

I SGS-TKE: Neumann
∂e

∂z
= 0

I A damping layer can be switched on in order to absorb gravity
waves.
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Numerics Boundary Conditions

Boundary Conditions

Initial Conditions

All 3D-arrays are initialized with vertical profiles (horizontally
homogeneous).

Two different profiles can be chosen:

I constant (piecewise linear) profiles

I e.g. u = 0, v = 0,
∂θ

∂z
= 0 up to z = 1000m,

∂θ

∂z
= +1.0 up to top

I velocity profiles calculated by a 1D-model (which is a
part of PALM)

I constant (piecewise linear) temperature profile is used for the
1D-model

Under horizontally homogeneous initial conditions, random
fluctuations have to be added in order to generate turbulence!
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