Data Analysis

PALM group

Institute of Meteorology and Climatology, Leibniz Universität Hannover

last update: 21st September 2015

PALM offers different ways of standard output to analyze the simulation data:

2 / 4

PALM offers different ways of standard output to analyze the simulation data:

1. Run control informations (for certain timesteps)

PALM offers different ways of standard output to analyze the simulation data:

- 1. Run control informations (for certain timesteps)
- 2. Mean vertical profiles
 - horizontally averaged, instantaneous or time-averaged

PALM offers different ways of standard output to analyze the simulation data:

- 1. Run control informations (for certain timesteps)
- 2. Mean vertical profiles
 - horizontally averaged, instantaneous or time-averaged
- Time series

PALM offers different ways of standard output to analyze the simulation data:

- 1. Run control informations (for certain timesteps)
- 2. Mean vertical profiles
 - horizontally averaged, instantaneous or time-averaged
- 3. Time series
- 4. Two-dimensional cross sections (xy, xz, yz)
 - instantaneous or time-averaged, + averaged along 3rd dimension

PALM group

PALM offers different ways of standard output to analyze the simulation data:

- 1. Run control informations (for certain timesteps)
- 2. Mean vertical profiles
 - horizontally averaged, instantaneous or time-averaged
- 3. Time series
- 4. Two-dimensional cross sections (xy, xz, yz)
 - instantaneous or time-averaged, + averaged along 3rd dimension
- 5. Complete three-dimensional data arrays
 - instantaneous or time-averaged

PALM offers different ways of standard output to analyze the simulation data:

- 1. Run control informations (for certain timesteps)
- 2. Mean vertical profiles
 - horizontally averaged, instantaneous or time-averaged
- 3. Time series
- 4. Two-dimensional cross sections (xy, xz, yz)
 - instantaneous or time-averaged, + averaged along 3rd dimension
- 5. Complete three-dimensional data arrays
 - instantaneous or time-averaged

Others (spectra, particle data)

PALM offers different ways of standard output to analyze the simulation data:

- 1. Run control informations (for certain timesteps)
- 2. Mean vertical profiles
 - horizontally averaged, instantaneous or time-averaged
- 3. Time series
- 4. Two-dimensional cross sections (xy, xz, yz)
 - instantaneous or time-averaged, + averaged along 3rd dimension
- 5. Complete three-dimensional data arrays
 - instantaneous or time-averaged

Others (spectra, particle data)

First item is pure ASCII-data to give a short overview of the run. All other output is in netCDF format and can be graphically displayed.

Additionally, power spectra can be output using the spectra-package (use mrun-option "-p spectra").

Processing Standard Output Data with Graphics Software (Public Domain-Software)

The standard output files are in netCDF format which can be easily displayed with ncview, ncl. or ferret.

With 110 v 10 w, 110 1 , or 1 of 1 of 1 of 1				
	standard output	names of local files created by PALM	suffix of permanent files as defined in .mrun.config	call of graphics soft- ware
	mean vertical profiles	DATA_1D_PR_NETCDF	_pr.nc	<pre>ncview <filename> palmplot pr <options> ferret -gui</options></filename></pre>
	time series	DATA_1D_TS_NETCDF	_ts.nc	<pre>ncview <filename> palmplot ts <options> ferret -gui</options></filename></pre>
	2d-cross-sections	DATA_2D_XY_NETCDF DATA_2D_XZ_NETCDF DATA_2D_YZ_NETCDF	_xy.nc _xz.nc _yz.nc	ncview <filename> palmplot xy <options> palmplot xz <options> palmplot yz <options> ferret -gui</options></options></options></filename>
	3d-data	DATA_3D_NETCDF	_3d.nc	ncview <filename> palmplot xy <options> ferret -gui</options></filename>

User Actions Necessary to Get Output Example for the case of mean vertical profiles:

Example for the case of mean vertical profiles:

1. Carefully think about, which variables you want to analyze

e.g. temperature, wind, etc., resolved- or subgrid-scale?, output interval?, should they be time averaged?

Example for the case of mean vertical profiles:

- 1. Carefully think about, which variables you want to analyze e.g. temperature, wind, etc., resolved- or subgrid-scale?, output interval?, should they be time averaged?
- 2. Find and set the appropriate output parameters in the parameter file data_output_pr = 'pt', 'u', 'w "pt" ', dt_dopr = 900.0, averaging_interval_pr = 600.0, dt_averaging_input_pr = 10.0

Example for the case of mean vertical profiles:

- Carefully think about, which variables you want to analyze
 e.g. temperature, wind, etc., resolved- or subgrid-scale?, output interval?,
 should they be time averaged?
- 2. Find and set the appropriate output parameters in the parameter file data_output_pr = 'pt', 'u', 'w "pt" ', dt_dopr = 900.0, averaging_interval_pr = 600.0, dt_averaging_input_pr = 10.0
- Check, if the necessary file connection statements exist in the .mrun.config file

```
DATA_1D_PR_NETCDF out:loc:tr pr# ~/palm/current_version/JOBS/$fname/OUTPUT _pr nc
```

Example for the case of mean vertical profiles:

- Carefully think about, which variables you want to analyze
 e.g. temperature, wind, etc., resolved- or subgrid-scale?, output interval?,
 should they be time averaged?
- 2. Find and set the appropriate output parameters in the parameter file data_output_pr = 'pt', 'u', 'w "pt" ', dt_dopr = 900.0, averaging_interval_pr = 600.0, dt_averaging_input_pr = 10.0
- Check, if the necessary file connection statements exist in the .mrun.config file

```
DATA_1D_PR_NETCDF out:loc:tr pr# ~/palm/current_version/JOBS/$fname/OUTPUT _pr nc
```

4. Don't forget to activate the file connection statements by setting the correct activation string(s) in mrun-option -r

```
mrun ... -r "... pr# ..." ...
```


Example for the case of mean vertical profiles:

- Carefully think about, which variables you want to analyze
 e.g. temperature, wind, etc., resolved- or subgrid-scale?, output interval?,
 should they be time averaged?
- 2. Find and set the appropriate output parameters in the parameter file data_output_pr = 'pt', 'u', 'w "pt" ', dt_dopr = 900.0, averaging_interval_pr = 600.0, dt_averaging_input_pr = 10.0
- Check, if the necessary file connection statements exist in the .mrun.config file

```
DATA_1D_PR_NETCDF out:loc:tr pr# ~/palm/current_version/JOBS/$fname/OUTPUT _pr nc
```

4. Don't forget to activate the file connection statements by setting the correct activation string(s) in mrun-option -r

```
mrun ... -r "... pr# ..." ...
```

5. After job completion, change to the OUTPUT-directory and call the appropriate graphics software

